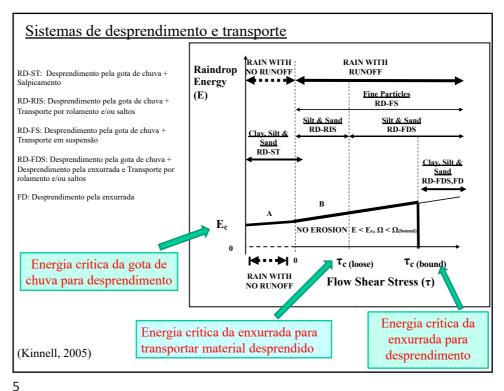

Erodibilidade do solo

É a susceptibilidade de um solo em sofrer erosão.

A ação erosiva da água atua sobre o solo:

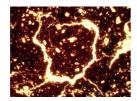
- Reduzindo a taxa de infiltração e a rugosidade superficial do solo devido à desestruturação (aumentando a enxurrada);
- Desprendendo e transportando as partículas pela enxurrada;
- Determinando o funcionamento físico-hídrico do solo.

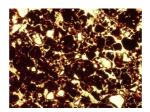

ว

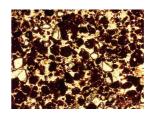
Restrições na aplicabilidade da informação sobre erodibilidade do solo:

- -a distribuição das forças erosivas e de resistência do solo variam para cada sub-processo ativo em vertentes sendo a erodibilidade do solo relacionado a processos específicos;
- -A variabilidade temporal e espacial dos atributos do solo que controlam a erodibilidade.

Л




Atributos do solo e a erodibilidade do solo

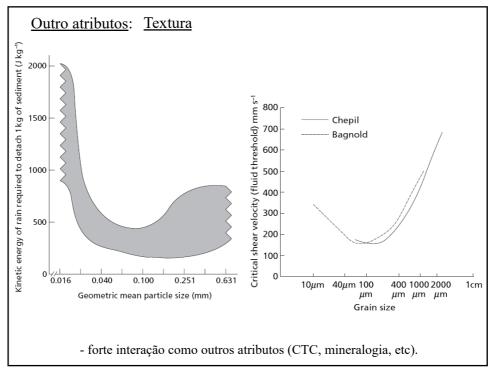

- Vários atributos do solo podem afetar direta ou indiretamente a erodibilidade;
- Não existe nenhum atributo isolado que possa descrever integralmente a erodibilidade;
- Na prática, a agregação do solo e a força de cisalhamento afetam diretamente a erosão.

Agregação

- Processo de união de partículas do solo para formar agregados
- Alta variabilidade na estabilidade em função da sua gênese e composição (incluindo a cimentação)
- Macroagregados x microagregados

8

Consistência do solo


- uso dos limites de consistência de Atterberg
 - os limites relevantes para a erodibilidade:
 - 1) Limite de coesão: a umidade na qual o solo se torna coeso;
 - 2) Limite de plasticidade: o limite no qual o solo se deforma plasticamente sob stress;
 - 3) Limite líquido: o limite no qual o solo flui sob um stress definido e moderado;
 - 4) Limite de contração: limite abaixo do qual há formação de fissuras que podem afetar a formação de sulcos

Força de cisalhamento ou resistência do solo ao cisalhamento

- Controla a resistência do solo ao desprendimento de partículas;
- Depende das forças de coesão entre as partículas e agentes cimentantes;

- Difícil de medir no campo na precisão requerida para os processos erosivos. Utiliza-se um equipamento chamado Torvane.

Mineralogia da argila:

- ambivalente: Caulinitas x Esmectitas
- Cimentação

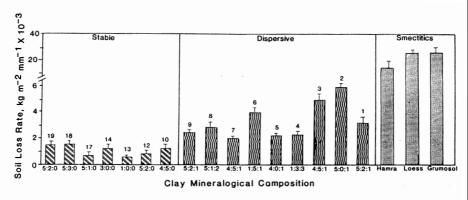
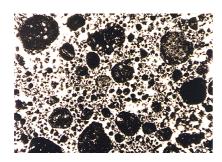



Fig. 3 Soil loss rates of untreated stable, dispersive and smectitic soils. Numbers below the columns represent the mineral ratios of kaolinite, illite, and smectite respectively. (From Stern, Ben-Hur and Shainberg, 1991).

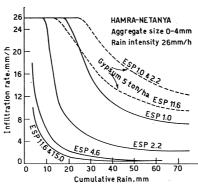
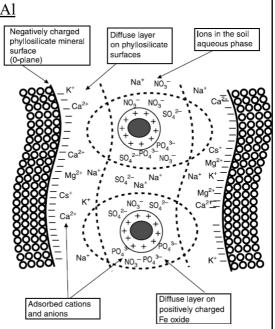
12

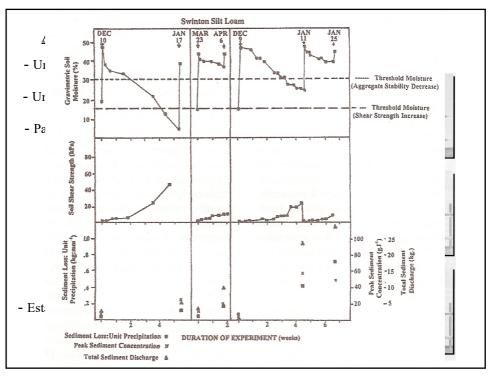
Matéria orgânica:

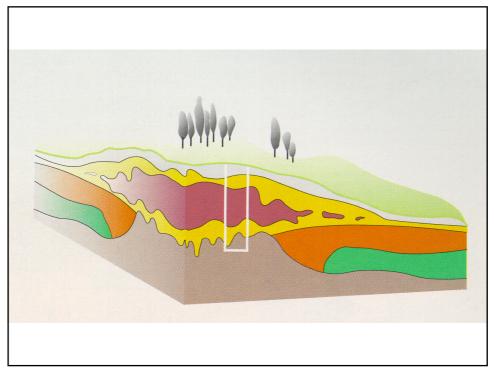
- A matéria orgânica reduz a erodibilidade do solo;
- Depende da interação entre a MO e outros atributos;
- Aumenta a atividade biológica

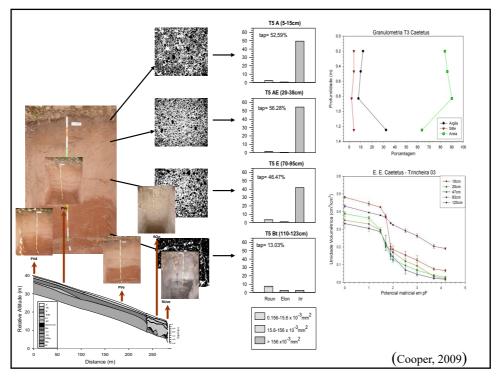
Na e outros cations

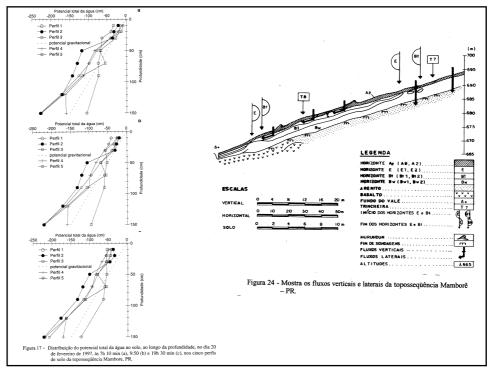
- Atuação na dispersão de partículas;
- Depende dos teores de argila e mineralogia

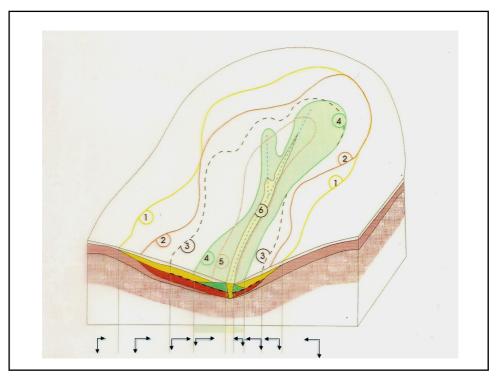




Fig. 6 The infiltration rate of the Netanya soil as a function of cumulative rain. Effect of soil ESP and phosphogypsum application. (From Kazman, Shainberg and Gal, 1983).


14


Óxidos de Fe e hidróxidos de Al


- Ação floculante como o Ca;
- Pontes entre partículas de argila;
- Ação cimentante após precipitação como gel na superfície das argilas.



Static laboratory tests		
Dispersion ratio	%silt + %clay in undispersed soil %silt + %clay after dispersal of the soil in water	Middleton (1930)
Clay ratio	%sand+%silt %clay	Bouyoucos (1935)
Surface aggregation ratio	surface area of particles > 0.05mm (%silt + %clay in dispersed soil) – (%silt + %clay in undispersed soil)	André and Anderson (1961)
Erosion ratio	dispersion ratio colloid content/moisture equivalent ratio	Lugo-Lopez (1969)
Instability index (Is)	$\frac{\text{%silt} + \text{%clay}}{Ag_{ak} + Ag_{ak} + Ag_{akc}}$	Hénin et al. (1958)
	where Ag is the % aggregates >0.2 mm after wet sieving for no pretreatment and pretreatment of the soil by alcohol and benzine respectively	
Static field tests		
Erodibility index	1 mean shearing resistance × permeabilty	Chorley (1959)
Soil cohesion	direct measure of soil cohesion at saturation using a torvane	Rauws and Govers (1988)
Dynamic laboratory tests		
Simulated rainfall test	Comparison of erosion of different soils subjected to a standard storm	Woodburn and Kozachyn (1956)
Water-stable aggregate (WSA) content	% WSA > 0.5 mm after subjecting the soil to rainfall simulation	Bryan (1968)
Water drop test	% aggregates destroyed by a pre-selected number of impacts by a standard raindrop (e.g. 5.5mm diameter, 0.1g from a height of 1m)	Bruce-Okine and La (1975)
Erosion index	dh a where d is an index of dispersion (ratio of % particles >0.05mm without dispersion to % particles >0.05mm after dispersion of the soil by sodium chloride); h is an index of water-retaining capacity (water retention of soil relative to that of 1 g of colloids); and a is an index of aggregation (% aggregates >0.25mm after subjecting the soil to a water flow of 100cmmin¹ for 1h)	Voznesensky and Artsruui (1940)
Dynamic field tests		
Erodibility index (K)	mean annual soil loss per unit of El ₃₀	Wischmeier and

Quantificação da Erodibilidade do Solo

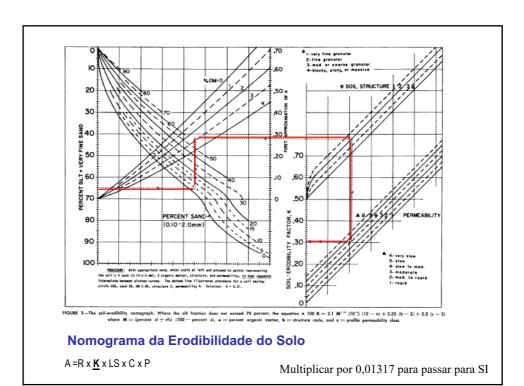
- Modelagem
- USLE (Equação Universal de Perda de Solo)

$$A = RKL S C P$$

A= perda de solo

R= fator erosividade da chuva

K= fator erodibilidade do solo


L= comprimento da vertente

S= declividade

C= fator cobertura do solo

P= fator práticas conservacionistas

22

Solo	Erodibilidade Horizonte (t.h.MJ ⁻¹)		
	Superfície	Subsuperfície	
com B textural			
PVA com cascalho	0,055	0,027	
PVA ou PV abrupto A mod. textura arenosa/média	0,049	0,023	
PVA abrupto ou não textura arenosa/média	0,043	0,046	
PVA A moderado textura arenosa/média	0,035	0,023	
PVA ou PV A moderado textura argilosa ou média/arg.	0,034	0,018	
PVA ou PV dist ou álicos A moderado textura ar/arg ou med/arg ou arg/arg	0,028	0,019	
MT textura argilosa ou m. arg. ou PV eut. A mod. textura arg. ou m. arg.	0,023	0,021	
Nitossolo Vermelho	0,018	0,011	
com B latossólico			
LV dist ou álico A mod. textura arg. ou m.arg.	0,022	0,009	
LE dist ou álico A mod. textura média	0,017	0,012	
LV pouco prof., LV câmbico, Cambissolo Latossólico, todos textura arcillosa	0,017	0,022	
LE A mod. ou A proem. text. arg. ou m. arg.	0,015	0,005	
LV ou LV câmbico, textura média ou argilosa	0,015	0,013	
LV A mod. textura média	0,013	0,007	
LV ou LA A mod. textura argilosa ou média	0,012	0,003	
Latossolo Vermelho A mod textura argilosa ou m. arg.	0,012	0,004	
	В	ertoni e Lombardi Neto, 1	

Quantificação da Erodibilidade do Solo

- WEPP (Water Erosion Prediction Project)

a) Erodibilidade entressulcos

 $K_{iadj} = K_{ib} (CK_{ican}) (CK_{igc}) (CK_{idr}) (CK_{ilr}) (CK_{isc}) (CK_{isl})$

onde;

 K_{iadj} = erodibilidade entressulcos ajustado K_{ib} = erodibilidade entressulcos básico CK_{ican} = fator dossel CK_{isc} = fator cobertura do solo CK_{isc} = fator declividade

b) Erodibilidade em sulcos

 $K_{radj} = K_{rb} (CK_{rbr}) (CK_{rdr}) (CK_{rlr}) (CK_{rsc})$

onde;

 $K_{iadj} = erodibilidade \ em \ sulcos \ ajustado$ $CKrdr = fator \ raizes \ mortas$ $K_{ib} = erodibilidade \ em \ sulcos \ b\ asico$ $CK_{rlr} = fator \ raizes \ vivas$ $CK_{rbr} = fator \ residuo \ incorporado$ $CK_{rsc} = fator \ encrostamento$