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EXPERIMENT 9

Partial Molar Volume

In this experiment the partial molar volumes of sodium chloride solutions will be calcy-
lated as a function of concentration from densities measured with a pycnometer.

THEOCRY

Most thermodynamic variables fall into two types. Those representing extensive
properties of a phase are proportional to the amount of the phase under consideration; they
arc exemplified by the thermodynamic functions VE H S A, G. Those representing inren-
sive properties are independent of the amount of the phase; they include p and T Variables
of both types may be regarded as examples of homogeneous functions of degree I: that s,
functions having the property '

f(kn],_..,kn,-,...)—“—k"f(n,,.:..n,-,...) (n

where n; represents for our purposes the number of moles of component i in a phase.
Extensive variables are functions of degree 1 and intensive variables are functions of
degree 0.



Exp. 9 Partial Molar Velume 17'3

Among intensive variables important in th.:]modynamics are partial melar guantities,
defined by the equation
- d
g = (-Q) @
' an': F’-TJ:'J-,' L] '

where Q may be any of the extensive quantities already mentioned. For a phase of one
component, partial molar quantities are identical with so-called molar quantities, Q = Q/n.
For an ideal gaseous or liquid solution, certain partial molar quantities (V,, E;, H,) are equal
to the respective molar quantities for the pure components while others (S, A, G)) are not.
For nonideal solutions all partial inolar quantities differ in general from the corresponding
molar quantities, and the differences are frequently of interest. :

A property of great usefulness possessed by partial molar quantities derives from
Euler's theorem for homogeneous functions, which states that, for a homogeneous func-
tion f(n,, ..., n,...)of degree [,

of af of
—— 4 . B , —— 4oeve =} 3
iy a'ﬂ| s ito n; [-mj f ( )

Applied to an extensive thermodynamic variable Q, for which / = 1, we see that

”fél+ﬂzéz+"'+”féf+"'=Q (4)
Equation (4) leads to an important result, If we form the differential of Q in the usual way,
d a d d
dQ = —an, + ot —Q~dm g —de + —QdT
dn, an, ap aT

and compare it with the differential derived from Eq. (4),

dQ = 8ydn, + 4 Bydn; + -+ nydB, + -+ nyd, + -

n.déi+"--i-n,-dé;+---—(£’g) a’p—(gg—) dT = 0 (5)
' ap T np

we obtain

aT

For the important special case of constant pre.?;sm'c and temperature,
ﬂldé:+"‘+ﬂ;dé;+"'=0 (const pand T) (6)

This equation tells us that changes in partial molar quantities (resulting of necessity from
changes in the n,) are not all independent. For a binary solution we can write

ﬂ'éz X, '
= M (7)
dQ, X,
where the X, are mole fractions, X; = n,/S n,. In application to free energy, this equation
18 commonly known as the Gibbs—Duhem equation,

We are concerned in this experiment with the partial molar volume V,, which may be
thought of as the increase in the volume of an infinite amount of solution (or an amount so
large that insignificant concertration change will result) when 1 mole of component { is
added. This is by no means necessarily equal to the volume of 1 mol of pure .

Partial molar volumes are of interest in part through their thermodynamic connection
with other partial molar quantities such as partial molar Gibbs free energy, known also as
chemical potential. An important property of chemical poteniial is that for any given com-
ponent it is equal for all phases that are in equilibrium with each other. Consider a system
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*  containing a pure solid substance (e.g., NaCl) in equilibrium with the saturated aqueous
solution. The chemical potential of the solute is the same in the two phases. Imagine now
that the pressure is changed isothermally. Will ¢ solute tend to go from one phase to the
other, reflecting a change in solubility? For an equilibrium change at constant temperature
involving only expansion work, the change in the Gibbs free energy G is given by

dG = Vdp (8)
Differentiating with respect to n,, the pumber of moles of solute, we obtain
" dG,y = Vydp )

where the partial molar free energy (chemical potential) and partial molar volume appear.
For the change in state '

NaCl(s) = NaCl(ag)
we can write
d[&éz) - A _2 (n'.‘ﬁ

ar

[M] = AV, (10)
-

op

Thus, if the partial molar volume of solute in aqueous solution is greater than the molar
volume of solid solute, an increase in pressure will increase the chemical potential of
solute in solution relative to that in the solid phase; solute will then leave the solution phase
until a lower, equilibrium solubility is attained. Conversely, if the partial molar volume in
‘ the solution is less than that in the solid, the solubility will increase with pressure.

Partial molar volumes, and in particular thewr deviations from the values expected for
ideal solutions, are of considerable interest in connection with the theory of solutions,
especially as applied to binary mixtures of liquid components, where they are related to
heats of mixing and deviations from Raoult’s law.

METHOD'!

L =

We see from Eq. (4) that the total volume V of an amount of selution containing | kg
(55.51 mol) of water and m mol of solute is given by :

V=nV, +nW = 5551V, + mV, (11)

where the subscripts 1 and 2 refer to solvent and solute, respectively. Let V! be the molar
volume of pure water (= 18.016 g mol~'/0.997044 g cm™? = [8.069 cm® mol™! at
25.00°C). Then we define the apparent molar volume ¢ of the solute by the equation

V=nVi+no = 55.51VY + me (12)
which can be rearranged to give
' 1 e I .
Ao L v = — (V= 55.51V%) ' (13)
. Now
1000 + mM,
Ve———— —om’ . (14)

d
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and

1000

m V= 4 cm (15)

vhere d is the density of the solution and d 1s the density of pure solvent, both in units of
rem™, M, is the solute molai mass in grams, and 1000 g is the mass of water containing
nmol of solute. Substituting Egs. (14) and (15) into Eq. (13), we obtain

| 1000 d — da)
= 1( yy, — 1000 16
o d(M‘ po= a; (16}
I 1000 W — wﬂ)
=1 3, 1000 17
JJ(M- m w“ - W,_. ( )

‘0 Eq. (17), the directly measured weights of the pycnometer—W, when empty, W,, when
illed to the mark with pure water, and W when filled to the mark with solution—are used.
"This equation is preferable to Eq. (16) for calculation of ¢, as it avoids the necessity of
-omputing the densities to the high precision that would otherwise be necessary in obtain-
mg the small difference d — o,

Now, by the definition of bartinl molar volumes and by use of Eqs. (11) and (12),

= ‘ d d
sz('}l«’) =¢ + n;t}—d)-= +m£Ei (18)

dn,

\so

O _ | ( i—fﬂ ,al’,b) - "’;’? — "L'! @ (]9)
55.51 dm
Ve might proceed by plotting o versus m, drawing a smooth curve through the points, and
constructing tangents to the curve at the desired concentrations in order to measure the
slopes. However, for solutions of simple electrolytes, it has been found that many appar-
‘it molar quantities such as ¢ vary linearly with V/m, even up to moderate concentra-
ions.® This behavior is in agreement with the prediction of the Debye-Hiickel theory for
lute solutions.* Since

dp _ dd daVm 1 dp

- = (20)
dm  g\/m dm 2Vm d\Vm

«e obtain from Egs. (18) and (19),

Goagy d¢__¢+\/; dep m¢ﬂ+3-V£ dep 13

’ 2Vm d\m 2 avm 2 dVm o

A T Vm dip

Vi & Vim - (22)
551\ 2 gNm/.

here @Y is the apparent molar volume extrapolated to zero concentration. Now one can
ot ¢ versus Vi and determine the best straight line through the points. From the slope
“4(d\/m and the value of ¢", both V, and V, can be obtained.
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Chapter VII

Solutions

EXPERIMENTAL

Make up 200 mL of approximately 3.2 m (3.0 M) NaCl in water. Weigh the salt accu-
rately and use a volumetric flask; then pour the solution into a dry flask. If pm%:ble pre~
pare this solution in advance (since the salt dissolves slowly). Solutions of 4, 3. 4. and 75 of
the initial molarity are to be prepared by successive volumetric dilutions; for each dilution
pipette 100 mL of solution into a 200-mL volumetric flask and make up to the mark with
distilled water.

Rinse the pycnometer with distilled water and dry it thoroughly before each use. Use
an aspirator, and rinse and dry by suction; use a few rinses of acelone to expedite drying.
The procedure given here is for the Ostwald—Sprengel type of pycnometer; the less accu-
rate but more convenient stopper type can be used with a few obvious changes in proce-
dure.t To fill, dip one arm of the pycnometer into the vessel containing the solution
(preferably at a temperature below 25°C) and apply suction by mouth with a piece of rub-
ber tubing attached to the other arm. Hang the pycnometer in the thermostat bath (25.0°C)
with the main body below the surface but with the arms emerging well above. Allow at
least 15 min for equilibration. While the pycnometer is still in the bath, adjust memisci to
fiducial marks with the aid of a piece of filter paper. Remove the pycnometer from the bath
and quickly but thoroughly dry the outside surface with a towel and filter paper. Weigh the
pycnometer,

The pycnometer should be weighed empty and dry (W,}, and als-:} with distilled water
in it (W,), as well as with each of the solutions in it (W). It is advisable to redetermine W,
and W, as a check, inasmuch as the results of all runs depend on them. All weighings are
to be done on an analytical balance to the high~st possible precision.

As an alternative and very convenient procedure, one can use a Cassia volumetric
flask instead of a pycnometer. Although the precision of density measurements made with
this flask is not as good as that obtainable with the Ostwald-Sprengel pycnometer, il 18
adequate for the present purposes. The Cassia flask, shown in Fig. lc, is a special glass-
stoppered volumetric flask with 0.1-mL graduations between 100 mL and 110 mL, cali-
brated to contain the indicated volume to within 0.08 mL. Since this flask 1s 26 cm high
and will weigh over 120 g when full, it must be weighed on a top-loading balance. A high-
quality balance of this type, capable of weighing to within =0.01 g, s required.

The Cassia flask should be weighed empty and dry (W,) and twice with distilled water
in it, once with the level near 100 mL (W,) and once with the level near 105 mL (W)). It
should then be weighed with each of the solutions in it (W) to a level just above 100 mL.
In every case, record the liquid-volume reading to within *0.05 mL (V,, V, V for each
solution). As with the pycnometers, the Cassia flask must be rinsed well and dried prior to
each filling. The filled flask is then thermally equilibrated in a constant-temnperaturé bath
(25°C) for at least 15 min. On removing the flask from the bath, dry the outside thoroughly
before weighing. Since more solution is required to fill a Cassia flask than a pycnometer,
you will need ar least 225 mL of the 3 M stock solution, Using two 200-mL volumetric

tThe filling ol a Weld-type pycnometer must be carried out with great care, The temperature of the laboratory
must be below the temperature at which the determination is to be made. Fill the pycnomeler body with the lig-
uid, and seat the capillary stopper firmly, Wipe off excess liquid around the tapered joint, cap the pycnomeler.
and immerse it in the thermostat bath to a level just below the cap. When lemperature equilibrium has been
reached, remove the cap, wipe off the excess liquid from the capillary tip, being careful not to draw liquid out of
the cap‘tllary. and remove the pycnometer from the bath. As the pycnometer cools to room temperature, the lig-
uid column in the capillary will descend; be careful not to heat the pycnoineter with your hands, since this will
force liquid out of the capillary. Carefully clean and wipe off the whole pycnometer, including the cap bul nol
including the tip of the stopper, Cap the pyenometer, place it in the balance, and allow it to stand about 10 min
before weighing.
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FIGURE 1

Pycnometers:

(1) Ostwald-Sprengel typs;
(b) Weld (stopper) type;
() Cassia volumetric flask
{not drawn to scale),

Fiducial mark

(a) : (b) {e) .

flasks and two pipettes (one 50-mL and one 100-mL), you can prepare all the dilutions
required.

CALCULATIONS

The success of this-experiment depends greatly on the care with which the computa-
tions are carried out. For this reason, use of a spreadsheet program for analyzing the data
is strongly recommended. If the work is done by two or more students, the partners are
encouraged to work together, performing the same calculations independently and check-
ing results after each step.

Calculate the density d of every solution to within an accuracy of at least one part per
thousand:

_ Wlmln_ w_wc
d= v - v (23)

If a pycnometer was used, determine its volume from W, — W, and the density d, of pure
water at 25°C (0.997044 g cm ™). If a Cassia flask was used, carry out this volume calcu-
lation for both fillings with water and compare your results with the direct volume read-
ings ¥y and Vi, If necessary devise a calibration procedure that can be applied to correct
the Cassia volume readings obtained on the solutions.

The molalities m (concentration in moles per kilogram of solvent) that are needed for
the calculations ¢an be obtained from the molarities M (concentration in moles per liter of
solution) obtained from the volumetric procedures by using the equation

L M 1
m= — = (24)
1 = (M/d)(M,/1000) d  (d/M) — (M,/1000)
where M, is the solute molar mass (58.45 g mol™') and d is the experimental density in g
cm~* units.

Calenlate ¢ for each solution using Eq. (17) for pycnometer data or Eq. (16) for
Cassia flask data. Plot ¢ versus Vm. Determine the slope drb/dﬁ and the intercept ¢°
atm = 0 from the best straight line through these data points. This should be done with a
linear least-squares fitting procedure.




4

178 chapter VIl Solutions

. Calculate ¥, and V, for m = 0, 0. 5, 1.0, 1.5, 2.0, and 2.5. Plot them against m and
raw a smooth curve for each of the two quantities.

In your report, present the curves (¢ versus Vm, V, and V, versus m) mentioned
above, Present also in tabular form the quantities d, M, m, (1000/m)(W — Wo)/(W — w,),

and ¢ for ezch solution studied. Give the values obtained for the pycnometer volume V,,
and ¢ and dp/d Vm.

DISCUSSION

The density of NaCl(s) is 2.165 g cm ™2 at 25°C. How will the solubility of NaCl in
water be affected by an increase in pressure? _ . .
Discuss qualitatively whether the curves of V; and V, versus m behave 1n accord with

Eq. (7).

SAFETY ISSUES

None.

APPARATUS

Pvcnometer (approximately 70 mL) with wire loop for hanging in bath or Cassia
flask; one or two 200-mL volumetric flasks; 100-mL pipette, and 50- mL pipette if a Cassia
flask is used; pipetting bulb; 250-mL Erlenmeyer flask; one 250- and one 100-mL beaker;
large weighing bottle; short-stem funnel; spatula; filter paper and gum-rubber tube (1 to 2
ft Jong) if an Ostwald—Sprengel pycnometer is used.

Constant-temperature bath set at 25°C; bath hardware for holding flasks and pyc-
nometer; reagent-grade sodium chloride (35 g of solid or 200 mL of solution of an accu-
rately known concentration, 50 g or 285 mL if a Cassia flask is used); acetone to be used
for rinsing; cleaning solution.
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