

Taxonomia e Diversidade de Procariotos

Uma visão geral dos grupos de procariotos

Robson Francisco de Souza Laboratório de Estrutura e Evolução de Proteínas robfsouza@gmail.com

Objetivos de aprendizado

Taxonomia de Procariotos

- Como microrganismos são classificados?
- Quais são os principais grupos de bactérias?
- Qual o impacto da metagenômica:
 - No conhecimento atual sobre diversidade dos organismos?
 - Na classificação dos procariotos?

Taxonomia de microrganismos

Taxonomia

- <u>Definição</u>: taxonomia é a ciência que descreve e classifica os organismos
- <u>Objetivo</u>: entender as relações de parentesco entre os diferentes grupos de organismos
- A taxonomia permite organizar a imensa diversidade de microrganismos em grupos relacionados
 - O sistema de classificação taxonômica moderno foi introduzido por Carl
 Linnaeus, botânico e médico sueco que formalizou o sistema de <u>nomenclatura</u>
 <u>binomial</u> (Gênero espécie, no próximo slide)
- <u>Relevância</u>: o estudo baseado nos grupos definidos pela taxonomia permite comparar o efeito de <u>variações na composição</u> da microbiota sobre a <u>saúde humana</u>

Classificação de organismos Métodos fenotípicos

- Métodos clássicos, precedem o desenvolvimento da genética e genômica microbiana
- A maioria dos métodos fenotípicos <u>não são usados isoladamente</u>, mas em <u>combinação</u>
- Exemplos:
 - Análise morfológica: forma celular e aparência das colônias
 - Coloração de Gram e outras técnicas de coloração
 - Análises bioquímicas
 - <u>Detecção da atividade de enzimas</u> que estão presentes somente en certo subgrupo de organismos
 - Análise da <u>composição de lipídeos</u> na membrana citoplasmática usando espectometria de massa: técnica extremamente sensível que permite identificar diferenças de composição entre espécies próximas

Métodos de classificação: perfil bioquímico

ID Value	Organism	Atypical Test Results	Confirmatory Test
32143	Enterobacter cloacae	Sorbitol ⁻	
	Enterobacter sakazakii	Urea ⁺	+
32161	Enterobacter cloacae	None	V-P+
32162	Enterobacter cloacae	Citrate ⁻	

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

O exemplo neste slide é específico para bactérias entéricas (Enterobacteriaceae), só pode ser aplicado depois da coloração de Gram (bactérias entéricas são Gram-negativas) e de outros testes fenotípicos que comprovem que o

organismo sob análise é uma

bactéria entérica.

- Em cada compartimento do tubo, pode ocorrer uma reação química que muda a cor de um indicador (meio diferencial)
- A mudança de cor implica a presença de enzimas características de cada espécie

Análise dos ácidos graxos nas membranas

- Técnica de FAME Fatty acid methyl ester
- Amplamente usado em laboratório clínico
- Pode identificar uma espécie bacteriana em particular
- Padronização nos experimentos, pois temperatura e outros fatores modificam o resultado

Classes of Fatty Acids in Bacteria

Class/Example

Saturated: tetradecanoic acid

II. Unsaturated: omega-7-cis hexadecanoic acid

III. Cyclopropane: cis-7,8-methylene hexadecanoic acid

IV. Branched: 13-methyltetradecanoic acid

V. Hydroxy: 3-hydroxytetradecanoic acid

Structure of example

Classificação de organismos Métodos genotípicos

- Esses métodos são baseados na detecção da presença de certos genes ou na sequência de nucleotídeos desses genes
- Por avaliarem os genes diretamente, ao invés do fenótipo determinado por esses genes, esses métodos são <u>mais</u> <u>precisos</u>
- São considerados os métodos de <u>referência na àrea de</u>
 <u>pesquisa</u> ou usados na clínica quando os métodos fenotípicos são inconclusivos

Classificação de organismos Métodos genotípicos

- São muitas vezes baseados na análise de um pequeno número de genes, considerados bons marcadores taxonômicos, tais como:
 - Genes 16S (procariotos) e 18S (eucariotos), que codificam a mesma subunidade menor do RNA ribossomal e não codificam proteínas.
 - gyrB: DNA girase (replicação do DNA)
 - recA: recombinase A (replicação do DNA)
- Para ser bons marcadores taxonômicos, um gene deve
 - 1. Estar presentes em todos os organismos que se deseja classificar
 - 2. Conter variação suficiente para discriminar os grupos / espécies de organismos
- Graças ao avanço das tecnologias de sequenciamento de DNA, classificações recentes começam a usar todos os genes dos organismos sob análise (genoma completo) para classificação

Classificação de organismos Métodos genotípicos

Gene do RNA ribossomal 16S / 18S (<u>ssrDNA</u>)

- Gene (DNA) que codifica a <u>s</u>ubunidade menor do ribossomo ou ssrRNA (small subunit ribosomal RNA)
- Nome: 18S (eucariotos) e 16S (procariotos)
- Importância na taxonomia moderna
 - Presente em todos os organismos celulares
 - Altamente conservado, acumula em algumas regiões, ao longo de bilhões de anos, um número reduzido de mutações
 - A análise das variações nas regiões conservadas permiteu seu uso para reconstruir as relações entre todas as linhagens de organismos (tries domínios da vida).

Cromossomo de Mycobacterium smegmatis

MSMEG_3750

(gene)

ssrDN

HSHEG_3761 MSMEG_3760

HSHEG_3764

HSHEG_3747 HSHEG_3748

HSHEG_3746

3810001

MSHEG_3751 MSHEG_3755 HSHEG_3752

MSHEG_3767

Carl Woese e os três domínios da vida

- Revolução na classificação da vida: filogenia universal baseada no ssrDNA (acima)
- Transição da classificação baseada em fenótipo para uma baseada em genótipo
- Separação entre Bactérias e Arqueas

Woese, C. R.; G. E. Fox (1977). "Phylogenetic structure of the prokaryotic domain: The primary kingdoms". Proceedings of the National Academy of Sciences 74 (11): 5088–5090.

Conjunto de Linhagens forma uma espécie

A era genômica e a metagenômica

- A partir dos anos 2000: o número crescente de genomas completos permitiu que <u>centenas ou milhares de genes em múltiplos genomas</u> fossem usados para inferir filogenias e classificar organismos
- No início, todos as análises de genomas completos, incluindo as voltadas para taxonomia, focaram organismos que os pesquisadores conseguiam <u>isolar e crescer em laboratório</u>
- A restrição de cultivar o organismos significa que quase 90% dos microorganismos não podem ser analisados!
- Desde 2010 esses estudos foram suplementados por análises de genomas incompletos, obtidos a partir de amostras ambientais de organismos não-cultiváveis, ou seja, sem isolar e crescer os organismos no laboratório (metagenômica)
- O sequenciamento de DNA extraído de amostras ambientais não requer o isolamento de células. O DNA sequenciado, portanto, é de uma mistura de organismos que precisam ser identificados no computador
- Resultados da aplicação das técnicas de análise metagenômica, que unem o sequenciamento de DNA ambiental em grande escala com técnicas computacionais poderosas , incluem:
 - Novas linhagens de microrganismos foram descobertas
 - Uma nova visão da àrvore da vida, onde os Eucariotos aparecem como descendentes da arqueias

Árvore da vida

Publicada em 2018

baseada em **genomas completos** e em DNA extraído de **amostras ambientais**

CPR

Novos tipos de bactérias!

Todas as linhagens nos grupos CPR e DPANN não podem ser cultivadas em laboratório e <u>eram desconhecidas antes da</u> <u>metagenômica</u>!

Eucariotos

Navegue os links acima para conhecer a classificação e diversidade dos organismos

Filogenia das Bacterias

À direita: árvore de máxima verissimilhança construída a partir do alinhamento concatenado de 31 proteínas codificadas por genes housekeeping

Grupos Importantes de Bactérias

Classificação baseada na sequência do ssrDNA

A lista abaixo, assim como os próximos *slides*, mencionam apenas alguns dos grupos mais importantes de bactérias e estão longe de ser exaustivos

- Proteobactérias
- Cianobactérias
- Espiroquetas
- Firmicutes
- Bacteroidetes
- Actinobactérias

Proteobactérias

- Inclui a maioria das bactérias Gram-negativas
- Maior grupo em termos de <u>diversidade</u> de espécies e fenótipos
- Mitocondrias de eucariotos derivadas de proteobactérias por endossimbiose

Neisseria gonorrhea
causa gonorrea

caasa gonon ca		
Domíni o	Bacteria	
Filo	Proteobacteria	
Classe	Betaproteobacteria	
Ordem	Neisseriales	
Família	Neisseriaceae	
Gênero	Neisseria	
Espécie	N. gonorrhea	

Escherichia coli comensal, gastroenterite

Domínio	Bacteria
Filo	Proteobacteria
Classe	Gamma proteobacteria
Ordem	Enterobacterialles
Família	Enterobacteriaceae
Gênero	Escherichia
Espécie	E. coli

Helicobacter pylori úlceras, cancer estomacal

Domíni o	Bacteria
Filo	Proteobacteria
Classe	Epsilon proteobacteria
Ordem	Campylobacterales
Família	Helicobacteraceae
Gênero	Helicobacter
Espécie	H. pylori

Cianobactérias

- Grande importância ecológica: ciclos de carbono, oxigênio e nitrogênio
- Modo de vida livre ou comensal (plantas)
- Células isoladas ou colônias
- Utilizam clorofila-A para fotossíntese e liberam gás oxigênio
- Deram origem aos cloroplastos por endossimbiose
- Possuem sistema de membrana interna (tilacóides) semelhante ao dos cloroplastos

Cloroplasto

Anabaena Espécie fixadora de nitrogênio

Synechococcus
Espécie de ambientes
marinhos e águas termais

Espiroquetas

- Morfologia e modos de locomoção únicos
- Possuem forma de um longo cilindro em espiral, parecidas com saca-rolhas
- Possuem um filamento axial e endoflagelo no espaço periplásmico
- Muitas são parasitas de seres humanos. Outros vivem em lamas ou água

Endoflagelo corte transversal

Borrelia burgdorferi causador da doença de Lyme

Treponema pallidum causador da sífilis

Firmicutes

- Grupo diverso de bactérias Gram-positivas
- Também conhecidas como <u>bactérias Gram</u> de baixo G+C%, em virtude da frequência das bases guanina (G) e citosina (C) no seu DNA ser, média, menor que 50%
- Inclui várias espécies patôgenicas de grande importância médica, como os membros dos gêneros Staphylococcus, Clostridium e Streptococcus
- Muitas espécies importantes vivem no solo (Bacillus) e podem representar risco à saúde (Bacillus anthracis)
- Outras gêneros, como Lactobacillus, inclue espécies importantes na microbiota e que contribuem para a saúde humana

Streptococcus

Bacillus subtilis

Clostridium difficile

Bacteroidetes e grupos relacionados

- Juntas com Fusobacterium e Cytophaga, formam o grupo CFB
- Bacilos Gram-negativos de ambientes anaeróbicos (trato gastrointestinal, incluindo a boca (*Fusobacterium*)
- São fermentadores capazes de processar celulose (no estômago de ruminantes) ou de contribuir para a digestão de alimentos de origem vegetal (em humanos)
- Algumas poucas espécies de Bacteroidetes podem ser <u>patógenos</u> <u>oportunista</u> e provocar disbioses, como <u>Bacteroides melaninogenicus</u>, que pode infectar feridas em pacientes com imunidade comprometida
- Espécies do gênero Bacteoides formam cerca de 30% da microbiota normal em humanos

Bacteroides

Actinobacteria

- Bactérias Gram-positivas com alto conteúdo de G+C% (> 50%)
- Incluem muitas espécies patogênicas importantes, como os gêneros *Mycobacterium* (tuberculose e hanseníase), *Nocardia* e outros
- Actinobactérias da famílias Streptomycetaceae (Streptomyces, Kitasatospora)
 podem crescer na forma de micélios macroscópicos com múltiplos núcleos e são a
 principal fonte de antibióticos para a indústria farmacêutica
- Membros do gênero Propionibacterium vivem nos poros da pele e podem contribuir para a formação da acne
- Espécies do gênero *Bifidobacterium* vivem no intestino e contribuem positivamente na sua regulação e homeostase

Mycobacterium tuberculosis

Actinomyces

Streptomyces

Principais Grupos Bactérias

Exercício

Os *slides* anteriores mencionaram algumas características de seis grupos importantes de bactérias. Muitos outros grupos não foram abordados.

Navegando nos sites abaixo, <u>familliarize-se com os nomes</u> de outros grupos de procariotos tais como, por exemplo, Chlamydia e Arquaea.

https://eol.org

http://www.bacterio.net/-classifphyla.html

http://tolweb.org/tree/

https://www.itis.gov

Quando tiver escolhido <u>três</u> grupos faça buscas, na Web e nos livros texto da disciplina, pelas seguintes características dos grupos escolhidos:

- Coloração de Gram mais comum no grupo (e exceções, se houver)
- Forma das células
- Detalhes do metabolismo (aeróbica ou anaeróbica, se é fermentadora)
- Variações na composição da parede celular

Referências

- Diversidade
 - Introdução à Microbiologia (Tortora, 11ª edição)
 - Capítulo 10: Classificação de microorganismos
 - Capítulo 11: Os procariotos
 - Microbiologia de Brock (13ª edição)
 - Unidade 6: Evolução e diversidade de microorganismos
 - Capítulo 16 Evolução microbiana e sistemática
 - Capítulo 17 Bactérias: as proteobactérias
 - Capítulo 18 Outras bactérias