PRO 5971 - Statistical Process Monitoring

Shewhart control chart: X-bar chart

Linda Lee Ho March 15, 2023

Department of Production Engineering University of São Paulo

Outline

- Proposed by W. Shewhart at 30's
- Two main types: Attribute and Variable control chart
- Variable Control chart: quality characteristic expressed in terms of a numerical measurement
- Attribute Control Chart: quality characteristics cannot be conveniently represented numerically

- Two main type variables charts:
- For monitoring process mean: \overline{X} chart
- For monitoring the process variability: R, S and S^2 charts

- Assumption: Quality characteristic X normally distributed with mean μ and $\sigma,$ both available
- X_1, X_2, \ldots, X_n , is a sample of size n
- Monitored statistic to draw in the control chart: the average sample \overline{X}
 - Estimator of μ
 - Normally distributed with mean μ and σ/\sqrt{n}
- In-control process mean: μ_0
- Fixed error of type I equal α such that $P(\overline{X} < \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = P(\overline{X} > \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = \alpha/2$
- The control limits: $LCL = \mu_0 z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$; $UCL = \mu_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$
- + $z_{1-\alpha/2}$ is the quantile of a standard normal distribution such that $P(Z < z_{1-\alpha/2}) = \alpha/2$

- Process out-of-control: Process mean shifts to $\mu_1 = \mu_0 + k\sigma$
- Error of type II: $\beta = P(LCL < \overline{X} < UCL | \mu_1 = \mu_0 + k\sigma)$

$$\beta = \Phi \left[\frac{UCL - (\mu_0 + k\sigma)}{\sigma/\sqrt{n}} \right] - \Phi \left[\frac{LCL - (\mu_0 + k\sigma)}{\sigma/\sqrt{n}} \right]$$
$$\beta = \Phi \left[z_{1-\alpha/2} - k\sqrt{n} \right] - \Phi \left[-z_{1-\alpha/2} - k\sqrt{n} \right]$$

• $1-\beta$ = Probability that shift will be detected=Power $1 - \left[\Phi\left(z_{1-\alpha/2} - k\sqrt{n}\right) - \Phi\left(-z_{1-\alpha/2} - k\sqrt{n}\right)\right]$

- 1. For sample of sizes n = 3, 5, 9 obtain the control limits for bilateral shifts for \bar{X} chart considering $\alpha = 0.05, 0.0027$ and at a stable situation the quality characteristic follows a normal distribution with $\mu_0 = 10$ and $\sigma = 2$
- 2. Obtain the power of the \bar{X} when the mean shifts to $\mu_1 = \mu_0 + \delta\sigma$, $\delta = 0.25, 0.5, 1, 1.25, 1.5, 2, 3$ for the item 1
- 3. Discuss the results of items 1 and 2
- 4. Redo the items 1 and 2 considering only one-sided shifts and discuss the results.

Measuring the performance of a control chart by the RUN LENGTH

The parameters of a control chart: sample size n, the control limits (UCL and LCL) Action: whenever the statistic is plotted out of the control limits, a search for special causes starts.

Performance measure: the number of samples until a signal. In Figure 1, 4 samples for the first signal; 6 samples for second signal; 6 samples for third signal, etc

Figure 1: # of samples until a signal

Run length

Y= # of samples until a signal - is a random variable known as RUN LENGTH If the monitored statistics are **independent** \rightarrow Y follows a Geometric distribution with parameter *p*, the probability to signal

Its probability function is

$$P(Y = y) = p(1 - p)^{y-1}, y = 1, 2, ...$$

For example: $\begin{cases} P(Y = 1) = p, & \text{the probability to signal at the first sample} \\ P(Y = 2) = p(1 - p), & \text{the probability to signal at the second sample} \\ \dots P(Y = 5) = p(1 - p)^4, & \text{the probability to signal at the fifth sample} \end{cases}$

 $E(Y) = \frac{1}{p}$ is the average number of samples until a signal.

It is known as AVERAGE RUN LENGTH (ARL) and has been the most used a performance metric in SPC.

Other measures: median run length (MRL); standard deviation run length(SDRL).

When the process is stable (in control or under H_0) $\begin{cases} \alpha - \text{probability to signal} \\ 1 - \alpha, \text{ probability to not signal} \\ ARL_0 = \frac{1}{\frac{1}{\text{probability to signal}}} = \frac{1}{\alpha} \end{cases}$

 $ARL_0 \begin{cases} \text{is the average number of sample until a signal when the process is in-control} \\ It is desirable to have larger values for <math>ARL_0$ Usually values like 370 or 500 are used as ARL_0 in process monitoring When the process is out of control or under H_1) $\begin{cases} 1 - \beta - \text{probability to signal} \\ \beta, \text{ probability to not signal} \\ ARL_1 = \frac{1}{\text{probability to signal}} = \frac{1}{1 - \beta} \end{cases}$

 $ARL_1 \begin{cases} \text{ is the average number of sample until a signal when the process is out-of-control} \\ \text{It is desirable to have } ARL_1 \approx 1 \end{cases}$

Plan \overline{X} control charts (assuming σ known and remains stable) to have $ARL_0 = 200, 370, 500$ with n = 3, 5, 9. Obtain ARL_1 when μ_0 shifts to $\mu_1 = \mu_0 \pm \delta\sigma$ for $\delta = 0.25, 0.5, 1, 1.5, 2, 2.5$.

References