Física do Corpo Humano

Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP

Primeira Lei da Termodinâmica

B03

Energia Livre

- A vida é possível porque uma rede complexa de reações químicas que interagem entre si ocorre em cada célula.
- Enzimas podem catalisar apenas as reações termodinamicamente possíveis.
- A diferença total de **energia livre** durante um grupo de reações químicas determina se uma sequência de reações ocorrem.

Lei Zero da Termodinâmica

Se: $T_A = T_C$

e: $T_B = T_C$

Então: $T_A = T_B$

Primeira Lei da Termodinâmica

- Conservação: Energia pode ser alterada de uma forma para outra, mas em todas as transformações nenhuma energia é criada ou destruída.
- Lei empírica na natureza, não pode ser provada a partir de princípios básicos. Até os dias de hoje, nunca foi violada.

Energia Interna, U

- Da mesma forma que calor q, energia interna U e trabalho w é medido em Joules ou calorias
- *U* é a energia armazenada dentro de um sistema, energias que podem ser modificada por um processo químico (translacional, rotacional, vibracional, ligação e energias não ligantes). Aqui, retiramos energia nuclear etc.

$$J = \frac{kg \cdot m^2}{s^2} = N \cdot m^2 = Pa \cdot m^3 = W \cdot s$$

Energia Interna, U

- A energia livre define a energia de uma substância na ausência de efeitos externos.
- *U* é uma propriedade extensiva da substância, depende de seu tamanho.
- *U* é uma quantidade termodinâmica chamada função de estado. *U* pode ser representado por uma função matemática e depende apenas do estado do sistema(temperatura, pressão ...)
- *U* não é medido diretamente, apenas suas mudanças (independente do caminho):

$$\Delta U = U_2 - U1$$

- Trabalho se assemelha a calor: quando calor é adicionado ao sistema: $\Delta U>0$
- Quando trabalho é realizado sobre o sistema, por exemplo comprimindo o volume de um gás: $\Delta U>0$
- Ambos, q e w são formas de energia transferida através das fronteiras do sistema.
- diferentemente de *U*, *q* e *w* são funções do caminho.

Trabalho é realizado sobre o sistema

O Sistema realiza trabalho quando o mesmo empurra a vizinhança

Para uma força constante:

$$w = \vec{F} \cdot \vec{d}$$

Usando a definição de pressão:

$$w = \frac{\vec{F}}{A}(A\vec{d}) = P\Delta V$$

OU

$$w = \int_{V_1}^{V_2} PdV$$

Energia térmica de uma coleção de objetos é proporcional a temperatura absoluta T.

Em um sistema fechado, a cada unidade de tempo, partícula colidem na parede (pressão P)

Mantendo o mesmo volume V e aumentando o número de partículas n, mais partículas colidem

$$P = nR\frac{T}{V}$$

O momentum de uma partícula: $\vec{p} = m\vec{v}$

$$E_k = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

No equilíbrio térmico: $E_k \propto T$

$$\frac{p^2}{m} \propto T$$

$$p \propto (Tm)^{1/2}$$

Em uma mistura de gases, moléculas pesadas possuem um momento médio maior

Fig. 44-1. The heated rubber band.

Fig. 44–2. The rubber-band heat engine.

"A agitação térmica das moléculas nas laterais das cadeias das fibras de borracha tendem a deformar as cadeias tornando-as mais curtas" Feynman Lectures on **Physics**

Primeira Lei!!!

$$\Delta U = q + w$$

Table 2.1. Sign conventions for heat and work	
Heat is transferred to the system Heat is transferred to the surroundings The system expands against an external pressure The system is compressed because of an external pressure	q > 0 q < 0 w < 0 w > 0

Se um sistema realiza trabalho w na sua vizinhança, faz uma contribuição negativa a ΔU

Energia de Gibbs (Energia Disponível)

- Energia de Gibbs é um potencial termodinâmico que quantifica a possibilidade útil de trabalho de um sistema termodinâmico a temperatura e pressão constante. Similar ao potencial mecânico realizar trabalho.
- A energia livre de Gibbs é a quantidade máxima de trabalho não-expansão, que pode ser extraído a partir de um sistema fechado, o máximo só pode ser alcançado num processo completamente reversível.
- Energia de Gibbs é também o potencial químico que é minimizada quando o sistema atinja o equilíbrio a temperatura e pressão constante.

- H é um dos componentes da Energia Livre de Gibbs (ou Entalpia livre).
- A entalpia é o calor absorvido por um sistema a uma pressão constante. Vamos supor que estamos trabalhando sob pressão constante:

$$q|_p = \Delta U - w$$

Quando a pressão é constante e o sistema expande do estado l para o estado 2: $w=-p_{\rm ext}\Delta V$

$$q|_{p} = U_{2} - U_{1} + p(V_{2} - V_{1})$$

$$q|_{p} = U_{2} - U_{1} + p(V_{2} - V_{1})$$

= $(U_{2} + pV_{2}) - (U_{1} + pV_{1})$
= $\Delta U + p\Delta V$

A quantidade a direita é a quantidade de calor que foi trocada a pressão constante, é uma função de estado chamado de entalpia:

$$H = U + pV$$

Apesar de w depender do caminho $w=-p_{\rm ext}\Delta V$ U, p e V separadamente são funções de estado

- A entalpia pode ser considerada como a quantidade de energia em um sistema termodinâmico para a transferência entre si e para o ambiente.
- Numa transição de fase, a mudança da entalpia é igual ao calor latente de fusão por exemplo.
- Quando a entalpia varia muito lentamente

$$\Delta H = \Delta (U + pV)$$

$$= \Delta U + \Delta (pV)$$

$$= \Delta U + p\Delta V + V\Delta p$$

Se p é constante

$$\Delta H = \Delta U + p\Delta V + V(\Delta p = 0)$$

$$= (\Delta U = q + w) + p\Delta V$$

$$= q|_p + (w = -p\Delta V) + p\Delta V$$

$$= q|_p$$

H é um componente da função de estado energia livre de Gibbs, G, no qual se prevê a direção de alteração espontânea por um processo a pressão e temperatura constante - as restrições experimentais preferidas do cientista biológica.

Se em um processo termodinâmico

$$\Delta V \approx 0$$

(reação em solução em que gás não é produzido nem consumido), então

$$\Delta U \approx q|_p \approx \Delta H$$

Numero de mols de gás que mudaram na reação

Exemplo:
$$H = U + pV$$

$$\Delta H = \Delta U + \Delta (pV)$$

$$= \Delta U + \Delta (nRT)$$

$$= \Delta U + RT\Delta n$$
T constante

$$\Delta H = \Delta U + RT\Delta n$$

R, é uma constante universal, 8.3145 J/K mol

$$C_2H_5OH(1) + 3O_2(g) \to \ 2CO_2(g) + 3H_2O(1).$$

$$\Delta H = \Delta U + RT\Delta n$$

$$\Delta H = \Delta U + 298 \cdot 8.3145\Delta n$$

$$\Delta H = \Delta U + 2478\Delta n$$

$$C_2H_5OH(\ell) + 3O_2(g) \to 2CO_2(g) + 3H_2O(\ell)$$

$$\Delta n = 2 - 3 = 1$$

$$\Delta H = -1368000 - 2478$$

Se a variação de entalpia é negativo o processo é exotérmico. Caso contrario o processo é endotérmico

Tabelas de oxidação, obtidas através de métodos como o calorímetro são utilizadas por físicos, bioquímicos e nutricionistas.

Podemos usar equipamentos como o calorímetro para investigar o que acontece no nosso corpo

Bioquímica

- Aproximadamente 1/2 da massa seca do corpo humano é de proteinas
- O estado nativo das proteínas é "folded", empacotado uma espécie de cristal orgânico
- Mesmo nesse estado existe flutuação na estrutura do caroço central.
- Estado empacotado parecido com solido
- Estado desempacotado parecido com liquido

Table 2.2. | Energetics of non-covalent interactions between molecules

Type of interaction	Equation	Approximate magnitude (kcal mol ⁻¹)
Ion-ion Ion-dipole Dipole-dipole Ion-induced dipole Dispersion	$E = q_1 q_2 / Dr$ $E = q \mu \theta / Dr^2$ $E = \mu_1 \mu_2 \theta' / Dr^3$ $E = q^2 \alpha / 2Dr^2 r^4$ $E = 3h \nu \alpha^2 / 4r^6$	14 -2 to +2 -0.5 to +0.5 0.06 0 to 10

^a Charge q_1 interacts with charge q_2 at a distance r in medium of dielectric D.

The data are from Table 1.1 of van Holde (1985).

^b Charge q interacts with dipole μ at a distance r from the dipole in medium of dielectric D. θ and θ' are functions of the orientation of the dipoles.

^c Dipole μ_1 interacts with dipole μ_2 at an angle q relative to the axis of dipole μ_2 and a distance r from the dipole in medium of dielectric D.

^d Charge *q* interacts with molecule of polarizability at α distance *r* from the dipole in medium of dielectric *D*.

^e Charge fluctuations of frequency ν occur in mutually polarizable molecules of polarizability α separated by a distance r.

Bioquímica

Table 2.3. | Characteristics of hydrogen bonds of biological importance

Bond type	Mean bond distance (nm)	Bond energy (kJ mol ⁻¹)
O-H···O O-H···O N-H···O	0.270 0.263 0.288 0.293 0.304	-22 -15 -15 to -20 -25 to -30 -15 to -25
N-H···N HS-H···SH ₂	0.310	–17–7

The data are from Watson (1965).

Table 2.4.	Principal	features (of protein	structure
1 4510 2.1.	1 The Pool	jeoroures (of Process	JUI WEVWI C

Folded (native) state	Unfolded (denatured) state
Highly ordered polypeptide chain	Highly disordered chain – ''random coil''
Intact elements of secondary structure, held together by hydrogen bonds	No secondary structure
Intact tertiary structure contacts, as in an organic crystal, held together by van der Waals interactions	No tertiary structure
Limited rotation of bonds in the protein core	Free rotation of bonds throughout polypep-tide chain
Desolvated side chains in protein core	Solvated side chains
Compact volume	Greatly expanded volume

Fig. 2.7 Enthalpy of unfolding of hen egg white lysozyme as a function of transition temperature. Filled symbols: intact lysozyme. Open symbols: lysozyme in which one of the four native disulfide bonds has been removed. When folded, 3-SS lysozyme closely resembles the native state of intact lysozyme. Change in transition temperature was induced by a change of pH. Note that ΔH is approximately linear in $T_{\rm m}$. The data are from Cooper *et al.* (1991).

Fig. 2.8 Isothermal titration calorimeter. The temperature is constant. There are two identical chambers, the sample cell and the reference cell. In most cases, the sample cell will contain a macromolecule, and the syringe/ stirrer is used to inject a ligand into the sample cell. The syringe is usually coupled to an injector system under software control and rotated at a constant speed. The reference cell is filled with buffer; no reaction occurs there. ΔT measures the temperature difference between cells, which are surrounded by insulation to minimize heat exchange with the surroundings. Electronic (power feedback) circuitry minimizes ΔT on a continuous basis. If injection of ligand results in binding, there will ordinarily be a change in the temperature of the sample. The sign of the change will depend on whether the reaction is exothermic or endothermic. An experiment consists of equal-volume injections from the syringe into the sample cell.

Hidratação e desidratação iônica ocorre constantemente nos canais/bombas de íons e na transmissão de impulsos nervosos.

Table 2.5. Standard ion hydration enthalpies			
H ⁺ Li ⁺ Na ⁺ K ⁺ NH ⁴⁺	-1090 -520 -405 -321 -301	Mg ²⁺ Ca ²⁺ Ba ²⁺ Fe ²⁺ Zn ²⁺ Fe ³⁺	-1920 -1650 -1360 -1950 -2050 -4430

The data refer to $X^+(g) \rightarrow X^+(aq)$ at 1 bar and are from Table 2.6c in Atkins (1998). 1 bar = 10^5 Pa = 10^5 N m⁻² = 0.987 atm. 1 Pa = 1 pascal. Blaise Pascal (1623–1662) was a French scientist and religious philosopher.