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A B S T R A C T   

Background: Currently, Brazil is experiencing one of the fastest increasing coronavirus disease (COVID-19) 
mortality rates worldwide, with a minimum of 158,000 confirmed deaths presently. The city of São Paulo is 
particularly vulnerable because it is the most populated city in Brazil. Thus, this study aimed to analyse COVID- 
19 mortality in a spatiotemporal context in São Paulo, with respect to socio-economic levels. 
Method: We modelled the deaths using spatiotemporal architectures and Poisson probability distributions using a 
latent Gaussian Bayesian model approach. 
Results: Both total deaths and confirmed deaths showed similar spatial patterns. Mortality was higher in men and 
increased with age. The most critical period regarding mortality occurred between the 20th and 23rd epide
miological weeks, followed by an apparent stabilisation of the epidemiological trend. The risk of death was 
greater in areas with the worst social conditions during the study period. However, this pattern was not uniform 
over time, since we identified a shift of high risk from the areas with the best socio-economic conditions to those 
with the worst conditions. 
Conclusions: Our study corroborated the relationship between COVID-19 mortality and socio-economic condi
tions, revealing the importance of geographic screening in the integration of better actions to face the pandemic.   

1. Introduction 

Mortality owing to coronavirus disease (COVID-19), caused by the 
novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is 
considered avoidable because some collective and individual measures 
can help prevent the infection, and appropriate health assistance greatly 
reduces the mortality risk. Nevertheless, mortality risk varies according 
to some individual and geographic risk factors, resulting in health 
inequity observed in several parts worldwide since the beginning of the 
pandemic [1,2]. In Brazil, COVID-19 was first reported in the city of São 
Paulo on February 25, 2020 [3]. Until 3 August, 4 months after the first 
reported death, the disease had already resulted in 2,962,442 confirmed 
cases and 99,572 deaths in the country [4]. Currently, the United States 

of America and Brazil are the epicentres of the disease. 
Brazil is the fifth country worldwide in terms of surface area and 

population and is classified as having an upper-middle-income economy 
[5]. Almost 60% of the Brazilian population is concentrated in 6% of the 
large cities, among which São Paulo is the largest. The Brazilian Unified 
Health System guarantees healthcare for all citizens as well as for 
thousands of foreigners residing or passing through the country [6]. 
Despite this universal healthcare, geographic differences in mortality 
rates across different areas have been observed on a national and 
intra-urban scale. Spatial heterogeneity in population characteristics 
such as age, underlying health, household densities, partial lack of 
sanitation, socio-economic status, contact networks, and mobility pat
terns [7] has emerged as a potential propellant of the spatiotemporal 
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spread of the disease. 
Since the beginning of the pandemic, mapping disease occurrence 

and spread has become a powerful tool to track the disease and establish 
measures to slow down the transmission of the infection both locally and 
globally [8]. Web-based Geographical Information Systems have 
allowed near real-time monitoring using map-centric dashboards 
[9–11]. Despite advances in the use of technology to reduce the impact 
of the pandemic, little is known about the spatiotemporal patterns of 
COVID-19 mortality, especially in intra-urban settings. Studying the 
spatiotemporal dynamics of mortality instead of the cases may help 
better evaluate inequity. All health disadvantages accumulated over 
decades of life, owing to any kind of deprivation, increase the risk of 
mortality due to COVID-19. The lack of a robust spatiotemporal analysis 
undermines the comprehension of mitigation strategies to potentialise 
disease-control efforts. Thus, this study aimed to unveil the spatiotem
poral dynamics of COVID-19 mortality in a higher spatial resolution (in 
the city of São Paulo), considering the socio-economic context of the 
population. This approach may shed light on the urgent need for solid 
evidence on health inequities during the COVID-19 outbreak. 

2. Materials and methods 

2.1. Study area and data acquisition 

This ecological study, based on COVID-19 secondary mortality data, 
was delineated in the city of São Paulo, state of São Paulo, Brazil (Fig. 1). 
In 2020, the estimated population of this city was 11,869,660 in
habitants, and the mean demographic density was 7803 inhabitants/ 
km2 [12]. 

When using COVID-19 data, underreporting is always an issue that 
deserves attention, even for mortality. To minimise the effect of possible 
sub-notification of deaths, we analysed confirmed and suspected deaths 
due to COVID-19. Thus, mortality data comprised confirmed and sus
pected deaths that occurred between 15 March and June 13, 2020, 
extracted on 18 June from the Mortality Information System (SIM), the 
Mortality Information Improvement Program (PRO-AIM) of the Epide
miology and Information Coordination (CEInfo) of the São Paulo Health 
Secretariat (SMS-SP). Confirmed deaths due to COVID-19 corresponded 

to the code B34.2 (coronavirus infection disease), according to the In
ternational Classification of Diseases Tenth Revision (ICD-10). Sus
pected deaths were coded as U04.9 (corresponding to severe acute 
respiratory syndrome). 

The places of residence of the COVID-19 deaths were geocoded with 
CEInfo/SMS-SP using its databases and Google Maps API geocoding 
script (that uses public places as the base map). The resulting geocoded 
addresses were validated by comparing the road or Zone Improvement 
Plan (ZIP code), whenever the record was allocated using the original 
ZIP code. Geocoded data were assigned to the 310 sample areas of the 
Brazilian Institute of Geography and Statistics, for which demographic 
and socio-economic census data are available [13]. We considered these 
areas as the spatial units in our models (Fig. 1). 

Records, including the basic cause of death, age, sex, date of death 
according to the epidemiological week (EW) [14], and the sample areas 
of residence, were obtained after addressing a formal request to the São 
Paulo Electronic Information System (e-SIC database, protocol 48567). 
Their data information is hosted in an open session on the municipality’s 
transparency portal for public access [15]. Here, we named this infor
mation the e-SIC database. It was not necessary to submit this study to an 
ethics committee because we did not have access to personal data, such 
as names and addresses. The use of secondary data without personal 
identification and in a public domain dispenses the need for prior 
approval from the Ethics Committee on Research with Human Beings (as 
per Resolution No. 510/2016 of the National Health Council) [16]. 

We also used the data available in the TabNet and named this in
formation as the “Tabnet database”. The Tabnet database is an appli
cation, available at <https://www.prefeitura.sp.gov.br/cidade/secret 
arias/saude/tabnet/>, provided by the Municipal Health Department 
of São Paulo. It was developed by DataSUS. This application provides 
free access (to any user) to population databases and to database in
formation systems of SUS (such as the SIM), which is supplied by the 
Secretariat’s Program (PRO-AIM). Through the Tabnet database appli
cation, it is possible to perform tabulations and to cross several variables 
of interest such as EW, sex, age group, and specific cause. The databases 
are updated periodically. Notably, the data sources of the Tabnet and e- 
SIC database are SIM. However, only the e-SIC database is subdivided 
according to sample area. 

To measure the socio-economic condition of the population, since 
individual-level data are not available in the mortality database, we 
used a socio-economic index elaborated for health research. The Socio- 
economic Index of the Geographic Context for Health Studies (GeoSES) 
[17] was developed using principal component analysis, starting with 
41 variables. The index conceives the socio-economic condition by 
considering seven parameters based on the theoretical background [18, 
19]: education, mobility, poverty, wealth, income, segregation, and 
deprivation of resources and services. The index was defined on three 
scales: national, Federative Unit, and intra-municipal. Fig. 1 presents 
GeoSES for the sample areas of the city of São Paulo. It shows that the 
areas with the best socio-economic conditions (GeoSES equal to or close 
to 1) are located in the central part of the city and that the 
socio-economic conditions deteriorate towards the periphery, where 
they reach the worst levels (GeoSES equal to or close to − 1). It has been 
shown to be useful in studies of mortality due to avoidable causes of 
deaths in individuals aged 5–74 years due to interventions at the Bra
zilian health system on a national scale as well as mortality due to cir
culatory system diseases in the city of São Paulo [17]. This index is 
publicly available at https://opendatasus.saude.gov.br/dataset/geoses. 

2.2. Data analysis 

We used the information of confirmed (B34.2) and suspected (U04.9) 
deaths due to COVID-19 available for the entire city of São Paulo from 
the 11th to 29th EWs to calculate the weekly mortality rates of 
confirmed (B34.2), suspected (U04.9), and total (B34.2 + U04.9) 
COVID-19 deaths. This was similarly done using the e-SIC database from 

Fig. 1. a) South America, Brazil, State of São Paulo, city of São Paulo. b) 
Distribution of socio-economic Index of the Geographic Context for Health 
Studies (GeoSES) according to the sample area and delimited by administrative 
districts, city of São Paulo, 2010. 
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the 11th to 12th EW. We excluded (from the information e-SIC database) 
COVID-19 deaths that occurred in the 25th EW because data from this 
week were incomplete (it was extracted on June 18, 2020, and it con
tained only part of the 25th EW information). These rates were obtained 
by dividing the respective numbers of deaths in each week by the total 
population of the city and presented as death per 100,000 inhabitants 
per week. In this sequence, we obtained the mortality rates for 
confirmed, suspected, and total COVID-19 deaths according to sex and 
age for the entire period from the 11th to 12th EW using the Tabnet and 
e-SIC databases. The comparisons between the data from these two 
sources were useful to evaluate the completeness of the data we used for 
the spatial and spatiotemporal analysis. For the calculation of the 
mortality rates according to sex and age, we excluded the data without 
these information. 

As only one suspected COVID-19 death occurred during the 11th EW, 
we restricted our spatial and spatiotemporal analysis from the 12th to 
24th EW, and spatial or spatiotemporal architecture was considered in 
all models developed. We first modelled the confirmed and total COVID- 
19 deaths using spatiotemporal models involving only the intercept and 
random effects that account for spatial and temporal autocorrelation 
and the interaction between them. The spatial dependence was 
modelled considering the Besag–York–Mollié (BYM) model with two 
components representing the spatially structured and non-structured 
random effects [20,21]. These two components were considered inde
pendent from one another and followed the parameterisation proposed 
previously [22]. The temporal dependence was modelled using a 
non-structured random effect and a structured random effect provided 
by a random walk autoregressive model of first order (RW1). The 
interaction between space and time was modelled considering spatial 
and temporal non-structured random effects [21]. 

The number of confirmed and total COVID-19 deaths per EW and per 
sample area was modelled using Poisson and zero-inflated Poisson 
probability distributions with a latent Gaussian Bayesian model 
approach. We considered the expected confirmed and total COVID-19 
deaths for each EW and for each spatial unit as offsets in these 
models. The expected deaths were estimated with indirect stand
ardisation, considering the age and sex structure of each sample area and 
the mortality rates for the entire study period and city. This enabled us to 
interpret the outcomes of our analysis as relative risks (RR) concerning 
the mortality rates for the entire study period and city. From these 
models, we obtained the temporal and spatiotemporal RR. Subse
quently, we introduced the socio-economic covariate (GeoSES) in these 
models and obtained the corresponding RR. 

Finally, we used a spatial approach to model the confirmed and total 
COVID-19 death per EW to evaluate the role of the socio-economic co
variate in each EW. To this end, we considered spatial models with 
intercept, BYM spatial random effects, and GeoSES as a covariate. The 
expected COVID-19 deaths were obtained in a similar way for the 
spatiotemporal models. We considered the entire city’s mortality rates 
for each EW, and as such, we could interpret the RR of the entire city’s 
mortality rates for each EW. 

We performed our models in a Bayesian context using the integrated 
nested Laplace approximation (INLA) approach [23]. We selected the 
best models using the Deviance Information Criterion (DIC) so that the 
best-adjusted models were those with lower DIC values [21]. We used 
non-informative priors for the fixed effects and priors with penalised 
complexity for the precision parameters of the random effects [22]. We 
ran our models in the R environment [24]. 

3. Results 

We found 14,753 confirmed and suspected COVID-19 deaths in the 
Tabnet database (from EW 11 to 29) and 10,760 in the e-SIC database 
(from EW 11 to 25) in the city of São Paulo. We excluded 67 deaths from 
the e-SIC database because they were referent to the 25th EW, which 
was not completed when the data were extracted. Accordingly, we were 

left with 10,693 deaths. Fig. 2 shows the mortality rates for COVID-19 
for both data sources considering the confirmed, suspected, and total 
deaths. The curves from the e-SIC database are similar to the curves from 
the Tabnet database. Both curves have the same data source with 
different extraction dates, and the differences among these curves in the 
23rd and 24th EW are related to a delay in the notification of the COVID- 
19 deaths. 

Table 1 shows the numbers and mortality rates of confirmed, sus
pected, and total COVID-19 deaths in the different sex and age groups, 
obtained from the e-SIC and Tabnet databases (from EW 11 to 24). To 
build Table 1, we excluded six deaths with ignored age and three deaths 
with ignored sex from the 10,693 deaths in the e-SIC database. We 
excluded six deaths with ignored age and four deaths with ignored sex 
from the 11,098 deaths in the Tabnet database. We can observe that the 
mortality was higher in men and that it increased with age, resulting in a 
mortality rate of 460.9 deaths per 100,000 inhabitants (in 14 weeks) for 
people aged ≥ 60 years. This pattern of increased mortality with in
crease in age was also observed after making a greater stratification 
among people aged 60 years or above, as shown in Supplementary 
Material 1. 

Table 1 also shows that the data we used to build our spatial models 
(e-SIC database) are very close to the municipality’s official data on the 
pandemic (Tabnet database). To construct these models, we excluded 
suspected COVID-19 deaths that occurred in the 11th EW (the first one 
in the city) from the e-SIC database. We also excluded nine deaths with 
ignored sex or age, and 68 cases whose addresses were not geocodified 
or did not have the sample area codes. We achieved a high geocoding 
success rate of 99.3%. Out of a total of 10,692 deaths (excluding the first 
death in the 11th EW), 10,619 records were geocoded using the address 
data. Of these, 5837 referred to ICD B34.2 (99.4% of the initial total of 
5875 records) and 4782 to ICD U04.9 (99.2% of the total of 4817 
records). 

During this period, 30.6% and 17.4% of the sample areas had zero 
confirmed and zero total COVID-19 deaths, respectively. The Deviance 
Information Criterion (DIC) values of the spatiotemporal models with 
Poisson probability distribution were lower than the value of the zero- 
inflated Poisson distribution (Supplementary Material 2). Considering 
each week separately, the number of zero deaths in the sample areas 
varied from 6.1% to 85.5%. The DIC values for the spatial models with 
Poisson probability distribution were, in most cases, lower than the 
values with zero-inflated Poisson distribution. In cases where this did 
not occur, they were very close to each other (Supplementary material 
3). From these results, we considered the best-adjusted spatial and 
spatiotemporal models to be those with the Poisson distribution. 

We present the results of the models with spatiotemporal architec
ture using only the intercept. Fig. 3 shows the temporal RR from the 12th 
to 24th EW. Notable features include the maximum RR, which occurred 
during the 20th EW for the total COVID-19 deaths and during the 23rd 
EW for the confirmed ones during our study period. These results, even 
adjusted for the temporal autocorrelation, are similar to those presented 
in Fig. 2. Considering the data presented in Figs. 2 and 3, the apparent 
pattern of the temporal curves shows a tendency to stabilise. However, a 
new rise in mortality cannot be ruled out. 

Figs. 4 and 5 show the posterior means of the spatiotemporal RR for 
the sample areas and EW, respectively, for confirmed and total COVID- 
19 deaths. Apart from the fact that the RR is greater for the total deaths 
than for the confirmed ones, the distribution of the RR is similar between 
them, and it follows the behaviour of the temporal RR. In the first two 
EWs, the sample areas presented lower values of RR that increased over 
time. However, this increase occurred with greater intensity in periph
eral areas. 

We also used the spatiotemporal models, considering socio-economic 
variables (GeoSES). Table 2 shows the spatiotemporal RR and the 95% 
credibility intervals for GeoSES obtained for the models with confirmed 
and total COVID-19 deaths. In both models, it is noted that a high socio- 
economic level protected against the risk of mortality due to COVID-19 
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throughout the study period. Thus, an increase of one unit in the socio- 
economic indicator represented a 25% reduction in the risk of mortality 
due to COVID-19 (for the model using only confirmed deaths) and a 33% 
reduction in the risk of dying for the model using total deaths of COVID- 
19. Moreover, the risk of mortality due to COVID-19 in the sample areas 
with the best socio-economic conditions (GeoSES close to 1), compared 
with that in areas with the worst conditions (GeoSES close to − 1), was 
50% lower for the model with confirmed deaths and 66% lower for the 
model with total deaths. 

Finally, we performed the spatial modelling of confirmed and total 
COVID-19 deaths in the different EWs separately, considering the socio- 
economic covariate. Fig. 6 shows the RR and 95% credibility intervals 
for GeoSES, with respect to the confirmed and total COVID-19 deaths for 
each of the EW. We identified a shift in the pattern of the relationship 
between COVID-19 mortality and socio-economic status over time. The 
best socio-economic level presented itself as a risk factor for COVID-19 
deaths in the first two EWs in the city of São Paulo. From the 15th EW, 
for total deaths, and from the 16th EW, for confirmed and total deaths, 
the worst socio-economic condition became a risk factor. Even if some 
values were not significant, there was a continuous decrease in RR from 
the 12th to 17th EW, followed by its stabilisation. 

4. Discussion 

This is the first population-based study on the evolution of the 
spatiotemporal pattern of COVID-19 mortality in the intra-urban setting 
of the largest city of Brazil. Using two different datasets, analysing the 
confirmed and confirmed plus suspected deaths separately, we were able 
to evaluate how uncertainty would impact the association between the 
RR and the socio-economic condition. The robust EW models clearly 
showed when the high risk of death shifted from areas with the best to 
those with the worst socio-economic conditions in the city. 

Our findings showed that the most critical period regarding mortality 
due to COVID-19 in the city of São Paulo occurred between the 20th and 
23rd EW, followed by an apparent stabilisation of the temporal trend. 
However, it is not possible to predict a future scenario. As social 
distancing measures have been lifted in the city since the 25th week 
[25], this could increase the number of infected people and, conse
quently, the number of deaths. Although social distancing alone seems 
insufficient to contain COVID-19, many studies have frequently 
concluded that it remains a critical component of the outbreak control 
[26]. It is important to point out that both total deaths and confirmed 
deaths showed similar spatial patterns in our study, despite their dif
ferences. The suspected deaths, on the one hand, need to be treated with 
caution because they may not be COVID-19-related and, on the other 
hand, could be considered as one of the strengths of the study. This is 

because there is a delay in the confirmation of suspected cases, and 
consequently, some of the suspected deaths are later confirmed to be 
COVID-19-related deaths. Furthermore, some of the suspected cases 
would be considered as confirmed COVID-19-related deaths if the case 
definition was not strict (as the required test is often not available or is 
not performed within the appropriate window time). From this 
perspective, the amplitudes of variation in rates and RR obtained from 
confirmed and total deaths could be considered as lower and upper 
limits (or vice versa) for the magnitudes of these measures. 

The elderly population represents one of the groups that are more 
prone to COVID-19 in the city of São Paulo. The risk of death was the 
highest among men aged >70 years; this is similar to data from China 
and the United States [27]. Recently, Souza et al. [3] analysed the 
Brazilian population and found that most COVID-19 deaths were of men 
and that the most frequent comorbidities were cardiovascular disease 
and diabetes. Behavioural factors, especially social status, that may 
prejudice adherence to lockdown measures, have been shown to be 
potentially crucial in determining susceptibility to SARS-CoV-2 [28,29]. 
This unequal death ratio in men may be interpreted considering many 
factors: the comparatively higher prevalence of comorbidities (i.e., hy
pertension, diabetes, cardiovascular disease, and chronic lung disease) 
[30], higher risk behaviours (i.e., smoking and alcohol use), occupa
tional exposure [31], and sex differences in immune responses [32]. 
However, there may be other social and behavioural characteristics that 
favour women as reported in previous studies, which proposed that 
women are more likely than men to adopt hand hygiene practices [33] 
and to seek preventive care [34]. 

The spatial distribution of suspected and confirmed deaths due to 
COVID-19 in the city of São Paulo shows inequalities, with spatial 
dependence and positive correlation associated with socio-economic 
factors of the areas. This is remarkably similar to the results of Maciel 
et al. [35]. Our findings reveal that the socio-economic condition acts as 
a protective factor against the risk of mortality due to COVID-19. In the 
models considering only confirmed deaths and all deaths, an increase of 
one unit in the socio-economic indicator represented a 25% and 33% 
decrease in the risk of mortality, respectively. The first observation is 
that, when considering all deaths, the protective effect of the 
socio-economic level is more evident, showing that there must be a 
higher incidence of suspected deaths in the less favoured areas than in 
the most favoured areas (in areas with better socio-economic level, 
confirmation tests for COVID-19 are probably more available). A study 
conducted by Souza et al. [3] reinforced this finding. They compared the 
spatial pattern of confirmed cases of COVID-19 and severe acute respi
ratory infection with unknown aetiology, with per capita income in the 
metropolitan region of São Paulo. They found that the COVID-19 cases 
were more associated with better levels than the latter. They pointed out 

Fig. 2. Distribution of mortality rates (per 
100,000 inhabitants-week) of suspected 
(U04.9), confirmed (B34.2), and total 
(U04.9 + B34.2) COVID-19 deaths, accord
ing to e-SIC and Tabnet databases and 
epidemiological week. City of São Paulo, 
2020. Data source: Deaths: Mortality Infor
mation System of Mortality Information 
Improvement Program, from the Epidemi
ology and Information Coordination of the 
São Paulo Health Secretariat (SIM/PRO- 
AIM/CEInfo/SMS-SP). Population: Fundação 
Sistema Estadual de Análise de Dados Esta
tísticos (SEADE). Tabnet database was up
date on 7/23/2020 and e-SIC database was 
provided on August 6, 2020.   
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that the degree of underreporting of COVID-19 cases would increase 
with a decrease in socio-economic status. Therefore, our results 
confirmed the association between COVID-19 and human development, 
pointing out the importance of geographic screening in locations with a 
potential for transmission of local infectious diseases, as a fundamental 
aspect to coordinate better actions against the pandemic [35]. 

The low socio-economic condition levels demonstrate not only the 
vulnerability of the population but also the difficulties health services 
face with respect to the diagnosis and treatment of the COVID-19. This is 
similar to the overall fragility expected from health services in Brazil 
[36] and Latin American countries facing the pandemic [37]. Living 
conditions may also be strongly influenced by low income in different 
ways, such as residence in poorer neighbourhoods and poorer housing 
conditions (particularly confined or overcrowded housing) [38]. The 
latter condition has been demonstrated to be associated with a greater 
risk of contagion from several other pathogens such as Helicobacter pylori 
[39], tuberculosis [40], or Epstein–Barr virus [41]. Regarding 
COVID-19, studies have shown that occupation is an explicit determi
nant of contagion and a secondary determinant of COVID-19 severity 
and deaths due to the association between occupational social class and 
comorbidities [38]. For example, workers such as cleaners, retail staff, 
teachers, or healthcare workers have a direct impact on COVID-19 
incidence [42]. Individuals with underprivileged socio-economic con
ditions are more prone to be exposed to job stress, including burnout 
syndrome and unemployment, which may contribute to disrupted im
mune and inflammatory system responses [43,44] as well as a higher 
risk of comorbidities with COVID-19 [45]. Until now, both debilitated 
immunity and the existence of comorbidities are recognised risk factors 
for COVID-19 severity [38]. 

We showed that the first cases of deaths occurred in the neighbour
hoods with the best socio-economic conditions in the city of São Paulo. 

Table 1 
Number and mortality rates (per 100,000 inhabitants in fourteen weeks) of 
suspected (severe acute respiratory syndrome - U04.9), confirmed (coronavirus 
infection disease - B34.2), and total (U04.9 + B34.2) COVID-19 deaths, ac
cording to e-SIC (São Paulo Electronic Information System) and Tabnet data
bases, sex, and age. City of São Paulo, 11th to 24th epidemiological weeks, 2020.   

e-SIC database 
(provided on 6/18/ 
2020) 

Tabnet database 
(updated on 7/23/ 
2020) 

Ratio: 
Tabnet 
database/e- 
SIC database 

Nº of 
deaths 

Mortality 
rate (per 
100,000 
inhab.) 

Nº of 
deaths 

Mortality 
rate (per 
100,000 
inhab.) 

Male sex 

Confirmed 3350 59.3 3861 68.3 1.2 
Suspect 2507 44.4 2228 39.4 0.9 
TOTAL 5857 103.6 6089 107.7 1.0 

Female sex 

Confirmed 2524 40.6 2906 46.7 1.2 
Suspect 2309 37.1 2099 33.8 0.9 
TOTAL 4833 77.7 5005 80.5 1.0 

Total 

Confirmed 5875 49.5 6768 57.0 1.2 
Suspect 4818 40.6 4330 36.5 0.9 
TOTAL 10,693 90.1 11,098 93.5 1.0 

Total: 0 to 19 years old 

Confirmed 17 0.6 20 0.7 1.2 
Suspect 41 1.4 41 1.4 1.0 
TOTAL 58 1.9 61 2.0 1.1 

Total: 20 to 39 years old 

Confirmed 236 6.2 284 7.5 1.2 
Suspect 208 5.5 172 4.5 0.8 
TOTAL 444 11.7 456 12.0 1.0 

Total: 40 to 59 years old 

Confirmed 1145 35.5 1324 41.1 1.2 
Suspect 825 25.6 706 21.9 0.9 
TOTAL 1970 61.2 2030 63.0 1.0 

Total: 60 years old or older 

Confirmed 4475 241.5 5140 277.3 1.1 
Suspect 3740 201.8 3405 183.7 0.9 
TOTAL 8215 443.3 8545 461.1 1.0 

Data source: Deaths: Mortality Information System of Mortality Information 
Improvement Program, from the Epidemiology and Information Coordination of 
the São Paulo Health Secretariat (SMS-SP). (SIM/PRO-AIM/CEInfo/SMS-SP). 
Population: Fundação Sistema Estadual de Análise de Dados Estatísticos 
(SEADE). Tabnet database was updated on 7/23/2020 and e-SIC database was 
provided on August 6, 2020. 

Fig. 3. Posterior means of the temporal relative risks (RR) of COVID 19. City of 
São Paulo, 12th to 24th Epidemiological Week, 2020. 

Fig. 4. Posterior means of the spatiotemporal relative risks (RR) for confirmed 
COVID-19 deaths. Sample areas of the city of São Paulo, 12th to 24th Epide
miological Week, 2020. 
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This may be because all the infected subjects had been abroad [46]. In 
the first two weeks, the best socio-economic conditions was presented as 
a risk factor. Then, there was a change in the spatial pattern from the 
fourth week onwards, when the worst socio-economic level became a 
risk factor. Similarly, Souza et al. [3] showed a higher risk of diagnosed 
COVID-19 cases in census tracts with higher per capita income in the São 
Paulo metropolitan region during the early phase of the COVID-19 
epidemic. After these first cases in the richest areas, the virus started 
to circulate in the suburbs of the city, with high population density and 
worsened sanitary conditions [47]. This probably explains its fast 
transmission. The city of São Paulo is particularly vulnerable because it 
is the most populated city in the country, with approximately 12 million 
inhabitants [48], and it is highly connected with other countries 
worldwide via its main airport, the São Paulo-Guarulhos International 
Airport, which is the largest in Brazil, with non-stop passenger flights to 
103 destinations across 30 countries [37]. 

In this study, we used SIM instead of the SIVEP Gripe database, 

unlike other studies [3]. The recommendation of the State Health 
Department [49] to register the notification of death and the monitoring 
of mortality using SIM, in practice, leads to a time-lapse between the 
event and the use of information. COVID-19 mortality data were 
improved in the city of São Paulo with PRO-AIM, using the Laboratory 
Environment Manager System (GAL) and Flu Surveillance Information 
System (Sivep Gripe). These characteristics, combined with the possi
bility of assessing home or unattended deaths, motivated the option of 
using SIM data (which considered the confirmed and suspected di
agnoses in analysing mortality due to COVID-19). It is necessary to 
emphasise that the recommendation to register confirmed and suspected 
deaths due to COVID-19 [49] (that motivated the change of the codes 
assigned by the health services since the beginning of the crisis, and 
which is applied by SMS- SP to monitor the evolution of events) has not 
been applied yet. 

Our study findings must be considered in the context of several as
sumptions and data limitations. We associated patients’ addresses or 
postcodes to the area-based socio-economic conditions using geo
localisation. This may provide some insight into the likelihood of 
exposure to health factors and COVID-19 risks. This approach is 
frequently used as representative of individual socio-economic condi
tions. Nevertheless, they are not a perfect picture of the individuals’ 
conditions, and they could underestimate the magnitude of social 
disproportion related to individual social measures [50]. Rather, they 
are best employed along with individual-level variables to reflect 
geographical or aggregate-level risks [38]. We highlight that our spatial 
analysis is subject to methodological limitations caused by ecological 
fallacy and the modifiable areal unit problem. These constraints are 
intrinsic to any spatial analysis that uses aggregated data [51]. Despite 
these, our study still contributes to healthcare planning measures and to 
future precision studies focusing on the effects of social health factors on 
COVID-19 deaths. In addition, one of the strengths of our study was that 
it dealt with COVID-19 deaths instead of the cases (owing to the better 
accuracy and coverage of the data). When we consider only the cases, 
many asymptomatic cases may not be reported and this could hamper 
the conclusions. 

5. Conclusions 

We used models with spatial and spatiotemporal architectures to 
investigate the patterns of confirmed and total (confirmed and sus
pected) COVID-19 deaths in the city of São Paulo. The obtained results, 
after considering both categories, showed differences regarding the 
magnitude of the rates and RR. However, there were no differences with 
respect to the derived conclusions. The risk of mortality due to COVID- 
19 was the highest between the 20th and 23rd EW, followed by an 

Fig. 5. Posterior means of the spatiotemporal relative risks (RR) for total 
COVID-19 deaths by sample areas of the city of São Paulo, 12th to 24th 
Epidemiological Week, 2020. 

Table 2 
Posterior means of the relative risks (RR) and 95% credibility intervals for the 
socio-economic covariate (GeoSES) obtained with the spatiotemporal models for 
confirmed and total COVID-19 deaths. City of São Paulo, 12th to 24th Epide
miology Weeks, 2020.  

COVID-19 
deaths 

Covariate RR posterior 
means 

95% Credible Interval (CI) 

0.025 
quantil 

0.975 
quantil 

Confirmed Intercept 0.82 0.78 0.85 
GeoSES 0.75 0.69 0.82 

Total Intercept 0.74 0.71 0.77 
GeoSES 0.67 0.62 0.72  

Fig. 6. Posterior means of the relative risks and 95% credible interval for the 
socio-economic covariate obtained with spatial models for confirmed and total 
COVID-19 deaths, according to each one of the epidemiologic weeks. City of 
São Paulo, 12th to 24th Epidemiology Week, 2020. 
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apparent stabilisation of the temporal trend. However, we did not rule 
out a possible future rise in mortality. A high socio-economic level was 
shown to protect against the risk of mortality due to COVID-19 
throughout the study period. However, this was not a uniform pattern, 
since we identified a shift in the risk of mortality due to COVID-19 in the 
city of São Paulo over time. We had the highest risk in the best socio- 
economic contexts during the first two EWs that then shifted to the 
worst contexts from the 16th EW. Concerning sex and age, men and 
elderly individuals were at the highest risk of mortality due to COVID- 
19. Our study corroborated the relationship between COVID-19 mor
tality and socio-economic conditions, revealing the importance of inte
grating geographic screening, in areas with higher risk of death, when 
planning better actions to face the pandemic. 
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