

Concentrated Solar Power

Fundamentals, Technology and Economics

Lecturer: Dr.-Celso Eduardo Lins de Oliveira Prepared by: Prof. Dr.-Ing. Olaf Goebel

February 2016

Universidade de São Paulo – USP

Pirassununga, February 15 to 19, 2016

2015/2016 CSP EM FOCO

Por meio da:

Content of the Course

- 1) Introduction
- 2) Basics of Solar Irradiation
- 3) Measuring Solar Irradiation
- 4) **Principles of CSP Technology**
- 5) Parabolic Trough Plants
- 6) Solar Tower Plants
- 7) Solar Dish Plants
- 8) Condenser Cooling
- 9) Site Evaluation
- **10)** Calculation of Electricity Generation Cost

Learning Targets

Students attending this course shall learn how to:

- 1) Investigate and judge the solar resource at a site
- 2) Prepare a concept design of a CSP plant
- 3) Simulate the energy yield of a CSP plant with given solar irradiation data
- 4) Perform a site selection for a CSP project
- 5) Calculate electricity generation cost of a CSP plant

Introduction:

Reasons for Using Solar Energy

Two Reasons for the Utilization of Renewable Energies

- 1) Fossil Fuels are running out. Remaining 'production' time:
 - oil: 40 years*
 - natural gas: 40 years*
 - coal: 200 years* *static reach
- 2) The "Greenhouse Effect"
 - Burning fuel generates CO₂
 - CO₂ reflects infrared radiation
 - The Planet has "closed windows" and heats up
 - Climate starts to change

The Problem of Depleting Fossil Energy Resources

- Fuels are the 'blood' of modern economy
- Fuels become scarce
- Fuels become more expensive (oil price increased sixfold 2001 to 2008) (The current low of oil prices is expected to last not very much longer)
- Only rich countries can afford to buy fuels
- Poor countries will have no chance for Development
- Conflicts will arise for the access to the fuel sources (Iraq)
- Renewable Energies will ease these problems!

Regional Distribution of Oil Reserves

2012 PROVED OIL RESERVES (Billions of Barrels)

On the second
R AL
V PERSON
()

Source: zion oil&gas

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

100- 200	Canada (173.6) Iran (151.2) Iraq (143.1) Kuwait (104.0)
50- 100	United Arab Emirates (97.8) Russia (60.0)
25-50	Libya (47.1) Nigeria (37.2) Kazakhstan (30.0) United States (26.5) Qatar (25.4)
10-25	China (20.4) Brazil (14.0) Algeria (12.2) Mexico (10.4)
<10	80 countries
0 (none)	117 countries
NA	No Value reported

Saudi Arabia (267.0)

Venezuela (211.2)

>200

(s) = Less than 500,000 barrels

Regional Distribution of Oil Reserves

Reserves by Region, end-2011

Production by Region, 2011

2012: 73 million 1979: World Crude Oil Production, Millions of Barrels per Day 62 Million

World Crude Oil Production 1930 - 2012

Source: Wikipedia: <u>https://en.wikipedia.org/wiki/Peak_oil</u>

Greenhouse Effect 1/6

• The natural CO₂ circuit

Greenhouse Effect 2/6

• Today's CO₂ "Circuit"

- Today machines generate much more CO₂ than animals
- C (carbon) is added to the circuit by burning fossil fuels
- Plant population on Earth is reduced (cutting of rain forest)

Greenhouse Effect 3/6

• Rising CO₂ content of our atmosphere

Source:https://de.wikipedia.org/wiki/Keeling-Kurve#/media/File:Mauna_Loa_Carbon_Dioxide.svg

Source: Windows to the Universe

Greenhouse Effect 4/6

• Rising CO₂ content of our atmosphere

Greenhouse Effect 5/6

https://commons.wikimedia.org/wiki/File:Earth%27s_greenhouse_eff ect_(US_EPA,_2012).png

Greenhouse Effect 6/6

The Basics of Solar Irradiation

Solar Irradiation is an Electro-Magnetic Wave

Solar Irradiation

- The sun irradiates a power (Luminosity of the sun, L) of:
- $L = 3.846 * 10^{26} W$
- The average distance between earth and sun (called "Astronomical Unit", AU) is:
- AU = 149.6 million km
- The flux density of the solar irradiation, I at this distance is:

•
$$I = \frac{L}{AU^2 * 4 * \pi} = \frac{3.846 * 10^{26} W}{(149.6 * 10^9 m)^2 * 4 * \pi} = \frac{3.846 * 10^{26} W}{2.8124 * 10^{23} m^2} = 1367 \frac{W}{m^2}$$

• In reality this value is not constant over the year, due to the eccentricity of the earth's orbit around the sun

The Eccentricity of the Earth's Orbit and resulting variation of Solar Irradiation, I

The Tilt of the Earth Axis Against the Ecliptic Plane

Reason for the Seasons

- The seasons are caused by the tilt of the earth's axis (and not by the distance earth sun)
- The declination angle, δ can be calculated with the equation below

Variation of the declination angle:

 $\delta = 23.45 * sin [360 / 365 * (284 + n)]$

with n = day of the year

Source: Duffie Beckman

 δ_{max} = the tilt angle of earth's axis = 23.45°

Declination angle δ = 23.45°

Reduction of Solar Irradiation Along its Way Through the Atmosphere

The Definition of (Relative) Air Mass, AM

- The (relative) air mass, AM describes the multiple of path length through the atmosphere compared to the shortest way (perpendicular to the ground)
- AM = 1 / sin ε ε = elevation angle

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 26

Radiative Transfer in the Atmosphere

Atmospheric Extinction Mechanisms

Different Scattering Mechanisms

Source: Masdar / CSP Services

Direct and Diffuse Irradiation

- Due to the above mentioned scattering mechanisms two different types of irradiation are measured on the Earth's surface:
- <u>Direct Irradiation</u> and
- Diffuse Irradiation
- The Direct Irradiation comes directly from the direction where the sun is
- The Diffuse Irradiation comes from all directions above the horizon
- The sum of both is called <u>Global Irradiation</u>

Inclined Irradiation is less dense at a Horizontal Surface [kW / m²]

 $DNI = 1000 W/m^2$ $DNI = 1000 W/m^2$ $DHI = 1000 W/m^2$ $DHI = 707 W/m^2$ (DNI = Direct Normal Irradiation) (DHI = Direct Horizontal Irradiation) $DHI = DNI * sin \varepsilon$ 0.797 1 m ε = 45 ° $\varepsilon = 90^{\circ}$ \rightarrow <-1 m 1 m

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 31

Horizontal or Normal

- We also distinguish on what target we receive the Irradiation:
- <u>Horizontal surface (Letter "H" at 2nd position)</u>
- Surface <u>Normal to Direct Beam (Letter "N" at 2nd position</u>)
- DHI = DNI * sin ε (ε , "epsilon" is the elevation angle of the sun)
- If there is Diffuse Irradiation in addition to the Direct Irradiation (which is always the case), then the <u>G</u>lobal <u>H</u>orizontal <u>Irradiation</u> (GHI) is: GHI = DHI + DIF

Nr. 32

• DIF = Diffuse Irradiation

Global Horizontal Irradiation, GHI

Measured DNI and GHI in Madinat Zayed, Abu Dhabi, UAE

The diagrams show:

- GHI (Global Horizontal Irradiation)
- DNI (Direct Normal Irradiation)
- DHI (Diffuse Horizontal Irradiation)

Here it is important to note the difference between "Horizontal" and "Normal" ! "Horizontal" is the flux density on a horizontal plane, while "Normal" is the flux density on a plane normal to the direct beam. Conversion from "Normal" to "Horizontal":

• DHI = DNI * sin (Elevation Angle, ε)

The Elevation Angle, ϵ is the angle of the sun above the horizon. At low ϵ the flux density on a horizontal plan is much smaller than on the plane perpendicular to the direct beam. Note the Diagram for March, where DNI is much higher than GHI in the morning and evening. Attention: Because the letter "D" stands for "Direct" and "Diffuse" as well, there is potential for confusion.

Direct + Diffuse = Global (only for the same plane!)

Measured Irradiation Madinat Zayed 27.2.2012

Sun's diameter and distance from Earth

Time Zones

- The Earth rotates from west to east with a frequency of one revolution per 24 hours.
- This is a rotation speed of <u>15° per hour</u> or <u>1° per four minutes</u>.
- Each degree of longitude experiences solar noon (sun passing the plane of the degree of longitude) at a different point in time.
- In order to have the solar noon close to 12:00 local time, different time zones have been defined.
- The middle degree of longitude of each time zone is a number which is a multiple of 15°.
- Time zones are described by their time difference to Greenwich Mean Time (GMT), also called United Time Coordinated, UTC
- Central Europe e.g. is GMT + 1h
- The eastern part of Brazil e.g. is GMT 3 h.

Time Zones

Solar Time vs. Local Time

- On a degree of longitude which is a center of a time zone, solar time and local time coincide.
- East of the center of a time zone solar noon occurs before 12:00 local time and west of it, it occurs later than 12:00.
- The difference is 4 minutes per each degree distance to the center of the relevant time zone.
- Example:
- Berlin L=13.4°E, center of time zone: L=15°
- Difference = 1.6° west
- => solar noon is 1.6° · 4min/° = 6.4 minutes after 12:00 = 12:06':24"
- Brasilia: L=48.0°W, ct. of time zone: L=45°W; solar noon = 12:12:00
- Note: In some countries in summer the clock is put 1 hr forward

Two Additional Variations

- The time for solar noon as calculated on the previous page is only correct in annual average.
- On a concrete date it can be up to 14 minutes later or up to 16 minutes earlier.
- This is caused by two different mechanisms:
 - 1) The <u>tilt of the Earth's axis</u> against the ecliptic plane
 - 2) The Eccentricity of the Earth's orbit around the sun
- Mechanism 1) is rather difficult to explain:

When the rotation of the earth's axis is projected onto the ecliptic plane, this projection is faster than the earth's rotation at some positions of the earth along its orbit around the sun, and at some positions it is slower.

Solar Time Variation due to Tilt

Variation due to Eccentricity

- The Earth's orbit around the sun is not circular.
- Average distance sun earth: 149.6 * 10⁶ km
- Maximum distance sun earth: 152.1 * 10⁶ km
- Minimum distance sun earth: 147.1 * 10⁶ km

Variation due to Eccentricity

- The sidereal length of a day is 23:56:04
- The remaining 3min and 56 sec are needed to complete one revolution in relation to the sun
- Due to the eccentricity of the earth's orbit the angle travelled by earth per day changes (fast at Perihelion, slow at Aphelion).
- Therefor 24h are not enough top catch up with the sun in December, while it is more than enough in June.

Source: Wikipedia

Solar Time Variation due to Eccentricity

Solar Time Variation due to Both Effects Together

- The following equation describes both effects together:
- E=229,2*(0,000075+0,001868*cos(B)-0,032077*sin(B)-0,014615*cos(2B)-0,04089*sin(2B))
- With: B=(n-1)*360/365 n = the number of the day of the year E in [minutes]

Knowing the Sun's Position

The elevation, ϵ and the azimuth, α can be calculated for every day of the year and hour of the day with the following equations:

```
\epsilon = \arcsin \left( \sin \phi * \sin \delta + \cos \phi * \cos \delta * \cos \omega \right)
```

```
\alpha= arcsin (cos \delta * sin \omega / cos \epsilon)
```

With:

- ϕ = degree of latitude
- δ = declination of the day

The calculation of α is not finished with this equation. It needs to be determined in which quadrant the sun is located. Depending on the quadrant 90° may need to be added or subtracted. Further details can be found in: Duffie Beckman: "Solar Engineering"

• ω = hour angle (zero at noon, negative before noon, positive after noon) $\omega = h_{pm}*15$ (examples: 3 pm => ω = 45°; 9 am = -3pm => ω = -45°)

Solar Position Diagram Brasilia

Source: Sun Orb, Programm der Ruhr Uni Bochum, Lehrstuhl für Nukleare und Neue Energiesysteme (English translation by Prof. O. Goebel)

Knowing the Sun's Position

Knowing the sun's position is important for Solar Engineering, especially in CSP, because:

- The CSP Solar Collectors have to follow the sun, and hence their tracking mechanisms has to be programmed, knowing the sun's position at any day of the year at any hour of the day.
- Also for PV plants with fixed modules, the sun's position has to be known in order to avoid shadowing of the modules at certain times of the day / year.

- Solar Resource Maps show the quantity of the solar resource for certain regions of the world (or the whole world)
- Usually they show either GHI or DNI (map below: GHI)
- Common units are: average annual flux density [W/m²] or annual / daily sum [kWh/(m² a)]

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 50

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 51

GHI Map of Latin America

DNI Map of Latin America Attention:

- DNI maps are often generated from Satellite data only. They have a high degree of uncertainty (up to 12%), unless they are calibrated against ground based measurements.
- Satellite based data tend to <u>over</u>estimate the DNI resource!

Annual sums of Solar Irradiation

- Good solar sites offer annual sums of solar irradiation of 2400 kWh/(m² a) and more. (This is true for DNI and GHI as well).
- Considering, that one barrel of oil has an energy content of 1600 kWh, this is equivalent to 1.5 barrels of oil per m² each year!
- A very important number in energy engineering is the energy content of oil:
 - 10 kWh / Liter (36 MJ / Liter)
 - 11,7 kWh / kg (42 MJ / kg)

The Energetic Potential of Solar Energy

Mankind's power Consumption:

• 15 TW (www.IEA.ora)

Solar power on earth disk:

- 127 500 TW (6371 km)² * π * 1 kW/m² = 127.5 *10¹² kW
- Hence, Solar power is 8500 times bigger than mankind's power consumption

In other words: The energy the earth receives in one hour from the sun is equivalent to the energy demand of mankind in one year.

Graphik by Prof. O. Goebel using data from IEA, world energy outlook

The Energetic Potential of Solar Energy

Practical Potential of Solar Energy:

- The theoretical potential of solar energy is in practice reduced by:
 - weather
 - non suitable sites (oceans and mountains)
 - efficiency of conversion systems are below 100%
- Theses effects alone reduce the theoretical potential by a factor of 100: remaining factor is: 8 000 / 100 = <u>80</u>
- A more detailed analysis shows some further reductions
- However, solar energy has the potential to satisfy all energy demand of mankind several times, even under the most pessimistic assumptions.

Solar Irradiation, Summary

Solar Flux Density:

- Outside of earth's atmosphere: 1367 W / m²
- At sea level at a clear day:
 - 1000 W / m² or $1 kW / m^2$ (1.36 HP / m²)
- Sun shine hours up to
 4000 h / a at good sites
- Received energy up to
 2600 kWh / m² a at very good sites

Measuring Solar Irradiation

Measuring Solar Irradiation

- Global Irradiation = Diffuse Irradiation + Direct Irradiation
- Global Irradiation is measured with a Pyranometer

• Direct Irradiation is measured with a Pyrheliometer or with two Pyranometers, where one of them is covered with a Shadow Band.

• Important for CSP: Only Direct Irradiation can be concentrated.

Rotating Shadowband Pyranometer, RSP

- Low maintenance requirement
- Measures Direct, Diffuse and Global Irradiation
- Less accurate than Pryheliometer

The shadow band rotates periodically (usually every 30 s) around the sensor., such that it is temporarily shaded and able to measure Diffuse Irradiation., while it measures Global Irradiation when not shaded. By subtracting the Diffuse from the Global Irradiation, the Direct Irradiation can be calculated.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Sene 10

20.02.2020

Rotating Shadowband Pyranometer, RSP

The shadow band rotates periodically (usually every 30 s) around the sensor., such that it is temporarily shaded and able to measure Diffuse Irradiation., while it measures Global Irradiation when not shaded. By subtracting the Diffuse from the Global Irradiation, the Direct Irradiation can be calculated.

Rotating Shadowband Pyranometer, RSP

High Precision Measuring Station

Pyrheliometer and Pyranometer on sun tracker

Advantages:

- + high accuracy (1 to 2%)
- separate sensors for GHI, DNI and DHI (cross-check through redundancy)

Disadvantages:

- high acquisition costs
- high maintenance costs
- high susceptibility for soiling
- high power demand (grid connection required)

4th Sfera Summer School, Hornberg Castle, 2013 - 31

Soiling Characteristics of Pyrheliometer vs. RSP

CSP Services

4th Sfera Summer School, Hornberg Castle, 2013 - 38

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 64

Measuring the Solar Resource

- When evaluating a site for solar projects, the solar resource is estimated initially without on site measurements. Reason: Time and money
- <u>With</u> some existing measuring stations in the area:
 - Interpolation of the existing data for the candidate site
 - Attention: Interpolation not possible if there are weather influencing barriers between the meteo stations (e.g. mountain ranges).
- <u>Without</u> existing measuring stations in the area:
 - Utilization of Satellite Data
- These non site based data should be available for a period of at least 5 years, in order to have a representative long term average value. The longer the period, the more reliable is the average value.

Note: The bottom figure shows the deviations from long-term average GHI of the moving averages across 1 to 22 years. Sources: Datasource: DWD GHI Data from 1937 to 2003 (top); Volker Quaschning, DLR/Hoyer-Klick et al. 2010 (bottom)

Measuring the Solar Resource

Using existing measurements from the region 1/2

Measurements of the solar resource are conducted by the following institutions:

- **1.** National Meteorological Institutes
- 2. Airports

Warning: The quality of the solar data is often not good. Many meteorological institutes and airports mainly pay attention to temperature, air pressure, humidity and wind speed. Solar Irradiation is often measured with a glass ball only.

Measuring the Solar Resource

Using existing measurements from the region 2/2

Measurements of the solar resource are conducted by the following institutions:

3. Research Institutes

 Here it is possible to obtain high quality data. Besides the budget for proper measuring equipment, here is also available the necessary knowledge for operation & maintenance of the equipment.

4. Project Developer

- If there are already some solar power plants (of a certain minimum capacity) in the area, then there have been conducted respective measuring campaigns. There are cases where the project developers are willing to sell the data, and there are cases where they are not willing to do so.
- From existing solar power plants in the area also some other relevant information can be obtained (e.g. about Storms, Soiling, Vandalism), if the developer cooperates.

Measuring the Solar Resource Satellite Based Measurements

- It is possible to calculate (or better: estimate) the solar resource at the earth's surface from the information measured by meteorological satellites.
- The algorithms used in that process are dependent on calibration with ground based measurements. Therefore satellite based solar resource measurements without such calibration are rather imprecise. (Example: Shams 1)
- DNI is more difficult to derive than GHI.
- Uncertainty at DNI:
 - Without ground based calibration in the region: up to +/- 15%
 - With ground based calibration in the region: approx. +/- 5%
- Uncertainty at GHI:
 - Without ground based calibration in the region: up to +/- 10%
 - With ground based calibration in the region: approx. +/- 3 to 4%

Satellite based Data are available from DLR (German Aerospace Center, <u>www.dlr.de</u>), from NASA and from other space R&D Institutions

Measuring the Solar Resource Ground Based Measurements

- In case a site has been positively evaluated by non site based investigations (nearby site data or Satellite), then site based solar resource measurement is initiated.
- On site measurement shall last at least one year.
- Sites of solar power plants are often located in remote locations.
- Therefore data transmission shall be done via cell phone network.
- The cleaning of the sensors (RSP approx. 1x per week) needs to be organized. For this task a person living near to the site shall be trained and contracted. Attention: The cleaning has to be conducted according to a well defined plan, and the execution shall be well documents. (Keep in mind the importance of the data for the evaluation of the project site!)

Measuring the Solar Resource:

Correlating Data from the Two Sources

- Once on site data will be available for one complete year, then they shall be correlated with the non site based long term data.
- Concretely: The year for which we have both, the on site measurements and the long term data (the overlap period) is used to calibrate the long term data for the candidate site. This way the long term average value of the site is obtained.
- Example:
 - The long term average annual sum of DNI for the site according to Satellite data is 2200 kWh/(m² a).
 - In the overlap period the Satellite showed 2100 kWh/(m² a) and the on site measurement showed 2000 kWh/(m² a)
 - Then the long term average value of 2200 kWh/(m² a) is corrected with the factor of 2000 / 2100, and hence the corrected value is 2095 kWh/(m² a)

Measuring the Solar Resource: The TMY (Typical Meteorological Year)

- With the above mentioned method the long term average value for the site is available.
- However, the annual sum of DNI [kWh / (m² a)] is not sufficient for the simulation model which calculates the annual energy yield. For this purpose hourly values (or better10 minutes values) are required.
- If we would simply average each hourly value of several years we would eliminate the dynamic of the weather. However, this dynamic is needed for a realistic simulation of the plant behavior.
- Solution: We take the hourly values (or 10 minutes values) of the ground based data and correlate them with the long term average of the monthly sums of DNI.

Measuring the Solar Resource:

The TMY (Typical Meteorological Year)

Example of a GHI measurement of January 1st for 5 different years

GHI über 5 Jahre gemessen [W / m²] The average curve does not show the Tag Uhrzeit Mittelwert dynamic of the years 2007 and 2011. 01. Jan 00:00 01:00 02:00 03:00 04:00 -2007 05:00 06:00 07:00 -2009 08:00 -2010 09:00 10:00 11:00 -Mittelwert 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 n 23:00 04:48:00 07:12:00 09:36:00 12:00:00 14:24:00 16:48:00 19:12:00 02. Jan 00:00

Measuring the Solar Resource Describing the uncertainty

- In case the energy yield calculations based on the TMY are satisfactory, then the site is declared as positive (at least from the solar resource point of view).
- For an objective judgment, the uncertainty of the TMY shall be described. For this task the uncertainties of all components involved in the process (measuring instruments, satellite data, correlation method, number of years of long term data) are combined by relevant statistical methods.
- The resulting overall uncertainty is then expressed as a σ -value in the Gaussian Equation. $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \qquad f(x)$

Gaussian Curve with Median = 0 and σ =1

Measuring the Solar Resource Describing the uncertainty

 Is has to be calculated which percentage of deviation from the calculated value of the annual DNI sum represents 1σ.

- Example:
- The long term average value of the DNI calculation is 2000 kWh/(m² a), and 1 σ is 5% or here 100 kWh/(m² a). Then the average minus 1 σ =1900 kWh/(m² a) and the average plus 1 σ =2100 kWh/(m² a)

Measuring the Solar Resource Describing the uncertainty

Show Example with P50 = 2000 kWh/(m² a) and 1σ = 5%.

- 68,27 % of all values are located in the interval +/- 1 σ around the average value,
- 95,45 % of all values are located in the interval +/- 2 σ around the average value,
- 99,73 % of all values are located in the interval +/- 3 σ around the average value.

Investment bankers use the term P-Value to describe uncertainty (P = probability)

- P50 (0σ) means that 50% of the possible values are higher than the P50 value and 50% are lower. P 50 is the most probable value.
- P90 (-1,25σ) means that 90% of the possible values are higher than the P90 value and 10% are lower.
- For the assessment of the creditworthiness of a project the banks want to know the P50, P75 and the P90 value of the DNI annual sum. (Or better directly the energy yield [GWh_{el}/a] calculated with these DNI values.)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

20.02.2020

The Principles of CSP Technology and Overview of different CSP Technologies on the Market

Classification of Solar Energy Technologies

Principle of Concentrated Solar Power, CSP

Types of CSP Power Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 79

Systematic of Describing the Different CSP Technologies

- 1) Plant scheme
- 2) Heat Engine
- 3) Collector and collector field
- 4) Performance of the system
- 5) Status of application
- 6) Current developments

Parabolic Trough Solar Power Plants

Scheme of Parabolic Trough Solar Power Plant

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 83

Possible Heat Engines

Possible are:

- Rankine Cycle with steam turbine or steam piston engine
- Stirling engine
- Gas turbine

So far used:

• Rankine Cycle with steam turbine

Reasons for not using the others:

- <u>Stirling</u> engine and steam engine are less suitable due to their <u>small capacities</u> (max. a few MW)
- <u>Gas turbine</u> is less suitable, because it <u>requires very high temperatures</u> which cannot be achieved with Trough Collectors

The Rankine Process, the Process used in Steam Turbine Power Plants

The Rankine Process in h,s-Diagram

Depiction of the Expansion in the

h,s-Diagram of Water and Steam

The start point of the expansion is defined by the temperature and pressure of the steam at the inlet of the turbine (point 5).

PROJETO Energia Heliotérmica

The end point is defined by the pressure in the condenser and the steam quality, x at the outlet of the turbine (point 6).

Determining the end point with a given inner efficiency of the turbine ($\eta_{\text{Turb inner}}$):

Initially we draw the expansion line isentropically downward, until we hit the isobar of the condenser pressure (isentropic expansion). Measuring the enthalpy difference of the isentropic expansion (Δh $_{exp_isentrop}$). Then we follow the isobar to the right, until we have gained Δh $_{exp_isentrop}$ * (1- η $_{Turb_inner}$) on the enthalpy scale. There is the end point of the technical (real) expansion.

Example: $p_{in} = 100 \text{ bar}$, $T_{in} = 500^{\circ}\text{C}$, $p_{Kond} = 0,1 \text{ bar}$, $\eta_{Turb_inner} = 85\%$: $\Delta h_{exp_isentrop} = 3374 - 2060 = 1314 \text{ kJ} / \text{kg}$ $\Delta h_{exp_isentrop} * 15\% = 197 \text{ kJ} / \text{kg}$ $h_{Kond_real} = 2060 + 197 = 2257 \text{ kJ} / \text{kg}$

The Problem of Low Super Heating at

Parabolic Trough Solar Power Plants

The max. temperature of the HTF is limited to approx. 400°C. A typical steam temperature at the turbine inlet is 375°C.

PROJETO Energia Heliotérmica

A technical expansion would end at a steam wetness, x of 0.79. This is not acceptable for a steam turbine due to the amount of droplets entrained in the steam.

The smallest tolerable values of x are around 0.85.

PROJETO Energia Heliotérmica Trough Solar Power Plants

Solution: We introduce a re-heat at the point when the expansion line first hits the wet steam line. The steam is super heated again in the re-heater until it reaches again 375° C. But now at a pressure of only 20 to 30bar. Hence, the expansion path is shifted to the right in the h,s-Diagram, and the isobar of the condenser pressure is reached at an acceptable steam wetness of x=0,90.

Furthermore the efficiency of the process is increased. We do need additional heat for the re-heat, but we also do get more work out of the turbine. The gain in work is larger then the increase of heat demand.

Multi Stage Feed Water Pre-Heating

- The scheme below shows the multi stage feed water pre heating in a Parabolic Trough Solar Power Plant without Re-Heat.
- The feed water has already a temperature of 220°C when it enters the solar pre-heater.
- The pre-heating is performed with steam extracted from the turbine.

Multi Stage Feed Water Pre-Heating

Example Calculation:

How much temperature gain, $\Delta T_{feedwater}$ can be achieved for the feed water flow in the 2nd pre-heater with the following given data?

PROJETO Energia Heliotérmica

$$\dot{m}_{feedwater} = 103 \frac{kg}{s}$$
; $\dot{m}_{extraction} = 4.8 \frac{kg}{s}$

$$h_{extr.,HX in} = 2600 \frac{kJ}{kg}$$
; $h_{extr.,HX out} = 467 \frac{kJ}{kg}$

Solution:

Power provided by the extraction:

$$\dot{Q} = \dot{m}_{extraction} \cdot \Delta h = 10.238 \, MW$$

Power received by the feed water flow (the same as above):

$$\dot{Q} = \dot{m}_{feedwater} \cdot c_p \cdot \Delta T$$

 $\Delta T_{feedwater} = \frac{\dot{Q}}{\dot{m}_{feedwater} \cdot c_p} = \frac{10238 \, kJ/s}{103 kg/s \cdot 4.18 \frac{kJ}{kg \, K}} = \frac{23.78 \text{K}}{23.78 \text{K}}$

Lesson learned:

A rather small mass flow of extracted steam causes a rather big increase of feed water temperature.

Efficiency of Rankine Process

- The efficiency of a Rankine Process can be calculated by the following equation:
- $\eta = \frac{\Delta h_{6-5} \Delta h_{2-1}}{\Delta h_{5-2}}$ (Enthalpies, h as defined in the slide "Rankine Process in h,s-diagram")
- In case of a re-heat: both expansion enthalpy differences are in the numerator and the enthalpy difference of the re-heat is added to the nominator:
- $\eta = \frac{\Delta h_{HP-turbine} + \Delta h_{LP-turbine} \Delta h_{2-1}}{\Delta h_{steam \, generator} + \Delta h_{re-heat}}$
- In case feed water pre-heating is used, it is no longer possible to calculate the efficiency with enthalpy differences only. They need to be multiplied with the respective mass flows, because they are different at the different process steps.
- For a <u>first estimate</u> of the Rankine Cycle efficiency it can be calculated with the <u>Carnot efficiency</u> and the <u>thermodynamic performance factor</u> (tpf).
- $\eta_{Carnot} = \frac{T_{up} T_{low}}{T_{up}}$ or $= 1 \frac{T_{low}}{T_{up}}$ with all temperatures in [Kelvin]
- The thermodynamic performance factor (tpf) can be assumed with 0.75 for large scale plants and 0.70 for smaller plants.
- Example: $T_{up} = 400^{\circ}C$; $T_{low} = 30^{\circ}C$; tpf = 0.72 => $\eta_{Carnot} = \frac{370 K}{673.15 K} = 55\%$

•
$$\eta_{Rankine} = \eta_{Carnot} * tpf = 55\% * 0,72 = 39.6\%$$

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

20.02.2020

h,s-Diagram for Water and Steam

- The h,s-Diagram is especially useful for reading values in the area of super heated steam. Therefore mostly only this area is depicted in the diagram.
- In the area of liquid state water the values are difficult to depict in the diagram.
- Therefore mostly tables are used to describe the liquid state and the wet steam area.
- These table can be found on the following pages.
- The tables also show the values for super heated steam which is depicted in the diagram on the left.

Saturated Steam

Tables of the Properties of Water and Steam

PROJETO Energia Heliotérmica

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 123

Table 2 Saturation State (Pressure Table) Sättigungszustand (Drucktafel)

1 bar

р	ts	v'	v"	h'	$h^{\prime\prime}$	Δh_{y}	s'	s''	Δs_{y}
[MPa]	[°C]	[m ³	kg ⁻¹]		[kJ kg ⁻¹]		I	kJ kg ⁻¹ K	-1]
0.000611657	0.01	0.001000	205.997	0.001	2500.91	2500.91	0.0000	9.1555	9.1555
0.0007	1.88	0.001000	181.223	7.890	2504.35	2496.46	0.0288	9.1058	9.0770
0.0008	3.76	0.001000	159.646	15.809	2507.80	2491.99	0.0575	9.0567	8.9992
0.0009	5.44	0.001000	142.763	22.888	2510.89	2488.00	0.0830	9.0135	8.9305
0.0010	6.97	0.001000	129.183	29.298	2513.68	2484.38	0.1059	8.9749	8.8690
0.0015	13.02	0.001001	87.962	54.685	2524.75	2470.06	0.1956	8.8270	8.6315
0.0020	17.50	0.001001	66.990	73.435	2532.91	2459.48	0.2606	8.7227	8.4621
0.0025	21.08	0.001002	54.242	88.430	2539.43	2451.00	0.3119	8.6422	8.3303
0.0030	24.08	0.001003	45.655	100.990	2544.88	2443.89	0.3543	8.5766	8.2222
0.0035	26.67	0.001003	39.468	111.836	2549.57	2437.74	0.3907	8.5213	8.1306
0.0040	28.96	0.001004	34.792	121.404	2553.71	2432.31	0.4224	8.4735	8.0510
0.0045	31.01	0.001005	31.132	129.981	2557.41	2427.43	0.4507	8.4314	7.9807
0.0050	32.88	0.001005	28.186	137.765	2560.77	2423.00	0.4763	8.3939	7.9177
0.0055	34.58	0.001006	25.763	144.901	2563.83	2418.93	0.4995	8.3600	7.8605
0.0060	36.16	0.001006	23.734	151.494	2566.67	2415.17	0.5209	8.3291	7.8083
0.0065	37.63	0.001007	22.010	157.627	2569.30	2411.67	0.5407	8.3008	7.7601
0.0070	39.00	0.001007	20.525	163.366	2571.76	2408.39	0.5591	8.2746	7.7155
0.0075	40.29	0.001008	19.234	168.760	2574.06	2405.30	0.5763	8.2502	7.6739
0.0080	41.51	0.001008	18.099	173.852	2576.24	2402.39	0.5925	8.2274	7.6349
0.0085	42.66	0.001009	17.095	178.676	2578.30	2399.62	0.6078	8.2060	7.5982
0.0090	43.76	0.001009	16.200	183.262	2580.25	2396.99	0.6223	8.1859	7.5636
0.0095	44.81	0.001010	15.396	187.634	2582.11	2394.48	0.6361	8.1669	7.5308
0.0100	45.81	0.001010	14.671	191.812	2583.89	2392.07	0.6492	8.1489	7.4997
0.0150	53.97	0.001014	10.020	225.935	2598.30	2372.37	0.7548	8.0071	7.2523
0.0200	60.06	0.001017	7.648	251.400	2608.95	2357.55	0.8320	7.9072	7.0753
0.0250	64.96	0.001020	6.203	271.925	2617.45	2345.52	0.8931	7.8302	6.9371
0.0300	69.10	0.001022	5.229	289.229	2624.55	2335.32	0.9439	7.7675	6.8235
0.0350	72.68	0.001024	4.525	304.251	2630.67	2326.42	0.9876	7.7146	6.7270
0.0400	75.86	0.001026	3.993	317.566	2636.05	2318.48	1.0259	7.6690	6.6431
0.0450	78.71	0.001028	3.576	329.554	2640.86	2311.31	1.0601	7.6288	6.5687
0.0500	81.32	0.001030	3.240	340.476	2645.21	2304.74	1.0910	7.5930	6.5020
0.0550	83.71	0.001032	2.964	350.523	2649.19	2298.67	1.1192	7.5606	6.4414
0.0600	85.93	0.001033	2.732	359.837	2652.85	2293.02	1.1452	7.5311	6.3859
0.0650	87.99	0.001035	2.535	368.527	2656.25	2287.72	1.1694	7.5040	6.3346
0.0700	89.93	0.001036	2.365	376.680	2659.42	2282.74	1.1919	7.4790	6.2871
0.0750	91.76	0.001037	2.217	384.365	2662.39	2278.02	1.2130	7.4557	6.2427
0.0800	93.49	0.001038	2.087	391.639	2665.18	2273.54	1.2328	7.4339	6.2011
0.0850	95.13	0.001040	1.972	398.547	2667.82	2269.27	1.2516	7.4135	6.1618
0.0900	96.69	0.001041	1.869	405.128	2670.31	2265.19	1.2694	7.3942	6.1248
0.0950	98.18	0.001042	1.777	411.415	2672.69	2261.27	1.2864	7.3760	6.0897
0.1000	99.61	0.001043	1.694	417.436	2674.95	2257.51	1.3026	7.3588	6.0562
0.1100	102.29	0.001045	1.550	428.775	2679.18	2250.40	1.3328	7.3268	5.9940
0.1200	104.78	0.001047	1.428	439.299	2683.06	2243.76	1.3608	7.2976	5.9369
0.1300	107.11	0.001049	1.325	449.132	2686.65	2237.52	1.3867	7.2708	5.8842
0.1400	109.29	0.001051	1.237	458.367	2689.99	2231.62	1.4109	7.2460	5.8352

Table 2	Saturation State (Pressure Table) – Continuation	٦
	Sättigungszustand (Drucktafel) - Fortsetzung	

μ μ					1.1	L.''	4.1.	~	_!!	4
17.11 17.11 <th< th=""><th>p (MPa1</th><th>rs IPC1</th><th>v [m3]</th><th>v ka-li</th><th>n</th><th>n Iki ka-li</th><th>Δn_{y}</th><th>8</th><th>S Ika-l V-l</th><th>Δs_{y}</th></th<>	p (MPa1	rs IPC1	v [m3]	v ka-li	n	n Iki ka-li	Δn_{y}	8	S Ika-l V-l	Δs_{y}
0.15 11.13 0.001053 1.1594 467.08 2696.04 2220.71 1.4435 7.2204 5.7464 0.16 113.30 0.001056 1.0312 483.18 2696.04 2215.62 1.4752 7.1811 5.7059 0.18 116.91 0.001050 0.9291 497.82 2703.82 2206.07 1.5127 7.1440 5.6313 0.20 120.21 0.001061 0.8857 504.68 2706.24 2201.56 1.5301 7.1269 5.5968 0.21 121.76 0.001065 0.7771 523.73 2712.62 188.93 1.5782 7.0802 5.5021 0.24 126.07 0.001066 0.7467 529.44 2714.62 118.49 1.6317 7.0524 5.4432 0.25 127.41 0.001066 0.6423 51.46 2721.33 216.81 1.6677 7.024 5.4433 0.26 128.71 0.001070 0.643 551.46 2724.49 2163.44 1.6716 6.9906 <th>[ivir a]</th> <th>[0]</th> <th>- fm- i</th> <th>kg j</th> <th></th> <th>[K] Kg J</th> <th></th> <th>υ</th> <th>UKg K</th> <th>1</th>	[ivir a]	[0]	- fm- i	kg j		[K] Kg J		υ	UKg K	1
0.16 113.30 0.001054 1.0914 475.34 2696.04 2220.71 1.4549 7.2014 5.746 0.17 115.15 0.001055 0.9775 490.67 2701.42 2216.25 1.4772 7.1811 5.7059 0.18 116.91 0.001055 0.9293 497.82 2703.84 2210.57 1.4944 7.1620 5.6677 0.20 120.21 0.001061 0.8857 504.68 2706.24 2210.56 1.5130 7.1269 5.5968 0.21 121.76 0.001065 0.8101 517.62 2710.62 2193.00 1.5628 7.0951 5.5323 0.23 124.69 0.001066 0.7467 529.64 2714.62 2188.93 1.5782 7.0802 5.5021 0.24 126.07 0.001066 0.7467 529.64 2714.62 118.15 1.6072 7.0524 5.4452 0.26 128.71 0.001070 0.6678 546.25 2720.04 1.6472 7.0146 5.374	0.15	111.35	0.001053	1.1594	467.08	2693.11	2226.03	1.4335	7.2229	5.7894
0.17 115.15 0.001058 1.0312 483.18 2098.81 2216.75 1.4944 7.1620 5.6677 0.19 118.60 0.001058 0.9293 497.82 2703.89 2206.07 1.5127 7.1440 5.6313 0.20 120.21 0.001061 0.8857 504.68 2706.24 2201.75 1.5468 7.1065 5.5638 0.21 121.76 0.001065 0.7771 523.73 2712.66 2184.98 1.5528 7.0802 5.5323 0.24 126.07 0.001066 0.7467 529.64 2714.62 2184.98 1.5930 7.0660 5.4731 0.25 127.41 0.001067 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.26 128.71 0.001070 0.6687 561.46 2724.89 2163.44 1.6718 6.5314 0.29 132.37 0.001070 0.6524 55.633 2723.33 2166.81 1.6433 7.0267 5.	0.16	113.30	0.001054	1.0914	475.34	2696.04	2220.71	1.4549	7.2014	5.7464
0.18 116.91 0.001058 0.9775 490.67 2701.42 2210.75 1.4944 7.1620 5.6313 0.20 120.21 0.001061 0.8857 504.68 2706.24 2201.56 1.5301 7.1620 5.5968 0.21 121.76 0.001062 0.8462 511.27 2708.48 2197.21 1.5468 7.1065 5.5323 0.22 123.25 0.001066 0.7467 529.64 2714.62 2184.98 1.5930 7.0660 5.4731 0.24 126.07 0.001066 0.7467 529.64 2714.62 2184.98 1.5930 7.0660 5.4731 0.25 127.41 0.001067 0.7187 535.35 2716.50 2181.15 1.6072 7.0324 5.4183 0.26 128.71 0.001070 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001071 0.6643 551.46 2721.72 2173.77 1.6462 5.	0.17	115.15	0.001056	1.0312	483.18	2698.81	2215.62	1.4752	7.1811	5.7059
0.19 118.60 0.001059 0.9293 497.82 2703.89 2206.07 1.5127 7.1440 5.6313 0.20 120.21 0.001061 0.8857 504.68 2706.24 2201.56 1.5301 7.1269 5.5968 0.21 121.76 0.001065 0.8101 517.62 2710.62 2193.00 1.5628 7.0951 5.5323 0.23 124.69 0.001066 0.7467 529.44 2714.62 2184.98 1.5930 7.0802 5.3924 0.25 127.41 0.001066 0.7467 529.44 2714.52 2170.26 1.6433 7.0267 5.3924 0.26 128.71 0.001070 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001070 0.6587 561.46 2724.89 2163.44 1.6718 6.9916 5.3192 0.31 133.65 0.001076 0.5742 570.93 2727.86 2150.68 1.7169 6.	0.18	116.91	0.001058	0.9775	490.67	2701.42	2210.75	1.4944	7.1620	5.6677
0.20 120.21 0.001061 0.8857 504.68 2706.24 2201.56 1.5468 7.1269 5.5638 0.21 121.76 0.001065 0.8101 517.62 2710.62 2193.20 1.5628 7.0021 5.5633 0.23 124.69 0.001066 0.7771 523.73 2712.66 2188.93 1.5782 7.0824 5.4021 0.24 126.07 0.001066 0.7716 535.35 2716.50 2181.15 1.6072 7.0524 5.4452 0.25 127.41 0.001070 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001070 0.6658 56.53 2723.33 2166.81 1.6597 7.0029 5.3432 0.30 133.53 0.001074 0.5702 570.33 2726.82 2163.44 1.6718 6.9916 5.3198 0.31 134.65 0.001079 0.5702 570.33 2727.86 2165.92 1.6950 6.9	0.19	118.60	0.001059	0.9293	497.82	2703.89	2206.07	1.5127	7.1440	5.6313
0.21 121.76 0.001062 0.8462 511.27 2708.48 2197.21 1.5468 7.1016 5.5638 0.22 123.25 0.001065 0.8101 517.62 2710.62 2193.00 1.5628 7.0951 5.5323 0.24 126.07 0.001066 0.7717 535.35 2714.62 2184.98 1.5782 7.0802 5.5021 0.25 127.41 0.001066 0.7467 529.64 2714.62 2184.98 1.6313 7.0264 5.4452 0.26 128.71 0.001067 0.7187 535.35 2718.31 2167.42 1.6210 7.0393 5.4183 0.27 129.97 0.001070 0.6658 561.46 2723.43 2163.44 1.6718 6.9916 5.3198 0.30 133.53 0.001074 0.5874 566.26 2726.40 2160.14 1.6835 6.9806 5.2751 0.33 136.81 0.001076 0.5540 575.0 2729.27 2153.71 1.0016 6.9	0.20	120.21	0.001061	0.8857	504.68	2706.24	2201.56	1.5301	7.1269	5.5968
0.22 123.25 0.001063 0.8101 517.62 2710.62 2193.00 1.5628 7.0951 5.5323 0.23 126.67 0.001066 0.7771 523.73 2712.66 2188.93 1.5782 7.0802 5.5021 0.24 126.07 0.001066 0.7187 535.35 2716.50 2181.15 1.6072 7.0524 5.4452 0.26 128.71 0.001067 0.7187 535.35 2716.50 2181.15 1.6072 7.0524 5.4452 0.26 128.71 0.001070 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001071 0.6687 566.26 2728.40 2163.44 1.6718 6.9916 5.3198 0.31 133.65 0.001076 0.5874 556.26 2727.86 2156.92 1.6950 6.9700 5.2171 0.33 136.81 0.001076 0.5340 575.50 2730.64 2150.78 1.7378 6.	0.21	121.76	0.001062	0.8462	511.27	2708.48	2197.21	1.5468	7.1106	5.5638
0.23 124.69 0.001065 0.7711 523.73 2712.66 2188.93 1.5782 7.0802 5.5021 0.24 126.07 0.001067 0.7167 529.64 2714.62 2184.98 1.5930 7.0660 5.4731 0.25 127.41 0.001067 0.7187 535.35 2716.50 2181.15 1.6072 7.0524 5.4452 0.26 128.71 0.001070 0.6687 546.25 2721.72 2177.42 7.0164 5.3674 0.29 133.53 0.001073 0.6658 561.46 2721.72 2163.44 1.6718 6.9916 5.3198 0.31 134.65 0.001074 0.5540 575.50 2723.33 2166.92 1.6950 6.9700 5.2751 0.33 136.81 0.001079 0.5540 575.50 2729.67 2153.77 1.7061 6.5959 5.2126 0.34 137.85 0.001079 0.5242 584.31 2731.97 2147.65 1.7275 6.9401 5.	0.22	123.25	0.001063	0.8101	517.62	2710.62	2193.00	1.5628	7.0951	5.5323
0.24 126.07 0.001066 0.7467 529.64 2714.62 2184.98 1.5930 7.0660 5.4731 0.25 127.41 0.001067 0.7187 535.35 2716.50 2181.15 1.6072 7.0524 5.4452 0.26 128.71 0.001070 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001071 0.6658 561.46 2721.72 2170.26 1.6472 7.0146 5.3674 0.30 133.53 0.001074 0.5874 566.26 2726.40 2163.14 1.6718 6.9916 5.198 0.31 13.68 0.001076 0.5540 575.50 2727.96 2156.92 1.6959 6.9700 5.2126 0.33 136.81 0.001079 0.5242 584.31 2731.97 2147.65 1.7275 6.9401 5.1229 0.35 138.86 0.001079 0.5242 584.31 2731.97 2147.65 1.7275 6.94	0.23	124.69	0.001065	0.7771	523.73	2712.66	2188.93	1.5782	7.0802	5.5021
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.24	126.07	0.001066	0.7467	529.64	2714.62	2184.98	1.5930	7.0660	5.4731
0.26 128.71 0.001068 0.6928 540.88 2718.31 2177.42 1.6210 7.0393 5.4183 0.27 129.97 0.001070 0.6668 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001071 0.6463 551.46 2721.22 2170.26 1.6472 7.0146 5.3674 0.30 133.53 0.001074 0.6588 561.46 2728.49 2163.44 1.6718 6.9916 5.3198 0.31 134.65 0.001076 0.5702 570.39 2727.86 2156.92 1.6950 6.9707 5.2377 0.33 136.81 0.001076 0.5540 575.50 2729.27 2153.77 1.7061 6.9597 5.2259 0.35 138.86 0.001079 0.5242 584.31 2731.97 1.7061 6.9775 5.1276 0.37 140.82 0.001081 0.4735 600.81 2733.25 2144.68 1.7378 6.9307 5.1	0.25	127.41	0.001067	0.7187	535.35	2716.50	2181.15	1.6072	7.0524	5.4452
0.27 129.97 0.001070 0.6687 546.25 2720.04 2173.79 1.6343 7.0267 5.3924 0.28 131.19 0.001071 0.6454 555.3 2723.33 2166.81 1.6597 7.0029 5.3432 0.30 133.33 0.001073 0.6058 561.46 2724.89 2163.44 1.6718 6.9916 5.3192 0.31 134.65 0.001074 0.5874 566.26 2726.40 2160.14 1.6835 6.9906 5.2751 0.33 136.81 0.001076 0.5540 575.50 2729.27 2153.77 1.7061 6.5957 5.2327 0.34 137.85 0.001079 0.5242 584.31 2731.64 2150.68 1.7169 6.9401 5.2126 0.33 138.86 0.001080 0.5105 588.57 2733.25 2144.68 1.7378 6.9215 5.1377 0.33 141.77 0.001083 0.4735 600.81 2735.12 2138.91 1.7576 6.9	0.26	128.71	0.001068	0.6928	540.88	2718.31	2177.42	1.6210	7.0393	5.4183
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.27	129.97	0.001070	0.6687	546.25	2720.04	2173.79	1.6343	7.0267	5.3924
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.28	131.19	0.001071	0.6463	551.46	2721.72	2170.26	1.6472	7.0146	5.3674
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.29	132.37	0.001072	0.6254	556.53	2723.33	2166.81	1.6597	7.0029	5.3432
0.31 134.65 0.001074 0.5874 566.26 2726.40 2160.14 1.6835 6.9806 5.2971 0.32 135.74 0.001075 0.5702 570.93 2727.86 2156.92 1.6959 6.9700 5.2751 0.33 136.81 0.001076 0.5540 575.50 2727.97 2153.77 1.7061 6.9597 5.2337 0.34 137.85 0.001079 0.5242 584.31 2731.97 2147.65 1.7275 6.9401 5.2126 0.37 140.82 0.001080 0.5105 588.57 2733.52 2144.68 1.7378 6.9307 5.1929 0.33 141.77 0.001080 0.4975 592.74 2734.51 2141.61 1.7676 6.9126 5.1550 0.39 142.70 0.001084 0.4624 604.72 2738.06 2133.33 1.7676 6.8974 5.1188 0.41 144.50 0.001085 0.4117 612.33 2740.27 212.94 1.7948 6.8	0.30	133.53	0.001073	0.6058	561.46	2724.89	2163.44	1.6718	6.9916	5.3198
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.31	134.65	0.001074	0.5874	566.26	2726.40	2160.14	1.6835	6.9806	5.2971
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.32	135.74	0.001075	0.5702	570.93	2727.86	2156.92	1.6950	6.9700	5.2751
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.33	136.81	0.001076	0.5540	575.50	2729.27	2153.77	1.7061	6.9597	5.2537
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.34	137.85	0.001078	0.5387	579.96	2730.64	2150.68	1.7169	6.9498	5.2329
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.35	138.86	0.001079	0.5242	584.31	2731.97	2147.65	1.7275	6.9401	5.2126
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.36	139.85	0.001080	0.5105	588.57	2733.25	2144.68	1.7378	6.9307	5.1929
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.37	140.82	0.001081	0.4975	592.74	2734.51	2141.77	1.7478	6.9215	5.1737
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.38	141.77	0.001082	0.4852	596.81	2735.72	2138.91	1.7576	6.9126	5.1550
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.39	142.70	0.001083	0.4735	600.81	2736.91	2136.10	1.7672	6.9039	5.1367
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.40	143.61	0.001084	0.4624	604.72	2738.06	2133.33	1.7766	6.8954	5.1188
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.41	144.50	0.001085	0.4518	608.56	2739.18	2130.62	1.7858	6.8872	5.1014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.42	145.38	0.001085	0.4417	612.33	2740.27	2127.94	1.7948	6.8791	5.0843
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.43	146.24	0.001086	0.4320	616.03	2741.33	2125.31	1.8036	6.8712	5.0676
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.44	147.08	0.001087	0.4227	619.66	2742.37	2122.72	1.8122	6.8635	5.0513
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45	147.91	0.001088	0.4139	623.22	2743.39	2120.16	1.8206	6.8560	5.0353
0.47 149.52 0.001090 0.3973 630.18 2745.34 2115.16 1.8371 6.8414 5.0043 0.48 150.30 0.001091 0.3895 633.57 2746.28 2112.72 1.8450 6.8343 4.9892 0.49 151.08 0.001092 0.3820 636.90 2747.21 2110.30 1.8529 6.8274 4.9745 0.50 151.84 0.001094 0.3748 640.19 2748.11 2107.92 1.8606 6.8206 4.9600 0.52 153.32 0.001094 0.3612 646.60 2749.85 2103.25 1.8756 6.8074 4.9318 0.54 154.76 0.001090 0.3466 652.83 2751.52 2098.69 1.8901 6.7947 4.9045 0.56 156.15 0.001097 0.3368 658.88 2753.12 2094.24 1.9042 6.7824 4.8782 0.58 157.51 0.001097 0.3258 667.70 275.66 2081.47 1.9440 6.7	0.46	148.72	0.001089	0.4054	626.73	2744.38	2117.65	1.8289	6.8486	5.0197
0.48 150.30 0.001091 0.3895 633.57 2746.28 2112.72 1.8450 6.8343 4.9892 0.49 151.08 0.001092 0.3820 636.90 2747.21 2110.30 1.8529 6.8274 4.9745 0.50 151.84 0.001093 0.3748 640.19 2747.21 2110.30 1.8529 6.8274 4.9745 0.52 153.32 0.001096 0.3612 646.60 2749.85 2103.25 1.8756 6.8074 4.9045 0.54 154.76 0.001096 0.3486 652.83 2751.52 2098.69 1.8901 6.7947 4.9045 0.58 157.51 0.001097 0.33258 664.77 2754.66 2089.89 1.9179 6.7760 4.8528 0.60 158.83 0.001101 0.3156 670.50 2755.14 2085.64 1.9311 6.7592 4.8281 0.62 160.12 0.001102 0.359 676.09 2757.56 2081.47 1.9440 6.	0.47	149.52	0.001090	0.3973	630.18	2745.34	2115.16	1.8371	6.8414	5.0043
0.49 151.08 0.001092 0.3820 636.90 2747.21 2110.30 1.8529 6.8274 4.9745 0.50 151.84 0.001093 0.3748 640.19 2748.11 2107.92 1.8606 6.8206 4.9600 0.52 153.32 0.001094 0.3612 666.0 2749.85 2103.25 1.8756 6.8074 4.9600 0.54 154.76 0.001096 0.3486 652.83 2751.52 2098.69 1.8901 6.7947 4.9045 0.56 156.15 0.001097 0.3368 658.88 2753.12 2094.24 1.9042 6.7824 4.8782 0.56 156.15 0.001109 0.3258 664.77 2754.66 208.989 1.9119 6.7592 4.8282 0.60 158.83 0.001101 0.3156 670.59 2757.46 2085.64 1.9311 6.7592 4.8281 0.61 160.12 0.001102 0.3596 676.09 2757.56 2081.47 1.9440 6.7	0.48	150.30	0.001091	0.3895	633.57	2746.28	2112.72	1.8450	6.8343	4.9892
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.49	151.08	0.001092	0.3820	636.90	2747.21	2110.30	1.8529	6.8274	4.9745
0.52 153.32 0.001094 0.3612 646.60 2749.85 2103.25 1.8756 6.8074 4.9318 0.54 154.76 0.001096 0.3486 652.83 2751.52 2098.69 1.8901 6.7947 4.9045 0.56 156.15 0.001097 0.3368 658.88 2751.12 2094.24 1.9042 6.7824 4.8782 0.58 157.51 0.001099 0.3258 664.77 2754.66 2089.89 1.9179 6.7706 4.8528 0.60 158.83 0.001101 0.3156 670.50 2755.6 2081.47 1.9440 6.7481 4.8041 0.62 160.12 0.001102 0.3059 676.09 2757.56 2081.47 1.9440 6.7481 4.8041 0.64 161.37 0.001104 0.2969 681.54 276.02 2077.39 1.9565 6.7374 4.7809 0.66 162.59 0.001107 0.2804 682.06 2760.25 2073.39 1.9686 6.72	0.50	151.84	0.001093	0.3748	640.19	2748.11	2107.92	1.8606	6.8206	4.9600
0.54 154.76 0.001096 0.3486 652.83 2751.52 2098.69 1.8901 6.7947 4.9045 0.56 156.15 0.001097 0.3368 658.88 2751.52 2098.69 1.8901 6.7824 4.8782 0.58 157.51 0.001090 0.3258 664.77 2754.66 2089.89 1.9179 6.7750 4.8528 0.60 158.83 0.001101 0.3156 670.50 2756.14 2085.64 1.9311 6.7592 4.8281 0.62 160.12 0.001102 0.3059 676.09 2757.56 2081.47 1.9440 6.7481 4.8041 0.64 161.37 0.001104 0.2969 681.54 2758.93 2077.39 1.9565 6.7374 4.7809 0.66 162.59 0.001105 0.2884 868.62 2760.25 2073.39 1.9686 6.7269 4.7583 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.	0.52	153.32	0.001094	0.3612	646.60	2749.85	2103.25	1.8756	6.8074	4.9318
0.56 156.15 0.001097 0.3368 658.88 2753.12 2094.24 1.9042 6.7824 4.8782 0.58 157.51 0.001099 0.3258 664.77 2754.66 2089.89 1.9179 6.7706 4.8528 0.60 158.83 0.001101 0.3156 670.50 2756.14 2085.64 1.9311 6.7592 4.8281 0.62 160.12 0.001102 0.3059 676.09 2757.56 2081.47 1.940 6.7481 4.8041 0.64 161.37 0.001104 0.2896 681.54 2758.93 2077.39 1.9565 6.7374 4.7809 0.66 162.59 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.54	154.76	0.001096	0.3486	652.83	2751.52	2098.69	1.8901	6.7947	4.9045
0.58 157.51 0.001099 0.3258 664.77 2754.66 2089.89 1.9179 6.7706 4.8528 0.60 158.83 0.001101 0.3156 670.50 2756.14 2085.64 1.9311 6.7592 4.8281 0.62 160.12 0.001102 0.3059 676.09 2757.56 2081.47 1.9440 6.7481 4.8041 0.64 161.37 0.001104 0.2969 681.54 2758.93 2077.39 1.9456 6.7374 4.7809 0.66 162.59 0.001107 0.2804 682.66 2760.25 2073.39 1.9686 6.7269 4.758.33 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.56	156.15	0.001097	0.3368	658.88	2753.12	2094.24	1.9042	6.7824	4.8782
0.60 158.83 0.001101 0.3156 670.50 2756.14 2085.64 1.9311 6.7592 4.8281 0.62 160.12 0.001102 0.3059 676.09 2757.56 2081.47 1.9440 6.7481 4.8041 0.64 161.37 0.001104 0.2969 681.54 2758.93 2077.39 1.9565 6.7374 4.7809 0.66 162.59 0.001107 0.2884 6868 2760.25 2073.39 1.9686 6.7269 4.758.33 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.58	157.51	0.001099	0.3258	664.77	2754.66	2089.89	1.9179	6.7706	4.8528
0.62 160.12 0.001102 0.3059 676.09 2757.56 2081.47 1.9440 6.7481 4.8041 0.64 161.37 0.001104 0.2969 681.54 2758.93 2077.39 1.9565 6.7374 4.7809 0.66 162.59 0.001105 0.2884 6868 2760.25 2073.39 1.9686 6.7269 4.7583 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.60	158.83	0.001101	0.3156	670.50	2756.14	2085.64	1.9311	6.7592	4.8281
0.64 161.37 0.001104 0.2969 681.54 2758.93 2077.39 1.9565 6.7374 4.7809 0.66 162.59 0.001105 0.2884 686.86 2760.25 2073.39 1.9686 6.7269 4.7583 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.62	160.12	0.001102	0.3059	676.09	2757.56	2081.47	1.9440	6.7481	4.8041
0.66 162.59 0.001105 0.2884 686.86 2760.25 2073.39 1.9686 6.7269 4.7583 0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.64	161.37	0.001104	0.2969	681.54	2758.93	2077.39	1.9565	6.7374	4.7809
0.68 163.79 0.001107 0.2804 692.06 2761.52 2069.46 1.9805 6.7168 4.7363	0.66	162.59	0.001105	0.2884	686.86	2760.25	2073.39	1.9686	6.7269	4.7583
	0.68	163.79	0.001107	0.2804	692.06	2761.52	2069.46	1.9805	6.7168	4.7363

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

Saturated Steam

Table 2 Saturation State (Pressure Table) – Continuation Sättigungszustand (Drucktafel) – Fortsetzung

124 Tables of the Properties of Water and Steam

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 125

s'

2.7967

2.8101

2.8232

2.8362

2.8488

2.8613

2.8736

2.8857

2.8975

2.9092

2.9207

2.9321

2.9433

2.9543

2.9652

2.9759

2.9865

2.9969

3.0072

3.0174

3.0274

3.0374

3.0472

3.0569

3.0665

3.0760

3.0854

3.0947

3.1039

3.1130

3.1220

3.1309

3.1398

3.1485

3.1572

3.1658

3.1743

3.1827

3.1911

3.1994

3.2077

3.2158

3.2239

3.2320

3.2399

s"

[kJ kg⁻¹ K⁻¹]

6.0697

6.0594

6.0492

6.0393

6.0294

6.0198

6.0103

6.0010

5.9917

5.9827

5.9737

5.9649

5.9562

5.9475

5.9390

5.9307

5.9224

5.9141

5.9060

5.8980

5.8901

5.8822

5.8744

5.8667

5.8591

5.8515

5.8440

5.8366

5.8292

5.8219

5.8146

5.8074

5.8003

5.7932

5.7862

5.7792

5.7722

5.7653

5.7584

5.7516

5.7448

5.7381

5.7314

5.7247

5.7181

 Δs_{ν}

3.2731

3.2493

3.2260

3.2031

3.1806

3.1585

3.1367

3.1153 3.0942

3.0734 3.0530

3.0328

3.0129

2.9933

2.9739

2.9548

2.9359

2.9173

2.8988

2.8806

2.8626

2.8448

2.8272

2.8098

2.7926

2.7755

2.7586

2.7419

2.7253

2.7089

2.6926

2.6765

2.6605

2.6447 2.6290

2.6134

2.5979

2.5826

2.5673

2.5522

2.5372

2.5223

2.5075

2.4928

2.4782

Table 2	Saturation State (Pressure Table) – Continuation
	Sättigungszustand (Drucktafel) – Fortsetzung

PROJETO Energia Heliotérmica

			1		L !	L"	A 1.	e'	e"	As			p	t.	v'	v"	h'	h''	Λh_{*}
	р	ts	V	V	n	n n-thla	Δn_y	3	Ika-l K-l	1			[MPa]	I°C1	[m ³	kg-1]		$[k] k \sigma^{-1}$	Liny
	[MPa]	[°C]	[m ³]	kg-1]		[kJ kg ·]		L)	UKg . K .	1			[[0]	[m]	~8 J		[KJ Kġ]	
-	0.70	164.05	0.001108	0 272764	697.14	2762 75	2065.61	1.9921	6.7070	4.7149			4.0	250.36	0.001253	0.049777	1087.43	2800.90	1713.47
	0.70	104.93	0.001108	0.272704	702.12	2763.04	2061.82	2 0034	6 6974	4.6940	-		4.1	251.83	0.001256	0.048526	1094.58	2800.39	1705.81
	0.72	166.09	0.001109	0.263362	702.12	2765.09	2059 10	2.0034	6 6881	4 6737	- 1		4.2	253.27	0.001259	0.047333	1101.63	2799.85	1698.22
	0.74	167.21	0.001111	0.258775	700.99	2763.08	2038.10	2.0144	6.6700	4.6530			4.3	254.68	0.001263	0.046193	1108 57	2799 27	1690 70
	0.76	168.30	0.001112	0.252314	711.76	2766.19	2054.43	2.0252	0.0790	4.0339			4.4	256.07	0.001265	0.046193	1115 40	2799.27	1692.25
	0.78	169.37	0.001113	0.246172	716.43	2767.26	2050.83	2.0357	6.6702	4.0343			4.4	250.01	0.001200	0.045105	1115.40	2798.03	1083.23
	0.90	170.41	0.001115	0.240328	721.02	2768 30	2047.28	2.0460	6.6615	4.6156			4.5	257.44	0.001270	0.044059	1122.14	2798.00	1675.85
	0.80	170.41	0.001115	0.240320	725.52	2760.21	2043 70	2.0561	6 6531	4 5970			4.6	258.78	0.001273	0.043060	1128.79	2797.31	1668.52
	0.82	171.44	0.001116	0.234738	123.32	2709.31	2040.75	2.0501	6 6440	4 5780			4.7	260.10	0.001276	0.042101	1135 34	2796 59	1661.24
	0.84	172.45	0.001117	0.229445	729.93	2770.28	2040.35	2.0039	6.6269	4.5610			48	261.40	0.001280	0.041181	11/1 91	2705.93	1654.02
	0.86	173.43	0.001119	0.224370	734.27	2771.23	2036.96	2.0756	0.0308	4.3012			1.0	267.68	0.001283	0.040101	1141.01	2793.03	1646.02
	0.88	174.41	0.001120	0.219518	738.53	2772.15	2033.61	2.0851	6.6289	4.5438			4.7	202.00	0.001285	0.040296	1148.20	2795.04	1646.85
	0.00	175 36	0.001121	0.214874	742 72	2773.04	2030.31	2.0944	6.6212	4.5268			5.0	263.94	0.001286	0.039446	1154.50	2794.23	1639.73
	0.90	175.30	0.001121	0.214074	746.95	2773.00	2027.06	2 1035	6 6137	4 5102			5.1	265.18	0.001290	0.038628	1160.73	2793.38	1632.65
	0.92	170.29	0.001122	0.210425	740.00	2775.70	2027.00	2 1125	6 6063	4 4038			5.2	266.41	0.001293	0.037840	1166.88	2792 51	1625.62
	0.94	177.21	0.001124	0.206158	750.90	2114.14	2023.84	2.1123	6.6001	4.4770			53	267.61	0.001296	0.037081	1172.07	2791.60	1619.64
	0.96	178.12	0.001125	0.202064	754.89	2775.56	2020.67	2.1213	0.5991	4.4/78			5.4	268 80	0.001200	0.036340	1170.00	2791.00	1611.60
	0.98	179.01	0.001126	0.198130	758.82	2776.35	2017.53	2.1299	6.5919	4.4620			5.4	200.00	0.001500	0.030349	11/8.98	2790.67	1011.09
10	1.00	170.90	0.001127	0 10/2/0	762.68	2777 12	2014 44	2.1384	6.5850	4.4465			5.5	269.97	0.001303	0.035642	1184.92	2789.72	1604.79
10 bar	1.00	179.89	0.001127	0.194349	702.00	2780.67	1000 47	2 1789	6 5520	4 3731			5.6	271.12	0.001306	0.034960	1190.81	2788.74	1597.93
	1.10	184.07	0.001133	0.177430	700.50	2780.07	1095.27	2.1762	6 5217	4 3054			5.7	272.26	0.001309	0.034300	1196.63	2787 73	1591.10
	1.20	187.96	0.001139	0.163250	198.50	2785.77	1985.27	2.2103	6 4026	4.3435			5.8	273 38	0.001313	0.033663	1202.30	2786 70	1584 31
	1.30	191.61	0.001144	0.151175	814.76	2786.49	19/1.75	2.2512	0.4930	4.2423			5.0	274 49	0.001316	0.022046	1202.35	2700.70	1577 55
	1.40	195.05	0.001149	0.140768	830.13	2788.89	1958.76	2.2839	6.4675	4.1836			5.5	274.47	0.001510	0.055040	1208.09	2/63.04	13/1.33
	1.50	108 30	0.001154	0 131702	844 72	2791.01	1946.29	2.3147	6.4431	4.1284			6.0	275.59	0.001319	0.032449	1213.73	2784.56	1570.83
	1.50	201.20	0.001150	0.101702	858 61	2792.88	1934 27	2 3438	6.4200	4.0762			6.1	276.67	0.001323	0.031870	1219.32	2783.46	1564.14
	1.60	201.38	0.001139	0.125752	030.01	2792.00	1000.64	2.3436	6 2083	4.0268			6.2	277.73	0.001326	0.031310	1224.86	2782 33	1557.48
	1.70	204.31	0.001163	0.110008	8/1.69	2794.33	1922.04	2.3713	6 2776	3 0708			6.3	278.79	0.001329	0.030766	1230 34	2781 19	1550.84
	1.80	207.12	0.001168	0.110362	884.61	2795.99	1911.37	2.3978	6.35770	2.0250			6.4	279.83	0.001332	0.030230	1235 78	2780.02	1544.24
	1.90	209.81	0.001172	0.104698	896.84	2797.26	1900.42	2.4229	0.3379	5.9550				a17100	0.001552	0.050255	1255.70	2700.02	1344.24
	2.00	212 38	0.001177	0.099581	908.62	2798.38	1889.76	2.4470	6.3392	3.8921			6.5	280.86	0.001336	0.029728	1241.17	2778.83	1537.66
	2.00	214.97	0.001181	0.094934	019 99	2799 36	1879.37	2.4701	6.3212	3.8511			6.6	281.88	0.001339	0.029231	1246.51	2777.62	1531.11
	2.10	214.07	0.001181	0.000605	030.08	2800.20	1869.22	2 4924	6.3040	3.8116			6.7	282.88	0.001342	0.028748	1251.81	2776.39	1524.58
	2.20	217.20	0.001185	0.090095	041.62	2800.20	1950 30	2 5138	6 2874	3 7736			6.8	283.88	0.001345	0.028279	1257.06	2775 13	1518.07
	2.30	219.56	0.001189	0.086812	941.05	2800.92	1039.30	2.5158	6 2714	2 7270			6.9	284.86	0.001349	0.027823	1262.27	2773.86	1511 50
	2.40	221.80	0.001193	0.083242	951.95	2801.54	1849.38	2.3344	0.2714	5.7570				201100	0.001010	0.027025	1202.27	2775.00	1311.37
	2.50	223.96	0.001197	0.079947	961.98	2802.04	1840.06	2.5544	6.2560	3.7015			7.0	285.83	0.001352	0.027380	1267.44	2772.57	1505.13
	2.60	226.05	0.001201	0.076897	971 74	2802.45	1830.71	2.5738	6.2411	3.6673			7.1	286.79	0.001355	0.026948	1272.57	2771.26	1498.69
	2.00	228.00	0.001201	0.074065	081 24	2802 78	1821 54	2 5925	6.2266	3.6341			7.2	287.74	0.001358	0.026528	1277.65	2769.93	1492.27
	2.70	220.09	0.001205	0.071438	000.50	2803.02	1812 51	2 6107	6 2126	3 6019			7.3	288.68	0.001362	0.026119	1282.70	2768.58	1485.87
	2.80	230.06	0.001209	0.071428	000.54	2003.02	1802.51	2.6194	6 1000	3 5706			7.4	289.62	0.001365	0.025720	1287 72	2767.21	1479 49
	2.90	231.99	0.001213	0.068967	999.34	2003.10	1605.05	2.0204	0.1990	5.5700			-						
	3.00	233.86	0.001217	0.066664	1008.37	2803.26	1794.89	2.6456	6.1858	3.5402			7.5	290.54	0.001368	0.025331	1292.70	2765.82	1473.12
	3.10	235.68	0.001220	0.064504	1017.00	2803.28	1786.28	2.6624	6.1729	3.5105			7.6	291.45	0.001371	0.024952	1297.64	2764.41	1466.78
	3.20	237.46	0.001224	0.062475	1025.45	2803.24	1777.79	2.6787	6.1604	3.4817			7.7	292.35	0.001375	0.024583	1302.55	2762.99	1460.44
	3.20	237.40	0.001224	0.060564	1033 72	2803 13	1769.41	2.6946	6.1481	3,4535			7.8	293.25	0.001378	0.024223	1307.42	2761.55	1454.12
	3.30	239.20	0.001228	0.060304	1041.93	2802.05	1761.14	2 7102	6 1362	3 4260			7.9	294.13	0.001381	0.023871	1312.27	2760.09	1447.82
	3.40	240.90	0.001231	0.058761	1041.63	2002.90	1701.14	2.7102	0.1502	0.4200									1.1.1.1.04
	3.50	242.56	0.001235	0.057058	1049.78	2802.74	1752.97	2.7254	6.1245	3.3991			8.0	295.01	0.001385	0.023528	1317.08	2758.61	1441.53
	3.60	244 19	0.001239	0.055446	1057.57	2802.47	1744.90	2.7403	6.1131	3.3728			8.1	295.88	0.001388	0.023192	1321.86	2757.12	1435.25
	3.70	245.79	0.001242	0.053918	1065.23	2802.15	1736.91	2.7548	6.1019	3.3471			8.2	296.74	0.001391	0.022865	1326.61	2755.60	1428.99
	3.70	243.78	0.001242	0.053710	1072 76	2801 78	1729.02	2 7690	6.0910	3.3219			8.3	297.59	0.001395	0.022545	1331.34	2754.07	1422.74
	3.80	247.53	0.001246	0.052408	1000.15	2001.76	1721.02	2.7820	6.0802	3 2973			8.4	298.44	0.001398	0.022232	1336.03	2752 52	1416.49
	3.90	248.86	0.001249	0.051089	1080.15	2001.30	1721.21	2.7030	0.0002	5.6713	- 11	-					1000100		1113.47

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

126 Tables of the Properties of Water and Steam

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 127

Table 2 Saturation State (Pressure Table) – Continuation Sättigungszustand (Drucktafel) – Fortsetzung

PROJETO Energia Heliotérmica

n_{s} , , , , , , , , , , , , , , , , , , ,	S	Δh_y	h	h	V	v	ts	P	
a] [°C] $[m^3 kg^{-1}]$ $[kJ kg^{-1}]$ $[kJ kg^{-1}K^{-1}]$	[k		[kJ kg ⁻¹]		kg ⁻¹]	[m ³	[°C]	[MPa]	
5 299.27 0.001401 0.021926 1340.70 2750.96 1410.26 3.2478 5.7115 2.4633	3.2478	1410.26	2750.96	1340.70	0.021926	0.001401	299.27	8.5	
300.10 0.001405 0.021627 1345.34 2749.38 1404.04 3.2557 5.7050 2.4493	3.2557	1404.04	2749.38	1345.34	0.021627	0.001405	300.10	8.6	
/ 300.92 0.001408 0.021334 1349.96 2747.78 1397.82 3.2635 5.6984 2.4349	3.2635	1397.82	2747.78	1349.96	0.021334	0.001408	300.92	8.7	
301.74 0.001411 0.021048 1354.54 2746.16 1391.62 3.2712 5.6919 2.4207	3.2712	1391.62	2746.16	1354.54	0.021048	0.001411	301.74	8.8	
302.55 0.001415 0.020767 1359.11 2744.53 1385.42 3.2789 5.6855 2.4065	3.2789	1385.42	2744.53	1359.11	0.020767	0.001415	302.55	8.9	
303.35 0.001418 0.020493 1363.65 2742.88 1379.23 3.2866 5.6790 2.3924	3.2866	1379.23	2742.88	1363.65	0.020493	0.001418	303.35	9.0	
304.14 0.001422 0.020224 1368.17 2741.22 1373.05 3.2942 5.6726 2.3784	3.2942	1373.05	2741.22	1368.17	0.020224	0.001422	304.14	9.1	
304.93 0.001425 0.019961 1372.66 2739.53 1366.87 3.3017 5.6662 2.3645	3.3017	1366.87	2739.53	1372.66	0.019961	0.001425	304.93	9.2	
305.71 0.001428 0.019703 1377.14 2737.83 1360.70 3.3092 5.6598 2.3507	3.3092	1360.70	2737.83	1377.14	0.019703	0.001428	305.71	9.3	
306.48 0.001432 0.019450 1381.59 2736.12 1354.53 3.3166 5.6535 2.3369	3.3166	1354.53	2736.12	1381.59	0.019450	0.001432	306.48	9.4	
307.25 0.001435 0.019203 1386.02 2734.38 1348.37 3.3240 5.6472 2.3232	3.3240	1348.37	2734.38	1386.02	0.019203	0.001435	307.25	9.5	
308.01 0.001439 0.018960 1390.43 2732.64 1342.21 3.3313 5.6409 2.3095	3.3313	1342.21	2732.64	1390.43	0.018960	0.001439	308.01	9.6	
308.77 0.001442 0.018721 1394.81 2730.87 1336.06 3.3386 5.6346 2.2960	3.3386	1336.06	2730.87	1394.81	0.018721	0.001442	308.77	9.7	
309.52 0.001446 0.018488 1399.18 2729.09 1329.90 3.3459 5.6283 2.2824	3.3459	1329.90	2729.09	1399.18	0.018488	0.001446	309.52	9.8	
310.26 0.001449 0.018259 1403.54 2727.29 1323.75 3.3531 5.6221 2.2690	3.3531	1323.75	2727.29	1403.54	0.018259	0.001449	310.26	9.9	
311.00 0.001453 0.018034 1407.87 2725.47 1317.61 3.3603 5.6159 2.2556	3.3603	1317.61	2725.47	1407.87	0.018034	0.001453	311.00	10.0	100 bar
311.73 0.001456 0.017813 1412.18 2723.64 1311.46 3.3674 5.6097 2.2423	3.3674	1311.46	2723.64	1412.18	0.017813	0.001456	311.73	10.1	
312.46 0.001460 0.017596 1416.48 2721.79 1305.31 3.3745 5.6035 2.2290	3.3745	1305.31	2721.79	1416.48	0.017596	0.001460	312.46	10.2	
313.18 0.001463 0.017383 1420.76 2719.93 1299.17 3.3816 5.5973 2.2158	3.3816	1299.17	2719.93	1420.76	0.017383	0.001463	313.18	10.3	
313.90 0.001467 0.017174 1425.02 2718.04 1293.02 3.3886 5.5912 2.2026	3.3886	1293.02	2718.04	1425.02	0.017174	0.001467	313.90	10.4	
314.61 0.001470 0.016969 1429.27 2716.14 1286.88 3.3956 5.5850 2.1895	3.3956	1286.88	2716.14	1429.27	0.016969	0.001470	314.61	10.5	
315.31 0.001474 0.016767 1433.50 2714.23 1280.73 3.4025 5.5789 2.1764	3.4025	1280.73	2714.23	1433.50	0.016767	0.001474	315.31	10.6	
316.01 0.001478 0.016569 1437.72 2712.30 1274.58 3.4094 5.5728 2.1634	3.4094	1274.58	2712.30	1437.72	0.016569	0.001478	316.01	10.7	
316.71 0.001481 0.016374 1441.92 2710.35 1268.43 3.4163 5.5667 2.1504	3.4163	1268.43	2710.35	1441.92	0.016374	0.001481	316.71	10.8	
317.40 0.001485 0.016182 1446.11 2708.38 1262.27 3.4231 5.5606 2.1375	3.4231	1262.27	2708.38	1446.11	0.016182	0.001485	317.40	10.9	
318.08 0.001489 0.015994 1450.28 2706.39 1256.12 3.4300 5.5545 2.1246	3.4300	1256.12	2706.39	1450.28	0.015994	0.001489	318.08	11.0	
318.76 0.001492 0.015809 1454.44 2704.39 1249.96 3.4367 5.5485 2.1117	3.4367	1249.96	2704.39	1454.44	0.015809	0.001492	318.76	11.1	
319.44 0.001496 0.015626 1458.58 2702.37 1243.79 3.4435 5.5424 2.0989	3.4435	1243.79	2702.37	1458.58	0.015626	0.001496	319.44	11.2	
320.11 0.001500 0.015447 1462.72 2700.34 1237.62 3.4502 5.5363 2.0861	3.4502	1237.62	2700.34	1462.72	0.015447	0.001500	320.11	11.3	
320.77 0.001503 0.015271 1466.84 2698.28 1231.45 3.4569 5.5303 2.0734	3.4569	1231.45	2698.28	1466.84	0.015271	0.001503	320.77	11.4	
321.44 0.001507 0.015097 1470.95 2696.21 1225.26 3.4636 5.5243 2.0607	3.4636	1225.26	2696.21	1470.95	0.015097	0.001507	321.44	11.5	
322.09 0.001511 0.014926 1475.05 2694.12 1219.08 3.4702 5.5182 2.0480	3.4702	1219.08	2694.12	1475.05	0.014926	0.001511	322.09	11.6	
322.75 0.001515 0.014758 1479.13 2692.02 1212.88 3.4768 5.5122 2.0354	3.4768	1212.88	2692.02	1479.13	0.014758	0.001515	322.75	11.7	
323.39 0.001519 0.014593 1483.21 2689.89 1206.68 3.4834 5.5062 2.0228	3.4834	1206.68	2689.89	1483.21	0.014593	0.001519	323.39	11.8	
324.04 0.001522 0.014430 1487.27 2.687.75 1200.47 3.4899 5.5001 2.0102	3.4899	1200.47	2687.75	1487.27	0.014430	0.001522	324.04	11.9	
324.68 0.001526 0.014269 1491.33 2685.58 1194.26 3.4965 5.4941 1.9977	3.4965	1194.26	2685.58	1491.33	0.014269	0.001526	324.68	12.0	
325.31 0.001530 0.014111 1495.37 2683.40 1188.03 3.5030 5.4881 1.9851	3.5030	1188.03	2683.40	1495.37	0.014111	0.001530	325.31	12.1	
325.95 0.001534 0.013955 1499.41 2681.20 1181.79 3.5095 5.4821 1.9726	3.5095	1181.79	2681.20	1499.41	0.013955	0.001534	325.95	12.2	
326.57 0.001538 0.013801 1503.43 2678.98 1175.55 3.5159 5.4761 1.9601	3.5159	1175.55	2678.98	1503.43	0.013801	0.001538	326.57	12.3	
327.20 0.001542 0.013650 1507.45 2676.74 1169.29 3.5224 5.4700 1.9477	3.5224	1169.29	2676.74	1507.45	0.013650	0.001542	327.20	12.4	
327.82 0.001546 0.013501 1511.46 2674.49 1163.02 3.5288 5.4640 1.9353	3.5288	1163.02	2674.49	1511.46	0.013501	0.001546	327.82	12.5	
328.43 0.001550 0.013354 1515.47 2672.21 1156.74 3.5352 5.4580 1.9228	3.5352	1156.74	2672.21	1515.47	0.013354	0.001550	328.43	12.6	
329.04 0.001554 0.013208 1519.46 2669.91 1150.45 3.5415 5.4520 1.9104	3.5415	1150.45	2669.91	1519.46	0.013208	0.001554	329.04	12.7	
329.65 0.001558 0.013065 1523.45 2667.59 1144.14 3.5479 5.4459 1.8980	3.5479	1144.14	2667.59	1523.45	0.013065	0.001558	329.65	12.8	
330.26 0.001562 0.012924 1527.43 2665.25 1137.82 3.5543 5.4399 1.8857	3.5543	1137.82	2665.25	1527.43	0.012924	0.001562	330.26	12.9	

Table 2 Saturation State (Pressure Table) – Continuation Sättigungszustand (Drucktafel) – Fortsetzung

р	ts	v	v''	h	h"	Δh_{ν}	s	5	Δs_{v}
[MPa]	[°C]	[m ³ k	g ⁻¹]		[kJ kg ⁻¹]		[k	J kg ⁻¹ K ⁻¹	1
13.0	330.86	0.001566	0.012785	1531.40	2662.89	1131.49	3.5606	5.4339	1.8733
13.1	331.45	0.001571	0.012648	1535.37	2660.51	1125.14	3.5669	5.4278	1.8610
13.2	332.05	0.001575	0.012512	1539.33	2658.11	1118.78	3.5732	5.4218	1.8486
13.3	332.64	0.001579	0.012379	1543.29	2655.69	1112.40	3.5794	5.4157	1.8363
13.4	333.22	0.001583	0.012247	1547.24	2653.24	1106.00	3.5857	5.4097	1.8240
13.5	333.81	0.001588	0.012116	1551.19	2650.77	1099.58	3.5920	5.4036	1.8116
13.6	334 39	0.001592	0.011988	1555.14	2648.28	1093.15	3.5982	5.3975	1.7993
13.7	334.96	0.001596	0.011861	1559.08	2645.77	1086.70	3.6044	5.3914	1.7870
13.8	335.53	0.001601	0.011735	1563.01	2643.24	1080.22	3.6106	5.3853	1.7747
13.9	336.10	0.001605	0.011611	1566.95	2640.68	1073.73	3.6168	5.3792	1.7624
14.0	336.67	0.001610	0.011489	1570.88	2638.09	1067.21	3.6230	5.3730	1.7500
14.0	330.07	0.001614	0.011368	1574.81	2635.49	1060.68	3.6292	5.3669	1.7377
14.1	337.25	0.001610	0.011348	1578 74	2632.85	1054.12	3 6353	5 3607	1.7254
14.2	229 25	0.001613	0.011130	1582.66	2630.20	1047 53	3.6415	5.3546	1.7131
14.5	338.90	0.001623	0.011014	1586.59	2627.51	1040.93	3.6477	5.3484	1.7007
14.4	556.90	0.001020	0.01101-1	1500.55	0/04/01	1024.00	2 6520	5 2 4 2 2	1 6004
14.5	339.45	0.001633	0.010898	1590.51	2624.81	1034.29	3.0538	5.3422	1.0884
14.6	340.00	0.001638	0.010784	1594.44	2622.07	1027.63	3.6599	5.5359	1.6760
14.7	340.54	0.001642	0.010671	1598.37	2619.31	1020.95	3.6661	5.3297	1.0030
14.8	341.08	0.001647	0.010560	1602.29	2616.52	1014.23	3.6722	5.3234	1.6512
14.9	341.62	0.001652	0.010449	1606.22	2613.71	1007.49	3.6783	5.3171	1.6388
15.0	342.16	0.001657	0.010340	1610.15	2610.86	1000.71	3.6844	5.3108	1.6264
15.1	342.69	0.001662	0.010232	1614.08	2607.99	993.91	3.6906	5.3045	1.6139
15.2	343.22	0.001667	0.010125	1618.02	2605.09	987.07	3.6967	5.2981	1.6014
15.3	343.75	0.001672	0.010019	1621.96	2602.16	980.20	3.7028	5.2917	1.5889
15.4	344.27	0.001677	0.009915	1625.90	2599.21	973.30	3.7089	5.2853	1.5764
15.5	344.79	0.001682	0.009811	1629.85	2596.22	966.37	3.7150	5.2789	1.5638
15.6	345.31	0.001688	0.009709	1633.80	2593.20	959.39	3.7212	5.2724	1.5513
15.7	345.83	0.001693	0.009607	1637.76	2590.15	952.39	3.7273	5.2659	1.5386
15.8	346.34	0.001699	0.009506	1641.72	2587.06	945.34	3.7334	5.2594	1.5260
15.9	346.85	0.001704	0.009407	1645.69	2583.95	938.26	3.7395	5.2529	1.5133
16.0	347.36	0.001710	0.009308	1649.67	2580.80	931.13	3.7457	5.2463	1.5006
16.1	347.86	0.001715	0.009210	1653.66	2577.62	923.97	3.7518	5.2397	1.4878
16.2	348.36	0.001721	0.009114	1657.65	2574.41	916.76	3.7580	5.2330	1.4750
16.3	348.86	0.001727	0.009018	1661.65	2571.16	909.51	3.7641	5.2263	1.4622
16.4	349.36	0.001732	0.008923	1665.66	2567.88	902.22	3.7703	5.2196	1.4493
16.5	349.86	0.001738	0.008828	1669.68	2564.57	894.88	3.7765	5.2129	1.4364
16.6	350.35	0.001744	0.008736	1673.74	2561.26	887.52	3.7827	5.2062	1.4235
16.7	350.84	0.001750	0.008643	1677.80	2557.87	880.07	3.7889	5.1993	1.4104
16.8	351.33	0.001757	0.008551	1681.86	2554.43	872.57	3.7952	5.1924	1.3973
16.9	351.81	0.001763	0.008460	1685.94	2550.96	865.02	3.8014	5.1855	1.3841
17.0	352.29	0.001769	0.008370	1690.04	2547.44	857.40	3.8077	5.1785	1.3709
17.1	352.77	0.001776	0.008280	1694.15	2543.88	849.73	3.8140	5.1715	1.3576
17.2	353.25	0.001782	0.008191	1698.27	2540.27	841.99	3.8203	5.1644	1.3442
17.3	353.73	0.001789	0.008102	1702.42	2536.61	834.19	3.8266	5.1573	1.3307
17.4	354.20	0.001796	0.008015	1706.59	2532.91	826.32	3.8330	5.1501	1.3172
		the second second second second							

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

PROJETO Energia Heliotérmica

Saturated Steam, Table & Diagram

densit	y and e	nthalpy	as a fun	ction of	press	ure	prop	erty.xls			
D	ts	rho'	rho"	h'	h"	r					
[bar]	[°C]	[kg/m ³]	[kg/m³]	[kJ/kg]	[kJ/kg]	[kJ/kq]					
0,1	45,817	989,82	0,068	191,83	2583,8	2392,0					
0,2	60,073	983,13	0,131	251,46	2608,9	2357,4		3000 -	Г —		
0,3	69,114	978,25	0,191	289,30	2624,6	2335,3			***	:***	ЖЖ
0,5	81,339	970,96	0,309	340,54	2645,3	2304,8		2500	li -		
0,7	89,956	965,36	0,423	376,75	2659,6	2282,9		2000			
0,9	96,713	960,73	0,535	405,20	2670,5	2265,3	5				
1	99,632	958,66	0,590	417,51	2675,1	2257,6	<u> </u>	2000 -	-		
2	120,241	942,96	1,129	504,80	2706,5	2201,7	L S				
3	133,555	931,84	1,651	561,61	2725,3	2163,7	þ	1500 -		<u>× </u>	
4	143,643	922,91	2,162	604,91	2738,5	2133,6	1	1000			
5	151,866	915,31	2,668	640,38	2748,6	2108,2	kg		£		X
6	158,863	908,61	3,168	670,71	2756,7	2086,0	Σ.	1000		XXXXX	
8	170,444	897,05	4,160	721,23	2768,9	2047,7	2	4			
10	179,916	887,15	5,144	762,88	2777,7	2014,8		500	8		
15	198,327	866,69	7,592	844,85	2791,5	1946,7		500	Ş		
20	212,417	849,85	10,041	908,69	2798,7	1890,0					
25	223,989	835,19	12,508	961,97	2802,2	1840,2		0 -			
30	233,892	822,00	15,000	1008,29	2803,3	1795,0		(0		!
35	242,595	809,84	17,527	1049,63	2802,6	1753,0					
40	250,392	798,49	20,092	1087,22	2800,6	1713,4					
45	257,474	787,76	22,700	1121,89	2797,6	1675,7					
50	263,977	777,52	25,355	1154,20	2793,7	1639,5					
60	275,621	758,17	30,825	1213,34	2783,9	1570,6					
70	285,864	739,91	36,534	1266,98	2771,8	1504,8					
80	295,042	722,40	42,518	1316,57	2757,8	1441,2		3000			v
90	303,379	705,37	48,817	1363,10	2742,0	1378,9		2500	A COLOR	KAA .	*
100	311,031	688,63	55,480	1407,28	2724,5	1317,2	<u> </u>	2300			
120	324,709	655,35	70,120	1490,73	2684,5	1193,8	g/r	2000			
140	336,700	621,30	87,070	1570,40	2637,1	1066,7	Ě				
160	347,394	584,80	107,410	1649,50	2580,3	930,8	Ę	1500			+
180	357,038	543,50	133,250	1732,00	2509,7	777,7	<u>ਰ</u>				
200	365,800	491,20	170,250	1826,70	2413,6	586,9	ΙŠ	1000			*
210	369,881	454,50	199,190	1887,60	2342,8	455,2	L ک	500	×	KAN -	
215	371,848	427,90	221,500	1929,00	2290,7	361,7	1	500	*		
220	373,767	370,00	274,000	2013,00	2177,0	164,0		0	<u> Tum</u>	<u></u>	<u> </u>
20,55	373,976	322,00	322,000	2086,00	2086,0	0,0			0	10	

PROJETO Energia Heliotérmica Table of Water & Steam: 0,1 bar

142 Tables of the Properties of Water and Steam

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

p = 0.01 MPat P. h S cp $\eta \times 10^{6}$ $\lambda \times 10^3$ [°C] [m³ kg⁻¹] [kJ kg⁻¹] [kJ kg⁻¹ K⁻¹] [kJ kg⁻¹ K⁻¹] [m s⁻¹] [kg m⁻¹ s⁻¹] [W m⁻¹ K⁻¹] 0 0.001000 -0.03- 0.0002 4.2199 1402.30 196603 1791.76 561.03 5 0.001000 21.03 0.0763 4.2053 1426.05 203346 1518.28 570.53 10 0.001000 42.03 0.1511 4.1958 1447.41 209428 1305.98 580.00 15 0.001001 62.99 0.2245 4.1894 1466.45 214844 1137.61 589.34 20 0.001002 83.93 0.2965 4.1851 1483.27 219606 1001.64 598.42 25 0.001003 104.84 0.3673 4.1822 1498.03 223736 890.10 607.15 30 0.001004 125.75 0.4368 4.1803 1510.84 227261 797.35 615.46 35 0.001006 146.65 0.5052 4.1792 1521.84 230209 719.31 623.29 40 0.001008 167.54 0.5724 4.1788 1531.15 232610 652.97 630.59 45 0.001010 188.44 0.6386 4.1790 1538.90 234495 596.06 637.36 $t_8 = 45.81$ Saturation Liquid 0.001010 191.81 0.6492 4.1791 1540.01 234753 587.63 638.40 Vapour 14.6706 2583.89 8.1489 1.9413 440.51 1.3227 10.49 20.04 50 14.8674 2591.99 8.1741 1.9272 443.67 1.3240 10.62 20.31 60 15.3353 2611.18 8 2326 1.9124 450.74 1.3248 10.95 21.00 70 15.8018 457.50 2630.27 8.2891 1.9071 1.3246 11.28 21.71 80 16.2674 2649.33 8.3438 1.9051 464.09 1.3240 11.63 22.45 90 16.7323 2668.38 8.3970 1.9048 470.55 1.3233 1.98 23.22 100 17.1967 2687.43 8,4488 1.9057 476.89 1.3225 12.34 24.01 110 17.6607 2706.50 8,4992 1.9074 483.12 1.3216 12.71 24.82 120 18.1243 2725.58 8.5484 1.9098 489.25 1.3207 13.08 25.65 130 18.5876 2744.69 8.5964 1.9128 495.28 1.3197 13.46 26.50 140 19.0507 2763.84 8.6433 1.9163 501.22 1.3187 13.84 27.37 150 19.5136 2783.02 8.6892 1.9201 507.07 1.3176 14.23 28.26 160 19.9763 2802.24 8.7340 1.9243 512.83 1.3166 14.62 29.16 170 20.4389 2821.51 8.7780 1.9288 518.52 1.3154 15.01 30.08 180 20.9013 2840.82 8.8211 1.9336 524.13 1.3143 15.41 31.02 190 21.3637 2860.18 8.8634 1.9385 529.66 1.3132 15.80 31.97 200 21.8260 2879.59 8.9048 1.9436 535.13 1.3120 16.21 32.93 210 22.2882 2899.05 8.9455 1.9489 540.52 1.3108 16.61 33.91 220 22.7504 2918.57 8.9855 1.9543 545.85 1.3097 17.01 34.90 230 23.2124 2938.14 9.0248 1.9598 551.12 1.3085 17.42 35.91 240 2957.76 23.6745 9.0634 1.9654 556.32 1.3073 17.83 36.92 250 24.1365 2977.45 9.1014 1.9711 561.46 1.3061 18.24 37.95 260 24.5985 2997.19 9.1388 1.9769 566.55 1.3049 18.65 39.00 270 25.0604 3016.98 9.1756 1.9827 571.58 1.3037 19.06 40.05 280 25,5223 3036.84 9.2118 1.9887 576.56 1.3025 19.47 41.11 290 25.9842 3056.76 9.2475 1.9947 581.48 1.3013 19.89 42.19 300 26.4460 3076.73 9.2827 2.0007 586.36 1.3001 20.30 43.28 310 26.9078 3096.77 9.3173 2.0069 591.18 1.2989 20.72 44.37 320 27.3696 3116.87 9.3515 2.0130 595.96 1.2977 21.13 45.48 330 27.8314 3137.03 9.3852 2.0192 600.68 1.2965 21.55 46.60 340 28.2932 3157.26 9.4185 2.0255 605.37 1.2953 21.96 47.72

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 143

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

t	v	h	5	p = 0.01 MPa	w	ĸ	$\eta \times 10^{6}$	$\lambda \times 10^3$
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]		[kg m ⁻¹ s ⁻¹]	$[W m^{-1} K^{-1}]$
350	28.7550	3177.54	9,4513	2.0318	610.00	1.2941	22.38	48.86
360	29.2167	3197.89	9.4837	2.0382	614.60	1.2929	22.79	50.01
370	29.6785	3218.31	9.5157	2.0446	619.15	1.2917	23.21	51.16
380	30.1402	3238.79	9.5473	2.0510	623.66	1.2905	23.62	52.32
390	30.6019	3259.33	9.5785	2.0575	628.13	1.2893	24.04	53.50
400	31.0636	3279.94	9.6093	2,0641	632.56	1.2881	24.45	54.68
410	31.5253	3300.61	9.6398	2.0706	636.95	1.2869	24.87	55.87
420	31.9870	3321.35	9.6699	2.0772	641.30	1.2857	25.28	57.06
130	32.4486	3342.15	9.6997	2.0839	645.62	1.2846	25.70	58.27
440	32.9103	3363.03	9.7292	2.0905	649.90	1.2834	26.11	59.48
450	33,3720	3383.96	9.7584	2.0972	654.15	1.2822	26.52	60.70
460	33.8336	3404.97	9.7872	2.1040	658.36	1.2811	26.93	61.93
470	34,2953	3426.04	9.8158	2.1107	662.53	1.2799	27.34	63.17
480	34,7569	3447.19	9.8440	2.1175	666.68	1.2788	27.75	64.41
490	35.2185	3468.40	9.8720	2.1244	670.79	1.2776	28.16	65.66
500	35.6802	3489.67	9.8997	2.1312	674.87	1.2765	28.57	66.92
510	36.1418	3511.02	9.9271	2.1381	678.92	1.2753	28.98	68.18
520	36.6034	3532.44	9,9543	2.1450	682.94	1.2742	29.39	69.45
530	37.0650	3553.92	9,9812	2.1520	686.92	1.2731	29.80	70.73
540	37.5267	3575.48	10.0079	2.1589	690.88	1.2720	30.20	72.01
12135					101.00	1 0200	20 (1	72.20
550	37.9883	3597.10	10.0343	2.1659	694.82	1.2708	30.61	73.30
560	38.4499	3618.79	10.0605	2.1729	698.72	1.2697	31.01	74.60
570	38.9115	3640.56	10.0865	2.1799	702.60	1.2080	31.41	73.90
580	39.3731	3662.39	10.1122	2.1869	706.45	1.2675	31.81	77.21
590	39.8347	3684.30	10.1378	2.1940	/10.27	1.2004	32.21	16.32
600	40.2963	3706.27	10.1631	2.2010	714.07	1.2654	32.61	79.84
610	40.7579	3728.32	10.1882	2.2081	717.84	1.2643	33.01	81.17
620	41.2195	3750.43	10.2131	2.2151	721.59	1.2632	33.41	82.50
630	41.6810	3772.62	10.2378	2.2222	725.32	1.2622	33.81	83.85
640	42.1426	3794.88	10.2623	2.2293	729.02	1.2611	34.20	85.18
650	42.6042	3817.20	10.2866	2.2364	732.70	1.2601	34.60	86.52
660	43.0658	3839.60	10.3107	2.2434	736.35	1.2590	34.99	87.88
670	43.5274	3862.07	10.3347	2.2505	739.99	1.2580	35.38	89.23
680	43.9890	3884.61	10.3585	2.2576	743.60	1.2570	35.77	90.59
690	44.4505	3907.23	10.3821	2.2647	747.19	1.2560	36.16	91.96
700	44.9121	3929.91	10.4055	2.2718	750.76	1.2550	36.55	93.33
720	45.8352	3975.48	10.4519	2.2859	757.84	1.2530	37.32	96.09
740	46.7584	4021.34	10.4976	2.3001	764.84	1.2511	38.09	98.86
760	47.6815	4067.49	10.5427	2.3142	771.76	1.2491	38.86	101.66
780	48.6046	4113.91	10.5872	2.3283	778.60	1.2473	39.62	104.47
800	49.5278	4160.62	10.6311	2.3424	785.38	1.2454	40.37	107.29

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 98

PROJETO Energia Heliotérmica Table of Water & Steam: 0,25 bar

144 Tables of the Properties of Water and Steam

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 145

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

				p = 0.02	5 MPa			
t	v	h	5	cp	w	ĸ	$\eta \times 10^{6}$	$\lambda \times 10^3$
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]		[kg m ⁻¹ s ⁻¹]	$[W m^{-1} K^{-1}]$
0	0.001000	- 0.02	- 0.0002	4.2198	1402.32	78644	1791.72	561.03
5	0.001000	21.04	0.0763	4.2053	1426.07	81341	1518.25	570.54
10	0.001000	42.04	0.1511	4.1957	1447.43	83774	1305.96	580.01
15	0.001001	63.01	0.2245	4.1894	1466.47	85941	1137.60	589.34
20	0.001002	83.94	0.2965	4.1850	1483.30	87845	1001.64	598.43
25	0.001003	104.86	0.3673	4.1821	1498.05	89498	890.10	607.16
30	0.001004	125.76	0.4368	4.1802	1510.86	90907	797.35	615.47
35	0.001006	146.66	0.5052	4.1791	1521.86	92087	719.31	623.30
40	0.001008	167.56	0.5724	4.1787	1531.18	93047	652.97	630.60
45	0.001010	188.45	0.6386	4.1789	1538.92	93801	596.06	637.36
50	0.001012	209.35	0.7038	4.1797	1545.20	94360	546.84	643.57
60	0.001017	251.16	0.8312	4.1829	1553.73	94938	466.39	654.37
64.06		1000000	100000000	Coture		1.110.110.111	(1998) (1998)	Week and the
$t_s = 04.90$ Liquid	0.001020	271.93	0.8931	4 1853	1556.14	94978	433.48	658.95
Vapour	6.2034	2617.45	7.8302	1.9763	452.54	1.3205	11.10	21.62
							and the second se	
70	6.2989	2627.36	7.8593	1.9598	456.22	1.3217	11.27	21.96
80	6.4878	2646.86	7.9153	1.9430	463.11	1.3223	11.62	22.67
90	6.6759	2666.24	7.9694	1.9348	469.73	1.3220	11.97	23.41
100	6.8634	2685.57	8.0219	1.9302	476.18	1.3215	12.33	24.18
110	7.0505	2704.86	8.0729	1.9278	482.50	1.3208	12.70	24.97
120	7.2372	2724.13	8.1226	1.9269	488.70	1.3200	13.07	25.79
130	7.4237	2743.40	8.1710	1.9272	494.79	1.3191	13.45	26.62
140	7.6099	2762.67	8.2182	1.9285	500.78	1.3182	13.83	27.48
150	7.7958	2781.97	8.2643	1.9306	506.68	1.3172	14.22	28.36
160	7.9817	2801.29	8.3095	1.9333	512.48	1.3162	14.61	29.25
170	8.1673	2820.64	8.3536	1.9366	518.20	1.3152	15.00	30.16
180	8.3529	2840.02	8.3969	1.9403	523.84	1.3141	15.40	31.09
190	8.5383	2859.45	8.4393	1.9444	529.40	1.3130	15.80	32.03
200	8.7237	2878.91	8.4809	1.9488	534.89	1.3118	16.20	32.99
210	8,9090	2898.42	8.5217	1.9535	540.30	1.3107	16.60	33.96
220	9.0942	2917.98	8.5617	1.9583	545.65	1 3095	17.01	34.95
230	9.2794	2937.59	8.6011	1.9634	550.93	1.3084	17.42	35.95
240	9.4646	2957.25	8.6398	1.9687	556.15	1.3072	17.82	36.96
250	9.6496	2976.96	8.6778	1.9740	561.30	1.3060	18.23	37.99
260	9.8347	2996.73	8,7153	1.9795	566.40	1.3048	18.65	39.03
270	10.0197	3016 55	8 7521	1.9852	571 44	1 3036	19.06	40.08
280	10.2047	3036.44	8.7884	1.9909	576.43	1.3024	19.47	41.14
290	10.3897	3056.37	8.8241	1.9967	581.36	1.3012	19.88	42.22
300	10 5746	3076 37	8 8502	2.0026	586.24	1 3000	20.30	43 30
310	10.7595	3006.42	8 8940	2.0020	501.07	1.3000	20.30	44.40
320	10.7333	3116 54	8 9282	2.0000	505.86	1.2700	21.13	45 50
330	11 1203	3136.72	8 9619	2.0140	600.59	1 2964	21.13	46.62
340	11.2141	3156.04	8.0052	2.0260	605 29	1.2052	21.04	47.74

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

		-	P	= 0.025 MPa	i.		my 106	2 × 103
t	ν	h	\$	c_p	w	ĸ	$\eta \times 10^{\circ}$	2 × 10-
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹] [kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]		[kg m ⁻¹ s ⁻¹]	[W m ⁻¹ K ⁻¹]
350	11.4990	3177.26	9.0280	2.0331	609.92	1.2940	22.38	48.88
360	11.6838	3197.62	9.0605	2.0394	614.52	1.2928	22.79	50.02
370	11.8686	3218.04	9.0925	2.0457	619.08	1.2917	23.21	51.18
380	12.0534	3238.53	9.1241	2.0521	623.59	1.2905	23.62	52.34
390	12.2382	3259.09	9.1553	2.0585	628.06	1.2893	24.04	53.51
400	12.4230	3279.70	9.1862	2.0650	632.50	1.2881	24.45	54.69
410	12.6078	3300.39	9.2167	2.0715	636.89	1.2869	24.87	55.88
420	12,7926	3321.13	9.2468	2.0780	641.25	1.2857	25.28	57.08
430	12.9773	3341.95	9.2766	2.0846	645.57	1.2846	25.70	58.28
440	13.1621	3362.83	9.3061	2.0913	649.85	1.2834	26.11	59.49
450	13.3468	3383.77	9.3353	2.0979	654.10	1.2822	26.52	60.71
460	13.5316	3404.79	9.3641	2.1046	658.31	1.2811	26.93	61.94
470	13,7163	3425.87	9.3927	2.1114	662.49	1.2799	27.34	63.18
480	13.9010	3447.01	9.4210	2.1182	666.64	1.2788	27.76	64.42
490	14.0857	3468.23	9.4489	2.1250	670.75	1.2776	28.16	65.67
500	14.2704	3489.51	9.4767	2.1318	674.83	1.2765	28.57	66.93
510	14.4552	3510.86	9.5041	2.1387	678.88	1.2753	28.98	68.19
520	14.6399	3532.29	9.5313	2.1455	682.90	1.2742	29.39	69.46
530	14.8246	3553.78	9.5582	2.1524	686.89	1.2731	29.80	70.74
540	15.0093	3575.33	9.5849	2.1594	690.85	1.2720	30.20	72.02
550	15.1940	3596.96	9.6113	2.1663	694.79	1.2708	30.61	73.31
560	15.3787	3618.66	9.6375	2.1733	698.69	1.2697	31.01	74.61
570	15.5633	3640.43	9.6635	2.1803	702.57	1.2686	31.41	75.91
580	15.7480	3662.27	9.6892	2.1873	706.42	1.2675	31.81	77.22
590	15.9327	3684.18	9.7148	2.1943	710.25	1.2665	32.21	78.53
600	16.1174	3706.15	9.7401	2.2014	714.05	1.2654	32.61	79.85
610	16.3021	3728.20	9.7652	2.2084	717.82	1.2643	33.01	81.18
620	16.4867	3750.32	9.7901	2.2155	721.57	1.2632	33.41	82.51
630	16.6714	3772.51	9.8148	2.2225	725.30	1.2622	33.81	83.84
640	16.8561	3794.77	9.8393	2.2296	729.00	1.2611	34.20	85.19
650	17.0408	3817.10	9.8636	2.2366	732.68	1.2601	34.60	86.53
660	17.2254	3839.51	9.8878	2.2437	736.34	1.2590	34.99	87.88
670	17.4101	3861.98	9.9117	2.2508	739.97	1.2580	35.38	89.24
680	17.5947	3884.52	9.9355	2.2579	743.58	1.2570	35.77	90.60
690	17.7794	3907.14	9.9591	2.2649	747.17	1.2560	36.16	91.97
700	17.9641	3929.82	9.9825	2.2720	750.74	1.2550	36.55	93.34
720	18.3334	3975.40	10.0289	2.2861	757.82	1.2530	37.33	96,10
740	18.7027	4021.27	10.0746	2.3003	764.82	1.2511	38.09	98.87
760	19.0720	4067.41	10.1197	2.3144	771.75	1.2492	38.86	101.66
780	19.4413	4113.84	10.1642	2.3285	778.60	1.2473	39.62	104.47
800	19.8106	4160.55	10.2082	2.3426	785.37	1.2454	40.37	107.30

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

Heliotérmica Table of Water & Steam: 1 bar

50 Tables of the Properties of Water and Steam

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 151

Table 4	Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation
	Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) - Fortsetzung

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

				p = 0.1	MPa			
1	v	h	5	cp	w	ĸ	$\eta \times 10^{6}$	$\lambda \times 10^3$
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹] [kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]		[kg m ⁻¹ s ⁻¹]	[W m ⁻¹ K ⁻¹]
0	0.001000	0.06	-0.0001	4.2194	1402.44	19665	1791.53	561.08
5	0.001000	21.12	0.0763	4.2050	1426.19	20339	1518.13	570.57
10	0.001000	42.12	0.1511	4.1955	1447.55	20947	1305.88	580.05
15	0.001001	63.08	0.2245	4.1891	1466.59	21489	1137.55	589.38
20	0.001002	84.01	0.2965	4.1848	1483.42	21965	1001.61	598.46
25	0.001003	104.93	0.3672	4.1819	1498.17	22378	890.08	607.19
30	0.001004	125.83	0.4368	4.1800	1510.98	22731	797.35	615.50
35	0.001006	146.73	0.5051	4.1790	1521.98	23026	719.32	623.33
40	0.001008	167.62	0.5724	4.1786	1531.30	23266	652.98	630.63
45	0.001010	188.52	0.6386	4.1788	1539.04	23454	596.07	637.40
50	0.001012	209.41	0.7038	4.1796	1545.32	23594	546.85	643.61
60	0.001017	251.22	0.8312	4.1828	1553.86	23739	466.40	654.40
70	0.001023	293.07	0.9550	4.1881	1557.58	23721	403.90	663.14
80	0.001029	334.99	1.0754	4.1955	1557.06	23560	354.35	670.03
90	0.001036	376.99	1.1926	4.2050	1552.77	23274	314.41	675.28
= 99.61				Satura	tion			
iquid	0.001043	417.44	1.3026	4.2161	1545.45	22896	282.92	678.97
apour	1.6940	2674.95	7.3588	2.0759	472.05	1.3154	12.26	25.05
100	1.6960	2675.77	7.3610	2.0741	472.34	1.3155	12.27	25.08
110	1.7448	2696.32	7.4154	2.0399	479.27	1.3165	12.64	25.77
120	1.7932	2716.61	7.4676	2.0187	485.89	1 3166	13.02	26.49
130	1.8413	2736.72	7.5181	2.0039	492.31	1.3163	13.41	27.25
140	1.8891	2756.70	7.5671	1.9933	498.57	1.3158	13.79	28.04
150	1.9367	2776.59	7.6147	1.9857	504.70	1.3152	14.18	28.86
160	1.9841	2796.42	7.6610	1.9805	510.70	1.3145	14.58	29.70
170	2.0314	2816.21	7.7062	1.9772	516.59	1.3137	14.97	30.56
180	2.0785	2835.97	7.7503	1.9755	522.38	1.3129	15.37	31.45
190	2.1256	2855.72	7.7934	1.9751	528.07	1.3119	15.77	32.36
200	2.1725	2875.48	7.8356	1.9757	533.67	1.3110	16.18	33.28
210	2.2194	2895.24	7.8769	1.9772	539.19	1.3099	16.58	34.23
220	2.2661	2915.02	7.9174	1.9793	544.62	1.3089	16.99	35.19
230	2.3129	2934.83	7.9572	1.9821	549.98	1.3078	17.40	36.17
240	2.3596	2954.66	7.9962	1.9854	555.27	1.3067	17.81	37.17
250	2.4062	2974.54	8.0346	1.9891	560.49	1.3056	18.22	38.17
260	2.4528	2994.45	8.0723	1.9932	565.65	1.3045	18.63	39.20
270	2.4994	3014.40	8.1094	1.9975	570.74	1.3033	19.05	40.24
280	2.5459	3034.40	8.1458	2.0022	575.77	1.3022	19.46	41.29
290	2.5924	3054.45	8.1818	2.0070	580.75	1.3010	19.87	42.35
300	2.6389	3074.54	8.2171	2.0121	585.67	1.2998	20.29	43.42
310	2.6853	3094.69	8.2520	2.0173	590.54	1.2987	20.71	44.51
320	2.7318	3114.89	8.2863	2.0227	595.35	1.2975	21.12	45.61
330	2.7782	3135.14	8.3202	2.0282	600.11	1.2963	21.54	46.72
340	2.8246	3155.45	8.3536	2.0338	604.83	1 2951	21.95	47.84

		h		p = 0.1 MPa	141	r	$n \times 10^{6}$	$\lambda \times 10^3$
19(2)	[m3 kg-1]	n Iki ka-li	3 11-11-11-11	(k) ka-1 K-11	[m s-1]	~	[kg m ⁻¹ s ⁻¹]	[W m ⁻¹ K ⁻¹
[0]	(m kg)	[V] VŘ.]	[KJ Kġ K]	IN KE K J	firra 1		[Kg m 3]	to m m
350	2.8710	3175.82	8.3865	2.0396	609.50	1.2939	22.37	48.97
360	2.9173	3196.24	8.4190	2.0454	614.12	1.2928	22.79	50.11
370	2.9637	3216.73	8.4511	2.0514	618.70	1.2916	23.20	51.26
380	3.0101	3237.27	8.4828	2.0574	623.23	1.2904	23.62	52.42
390	3.0564	3257.87	8.5141	2.0635	627.73	1.2892	24.04	53.58
400	3.1027	3278.54	8.5451	2.0697	632.18	1.2881	24.45	54.76
410	3.1490	3299.27	8.5756	2.0759	636.59	1.2869	24.87	55.95
420	3.1954	3320.06	8.6059	2.0822	640.96	1.2857	25.28	57.14
430	3.2417	3340.91	8.6357	2.0886	645.30	1.2845	25.69	58.34
440	3.2879	3361.83	8.6653	2.0950	649.59	1.2834	26.11	59.55
450	3,3342	3382.81	8.6945	2.1015	653.85	1.2822	26.52	60.77
460	3,3805	3403.86	8,7234	2.1080	658.08	1.2811	26.93	62.00
470	3.4268	3424.97	8,7520	2.1146	662.27	1.2799	27.34	63.23
480	3.4731	3446.15	8,7803	2.1212	666.43	1.2788	27.76	64.47
490	3.5193	3467.40	8.8083	2.1279	670.55	1.2776	28.17	65.72
500	3 5656	3488 71	8.8361	2 1345	674.64	1.2765	28.57	66.98
510	3 6118	3510.09	8 8635	2 1413	678.70	1.2753	28.98	68.24
520	3 6581	3531 53	8 8907	2 1480	682 73	1 2742	29 39	69.51
530	3 7043	3553.05	8 9177	2 1548	686.73	1.2731	29.80	70.79
540	3.7506	3574.63	8.9444	2.1617	690.70	1.2720	30.20	72.07
550	2 20/0	2507 20	0.0700	0.1/05	604 64	1.2700	20.61	72.26
550	3.7968	3596.28	8.9709	2.1085	094.04	1.2709	30.01	73.30
500	3.8430	3018.00	8.9971	2.1/54	702.44	1.2098	31.01	74.05
570	3.8893	3639.79	9.02.51	2.1823	702.44	1.2007	21.92	73.90
580	3.9355	3661.65	9.0489	2.1892	706.29	1.2070	31.82	77.20
590	3.9817	3083.38	9.0744	2.1962	/10.12	1.2003	34.22	/6.26
600	4.0279	3705.57	9.0998	2.2031	713.93	1.2654	32.62	79.90
610	4.0742	3727.64	9.1249	2.2101	717.71	1.2643	33.02	81.22
620	4.1204	3749.77	9.1498	2.2171	721.47	1.2633	33.41	82.55
630	4.1666	3771.98	9.1745	2.2241	725.20	1.2622	33.81	83.89
640	4.2128	3794.26	9.1991	2.2311	728.90	1.2612	34.21	85.23
650	4.2590	3816.60	9.2234	2.2381	732.59	1.2601	34,60	86.57
660	4.3052	3839.02	9.2476	2.2451	736.25	1.2591	34.99	87.93
670	4.3514	3861.50	9.2715	2.2521	739.89	1.2581	35.39	89.28
680	4.3976	3884.06	9.2953	2.2591	743.51	1.2570	35.78	90.64
690	4.4438	3906.69	9.3189	2.2662	747.10	1.2560	36.17	92.01
700	4,4900	3929.38	9.3424	2.2732	750.68	1.2550	36.55	93.38
720	4.5824	3974.99	9,3888	2.2872	757.76	1.2531	37.33	96.14
740	4 6748	4020.87	9.4345	2.3013	764.77	1.2511	38.10	98.91
760	4.7672	4067.04	9.4796	2.3153	771.70	1.2492	38.86	101.70
780	4.8596	4113.48	9,5241	2.3293	778.55	1.2473	39.62	104.51
800	4 9520	4160.21	9 5681	2 3434	785 34	1.2455	40.38	107.33

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

Table of Water & Steam: 20 bar

188 Tables of the Properties of Water and Steam

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 189

Table 4	Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation
	Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) - Fortsetzung

PROJETO Energia Heliotérmica

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) - Continuation	
Homogenes Zustandsgeblet (Bereiche 1 bis 3 der IAPWS-IF97) - For	tsetzung

		2.40		p = 2 N	/IPa	0220	106	1103
1	v 6 31 -11	h D D - D	S nu	c_p	w 1	ĸ	$\eta \times 10^{\circ}$	V × 10-
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[KJ Kg ⁻⁺ K ⁻⁺]	[m s ^{-*}]	1011025102105	[kg m ⁻¹ s ⁻¹]	[Wm'K'
0	0.000999	1.99	0.0000	4.2100	1405.42	988.40	1786.79	562.12
5	0.000999	23.01	0.0762	4.1969	1429.19	1022	1515.00	571.55
10	0.000999	43.97	0.1509	4.1883	1450.56	1052	1303.82	580.97
15	0.001000	64.89	0.2242	4.1827	1469.59	1079	1136.23	590.27
20	0.001001	85.80	0.2961	4.1789	1486.42	1103	1000.80	599.33
25	0.001002	106.69	0.3667	4.1764	1501.18	1124	889.64	608.05
30	0.001004	127.56	0.4362	4.1749	1514.01	1142	797.17	616.36
35	0.001005	148.44	0.5045	4.1741	1525.03	1156	719.33	624.19
40	0.001007	169.31	0.5717	4.1739	1534.38	1168	653.13	631.50
45	0.001009	190.18	0.6378	4.1743	1542.16	1178	596.32	638.27
50	0.001011	211.05	0.7029	4.1752	1548.48	1185	547.18	644.49
60	0.001016	252.82	0.8302	4.1786	1557.12	1192	466.83	655.30
70	0.001022	294.63	0.9538	4.1840	1560.97	1192	404.37	664.07
80	0.001028	336.50	1.0741	4.1914	1560.60	1184	354.85	670.99
90	0.001035	378.46	1.1913	4.2008	1556.47	1170	314.92	676.28
100	0.001042	420.53	1.3055	4.2123	1548.97	1150	282.25	680.14
110	0.001051	462.71	1.4171	4.2259	1538.43	1126	255.19	682.75
120	0.001059	505.05	1.5262	4.2418	1525.09	1097	232.52	684.25
130	0.001069	547.56	1.6329	4.2601	1509.17	1065	213.34	684.77
140	0.001079	590.26	1.7376	4.2812	1490.80	1030	196.96	684.36
150	0.001089	633.19	1.8403	4.3053	1470.11	991.86	182.85	683.07
160	0.001101	676.38	1.9411	4 3330	1447.15	951.08	170.59	680.94
170	0.001113	719.87	2 0404	4 3647	1421.98	908.11	159.85	677.95
180	0.001127	763 69	2 1382	4 4011	1394 60	863.22	150.39	674.11
190	0.001141	807.91	2.2347	4.4430	1365.00	816.67	141.97	669.38
200	0.001156	852 57	2 3301	4 4914	1333.16	768 70	134.43	663 72
210	0.001173	897.76	2 4246	4 5476	1299.04	719.55	127.63	657.06
	0.001110	0,1110		10110	1077101	119100	1.0.100	
s = 212.31	8	000 50	0.4470	Satura	tion	808.00	106.10	666.20
Liquid	0.001177	908.62	2.4470	4.5025	1290.55	707.68	126.10	42.57
vapour	0.0996	2798.38	6.3392	3.1904	304.66	1.2788	10.14	42.57
220	0.1022	2821.67	6.3868	2.9487	512.58	1.2858	16.50	42.58
230	0.1054	2850.17	6.4440	2.7665	521.47	1.2901	16.95	42.75
240	0.1085	2877.21	6.4972	2.6481	529.47	1.2920	17.41	43.06
250	0.1115	2903.23	6.5474	2.5602	536.96	1.2931	17.86	43.49
260	0.1144	2928.47	6.5952	2.4909	544.07	1.2938	18.30	44.01
270	0.1173	2953.09	6.6410	2.4349	550.89	1.2941	18.75	44.61
280	0.1200	2977.21	6.6850	2.3890	557.44	1.2943	19.19	45.29
290	0.1228	3000.90	6.7274	2.3512	563.78	1.2942	19.64	46.02
300	0.1255	3024.25	6.7685	2.3201	569.91	1.2940	20.08	46.81
310	0.1282	3047.32	6.8084	2.2944	575.87	1.2937	20.51	47.65
320	0.1308	3070.16	6.8472	2.2733	581.67	1.2932	20.95	48.53
330	0.1334	3092.80	6.8851	2.2559	587.33	1.2926	21.39	49.45
340	0.1360	3115 28	6.9221	2 2417	592.86	1 2920	21.82	50.39

				p = 2 MPa				
t	v	h	5	Cp	W	ĸ	$\eta \times 10^{6}$	$\lambda \times 10^3$
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹] [kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]		[kg m ⁻¹ s ⁻¹]	[W m ⁻¹ K ⁻¹
350	0.1386	3137.64	6.9582	2.2301	598.27	1.2913	22.25	51.37
360	0.1411	3159.89	6.9937	2.2207	603.57	1.2905	22.69	52.38
370	0.1437	3182.06	7.0284	2.2133	608.77	1.2897	23.12	53.41
380	0.1462	3204.16	7.0625	2.2074	613.88	1.2888	23.55	54.46
390	0.1487	3226.21	7.0960	2.2030	618.91	1.2879	23.97	55.53
400	0.1512	3248.23	7.1290	2.1997	623.85	1.2869	24.40	56.62
410	0.1537	3270.21	7.1614	2.1974	628.72	1.2860	24.83	57.73
420	0.1562	3292.18	7,1933	2,1961	633.52	1.2850	25.25	58.86
430	0.1586	3314 14	7.2248	2.1955	638.25	1.2840	25.67	60.00
440	0.1611	3336.09	7.2558	2.1957	642.92	1.2830	26.10	61.15
450	0.1635	3358.05	7 2863	2.1964	647.52	1.2819	26.52	62.32
460	0.1660	3380.02	7 3165	2.1976	652.08	1.2809	26.94	63.50
470	0.1684	3402.01	7 3463	2 1994	656.57	1.2799	27.35	64.69
480	0.1708	3424.01	7 3757	2.2015	661.02	1.2788	27.77	65.90
490	0.1733	3446.04	7.4048	2.2041	665.41	1.2777	28.19	67.11
500	0 1757	3468.00	7 4335	2 2069	669.76	1.2767	28.60	68.34
510	0.1791	3400.18	7.4610	2 2101	674.06	1 2756	29.02	69.57
520	0.1905	3512.30	7.4899	2 2136	678 32	1.2746	29.43	70.82
520	0.1805	3534.45	7.5177	2 2173	682.54	1.2735	29.84	72.07
540	0.1853	3556.64	7.5451	2.2212	686.71	1.2725	30.25	73.33
550	0 1977	3570 00	7 5773	2 2254	690.85	1 2714	30.66	74.61
550	0.1001	3601.15	7 5002	2 2297	694 95	1.2704	31.07	75.89
570	0.1901	3601.13	7.6258	2 2342	699.01	1 2693	31.47	77.17
570	0.1923	2646.94	7.6523	2.2342	703.04	1 2683	31.88	78.47
500	0.1949	3669.35	7.6793	2.2389	707.03	1 2672	32.28	79.77
390	0.1972	5008.25	1.0785	2.2457	707105	112072		
600	0.1996	3690.71	7.7042	2.2486	710.99	1.2662	32.68	81.08
610	0.2020	3713.22	7.7298	2.2537	714.92	1.2652	33.08	82.39
620	0.2044	3735.78	7.7552	2.2589	718.81	1.2642	33.48	83.71
630	0.2067	3758.40	7.7804	2.2642	722.68	1.2631	33.88	85.04
640	0.2091	3781.07	7.8054	2.2695	726.51	1.2621	34.28	86.37
650	0.2115	3803.79	7.8301	2.2750	730.32	1.2611	34.67	87.70
660	0.2138	3826.57	7.8547	2.2806	734.10	1.2601	35.07	89.05
670	0.2162	3849.40	7.8790	2.2862	737.85	1.2592	35.46	90.39
680	0.2185	3872.29	7.9032	2.2919	741.58	1.2582	35.85	91.75
690	0.2209	3895.24	7.9271	2.2976	745.28	1.2572	36.25	93.10
700	0 2233	3018.74	7.9509	2.3035	748.96	1.2562	36.63	94.46
720	0.2255	3964 43	7.9978	2.3153	756.23	1.2543	37.41	97.20
740	0.2230	4010.86	8.0441	2.3273	763.42	1.2525	38.18	99.95
760	0.2324	4057.52	8.0897	2.3394	770.51	1.2506	38.94	102.71
780	0.2421	4104 43	8.1347	2.3518	777.52	1.2488	39.70	105.49
800	0.2427	4151.59	8,1791	2.3642	784.44	1.2470	40.46	108.28

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 101

PROJETO Energia Heliotérmica Table of Water & Steam: 100 bar

t

[°C]

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

720

740

760

780

800

v

[m3 kg-1]

0.0224

0.0233

0.0242

0.0250

0.0257

0.0264

0.0271

0.0278

0.0285

0.0291

0.0298

0.0304

0.0310

0.0316

0.0322

0.0328

0.0334

0.0340

0.0345

0.0351

0.0357

0.0362

0.0368

0.0373

0.0378

0.0384

0.0389

0.0394

0.0400

0.0405

0.0410

0.0415

0.0421

0.0426

0.0431

0.0436

0.0446

0.0456

0.0466

0.0476

0.0486

h

[kJ kg-1]

2923.96

2962.61

2998.82

3033.11

3065.87

3097.38

3127.85

3157.45

3186.32

3214.57

3242.28

3269 53

3296.38

3322.89

3349.11

3375.06

3400.78

3426.31

3451.67

3476.87

3501.94

3526.90

3551.75

3576.52

3601.22

3625.84

3650.42

3674.95

3699.43

3723.89

3748.32

3772.73

3797.13

3821.51

3845.89

3870.27

3919.05

3967.85

4016.72

4065.68

4114.73

210 Tables of the Properties of Water and Steam

Tafeln der Zustandsgrößen von Wasser und Wasserdampf 211

1.2728

1.2757

1.2779

1.2794

1.2806

1.2813

1.2818

1.2820

1.2821

1.2820

1.2817

1.2814

1.2810

1.2804

1.2799

1.2792

1.2786

1.2779

1.2771

1.2764

1.2756

1.2748

1.2740

1.2731

1.2723

1.2715

1.2706

1.2698

1.2689

1.2681

1.2672

1.2664

1.2655

1.2647

1.2639

1.2630

1.2614

1.2597

1.2581

1.2564

1.2548

[m s⁻¹]

534.45

545.52

555.64

565.02

573.79

582.04

589.86

597.31

604 44

611.28

617.87

624.24

630.41

636.39

642.21

647.89

653.42

658.83

664.12

669.31

674.39

679.39

684.29

689.11

693.86

698.54

703.14

707.68

712.16

716.59

720.95

725.26

729.53

733.74

737.91

742.03

750.15

758.10

765.91

773.58

781.12

 $\eta \times 10^6$

[kg m⁻¹ s⁻¹]

22.15

22.63

23.10

23.56

24.03

24.49

24.94

25.40

25.84

26.29

26.73

27.18

27.61

28.05

28.48

28.91

29.34

29.76

30.19

30.61

31.03

31.44

31.86

32.27

32.68

33.09

33.50

33.90

34,30

34.70

35,10

35.50

35.90

36.29

36.68

37.07

37.85

38.62

39.38

40.13

40.88

 $\lambda \times 10^3$

[W m⁻¹ K⁻¹]

68.09

67.58

67.36

67.37

67.55

67.88

68.33

68.87

69.51

70.21

70.99

71.82

72.70

73.63

74.60

75.61

76.65

77.72

78.83

79.95

81.11

82.28

83.47

84 68

85.90

87.14

88.39

89.65

90.92

92.19

93.48

94.77

96.06

97.37

98.67

99.98

102.60

105.24

107.88

110.52

113.17

Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation Homogenes Zustandsgebiet (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

 Table 4 Single-Phase Region (Regions 1 to 3 of IAPWS-IF97) – Continuation

 Homogenes Zustandsgebiet
 (Bereiche 1 bis 3 der IAPWS-IF97) – Fortsetzung

8

5.9458

6.0073

6.0641

6.1170

6.1668

6.2139

6.2589

6.3019

6 3432

6.3831

6.4217

6.4591

6.4955

6.5310

6.5655

6.5993

6.6324

6.6648

6.6965

6.7277

6.7584

6.7885

6.8182

6.8474

6.8761

6.9045

6.9325

6.9601

6.9874

7.0143

7.0409

7.0672

7.0932

7.1189

7.1444

7.1696

7.2192

7.2678

7.3156

7.3625

7.4087

[kJ kg⁻¹ K⁻¹] [kJ kg⁻¹ K⁻¹]

p = 10 MPa

cp

4.0118

3.7324

3.5174

3.3471

3.2092

3.0958

3.0013

2.9217

2.8542

2,7965

2.7470

2.7043

2.6674

2.6354

2.6076

2.5833

2.5622

2.5437

2.5275

2.5134

2.5011

2.4904

2.4811

2,4730

2.4660

2,4600

2.4549

2.4507

2,4471

2.4442

2,4420

2,4402

2.4390

2.4383

2,4380

2,4380

2.4393

2.4418

2.4454

2.4501

2.4555

227				p = 10	MPa		1.06	4 407
t	V 31 -1-	h	5	c _p	w	ĸ	$\eta \times 10^{\circ}$	$\lambda \times 10^3$
[°C]	[m ³ kg ⁻¹]	[kJ kg ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]		[kg m ⁻¹ s ⁻¹]	[W m ⁻¹ K ⁻¹]
0	0.000995	10.07	0.0003	4.1723	1418.16	202.09	1767.90	566.55
5	0.000995	30.91	0.0759	4.1643	1441.97	208.92	1502.54	575.65
10	0.000996	51.72	0.1501	4.1595	1463.33	215.07	1295.68	584.86
15	0.000996	72.51	0.2229	4.1567	1482.35	220.54	1131.06	594.02
20	0.000997	93.29	0.2944	4.1551	1499.18	225.36	997.70	603.00
25	0.000999	114.06	0.3646	4.1543	1513.95	229.54	888.01	611.68
30	0.001000	134.83	0.4337	4.1541	1526.82	233.12	796.58	619.97
35	0.001002	155.60	0.5017	4.1543	1537.92	236.13	719.51	627.81
40	0.001003	176.37	0.5685	4.1549	1547.37	238.60	653.87	635.13
45	0.001006	197.15	0.6344	4.1559	1555.29	240.56	597.47	641.93
50	0.001008	217.93	0.6992	4.1573	1561.78	242.04	548.63	648.19
60	0.001013	259.53	0.8259	4.1613	1570.83	243.66	468.65	659.11
70	0.001018	301.17	0.9491	4.1670	1575.18	243.67	406.39	668.00
80	0.001024	342.87	1.0689	4.1744	1575.38	242.27	356.96	675.05
90	0.001031	384.66	1.1856	4.1835	1571.91	239.62	317.06	680.48
100	0.001038	426.55	1.2994	4.1945	1565.15	235.89	284.39	684.50
110	0.001046	468.56	1.4105	4.2073	1555.41	231.20	257.31	687.28
120	0.001055	510.70	1.5190 .	4.2221	1542.96	225.68	234.62	688.98
130	0.001064	553.00	1.6253	4.2391	1528.01	219.43	215.41	689.69
140	0.001074	595.49	1.7294	4.2585	1510.72	212.54	198.99	689.50
150	0.001084	638.18	1.8315	4.2806	1491.21	205.10	184.86	688.45
160	0.001095	681.11	1.9318	4.3057	1469.57	197.16	172.58	686.56
170	0.001107	724.31	2.0304	4.3343	1445.84	188.80	161.83	683.85
180	0.001120	767.81	2.1274	4.3670	1420.05	180.06	152.35	680.31
190	0.001134	811.66	2.2232	4.4044	1392.21	170.99	143.94	675.91
200	0.001148	855.92	2.3177	4.4472	1362.30	161.64	136.41	670.63
210	0.001164	900.63	2.4112	4.4965	1330.29	152.05	129.63	664.41
220	0.001181	945.87	2.5039	4.5535	1296.13	142.27	123.47	657.20
230	0.001199	991.73	2,5959	4.6196	1259.78	132.34	117.83	648.93
240	0.001219	1038.30	2.6876	4.6970	1221.12	122.30	112.62	639.48
250	0.001241	1085.72	2.7791	4.7883	1180.03	112.19	107.78	628.76
260	0.001265	1134.13	2.8708	4.8972	1136.25	102.03	103.21	616.61
270	0.001292	1183.74	2.9629	5.0293	1089.42	91.84	98.87	602.89
280	0.001323	1234.82	3.0561	5.1931	1038.92	81.61	94.68	587.43
290	0.001357	1287.75	3.1510	5.4023	983.78	71.30	90.57	570.08
300	0.001398	1343.10	3.2484	5.6816	922.76	60.91	86.46	550.68
310	0.001447	1401.77	3.3498	6.0782	854.92	50.51	82.23	529.11
$t_s = 311.0$	0			Satura	tion			
Liquid	0.001453	1407.87	3.3603	6.1275	847.74	49.47	81.79	526.83
Vapour	0.0180	2725.47	5.6159	7.1472	472.44	1.2377	20.27	76.54
320	0.0102	2782.64	5 7131	5 7468	401 71	1 2546	20.70	72 87
320	0.0193	2102.00	5 2017	3.7408	508.20	1.2040	20.70	70.49
2 21 4	0.0204	40.33.07	J.001/	4.7220	300.20	1.4034	41.19	10.40

Quelle: Wagner, W.; Kruse, A. Properties of Water and Steam, Springer

The Three Main Components of a Parabolic Trough Collector

Parabolic Trough Solar Collectors

- A trough shaped reflector focusses the light onto a focal line. ۲
- A pipe which absorbs the concentrated light, the absorber pipe is located in this line. ۲
- A heat transfer fluid, HTF, flowing through the pipe is heated up. .

Collector Manufacturers:

For a long time the Collectors LS2 and LS3 of the israeli company LUZ were the market leaders.

5,76 m

- Eurotrough, EU/D/ES
- SENER, ES ۲
- Abengoa, ES
- Solargeneix, USA
- Data of **LS3-compatible** Collectors: ۲
 - Reflector Aperture:
 - Length of one collector unit:
 - Outer diameter of absorber pipe: 70 mm
 - Concentration factor: 80

• The collectors on the market today mainly differ regarding the carrying structure.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 104

The Parabolic Trough Solar Power Plants SEGS I to IV, which have been build between 1986 and 1991 in California, all were equipped with collectors of the company LUZ. LUZ built the carrying structure and the absorber pipes. The reflectors came from the company Flabeg, Germany. Until the renaissance of CSP in 2007 there were only these mirrors and pipes. Since 2008 there are several suppliers of carrying structures and mirrors. For absorber pipes there are so far only 2 serious suppliers, Schott Solar CSP GmbH, Germany and Solel, Israel (sucessor of LUZ). First Chinese suppliers occurred in 2012.

Parabolic Trough Solar Collectors

Schematic of "LS3 Collector"

The shown LS3 Collector (company Solel, previously LUZ) consists of 8 modules of approx. 12 m length each. Between two modules is one pylon. The central pylon is the so called drive pylon, where the tracking drive is located. One module has 28 mirror facets (4 rows of 7 facets each) and 3 absorber pipes of 4 m each. Up to today (2014) most commercially available collectors have these dimensions. Some collectors nowadays have 12 instead of 8 modules. The total collector is often called **"SCA" (Solar Collector Assembly)**.

The Absorber Pipe

The absorber pipe consists of a steel pipe in which the heat transfer fluid, HTF is flowing, as well as the glass covering pipe. Between the glass and the steel pipe is a vacuum for avoiding convective heat loss. The connection between glass and steel pipe is realized by a bellow pipe in order to absorb the different heat expansion characteristics of glass and steel. A vacuum tight soldering connects the bellow with both pipes.

Schematic of a Absorber Pipe

Emission coefficient, $\varepsilon = 14\%$; absorption coefficient, $\alpha = 95\%$

The steel pipe is covered with a selective coating which absorbs the sun light pretty well, while the infrared emission coefficient is low.

The glass pipe is covered with an anti reflective coating which minimizes the reflective losses when the light comes in at high inclination angles.

Schematic of a Parabolic Trough Solar Collector Field

The scheme shows a collector field of a 10 MW_{el} power plant. The collectors have a length of 100 m and a width of 5.76 m (LS 3 compatible dimensions). Every 8 collectors form one loop. Each loop receives cold HTF from the cold header and delivers warm HTF to the hot header.

Schematic of Parabolic Trough Collector Field, Large Capacity

- The HTF exit temperature at each loop is controlled by variation of the HTF mass flow in each loop.
- With today's HTF the maximum HTF temperature should be kept below 393°C.

Source: Prof. Dr.-Ing. O. Goebel

Parabolic Trough Solar Collectors: Tracking and Efficiency

• The collectors are usually oriented in north-south direction. That means: The collector "looks" to the East in the morning and to the West in the evening.

• The collector efficiency consists of an optical and a thermal component.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Collectors: Efficiency

Data for describing the optical efficiency, example LS3:

			Input Data:	
Shading of the mirror by pipe holders and beam bending by glass pipe.			Shading (1 %):	99,0%
Area of absorber pipe shaded by bellows		shading by	v bellows (5%):	95,0%
Cosine factor for considering inclined insolation (is assumed with 100% in design point)			Cosine factor:	100,0%
Reflectivity of mirror*			Reflection:	92,0%
The part of the reflected light which hits t	Intercept:	95,0%		
Absorption coefficient of the selective coating on the absorber pipe. Absorpt Eta optical (product of above da				95,0%
				78,09%

* Reflectivity of clean mirror is approx. 94%. Mirror is washed when reflectivity falls below 90%. Avg. value = 92%

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Collectors: Efficiency

Total efficiency of LS 3 Collector as function of temperature and DII: eta_{total} = eta_{optical} * eta_{thermal}

Total efficiency of LS 3 collector

- The thermal efficiency is reduced at high absorber temperatures, because thermal losses increase with high temperatures.
- At low DII the fraction of the heat losses is larger than at high DII. Therefore the thermal efficiency is lower at low DII values (for a given temperature).

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 112

Solar Field: Heat Transfer Fluid (HTF) Circuit

- In the absorber tubes the HTF is heated by the concentrated sunlight
- The HTF temperature must not reach 400°C (cracking!)
- The HTF mass flow in the collector loops is controlled such that the final temperature always stays below 393°C
- The HTF transfers the collected heat to the water/steam circuit in a heat exchanger.
- The two-circuit system (Primary = HTF, Secondary = Water/Steam) had been selected in order to achieve a <u>one phase flow</u> in the absorber tubes. A two phase flow (liquid and gas phase) can cause problems, as will be shown in the Chapter "Developments", when we shall discuss solar direct steam generation.

Performance Calculation of Total Plant System

The Performance of the plant is calculated / simulated by the following steps:

- 1. Thermal power of one collector as a function of DNI, position of sun and ambient temperature
- 2. Thermal power of entire solar field
- 3. Electrical power of steam turbine generator as a function of power block efficiency
- 4. Subtracting internal power demand of the plant
- 5. Doing the above mentioned steps for every hour of the year
 => Simulation of the annual energy yield

Solar Position Diagram of Madinat Zayed, UAE: 53.7° E, 23.57° N

First Step: Calculating the sun's position for each hour of the year.

The Difference between Direct Normal Irradiation (DNI) and Direct Incident Irradiation (DII)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

The Difference between Direct Normal Irradiation (DNI) and Direct Incident Irradiation (DII)

- DII = DNI * cos (IA)
- The DII calculated as shown above is the part of the Direct Irradiation which is theoretically usable by the collector.
- In reality DII = DNI * IAM is the <u>usable part</u> of the Direct Irradiation for the collector.
- IAM is the "Incident Angle Modifier". IAM is obtained by measurements when the collector received light at different Incident Angles (IA).
- IAM is especially for large IA's smaller than cos (IA).
- Important: Due to the most of the time non perpendicular IA of the received DNI the collector efficiency is significantly lower in annual average, compared to the design efficiency, defined at DNI = 1000 W/m² and IA = zero.

Incident Angle Modifyer (IAM)

The Incident Angle Modifyer takes into account the <u>cosine effect</u> and other real collector loss mechanisms, such as "end losses" and reduced Reflection at large IA's. ET = Eurotrough, LS 2 = Collector in early Californian Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 119

Performance of a Collector (SCA) as Function of Sun's Position and DNI (slide 1 / 2)

Site: Yazd, Iran, 32° North, March 21st

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Performance of a Collector (SCA) as Function of Sun's Position and DNI (slide 2 / 2)

Site: Yazd, Iran, 32° North, March 21st

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Collector efficiency at Madinat Zayed (UAE, 23° North) at DNI always = 1000 W/m²

SCA efficiency

This diagram type is often used to display parameters over the day of the year and the time of the day.

Here we see that the collector efficiency reduction due to large IA's takes place mainly in winter close to noon.

Collector efficiency at Madinat Zayed (UAE, 23° North) at DNI always = 1000 W/m² (3 D diagram)

Measured DNI at Madinat Zayed (UAE, 23° North) (Satellite Data)

DNI $[W/m^2]$ at the site

Next Step: Considering the DNI at the project site.

Parabolic Trough Solar Collector at Madinat Zayed: Efficiency (at real DNI) as Function of Day and Time

Due to the fact, that DNI in reality is mostly below 1000 W/m² (1000 W/m² case shown on the previous slide), the real collector efficiency is much lower than on the previous slide.

Parabolic Trough Solar Collector at Madinat Zayed: Thermal Output as Function of Day and Time

SCA power [kW]

(with $A_{collector} = 817.5m^2$)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Collector: Power of the entire Collector Field without Shading and Thermal Inertia

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Collector: Shading by Neighbor Collectors

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 128

Parabolic Trough Solar Collector: Power of the entire Collector Field with Shading and Thermal Inertia

□ 270-285 □ 255-270 240-255 225-240 210-225 **195-210** 180-195 **165-180 150-165 1**35-150 **120-135 105-120 90-105** ■ 75-90

In this diagram the shading effects and the thermal inertia of the solar field are considered. It can be seen that heat production starts later than in the previous diagram.

Parabolic Trough Solar Power Plant, "Shams 1" in Madinat Zayed (UAE) with Booster Heater

Thermal Power of the Solar Field including 18% from "Boost Burner"

Power Block (Rankine Cycle): Efficiency at Part Load

efficiency at part load

Calculation of turbine efficiency as a function of load factor. This is necessary, because the turbine often runs at part load.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 132

Electrical Gross Output (theoretical, without considering steam turbine limit)

Electrical Power [MW]

130.0 110.0-120.0 100.0-110.0 90.0-100.0 80.0-90.0 70.0-80.0 60.0-70.0 50.0-60.0

120.0-

Next Step: Calculation of electric power output with: $P_{Turbine} = \dot{Q}_{in} * \eta_{Turbine}$

Capped Peak Thermal Power (by Defocussing Collectors)

Electric Power, Gross, Capped

Electrical Power [MW]

In this diagram the power peak which the turbine cannot deliver is capped. This is the realistic gross electric power output of the plant.

Electric Power Output, net (after Deduction of 13% Internal Power Consumption)

	In this diagram we see the					
□ 100-110	net power output of the					
90-100	plant. In comparison to the					
■ 80-90	previous diagram, the					
□ 70-80	internal power consumption					
60-70	of the plant has been					
50-60	deducted.					
40-50	Main internal consumers					
□ 30-40	are:					
□ 20-30	 Boiler feed water pump, 					
■ 10-20	HTF pump, • cooling					
	water pump, • cooling tower					
□ 0-10	fan (see slide "scheme of PT					
	solar power plant")					

Electric Power Output, net (after Deduction of 13% Internal Power Consumption) (3D)

electrical power [MW]

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 137

Parabolic Trough Solar Power Plant: Electric Output per Month

Site: Madinat Zayed, UAE, 23° North

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 138

Power Generation Profile

Annual Full Load Hours, FLH [kWh/kW/a] or [h/a]

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 140

CSP Simulation Tools

There are two pretty good simulation tools available free of charge:

1) SAM, System Advisor Model of NREL (National Renewable Energy Laboratory, USA)

Can be downloaded from NREL website

https://sam.nrel.gov/

2) Greenius of DLR (German Aerospace Agency):
➢ Can be downloaded from DLR website
<u>http://freegreenius.dlr.de/</u>

Parabolic Trough Solar Power Plants, Status of Application

Parabolic Trough Solar Power Plants in California

SEGS = Solar Electric Generating System

Technical Data:

- 354 MW_{el} installed capacity
- Commercial Operation since 1985
- More than 10,000 GWh of Electricity produced (up to year 2003)
- Guaranteed Capacity due to fossil burner back-up
- More than 2000 hours of rated capacity per year in solar mode

Economical Data:

- 2800 \$ per kW installed capacity (1991 \$ value)
- Electricity generation cost < 12 cents / kWh

(Valid for last 2 of the 9 plants; cost after tax-reduction)

Parabolic Trough Solar Power Plants, Status of Application

Table 1 Data of the SEGS parabolic trough solar power plants in California

Power of the block	14 MW	30 MW	80 MW
Number of blocks	1	6	2
Encoding	SEGS I	SEGS II - VII	SEGS VIII und IX
Location	Dagget	Dagget a. Kramer Jct.	Harper Lake
Start of operation	1985	1986 - 1989	1990 and 1991
Collector width	2.50 m	5.00 and 5.76 m	5.76 m
Max. fluid temperature	307°C	350°C und 390°C	390°C
Annual efficiency	9.3 %	10.7 - 12.4 %	13.8 %
Investment costs	4490 \$/kW _{el}	3200 - 3870 \$/kW _{el}	2890 \$/kW _{el}
(\$ value of 1991)			

Parabolic Trough Solar Power Plants, Status of Application

- The SEGS plants in California have been the only commercially operating CSP plants between 1991 and 2007. They are the best analyzed and evaluated CSP plants of the world. They were subjects of many studies and R&D programs in the 1990ies.
- The SEGS Plants in California are IPP's (Independent Power Producers) who are commercially operating.
- The SEGS Plants deliver peak power at peak tariff time
- The PPA was first negotiated in the Mid Eighties, when the oil price peaked.
- The tariff was 14 US cent / kWh in the first 10 years term and 12 US cent / kWh in the second term (25% gas firing permitted)

Parabolic Trough Solar Power Plants, Status of Application

- In 2007 the 64 MW Trough Plant "Nevada Solar One" went on line
- Approx. 2200 MW of CSP plants have been commissioned in Spain between 2008 and 2014 (all in 50 MW units or smaller, limited by the feed in law). Mostly Parabolic Trough, only 51 MW Solar Tower and 30 MW linear Fresnel)
- 3 plants went into operation in Africa in 2011:
 - Algeria: ISCCS* with 30 MW solar share
 - Morocco: ISCCS* with 30 MW solar share
 - Egypt: ISCCS* with 20 MW solar share
- ISCCS = Integrated Solar Combined Cycle (Details: see Chapter "Developments")
- Shams I, 100 MW Trough Plant went on line in UAE in 2013
- In USA approx. 900 MW of CSP Trough Plants have been commissioned from 2012 to 2014.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

MW	Name	Country	Location	Coordinates	Technology type	Notes and references
392	Ivanpah Solar Power Facility	usa 📰	San Bernardino County, California	35°34′N 115°28′W	solar power tower	Completed in February 13, 2014 ^{[1][2][3]}
354	Solar Energy Generating Systems (SEGS)	usa 📰	Mojave Desert, California	35°01′54″N 117°20′53″W	parabolic trough	Collection of 9 units ^{[4][3][6][7][8][9][10][11][12]}
280	Mojave Solar Project	USA 🔜	Barstow, California	35°00'40"N 117°19'30"W	parabolic trough	Completed December 2014. Gross capacity of 280 MW corresponds to net capacity of 250 MW ^[13] [14][15]
280	Solana Generating Station	usa 📰	Gila Bend, Arizona	32°55′N 112°58′W	parabolic trough	Completed in October 2013, with 6h thermal energy storage ^{[16][17]}
250	Genesis Solar Energy Project	usa 📰	Blythe, California	33°38'37.68"N 114°59'16.8"W	parabolic trough	Online April 24, 2014 ^{[18][19]}
200	Solaben Solar Power Station [20]	s Spain	Logrosán	39°13′29″N 5°23′26″W	parabolic trough	Solaben 3 completed June 2012 ^[21] Solaben 2 completed October 2012 ^[21] Solaben 1 and 6 completed September 2013 ^[22]
150	Solnova Solar Power Station	s Spain	Sanlúcar la Mayor	37°25′00"N 06°17′20"W	parabolic trough	Solnova 1 completed May 2010 Solnova 3 completed May 2010 Solnova 4 completed August 2010[²³][²⁴][²⁵][²⁶][²⁷]
150	Andasol solar power station	s Spain	Guadix	37°13'42.70''N 3°4'6.73''W	parabolic trough	Completed: Andasol 1 (2008), Andasol 2 (2009), Andasol 3 (2011). Each equipped with a 7.5-hour thermal energy storage. ^{[28][29]}
150	Extresol Solar Power Station	s Spain	Torre de Miguel Sesmero	38°39'N 6°44'W	parabolic trough	Completed: Extresol 1 and 2 (2010), Extresol 3 (2012). Each equipped with a 7.5-hour thermal energy storage. ^{[21][30][31]}
100	Palma del Rio Solar Power Station	s Spain	Palma del Río	37°38'N 5°15'W	parabolic trough	Palma del Rio 2 completed December 2010 ^[21] Palma del Rio 1 completed July 2011 ^[21]
100	Manchasol Power Station	s Spain	Alcázar de San Juan	39°11′N 3°18′W	parabolic trough	Manchasol 1 and 2 completed in 2011, each with 7.5h heat storage ^[21]
100	Valle Solar Power Station	s Spain	San José del Valle	36°39'N 5°50'W	parabolic trough	Completed December 2011, with 7.5h heat storage [21][32]
3650.8	Overall operational capacity		:	:	-	;

MW	Name	Country	Location	Coordinates	Technology type	Notes and references	
100	Helioenergy Solar Power Station	s Spain	Écija	37°34′43″N 5°9′24″W	parabolic trough	Helioenergy 1 completed September 2011 ^{[33][34]} Helioenergy 2 completed January 2012 ^{[21][33][34]}	
100	Aste Solar Power Station	s Spain	Alcázar de San Juan	39°10'22"N 3°15'58"W	parabolic trough	Aste 1A Completed January 2012, with 8h heat storage ^[21] Aste 1B Completed January 2012, with 8h heat storage ^[21]	
100	Solacor Solar Power Station	s Spain	El Carpio	37°54'54"N 4°30'9"W	parabolic trough	Solacor 1 completed February 2012 ^[21] Solacor 2 completed March 2012 ^{[21][35]}	
100	Helios Solar Power Station	s Spain	Puerto Lápice	39°14′24″N 3°28′12″W	parabolic trough	Helios 1 completed May 2012 ^[21] Helios 2 completed August 2012 ^[21]	
100	Shams solar power station	UAE	Abu Dhabi Madinat Zayad	23°34'N 53°42'E	parabolic trough	Shams 1 completed March 2013 ^{[36][37]}	
100	Termosol Solar Power Station	s Spain	Navalvillar de Pela		parabolic trough	Both Termosol 1 and 2 completed in 2013 ^[21]	
75	Martin Next Generation Solar Energy Center	usa 📰	Indiantown, Florida	27°03′11″N 80°33′00″W	ISCC with parabolic trough	Completed December 2010 ^[38]	
64	Nevada Solar One	usa 📰	Boulder City, Nevada	35°48.0'N 114°58.6'W	parabolic trough	Operational since 2007	
50	Puertollano Solar Thermal Power Plant	s Spain	Puertollano, Ciudad Real	38°39'N 3°58'W	parabolic trough	Completed May 2009 ^[39]	
50	Alvarado I	s Spain	Badajoz	38°49′37″N 06°49′34″W	parabolic trough	Completed July 2009 ^{[40][41][42]}	
50	La Florida	s Spain	Alvarado (Badajoz)		parabolic trough	Completed July 2010 ^{[21][43]}	
50	Majadas de Tiétar	s Spain	Caceres		parabolic trough	Completed August 2010 ^{[21][44]}	
50	La Dehesa	s Spain	La Garrovilla (Badajoz)		parabolic trough	Completed November 2010 ^[21]	
50	Lebrija-l	s Spain	Lebrija		parabolic trough	Completed July 2011 ^{[21][45]}	
3650.8	50.8 Overall operational capacity						

MW	Name	Country	Location	Coordinates	Technology type	Notes and references	
50	Astexol 2	Spain Spain	Badajoz		parabolic trough	Completed November 2011, with 7.5h thermal energy storage ^{[21][46]}	
50	Morón	s Spain	Morón de la Frontera		parabolic trough	Completed May 2012 ^[21]	
50	La Africana	s Spain	Posada		parabolic trough	Completed July 2012, with 7.5h thermal energy storag ^[21]	
50	Guzman	s Spain	Palma del Río		parabolic trough	Completed July 2012 ^[21]	
50	Olivenza l	s Spain	Olivenza		parabolic trough	Completed July 2012 ^[21]	
50	Orellana	s Spain	Orellana la Vieja		parabolic trough	Completed August 2012 ^[21]	
50	Godawari Green Energy Limited	💶 India	Nokh	27°36'01"N 72°13'25"E	parabolic trough	2013 ^{[47][48][49]}	
50	Enerstar Villena Power Plant	s Spain	Villena		parabolic trough	Completed 2013 ^{[21][50]}	
31.4	Puerto Errado	s Spain	Murcia	38°16'42"N 01°36'01"W	fresnel reflector	Puerto Errado 1 completed April 2009 ^{[21][51]} Puerto Errado 2 completed February 2012 ^{[21][52]}	
25	Hassi R'Mel integrated solar combined cycle power station	🕨 Algeria	Hassi R'mel	33°07'29"N 03°21'07"E	ISCC with parabolic trough	Completed June 2011 ^{[53][54]}	
22.5	Termosolar Borges	s Spain	Borges Blanques		parabolic trough biomass hybrid	Completed December 2012 ^[21]	
20	PS20 solar power tower	s Spain	Seville	37°26'38"N 06°15'34"W	solar power tower	Completed April 2009	
20	Kuraymat Plant	Egypt	Kuraymat		ISCC with parabolic trough	Completed December 2010 ^{[54][55][56]}	
20	Ain Beni Mathar Integrated Thermo Solar Combined Cycle Power Plant	Morocco	Ain Bni Mathar		ISCC with parabolic trough	Completed 2011 ^{[57][58][59]}	
19.9	Gemasolar	s Spain	Fuentes de Andalucia (Seville)	37°33'38.17"N 05°19'53.61"W	solar power tower	Completed May 2011 ^[60] With 15h heat storage ^[21]	
17		Iran	Yazd			Dedicated May 2011 ^[61]	
3650.8	.8 Overall operational capacity						

MW	Name	Country	Location	Coordinates	Technology type	Notes and references
	Yazd integrated solar combined cycle power station			31°57'5"N 54°5'30"E	ISCC with parabolic trough	
11	PS10 solar power tower	s Spain	Seville	37°26'36.42"N 06°15'14.28"W	solar power tower	World's first commercial solar tower in 2007
10	Delingha Solar Power Plant	China China	Delingha		solar power tower	Phase 1 of project completed in July 2013, ^[62] total 50 MW planned ^{[63][64]}
5	Greenway CSP Mersin Solar Tower Plant	• Turkey	Mersin		solar power tower	Turkey's first CSP solar tower plant ^[63]
5	Kimberlina Solar Thermal Energy Plant	USA 🔤	Bakersfield, California	35°34′06″N 119°12′06″W	fresnel reflector	AREVA Solar, formerly Ausra demonstration plant [66]
5	Sierra SunTower	USA 📕	Lancaster, California	34°46'0.0"N 118°8'0.0"W	solar power tower	Completed August 2009 ^{[67][65][69]}
5	Archimede solar power plant	Italy	Syracuse, Sicily	37°8'0"N 15°12'58"E	ISCC with parabolic trough	Completed July 2010. Equipped with heat storage. [70][71]
5	Thai Solar Energy (TSE) 1	Thailand	Huaykrachao		parabolic trough	Completed November 2011 ^[72]
9	Liddell Power Station Solar Steam Generator	Australia	New South Wales	32°22'26"S 150°58'40"E	ISCC with fresnel reflector	Electrical equivalent steam boost for coal station ^[73] [74]
2.5	Acme Solar Thermal Tower	💼 India			solar power tower	Completed 2012 ^[75]
2	Keahole Solar Power	USA 📰	Hawaii	19°42′54″N 156°2′7″W	parabolic trough	[76]]70]
1.5	Jülich Solar Tower	Germany	Jülich	50°54′54″N 06°23′16″E	solar power tower	Completed December 2008 ^[78]
1.5	Beijing Badaling Solar Tower	China	Beijing	40°22'55"N 115°56'15"E	solar power tower	Completed August 2012 ^{[79][80]}
1	Feranova CSP Plant	🗢 Turkey	Aydin, Turkey		fresnel reflector	Completed December 2012
1	Saguaro Solar Power Station	usa 📰	Red Rock, Arizona		parabolic trough	[81]
1	Yanqing Solar Power Station	China	Yanqing County		solar power tower	Completed August 2010 ^[82]
3650.8	Overall operational capacity					

Parabolic Trough Solar Power Plants, Plants under Construction (in 2015)

MW	Name	Country	Location	Co- ordinates	Expected completion	Technology	Notes
160	Ouarzazate solar power station	Morocco	Ouarzazate		2015	parabolic trough	with 3h heat storage ^[84]
121	Ashalim power station 1	o Israel	Negev desert	30°58'N 34°42'E	2017	solar power tower	[85][86][87]
110	Crescent Dunes Solar Energy Project	usa 📕	Nye County, Nevada	38°14'N 117°22'W	2013/14	solar power tower	with 10h heat storage ^[88]
100	KaXu Solar One	<mark>)</mark> South Africa	Pofadder, Northern Cape		2014	parabolic trough	with 2.5h heat storage ^{[89][90]}
100	El Reboso 2+3	s Spain	El Puebla del Rio (Seville)		2015	parabolic trough	[91][92]
100	Dhursar	💶 India			2014	fresnel reflector	[93][94]
100	Diwakar	💼 India	Askandra		2014	parabolic trough	with 3h heat storage ^[95]
100	KVK Energy Solar Project	👥 India	Askandra		2014	parabolic trough	with 4h heat storage ^[96]
50	Arenales PS	s Spain	Moron de la Frontera (Seville)		2013	parabolic trough	[21][46][97]
50	Casablanca	s Spain	Casablanca		2013	parabolic trough	[21]
50	Erdos Solar Power Plant	China	Hanggin Banner		2013	parabolic trough	[36]
50	Khi Solar One	South Africa	Upington		2014	power tower	with 2h heat storage ^{[89][90]}
50	Megha Solar Plant	💶 India	Anantapur		2013	parabolic trough	[99]
50	Bokpoort	South Africa	Groblershoop		2015	parabolic trough	with 9h heat storage ^{[100][101]}
44	Kogan Creek Solar Boost	🎌 Australia	Chinchilla		2015	fresnel reflector	[102]
27.5	Jinshawan	China	China			solar updraft tower	Operations underway at 200 kW. ^[103]
25	Gujarat Solar One	💶 India	Kutch		2013	parabolic trough	with 9h heat storage ^[104]

Parabolic Trough Solar Power Plants, Plants under Construction (in 2015)

MW	Name	Country	Location	Co- ordinates	Expected completion	Technology	Notes
				23°22.233'N 70°41.988'E			
17	Stillwater	usa 📰	Nevada		2014	parabolic trough	[105]
12	Alba Nova 1	France	Corsica		July, 2015	fresnel reflector	First utility-scale solar thermal plant in France ^{[106][107]}
5	Sundt Power Plant	💼 USA	Arizona		2014	fresnel reflector	[108]
3	Airlight Energy Ait Baha Plant	Morocco	Ait Baha		2013	parabolic trough	with 12h heat storage ^[109]
1.5	Tooele Anny Depot	usa 🗾	Tooele		2013	dish	[110]
1.4	THEMIS Solar Power Tower	France	Pyrénées-Orientales	42°30′5″N 1°58′27″E		solar power tower	Hybrid solar/gas power plant ^[111]
1	e-Cube l	China	Hainan		2013	Modular Heliostat	First Modular Heliostat solar thermal plant in the world ^[112]
1	Renovalia	s Spain	Albacete			dish	[21]

Kramer Junction, California, 5 x 30 MW Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Harper Lake, California, 2 x 80 MW Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Kramer Junction, California, 5 x 30 MW Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Kramer Junction, California, 5 x 30 MW Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Kramer Junction, California,

5 x 30 MW Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 156

End of HTF Header

Collector Washing Truck of company "Laitu" in Spain.

source: laitusolar.com

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Andasol 1 near Guadix, Andalusia (Construction July 2008)

Excellent soil conditions for foundation placement at the site of the "Andasol" plants in Guadix, Spain.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 158

20.02.2020

Scheme of Shams 1 Plant

Shams 1 Location, UAE: 53.70 E, 23.570 N

Plant Location

To Tarif

Town of Madinat Zayed

Existing Power Station

Shams One Area (1.5 x 1.5 km)

To Liwa Oasis

Source: Google Earth

Shams 1 Plant Layout

Legend:

- 192 loops
- 4 collectors per loop
- 817.5 m² aperture per collector
- 627 840 m² total aperture area

The first Bulldozers start working

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Small Beginnings

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Good Old Work Horses

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Making Temporary Roads

Bite into the Dunes

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Clearing 250 Hectares

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 168

20.02.2020

Building the Wind Breaker Wall

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

The First Collector in Place

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Field in April 2011

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

The End of a Long Journey: Mirror Panels from Germany

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Steam Turbine & Generator in Place

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Steam Turbine in Place (05/2011)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

All Collectors installed (01/2012)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Power Plants, Developments

- 1. Hybridization with Combined Cycle Concept = Integrated Solar Combined Cycle System, ISCCS
- 2. <u>Direct Steam Generation in the Absorber Pipes (DSG)</u>
- 3. Thermal Energy Storage, TES

The Problem of low efficiency when running a regular Parabolic Trough Plant on gas

- Due to the low efficiency of a simple Rankine Cycle (compared to a Combined Cycle) a Parabolic Trough Plant with simple hybridisation would consume more gas over the year than a CC plant if operated more than 6000 hour per year.
- Therefore with this kind of hybridisation fuels shall be used which cannot be used in CC plants (e.g. coal, heavy fuel oil or biomass).

CC = Combined Cycle plant SEGS = Parabolic Trough CSP plant

- A ISCCS is a CC power plant where the Steam Turbine (ST) is fed with up to 50% of solar steam during sunshine hours. At night time it works like a regular CC plant (with ST in part load).
- Advantage: High Efficiency in fossil mode
- Power distribution in a regular
 CC plant: GT / ST = 2 / 1
- At ISCCS at daytime: 1 / 1 or better: 2 / (1+1)
- Solar peak share approx. 25 %
- Solar share of annual production: approx. 6-7 %
- Plants operating in: Morocco, Algeria and Egypt

(Source: Bruce Kelly, Ulf Herrmann, Mary Jane Hale: OptimizationStudies for Integrated Solar Combined Cycle Systems; ASME Forum2001)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

ISCC Location	CC (MW)	Solar (MW)	
Ain Beni Mathar (Morocco)	228	20	
Kurajmat (Egypt)	127	29	The rotio 2//1/11// use not
Hassi R'Mel (Algeria)	140	35	ne ratio " 27 (1+1) was not
Martin County (USA)	3617	75	yet ventured unywhere!
Archimede, Sicily (Italy)	760	5	

Foto: ISCCS Ain Beni Mathar, Morocco

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Power Plants: Integrated Solar Combined Cycle System, ISCCS

specific energy consumption of C C, ISCC and SEGS plant eta C C = 53 %, eta ISCCS = 52 %, eta SEGS = 35 %

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Direct Solar Steam (DSG) will lead to:

- No more HFT needed
- No more HTF / Water Heat exchanger
- No more temperature limit of HTF (400°C) => higher efficiency
- Less parasitic power consumption
- Expected overall reduction in LEC: approx. 18 %

- The 2 circuit system with a thermal oil in the primary circuit has been chosen in order to avoid 2-phase flow in the horizontal absorber tubes.
- With evaporation on horizontal tubes of large diameters (70 mm (outer)) a stratified flow was anticipated (water at the bottom, steam at the top).
- This would lead to azimuthally uneven temperature distribution.
- Comparison: The evaporator tubes in conventional steam generators are smaller (approx. 25 mm) and are vertical or inclined.

R&D projects regarding DSG and key results

- 1993 1995: "GUDE" Real scale tests at electrically heated absorber tubes at the SIEMENS boiler test rig, results:
 - Stratified flow can be avoided by proper selection of flow parameters (pressure and mass flow)
- 1996 2001: "DISS" Experiments in a real collector loop of 500 m length at the Plataforma Solar de Almeria (PSA), Spain, results:
 - DSG works, the best concept is the <u>Recirculation Concept</u>.
 - Further experiments for investigating control algorithms and start up and shut down procedures have been completed successfully
 - However, before financing a project with new technology, banks want to see operating reference plants.
- DSG Pilot project of 3 MW is in planning in Spain

The three DSG concepts:

1. The <u>"Once Through Concept"</u>, steam quality from 0 to 100%

The three DSG concepts:

2. The <u>"Injection Concept"</u>, only high steam qualities

The three DSG concepts:

3. The <u>"Recirculation Concept"</u>, only low steam qualities (<70%) before separator

DSG, Flow Patterns at the "Once Trough Concept" at 30 and 100 bar

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 188

At 100 bar:

wetting not

sufficient! 🔶

Larger mass

flow necessary.

Parabolic Trough Solar Power Plants, Thermal Energy Storage, TES

Thermal Energy Storage:

- Operation after sun-set
- Buffering out cloud passages
- More flexibility in operation (operation at peak tariff time)
- Additional investment for TES
- Longer run time of the plant
- TES as shown on the right (direct storage of HTF) has been realised in the plant SEGS I

Parabolic Trough Solar Power Plants, Thermal Energy Storage, TES

Thermal Storage, technical Options:

- Direct storing of the Heat Transfer Fluid, HTF (used at SEGS I)
- Block of Concrete (DLR experiments at the PSA successfully completed)
- Molten Salt Storage Tanks (hot and cold) with heat exchanger to the HTF loop (so far most used technology)

Parabolic Trough Solar Power Plants, Thermal Energy Storage, TES

- When using a TES the solar field must be oversized ("Solar Multiple") in order to have spare energy for charging the storage.
- The optimum relation between solar multiple and storage capacity needs to be derived by detailed simulation.
 - A TES which is big enough to store a full sunny day in June is too big, because it will never be fully charged during the rest of the year.
 - With a too small TES thermal energy often needs to be discharged (by defocussing collectors).
 - Further relevant factors:
 - Tariff structure (when are the peak tariff times)
 - Cost of solar field capacity [\$/MW] and cost of storage capacity [\$/MWh]
 - Weather data (DNI)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Molten Salt Storage

Concrete Block

TES of the plant Andasol 1

- Type:
- Fluid:
- Melting Point:
- Storage Capacity:
- Storage Tank Size:
- Salt Mass:
- Flow Rate:
- Cold Tank Temperature:
- Hot Tank Temperature:

2-Tank Molten Salt Storage Nitrate salt mixture (60% NaNO3 and 40% KNO3) 223°C 1,010 MWh (~7.5 hrs full load operation) 14 m height 37 m diameter 27,500 tons 953 kg/s 292° C 386°C

Parabolic Trough Solar Power Plants with TES: Fictive Example: Matching 600 MW-demand-peaks at Abu Dhabi with 600 MW PTC plants with TES for ≈ 6 FLH

Charging diagram of a TES. Data:

Power requested from <u>08:00 to 22:00</u>

power balance of the solar field (+ = charge of TES; - = discharge of TES or gas burner)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Thermal storage energy content [MWh]

thermal power directly from solar field

thermal power from thermal storage

thermal power from solar field + thermal storage

thermal power from fossil fired burner

Not all the energy required by the grid (as shown in the first slide of the TES-series) could be delivered by the solar field and storage. The remaining difference is supplied by a gas fired burner.

Load Curve in Abu Dhabi (red Line) Distribution of Load between Base-, Mid- and Peak Load Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Possible Market Penetration with CSP Plants in 2030

Nr. 207

Max. possible PV Market Penetration

With PV: The mid load plants,

Cost of Thermal Storage at CSP

- Both CSP plants generate 200 million kWh per year
- Both plants cost 500 million \$

The despatchability is obtained without extra cost

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Trough Solar Power Plants, Thermal Energy Storage, TES

Advantages:

- Operation after sun set possible
- Riding through cloud passages
- More flexibility in operation (catching of peak tariff times and dispatchability)
- Smaller power block at same solar field size

Disadvantage:

• Additional cost of the storage itself

Linear Fresnel Collector CSP Plants

- The youngest CSP technology. Currently (2014) in operation: 31 MW (Spain)
- Similar to trough, similar efficiency, less land demand due to dense mirror packing, but less FLH due to more shading in the morning and evening.
- Potentially cheaper than trough (according to studies, not yet proven in reality)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 211

20.02.2020

Solar Tower Plants

Solar Tower Power Plants (Power Tower)

Plant Principle

"Solar One" in California 1990

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Tower Power Plants, Possible Heat Engines

Possible:

- Rankine Cycle with steam turbine or steam engine
- Stirling engine
- Gas turbine

Used so far:

- Rankine Cycle with steam turbine and steam piston engine
- Gas turbine
- Stirling engine and steam piston engine are less suitable due to small capacity (max. a few MW)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Tower Power Plants, Heliostat Field

- The mirrors which are located around the tower are called <u>Heliostats</u>, because they focus the light statically onto the receiver at the top of the tower.
- Heliostats have a two-axis tracking mechanism
- The tracking control works either with a sun sensor in each heliostat or with a sun algorithm and a central computer
- Heliostats are not flat, they are also slightly curved in order to achieve a small spot of concentrated light (curvature dependent on distance from tower)

Heliostat Field, Loss Mechanisms

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Heliostat Field, Design Considerations

- When the sun is in zenith, a dense packing of Heliostats would be efficient.
- At low elevation angles of sun (winter or in the morning or evening) shading is significantly higher with dense packing.
- The optimum positioning of Heliostats needs to be found with professional simulation tools.
- Heliostats far from the tower are sensitive against smallest disturbances
- Heliostats far from the tower generate larger light spot (beam opening angle = 1/100) (see slide "Sun's diameter and distance from earth"). If the focal spot becomes larger than the receiver, a certain share of the reflected energy is lost.
- The light reflected by Heliostats far from the tower has a longer path through the atmosphere. That causes more losses due to dust in the air, called beam attenuation.
- The last 3 bullet points limit the useful size of a heliostat field

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Tower Power Plants, Heliostat Field

- Near to equator: surrounding field
- Far from equator (and/or small capacity): one sided field (on the North side at the northern hemisphere and vice versa)

Heliostat Field, Cosine Effect

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Heliostat, Tracking

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Heliostat Field, Example: "Gemasolar" 19.9 MW_{el}, 5500 kWh/kW/a

Figure 3-2: Distribution of heliostats and their "representatives" over the solar field around the receiver tower (scales in m)

Example: "PS 10" 11 Mw_{el}, no storage

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Receiver Types: Open or Cavity

Cavity Receiver Open Receiver Steam downcomer Support structure Panel of 70 tubes 13.7 m 77.1 m Receiver, above panels ground level Shielding BCS BCS target target

Source: NREL

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Power Tower: The most simple System: Direct Steam Generation in Receiver

Scheme of "PS 10" Solar Tower (11 MW), Seville, Spain and of "Ivanpah" Solar Tower (392 MW), USA

Source: Abengoa, Manuel Romero, Solar Tower Power Plants – Today and Tomorrow, Focus-Abengoa Forum on Energy and Climate Change, Sevilla Oct. 24 2007

Heliostat Field, Performance Calculation (at design conditions)

- Gross Input: Aperture Area [m²] x DNI [W/m²] = [W]
- Reflectivity, Cosine Loss, Blocking, Shading as function of hour and day for <u>each</u> Heliostat (60 – 80%)
 - That is the radiation power leaving the solar field (strongly Σ 60 -80 % dependent of day and hour)
- Intercept Factor (95%)

- That is the radiation hitting the receiver Σ 57 76 %Absorption of Receiver (95 %) (Factor 0.95) Σ 54 72 %Heat Losses of Receiver (8-30 %) (Factor 0.7 0.92) Σ 54 72 %
- This is the power available to the heat engine Σ 38 66 %

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 224

Start: 100 %

Solar Tower Power Plants, Performance Calculation

- The heat engines in tower plants have higher efficiencies than in trough plants, because the <u>tower's point focusing</u> delivers higher process temperatures.
- Receiver types:
 - Direct Steam ("Solar One", "PS 10")
 - Molten Salt ("Solar Two", "Solar Tres" or "Gemasolar")
 - Open Volumetric Receiver (Fluid = Air; Prototypes)
 - Pressurized Volumetric Receiver (Fluid = Air; Prototypes)
- At heat engine efficiencies of 45% we can expect total efficiencies of up to 28 % peak and 18% annual average

Solar Tower Power Plants, Performance Calculation

Parabolic Trough (line focusing)

Tower & Dish (point focusing)

Notes: CF = concentration factor; η_{PB} = Efficiency of power block = Carnot Efficiency * 0,72; $\eta_{total} = \eta_{Receiver} * \eta_{PB}$; $t_{ambient} = 20^{\circ}$ C; $\eta_{ootical} = 80\%$; DNI = 1000 W/(m² a)

Solar Tower, Status of Application

Important Pilot Plants:

- Solar One: 10 MW_{el}, Barstow, California
- Solar Two: 10 MW_{el}, Barstow, California, Salt-Receiver, TES for 24/7 operation
- CESA-1: 1 MW_{el}, PSA, Almeria, Experimental plant with 3 different receiver types
- Jülich Tower, Germany, 1.5 MW, open volumetric receiver

In commercial operation:

- PS 10 near Seville: 11 MW_{el}, operational since 2007
- PS 20 near Seville: 20 MW_{el}, operational since 2009
- Gemasolar, 19.9 MW <u>with 24h/7days</u> (spring+summer) <u>TES</u>, operational since 2011
- Ivanpah, USA, 392 MW_{el}, operational since 2014

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

20.02.2020

Solar One, California

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Gemasolar, Seville, Spain

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

General Shaikh Mohammed bin Zayed Al Nahyan, UAE National Security Advisor Shaikh Hazza bin Zayed Al Nahyan, UAE Foreign Minister Shaikh Abdullah bin Zayed Al Nayhan, Spanish King Juan Carlos, Torresol Energy's president Enrique Sendagorta and other top officials during the inauguration of the Torresol Energy Gemasolar thermasolar plant in Fuentes de Andalucia near Seville, Spain, on Tuesday. — AFP

Model, 0,4 m² Aperture Area

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

1) Introduction of Thermal Storage

- Pilot Plant "Solar Two", USA
- 19.9 MW Plant "Gemasolar" in Spain (SENER & Masdar)
- Molten Salt Storage with up to 300
 K usable temperature difference
 (compare to parabolic trough with
 100 K only)

Solar Tower Power Plants, Current Developments 1) Introduction of Thermal Storage (more detailed scheme)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

2) Utilization of "Combined Cycle Principle "

- The Receiver becomes the "Combustion Chamber" of the Gas Turbine. <u>"Pressurized Volumetric</u> <u>Receiver"</u>
- Receiver needs to be pressurized (15 bar) and the window needs to let in the concentrated radiation.
- All components after the receiver are as in a conventional CC Plant
- Prototype running on PSA since 2002, Project "Solgate"

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

2) Utilization of "Combined Cycle Principle" (more detailed scheme)

2) Utilization of "Combined Cycle Principle", The Receiver

© European Communities, 2005 Reproduction is authorised provided the source is acknowledged.

2) Utilization of Combined Cycle Principle (continued)

- Power Process efficiency up to 60%
- Overall total net efficiency up to 38% (peak)

Less area required for solar field

- Large cost saving potential because the solar field (which is cost factor no. one) is smaller
- Utilization of natural gas in hybrid mode is as efficient as in a CC plant (hence the plant can act as base load plant)
- 66% less water consumption than in SEGS plant (due to gas turbine)
- Heat Storage not yet proven!

Summary:

 As soon as the very sensitive pressurized volumetric receiver will work reliable, the tower with CC process will be the most efficient and cost efficient solar power technology

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

3) Open Volumetric Receiver (robust and simple)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parabolic Dish Solar Power Plants and Miscellaneous Technologies

Solar Dish

Solar Dish

- Two-axis tracking with high concentration factor (> 2000)
- The heat engine is sitting in the focus and is moving together with the dish
- The generator is directly connected to the engine
- Compact and complete solar power plant
- Highest overall net efficiencies of more than 30% measured

Solar Dish, Possible Heat Engines

Possible are:

- Stirling Motor (mostly used) ($\eta = 25 43 \%$)
- (Micro-) Gas Turbine
- Steam Engine

So far used:

- Stirling Engine
- Micro Gas Turbine
- Steam Turbine (with connecting several dishes in parallel with direct steam generation in the receivers)
- Steam Turbine in single dish not feasible due to small capacity of single dish

Solar Dish, Stirling Engine

Stirling Motor SOLO V 160

- 10 KW_{el}
- 1500 rpm
- Synchronous-generator
- Working Fluid: Helium
- Gas Pressure: 100 bar
- η approx. 32 %

Solar Dish, Receiver of Stirling Motor (SBP Dish)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Dish, Concentrator Types

- Dish consisting of many curved glass facets (very exact, but too expensive) (McDonnell Douglas 1985)
- 2. Dish consisting of few membrane reflectors (Cummins 1992)
- 3. Stretched Membrane Dish "Drum" with thin glass mirrors (very exact and cheap) (SBP 1984)

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Dish, Concentrator

- Always very high efficiency, because light is always perpendicular to aperture.
 => more full load hours per year!
- Tracking:
- 1. Polar Tracking (rotation axis parallel to earth axis)
 - Mechanics more expensive, simple algorithm
- 2. Azimuth Elevation Tracking
 - Simple mechanics, more complex algorithm

Solar Dish, Polar Tracking

Solar Dish, Azimuth-Elevation Tracking

Solar Dish, Performance Calculation (of SBP Dish)

•	Gross Input: Aperture [m ²] x DNI [W/m ²] = [W]	Start = 100 %
•	Reflectivity	92 %
•	Shading (5 %)	95 %
•	Intercept Factor	95 %
	 This is the Energy hitting the receiver 	Σ83 %
•	Reflection and Heat Losses of the Receiver (15%)	85 %
	 This is the power available to the Heat Engine 	Σ 70,5 %
•	Efficiency of Stirling (SOLO V 160)	32 %
•	Overall net Efficiency, solar to electric	<u>Σ 22,5 %</u>

Solar Dish, Status of Application

So far no commercial Application

Relevant Prototypes:

- Schlaich Bergermann & Partners (SBP): 17 m Ø, 50 kW_{el}, 3 Units, 1984
- McDonell Douglas: 10,5 m Ø, 25 kW_{el}, 6 Units, 1984
- Cummins: 7,3 m Ø, 7 kW_{el}, 6 Units, 1990
- SBP: 7,5 m Ø, 9 kW_{el}, 9 Units, 1992-96
- SES: "revival" of McDonnell Douglas unit, 6 units 2007
- The 6 SBP units are running successfully at PSA since 1996
- SES (Stirling Energy Systems, USA) has signed PPA's of 1,75 GW in 2008, but the respective projects didn't happen. SES filed for bankruptcy in 2011

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Solar Dish, Current Developments and Summary

- 1. Integration of fossil fired burners for hybrid operation
 - Prototype worked, but gas to electric efficiency very low (20%)
- 2. Integration of thermal storage into the receiver
 - Prototype worked, but cost is extremely high

Summary of Dish Systems:

 Initially the Dish saw its application between the large scale technologies (trough and tower) and PV. Today's low cost of PV and the Dish's non compatibility with storage and hybridization lead to a non favorable situation for the Dish concept in general.

Solar Chimney (or "updraft"), Principle

Solar Chimney

- Solar Radiation heats up air under a glass roof. In the middle of the glass roof is the entrance to a chimney, where the heated air can escape. At the bottom of the chimney is a turbine which converts the energy of the air stream into mechanical power.
- The glass roof together with the dark soil forms the solar collector, which is very cheap
- The efficiency of the process is very low:

 $\eta_{\text{total}} = \eta_{\text{Turbine}} \times \eta_{\text{Collector}} \times g \times H_{\text{Chimney}} / (c_{p, \text{air}} \times T_{\text{ambient.}})$

- This leads to an efficiency of 0.3 % per 100 m of tower height (at collector and turbine efficiencies of 100%)
- At realistic assumptions the efficiency is approx. 0.2 % per 100 m of tower height

Solar Chimney, Status of Application

So far only one Prototype in

Manzanares, Spain:

- Operation: 1982 89
- el. Power: 50 kW
- Tower Height: 195 m
- Collector Ø: 240 m
- el. efficiency: 0,12 %

Solar Chimney, further Developments

- Since the Manzanares Prototype no more plant has been built.
- There have been some project developments, but so far none of them reached financial close.
- Generally it is doubtful whether the Solar Chimney is a useful technology. This is mainly due to its very low efficiency (2% at 1000 m chimney height). This is 10 times less than a parabolic trough plant.

Not CSP

Solar Pond

At this type of solar power plant a pond with a black ground and a filling with salty water functions as the receiver and as a heat storage at the same time. In the pond with a typical depth of 6 m the water forms three layers, which are stable due to the salt concentration which increases from the surface towards the ground. The lower layer with a thickness of approx. 4 m forms the absorber and the storage. The upper layer with a thickness of 0.5 m has the lowest salt content and serves as isolator against thermal losses. The layer in the middle is characterised by a high gradient of the salt concentration and serves as a separator between the upper and the lower layer.

The heat of the lower layer is transferred through a heat exchanger into an organic Rankine cycle. In the condenser of the Rankine cycle the water of the upper layer is used for cooling. With an upper process temperature of 90°C, efficiencies of 6 - 10 % are reached in the Rankine cycle. The overall efficiency of the system lies between 1.5 and 2 %. Beside plants in Australia and USA, the plant of Beith Ha' Arava (Israel) with its power output of 5 MW is the biggest prototype, built so far. In comparison to the concentrating technologies the Solar Pond Power Plant leads to low investment cost (area specific), but similar to the Solar Chimney the efficiency is pretty low.

Stratification of saltwater layers very sensitive!

Task: Calculate η for T_{max} = 90°C and T_{min} = 30°C, tpf = 0,5

$$\eta_{Carnot} = \frac{T_{max} - T_{min}}{T_{max}}$$
Here: $T_{max} = 90^{\circ}$ C, $T_{min} = 30^{\circ}$ C
$$\eta_{Carnot} = \frac{60K}{363K} = 16,5\%$$
With tof 0.5 => n = 8.25%

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Condenser Cooling and Heat Utilization

Cooling of the Condenser at Steam Power Plants

- CSP plants mostly use the Rankine Cycle to convert heat into power.
- The efficiency and power output of the turbine increase with lower pressures in the condenser (suction).
- The condenser pressure depends on the condenser temperature.
- Hence, a heat sink with the lowest possible temperature leads to the maximum efficiency and power of the process.

Cooling of the Condenser at Steam Power Plants

The 3 mostly used Cooling Principles are:

1) Water Cooling in Once Trough (River- or Sea Water)

- Cheap
- Achieves low condenser temperature
- Huge water mass flow: $\dot{m}_{cooling water} \approx \dot{m}_{steam circuit} \cdot 60$
- 2) Wet Cooling Tower
 - High water consumption (evaporation): $\dot{m}_{evaporation} \approx \dot{m}_{steam \ circuit}$
 - Most efficient at low humidity of ambient air
- 3) Air Cooled Condenser (ACC) or "Dry Cooling"
 - Only used where no water is available
 - Relatively high condenser temperatures
 - High power demand for fans (up to 4% of gross power)
 - Most expensive- least efficient

Cooling of the Condenser at Steam Power Plants

It is beneficial when the rejected heat of the condenser can be used for a second process. Possible Utilization:

- 1) District Heating (only useful in regions with long heating season)
 - (usually not the case at regions with high DNI)
- 2) Process Heat for Industry
- 3) Sea Water Desalination
- 4) Cooling, "District Cooling" (Absorption Chillers)

To be considered in all cases:

- Rising of Condenser Temperature required to receive usable heat
- => significant <u>reduction of electric efficiency</u> (minus 40% at Desalination)
- => overall efficiency higher, but electric efficiency reduced
- The <u>heat consumer needs to sit directly next to the CSP plant</u>, because heat cannot be transferred over longer distances.
- <u>This is unlikely</u>, because CSP plants are usually build in remote locations (cheap land)

Site Evaluation for CSP Plants

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Site and Infrastructure

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Site Evaluation 1/4

A site for a power plant project shall be evaluated regarding the following aspects:

- 1. Electric Grid (High Voltage (HV) grid):
 - Distance to the HV grid
 - Distance to the next sub station
 - Available free capacity in the HV grid
 - Readiness of the grid operator to accept the additional power
 - Possible route for the connecting cable from the plant to the sub station
 - Power supply during construction of the plant
- 2. Transport Infrastructure:
 - Distance to next highway / railway / harbor
 - Carrying capacity of this transport connection chain (largest / heaviest plant component)
 - Possible route of the connecting road to the existing road network
 - Goods to be transported: plant components during construction, fuels, spare parts, people, evacuation of Soil etc.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Site Evaluation 2/4

- 3. Fuel Supply:
 - Distance to the next fuel supply point (oil or gas pipeline or coal harbor)
 - Possibility of fuel supply from this point (technically and commercially)
 - Possible route of the connection (pipe or road) to this point
- 4. Water:
 - Availability of cooling water (selection of cooling type, calculation of water demand)
- 5. Topography of the Site:
 - Flatness of the site
 - Cost of site levelling
 - Any stream courses on site? (flooding potential, ask for history!)
- 6. Soil properties at site:
 - Carrying capacity of the soil => cost for soil improvement
 - Workability of the soil (penetrability) => cost of foundation

Site Evaluation 3/4

- 7. Weather conditions at site:
 - Temperature profile along the year=> Which plant components will need shelter / heating / cooling?
 - Precipitation along the year => Which plant components will need shelter
 - Danger of fast flowing streams => Preparation of respective measures
 - Maximum wind speeds (strength of buildings and structures)
- 8. Seismology at site
- 9. Quality of the solar (DNI) resource
 - See Chapter at the beginning of the course

Site Evaluation 4/4

10. EIA, Environmental Impact Assessment :

- Is the site habitat for protected plants and/or animals?
- Does the project endanger neighboring habitats of plants and/or animals (e.g. drainage of wetlands, bird migrating routes)?
- Endangering of ground water (lowering or contamination)
- Noise disturbance (noise maps)
- Visualization of the project and investigation of the visibility from sensible view points (visual impact study)
- 11. Social Acceptance:
 - Community representatives, local administrations, citizens' action groups, NGO's
- 12. Permits and Licenses:
 - Ownership, real estate office, land development plan, land use planning, civil engineering department (pipelines), traffic administration, police, telecommunication administration, military (concentration area, disturbance of radar, low altitude flight corridor)

Data Sources

- The site evaluation is based on the above mentioned data. It is extremely important that the data are taken from reliable sources.
- Preferably the data shall be sourced first hand.
 - Weather data from a weather institution and not from another study.
 - Soil data from a soil investigation at the site and not from another study.
- If first hand data are not available and second hand data have to be used, this shall be clearly indicated in the study report.

Calculation of Electricity Generation Cost

- A widely used method for calculating EGC is the <u>annuity method</u>.
- How it works: The annual capital cost are kept constant (during the depreciation period) by reducing the interest payment each year and a respective increase of the pay back such that the total (pay back + interest) is constant over the years.
- This method leads to pretty good values for the EGC when the input data are correct.

- A CSP plant has two main fixed cost components:
 - Annual capital cost
 - Annual O&M (operation & maintenance) cost
- The cost per kWh of electricity is calculated by dividing the annual fixed cost by the annual energy yield.

Parameter 1) Capital Expenditures (CAPEX):

CAPEX = EPC price + Owner's Cost

- Main components of CAPEX are:
 - Equipment Transport Duties **EPC price** (EPC = engineering procurement, construction) Installation cost Initial spare parts . Ground preparation and foundations ۰ Access roads Grid connection (sub station) ۰ Soft costs: ۰ Financing costs (Interest during construction, fees) \geq **Owner's cost** Project development >>Advisor fees (Lender's and Owner's Engineer, financial and legal Advisor) Permits and licenses \geq >Insurance before COD

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parameter 1) Capital Expenditures (CAPEX):

The capital for a power plant project is usually supplied by 2 sources:

- 1. Equity
- 2. Bank loan, mostly called "debt"
- The equity providers request a higher interest rate (called RoE, return on equity) than the banks ask for the debt, because they carry a higher risk.
- Typical debt / equity ratios range between 80/20 and 70/30
- The calculation of the annual capital cost is usually performed using the annuity method.
- The annuity is a combined payment of interest and repayment with a constant annual rate.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Explanation of annuity with simple example

EXCEL Exercise

Loan = 100 \$, payback time = 10 years, interest rate = 10%

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parameter 1) CAPEX: annuity method, example:

 RoE:	13% p.a.
 debt rate:	6.5% p.a.
 Debt equity ratio:	70 / 30

- With this data we calculate the weighted average cost of capital WACC):
 - ➤ WACC = 0.3 * 13% + 0.7 * 6.5% = 8.45%
- Depreciation period: 25 a
- With this data we calculate the annuity rate: 9.7 % / a

- Equation for the annuity rate: =
$$\frac{WACC*(1+WACC)^n}{(1+WACC)^{n-1}}$$
 n =
depreciation period in years

The annual capital cost is: annuity rate * CAPEX

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 277

20.02.2020

Parameter 2) Operation & Maintenance Cost, O&M cost:

In a first approach O&M cost are expressed as a percentage of the CAPEX cost. Typical values are:

- Wind Farms: 3% / a
- PV: 1-2%/a
- CSP: 2.0 2.5% / a
- Coal fired plants: 2 % / a
- CC plants: 3 4 % /a

In a more detailed approach it is distinguished between variable and fixed O&M cost.

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016 Nr. 278

Parameter 3) Energy Harvest:

- Energy harvest is the parameter out of the three, which is most difficult to obtain
- Energy harvest depends on technology and site condition
- For CSP plants the energy resource is DNI (Direct Normal Irradiation)

Parameter 3) Energy Harvest: The concept of full load hours [kWh/kW/a] or [h/a]

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parameter 3) Energy Harvest: The concept of capacity factor [% of full capacity]

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Parameter 3) Energy Harvest:

The impact of the Nominal Load:

- A given plant generates 220000 MWh per year
- Call it a 100 MW plant and you get 2200 h /a
- Call it a 120 MW plant and you get 1833 h / a

CSP plants reach their nominal load between 700 and 800 W/m²

•

Parameter 3) Energy

Harvest:

Regardless of all theory, at the end of the day the harvest [kWh / year] can be measured for a real system or simulated with good tools (tools should be calibrated against real plant data).

4) Combining the two components in one equation:

• $EGC = \frac{annual \ capital \ cost + annual \ 0\&M \ cost}{annual \ electricity \ generation}$

Or simpler: EGC = $\frac{CAPEX * (annuity + 0 \& M \ percentage)}{annual \ electricity \ generation}$

Example CSP plant:

• $EGC = \frac{400*10^6 (9,7\%/a + 2.5\%/a)}{200*10^6 kWh/a} = 0.244 \text{ USD/kWh} = 24.4 \text{ ct/kWh}$

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016 Nr. 285

The equation is easier to apply when we replace the annual electricity generation by:

Annual electricity generation = Capacity * FLH (FLH = full load hours)

Then: $EGC = \frac{CAPEX * (annuity + 0 \& M percentage)}{annual electricity generation}$ transforms to: $EGC = \frac{CAPEX/Capacity * (annuity + 0 \& M)}{FLH} _percentage)$ Example CSP plant:• CAPEX/Capacity:4000 USD / kW• OPEX:2.5 % of CAPEX p.a.• FLH:2000 h/a

• Annuity: 9,7% p.a.

• $EGC = \frac{4000 / kW (9,7\% / a + 2\% / a)}{2000 h / a} = 0.244 \text{ USD/kWh} = 24.4 \text{ ct/kWh}$

Typical EPC Prices for different power plant types:

Coal fired plants:	1200 – 1600 \$ / kW	
Gas turbine plants:	400 – 500 \$ / kW	
Combined Cycle plants:	700 – 800 \$ / kW	
Wind power:	1200 – 1500 \$ / kW	
Photovoltaic:	1000 – 2000 \$ / kW	
CSP:	4000 \$ / kW (higher when equipped with TES)	

For calculating the CAPEX: When no further information is available the owner's cost can be assumed with 20% of the EPC price.

Why is Electricity of Fossil Fired Plants Cheaper?

- Fossil fired plants need much less material
- <u>A 100 MW gas turbine (GT) contains 100 tons of steel</u>
- The solar field of a 100 MW PT plant contains 12 000 tons of steel (120 times more than GT)
- Dimensions of a 100 MW gas turbine: 10 m x 30 m, the whole plant 100 m x 100m (1 hectare)
- Dimensions of a 100 MW solar plant: 2 km² (200 times more than GT)

Why is Electricity of Fossil Fired Plants Cheaper?

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 289

Why is Electricity of Fossil Fired Plants Cheaper?

What is the message of the "Harper Lake" picture?

- EPC prices of solar plants will always be higher than EPC prices of fossil fired plants!
- The steel mass factor may go down from 120:1 to 60:1, but solar will never be cheaper in CAPEX!
- The only way to break even will be through higher fuel prices
- CSP (Californian conditions) breaks even at oil price of **70 to 120 \$/barrel** (depending on full load hours of fossil competitor)
- Or at coal prices of 400 \$ / ton (today 80 \$ / ton)
- Or at gas prices of 0.5 \$ / m³ (12 \$ / MMBTU) (peaker)
- Until reaching this point, subsidies are required

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

👪 Steinbeis

GFA

Thank you for your Attention!

Dr.-Ing. Jürgen Rheinländer

Solar Thermal Power **Engineer and Consultant**

Prof. Dr.-Ing. Olaf Goebel

Hochschule Hamm-Lippstadt Olaf.goebel@hshl.de

Ministério da Ciência, Tecnologia e Inovação

Reserve

Concentrated Solar Power Lecture, Prof. Dr.-Ing. Goebel, February 2016

Nr. 292

Parabolic Trough Solar Power Plants: Integrated Solar Combined Cycle System, ISCCS

The Problem of low efficiency when running a regular Parabolic Trough Plant on gas

CC = Combined Cycle plant SEGS = Parabolic Trough CSP plant

When a Parabolic Trough CSP Plant is operated for many hours per year on nat. gas, then it burns more gas than a CC plant of the same capacity, due to its poor gas to electric efficiency.

specific energy consumption of Combined Cycle and SEGS plants eta GuD = 53 % eta SEGS = 35 %

20.02.2020