PRO 5971 - Statistical Process Monitoring

About the control limits

Linda Lee Ho March 15, 2023

Department of Production Engineering University of São Paulo

Outline

- Let X, be a random variable with PDF f(X) and CDF as F(X) with E(X) = μ and Var(X) = σ², both < ∞
- Let us consider a sample random of size *n* independent identical distributed (iid) random variables: *X*₁, *X*₂, ..., *X*_n.
- By Central Limit Theorem, the asymptotic distribution (that is, when $n \to \infty$) of $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ follows a normal distribution $\sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- For the \overline{X} control chart, the control limits are of the form $\mu_0 \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$
- These control limits are known as asymptotic one
- $z_{1-\alpha/2} = 3$, the control limits are known as 3 sigma control limits
- They are symmetrical and easier to deal with them

- If $X \sim N(\mu, \sigma^2)$ then the exact distribution of \overline{X} is also normal $\sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- So if the qualty characteristic X follows a normal distribution, the asymptotic and the exact distribution of \overline{X} are **identical**.
- However when the quality characteristic X does not follow a normal distribution, the exact distribution of \overline{X} may be far from the asymptotic distribution of \overline{X}
- Control limits determined by using the exact distribution of \overline{X} is known as probability control limits.
- If $X \sim N(\mu, \sigma^2)$ then the probability and asymptotic control limits of \overline{X} are identical.

- Assumption: The quality characteristic X does not follow a normal distribution
- Let $F_{\overline{X}}(.)$ be the CDF of \overline{X} ; $q_{\alpha/2}$ and $q_{1-\alpha/2}$ are respectively the $\alpha/2$ and $1-\alpha/2$ quantiles of $F_{\overline{X}}$ such that:

$$F_{\overline{X}}(q_{\alpha/2}) = P(\overline{X} < q_{\alpha/2}) = \alpha/2$$

and

$$F_{\overline{X}}(q_{1-\alpha/2}) = P(\overline{X} < q_{1-\alpha/2}) = 1 - \alpha/2$$

- Consequently $P(q_{\alpha/2} < \overline{X} < q_{1-\alpha/2}) = 1 \alpha$
- The quantiles $q_{\alpha/2}$ and $q_{1-\alpha/2}$ are the probability control limits considering as error of type I equal to α
- However sometimes the exact distribution of X is unknown and the probability control limits are determined by simulation.

- If X is r.v. following a Bernoulli distribution with parameter p, then ∑ⁿ_{i=1} X_i ∼ Binomial (n;p)
- If X is r.v. following a Poisson distribution with parameter λ, then ∑ⁿ_{i=1} X_i ~ Poisson (nλ)
- If X is r.v. following an exponential distribution with parameter λ , then $\sum_{i=1}^{n} X_i \sim \text{Gamma } (n; \lambda)$
- etc

- X, some quality characteristic with PDF $f_X(.)$ and CDF $F_X(.)$
- Let X₁, X₂,..., X_n a random sample of X; Θ̃ = G(X₁, X₂,..., X_n) a statistic used to monitor some parameter of interest with E(Θ̃) and Var(Θ̃) both known/available.
- The asymptotic control limits are: $E(\tilde{\Theta}) \pm z_{1-\alpha/2} \sqrt{Var(\tilde{\Theta})}$
- The quantiles $q_{\alpha/2}$ and $q_{1-\alpha/2}$ are the probability control limits with as error of type I equal to α such that

$${\sf F}_{ ilde{\Theta}}({\sf q}_{lpha/2}) = {\sf P}(ilde{\Theta} < {\sf q}_{lpha/2}) = lpha/2$$

and

$$\mathsf{F}_{ ilde{\Theta}}(q_{1-lpha/2}) = \mathsf{P}(ilde{\Theta} < q_{1-lpha/2}) = 1 - lpha/2$$

 $F_{\tilde{\Theta}}(.)$ is the CDF of $\tilde{\Theta}$

• Consequently ${\it P}(q_{lpha/2} < ilde{\Theta} < q_{1-lpha/2}) = 1-lpha$