

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses

Testes de hipóteses: Procedimento com exemplo detalhado

Prof. Dr. Evandro Marcos Saidel Ribeiro FEA-RP Universidade de São Paulo

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses

Fundamentos

Teste de hipótese é um método inferencial:

O teste de hipótese é utilizado para fazer uma inferência sobre parâmetros populacionais a partir de estatísticas amostrais.

Parâmetros

 $\mu \rightarrow$ média $\sigma \rightarrow$ desvio padrão $\sigma^2 \rightarrow$ variância π ou $p \rightarrow$ proporção

Inferência

Teste de hipótese

Estatísticas

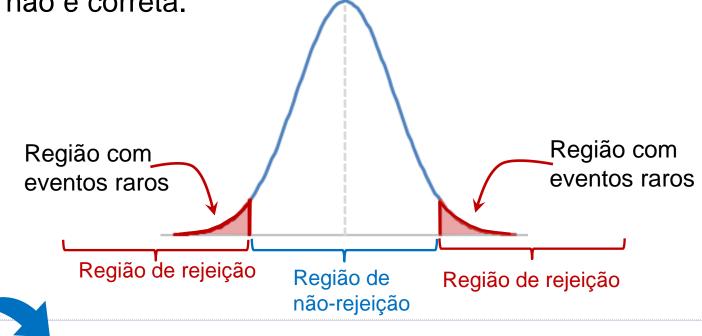
 $\bar{x} \rightarrow$ média amostral $s \rightarrow$ desvio padrão amostral $s^2 \rightarrow$ variância amostral $\hat{p} \rightarrow$ proporção amostral

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses - Fundamentos

Regra do evento raro

"Se, sob uma dada suposição, a probabilidade de um evento observado particular é excepcionalmente pequena, concluímos que a suposição provavelmente não é correta."

O teste de hipótese está baseado na regra do evento raro, fazemos uma afirmativa com relação a um parâmetro populacional. A partir da obtenção de uma estatística (evento observado) verificamos se o valor obtido corresponde a um evento raro. Se for um evento raro então a hipótese sobre a população não é correta.

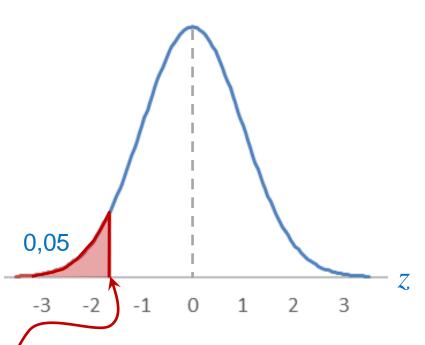

Ex. Distribuição de valores amostrais:

A hipótese é que médias amostrais extraídas da população apresentem uma distribuição de valores na forma de sino, como a figura ao lado.

Se a hipótese for verdadeira a estatística não será um evento raro.

Quais distribuições serão vistas?

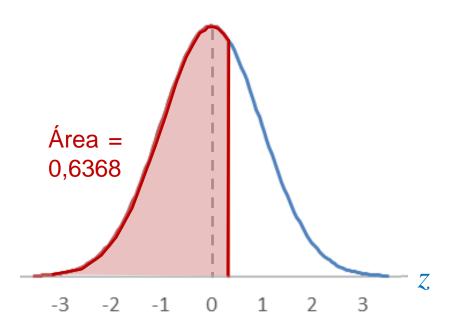
 z, t, χ^2, F



Distribuição normal – (ou distribuição z)

Distribuição Normal (z)

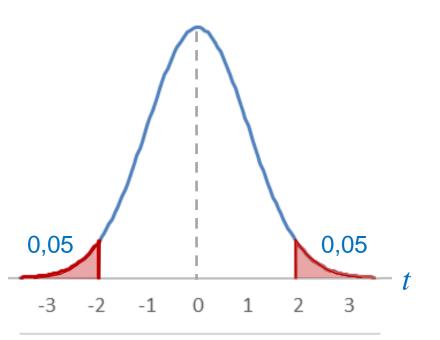
Ex 1. Dado Área = 0,05, qual z? Resp. z = -1,645


Tabela A-2		Dis	stribuição No	ormal Padr	ão (z negat	ivo): Area A	Acumulada a	à ESQUER	DA	
Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,5 ou menor	0,0001									
-3,4	0,0003	0,000325	0,000313	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
-3,1	0,0010	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
-3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
-2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,7	0,0035	0,0034	0,0023	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,2	0,0139	9,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-1,9	0.9287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
-1,6 ←	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823

Distribuição normal – (ou distribuição z)

Distribuição Normal (z)

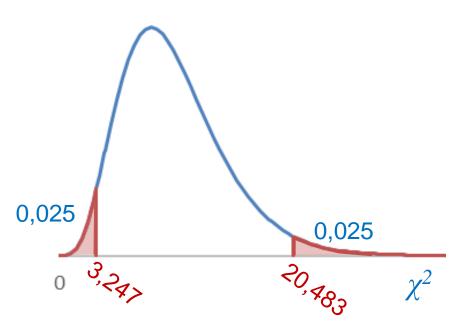
Ex 2. Dado z = 0.35, qual Área? Resp. Área = 0.6368


		_							_	
Tabela A-2		D	istribuição N	Normal Pad	rão (z positi	vo): Area A	cumulada à	ESQUERD	PΑ	
Z	0,00	0,01	0,02	0,03	0.04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5 99	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0.2	0,5793	0,5832	0,5871	0,5910	0,5948	0.5 87	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916

Distribuição t-Student – (ou distribuição t)

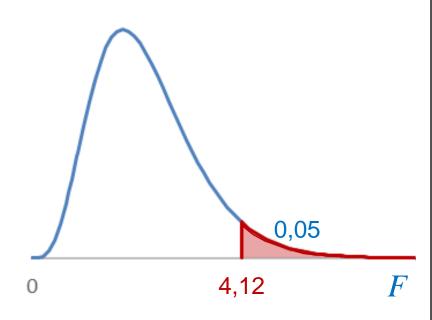
Distribuição t-Student (t)

Ex 3. Dado a área em duas caudas = 0,10, qual t? grau de liberdade = 8 Resp. t = -1,86 e +1,86


Tabela A-3	Distribuição t : Valores Críticos t									
		Área em Uma Cauda								
	0,005	0,01	0,025	0,05	0,10					
Graus de	0.01		em Duas Caudas	0.10	0.00					
Liberdade	0,01	0,02	0,05	0,10	0,20					
1	63,657	31,821	12,706	6, <mark>8</mark> 14	3,078					
2	9,925	6,965	4,303	2, <mark>9</mark> 20	1,886					
3	5,841	4,541	3,182	2, <mark>3</mark> 53	1,638					
4	4,604	3,747	2,776	2, <mark>1</mark> 32	1,533					
5	4,032	3,365	2,571	2,015	1,476					
6	3,707	3,143	2,447	1, <mark>9</mark> 43	1,440					
77	3,499	2,998	2,365	1,395	1,415					
8	3,355	2,890	2,306	1,860	1,397					
9	3,250	2,821	2,262	1,833	1,383					
10	3,169	2,764	2,228	1,812	1,372					
11	3,106	2,718	2,201	1,796	1,363					
12	3,055	2,681	2,179	1,782	1,356					
13	3,012	2,650	2,160	1,771	1,350					
14	2,977	2,624	2,145	1,761	1,345					
15	2,947	2,602	2,131	1,753	1,341					
16	2,921	2,583	2,120	1,746	1,337					
17	2,898	2,567	2,110	1,740	1,333					
18	2,878	2,552	2,101	1,734	1,330					
19	2,861	2,539	2,093	1,729	1,328					

Distribuição χ^2 – (ou distribuição qui-quadrado)

Ex 4. Dado a área em duas caudas = 0,05, quais χ^2 ? grau de liberdade = 10 Resp. χ^2_e = 3,247 e χ^2_d = 20,483


Tabela A-4	Distribuição Qui-Quadrado (χ^2)										
Graus de		Área à DIREITA do Valor Crítico									
Liberdade	0,995	0,99	0,975	0,95	0,90	0,10	0,05	0,025	0,01	0,005	
1	0,000	0,000	0,001	0,004	0,016	2,706	3,841	5,0 <mark>2</mark> 4	6,635	7,879	
2	0,010	0,020	0,051	0,103	0,211	4,605	5,991	7,3 <mark>7</mark> 8	9,210	10,597	
3	0,072	0,115	0,216	0,352	0,584	6,251	7,815	9,3 <mark>4</mark> 8	11,345	12,838	
4	0,207	0,297	0,434	0,711	1,064	7,779	9,488	11, <mark>143</mark>	13,277	14,860	
5	0,412	0,554	0,831	1,145	1,610	9,236	11,070	12,333	15,086	16,750	
6	0,676	0,872	1,2 <mark>3</mark> 7	1,635	2,204	10,645	12,592	14, <mark>4</mark> 49	16,812	18,548	
7	0,989	1,239	1,690	2,167	2,833	12,017	14,067	16,013	18,475	20,278	
8	1,344	1,646	2,180	2,733	3,490	13,362	15,507	17,535	20,090	21,955	
q	1,735	2,088	2 7 nn	3,325	4,168	14,684	16,919	19 123	21,666	23,589	
10	2,156	2,558	3,247	3,940	4,865	15,987	18,307	20,483	23,209	25,188	
11	2,603	3,053	3,810	4,575	5,578	17,275	19,675	21,920	24,725	26,757	
12	3,074	3,571	4,404	5,226	6,304	18,549	21,026	23,337	26,217	28,300	
13	3,565	4,107	5,009	5,892	7,042	19,812	22,362	24,736	27,688	29,819	
14	4,075	4,660	5,629	6,571	7,790	21,064	23,685	26,119	29,141	31,319	
15	4,601	5,229	6,262	7,261	8,547	22,307	24,996	27,488	30,578	32,801	
16	5,142	5,812	6,908	7,962	9,312	23,542	26,296	28,845	32,000	34,267	
17	5,697	6,408	7,564	8,672	10,085	24,769	27,587	30,191	33,409	35,718	
18	6,265	7,015	8,231	9,390	10,865	25,989	28,869	31,526	34,805	37,156	
19	6,844	7,633	8,907	10,117	11,651	27,204	30,144	32,852	36,191	38,582	
20	7,434	8,260	9,591	10,851	12,443	28,412	31,410	34,170	37,566	39,997	
25	10,520	11,524	13,120	14,611	16,473	34,382	37,652	40,646	44,314	46,928	
30	13,787	14,953	16,791	18,493	20,599	40,256	43,773	46,979	50,892	53,672	
40	20,707	22,164	24,433	26,509	29,051	51,805	55,758	59,342	63,691	66,766	
50	27,991	29,707	32,357	34,764	37,689	63,167	67,505	71,420	76,154	79,490	

Distribuição F

Distribuição F

Ex 5. Dado a área na cauda direita = 0,05, qual valor de F? $gl_1 = 4$ e $gl_2 = 7$ Resp. F = 4,120

Tabela A-5		Distribuição F (alfa = 0,05 na cauda DIREITA)										
$\alpha = 0.05$		Número de Graus de Liberdade do Numerador (gl₁)										
		1	2	3	4	5	6	7	8	9		
(gl ₂)	1	161,448	199,500	215,707	224,583	230,162	233,986	236,768	238,883	240,543		
g)	2	18,513	19,000	19,164	19 <mark>,247</mark>	19,296	19,330	19,353	19,371	19,385		
횽	3	10,128	9,552	9,277	9,117	9,013	8,941	8,887	8,845	8,812		
na	4	7,709	6,944	6,591	6,388	6,256	6,163	6,094	6,041	5,999		
Ē	5	6,608	5,786	5,409	5, <mark>1</mark> 92	5,050	4,950	4,876	4,818	4,772		
Denominador	6	5,987	5,143	4,757	4 334	4,387	4,284	4,207	4,147	4,099		
õ	7	5,591	4,737	4,347	4,120	3,972	3,866	3,787	3,726	3,677		
ဝှ	8	5,318	4,459	4,066	3,838	3,687	3,581	3,500	3,438	3,388		
e	9	5,117	4,256	3,863	3,633	3,482	3,374	3,293	3,230	3,179		
Liberdade	10	4,965	4,103	3,708	3,478	3,326	3,217	3,135	3,072	3,020		
)er	11	4,844	3,982	3,587	3,357	3,204	3,095	3,012	2,948	2,896		
	12	4,747	3,885	3,490	3,259	3,106	2,996	2,913	2,849	2,796		
de	13	4,667	3,806	3,411	3,179	3,025	2,915	2,832	2,767	2,714		
<u>s</u>	14	4,600	3,739	3,344	3,112	2,958	2,848	2,764	2,699	2,646		
Graus	15	4,543	3,682	3,287	3,056	2,901	2,790	2,707	2,641	2,588		
9	16	4,494	3,634	3,239	3,007	2,852	2,741	2,657	2,591	2,538		
g de	17	4,451	3,592	3,197	2,965	2,810	2,699	2,614	2,548	2,494		
Número	18	4,414	3,555	3,160	2,928	2,773	2,661	2,577	2,510	2,456		
Ę	19	4,381	3,522	3,127	2,895	2,740	2,628	2,544	2,477	2,423		
ž	20	4,351	3,493	3,098	2,866	2,711	2,599	2,514	2,447	2,393		
	21	4,325	3,467	3,072	2,840	2,685	2,573	2,488	2,420	2,366		
	22	4,301	3,443	3,049	2,817	2,661	2,549	2,464	2,397	2,342		
	23	4,279	3,422	3,028	2,796	2,640	2,528	2,442	2,375	2,320		

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses - Etapas

Temos uma afirmativa de pesquisa que queremos investigar: <u>Afirmativa Original</u> (AO) Passos para utilizar o teste de hipótese para investigar a AO.

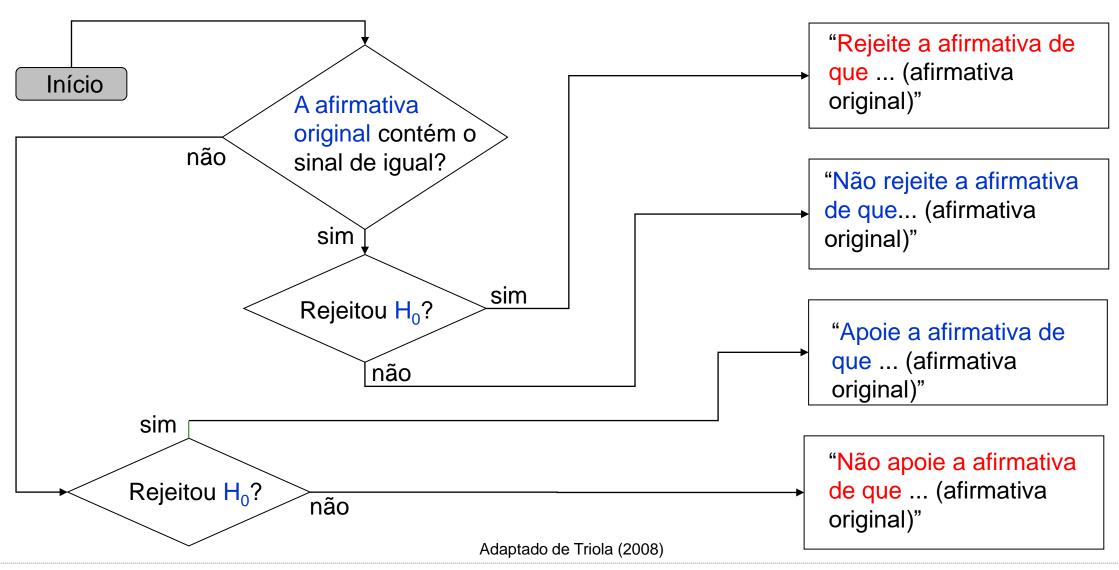
- 1. Escreva a afirmativa original na forma simbólica (símbolos: >, <, =, ≠, ≥, ≤).
- 2. Escreva o oposto da AO, na forma simbólica de forma a excluir a AO.
- 3. Expresse H_0 e H_1 . Note: H_0 é a igualdade. H_1 não contém a igualdade. O sinal de H_1 indica teste unilateral à esquerda (<), bilateral (\neq) ou unilateral à direita (>).
- 4. Selecione o nível de significância α . (α = probabilidade de ocorrer erro do tipo I)
- 5. Verifique a distribuição a ser utilizada para calcular a estatística teste.
- 6. A partir da estatística teste utilize uma das abordagens para decidir sobre H₀:
 - a) Método tradicional: Obtenha o(s) valor(es) crítico(s) e compare a estatística teste com o(s) valor(es) crítico(s). Se a estatística teste estiver na região de rejeição, rejeite H₀. Caso não esteja, não rejeite H₀.
 - b) Método do valor P: a partir da estatística teste e do tipo de teste (H_1), determine o valor-P. Se valor-P < α , rejeite H_0 .
- 7. Após a conclusão sobre H₀, estabeleça a conclusão sobre a Afirmativa Original.

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses - Etapas

Temos uma afirmativa de pesquisa que queremos investigar: <u>Afirmativa Original</u> (AO) Passos para utilizar o teste de hipótese para investigar a AO.

- 1. Escreva a afirmativa original na forma simbólica (símbolos: >, <, =, ≠, ≥, ≤).
- 2. Escreva o oposto da AO, na forma simbólica de forma a excluir a AO.
- 3. Expresse H_0 e H_1 . Note: H_0 é a igualdade. H_1 não contém a igualdade. O sinal de H_1 indica teste unilateral à esquerda (<), bilateral (\neq) ou unilateral à direita (>).
- 4. Selecione o nível de significância α . (α = probabilidade de ocorrer é
- 5. Verifique a distribuição a ser utilizada para calcular a estatística tes
- 6. A partir da estatística teste utilize uma das abordagens para decidir 3.
 - a) Método tradicional: Obtenha o(s) valor(es) crítico(s) e comp 4. teste com o(s) valor(es) crítico(s). Se a estatística teste esti 5. rejeição, rejeite H₀. Caso não esteja, não rejeite H₀.
 - b) Método do valor P: a partir da estatística teste e do tipo de test o valor-P. Se valor-P < α , rejeite H₀.
- 7. Após a conclusão sobre H₀, estabeleça a conclusão sobre a Afirmativa Original.

Etapas


- 1. AO
- 2. Oposto
- 3. $H_0 e H_1$
- 4. NS α
- 5. Estatística teste.
- 6. Decisão sobre H₀:
 - a) Tradicional.
 - b) valor P.
- 7. Conclusão AO.

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses - Conclusão para a afirmativa de pesquisa

O teste Z de hipóteses para a Proporção

Vamos seguir todas as etapas apresentadas num exemplo específico (Levine et.al. 6ª Ed.):

O estudo busca determinar se o serviço de atendimento a clientes é melhor ou pior em portais de comércio virtual (*e-commerce*) do que em lojas físicas (exemplo de USA Today, 13/03/2007). De 1.100 respondentes, 561 afirmaram que o serviço de atendimento a clientes era melhor em portais de comércio virtual do que em lojas físicas.

Etapas do teste:

- 1. AO
- 2. Oposto
- 3. $H_0 e H_1$
- 4. NS α
- 5. Estatística teste.
- 6. Decisão sobre H₀:
 - a) Tradicional.
 - b) valor P.
- 7. Conclusão AO.

Utilizando as sete etapas descritas: As etapas em azul se referem diretamente ao problema de pesquisa. As etapas em preto são etapas estatísticas que podem ser feitas até mesmo com auxílio de software.

Detalhe de cada etapa para o teste de hipótese

Etapa 1. Escreva a afirmativa original (AO) na forma simbólica (símbolos: >, <, =, \neq , \geq , \leq).

Nesta etapa traduza a afirmativa da pesquisa em símbolos. No caso pretende-se investigar se o serviço de atendimento a clientes <u>é melhor ou pior</u> em portais de comércio virtual (*e-commerce*) do que em lojas físicas.

Foi feita pesquisa na qual 561 de1.100 responderam que é melhor.

Temos uma proporção amostral de respondentes que afirma ser melhor.

Se esta proporção for maior do que 0,5 (mais da metade da amostra), o serviço é melhor para *e-commerce*.

Se esta proporção for menor do que 0,5 (menos da metade da amostra), o serviço é pior para *e-commerce*.

Mas queremos fazer uma inferência para a população. Menos da metade ou mais da metade da população afirma ser melhor:

AO: $p \neq 0.5$

Etapa 1. Escreva a afirmativa original (AO) na forma simbólica (símbolos: >, <, =, \neq , \geq , \leq).

Nesta etapa traduza a afirmativa da pesquisa em símbolos. No caso pretende-se investigar se o serviço de atendimento a clientes <u>é melhor ou pior</u> em portais de comércio virtual (e-commerce) do que em lojas físicas.

Foi feita pesquisa na qual 561 de1.100 responderam que é melhor.

Temos uma proporção amostral de respondentes que afirma ser melhor.

Se esta proporção for maior do que 0,5 (mais da metade da amostra), o serviço é melhor

para e-commerce.

Se esta proporção for menor do que 0,5 (menos da metade da am para e-commerce.

Mas queremos fazer uma inferência para a população. Menos da 4. No a metade da população afirma ser melhor:

AO: $p \neq 0.5$

Etapas

1. AO **V**

2. Oposto

3. H₀ e H₁

5. Estatística teste.

Decisão sobre H₀:

a) Tradicional.

b) valor P.

Conclusão AO.

s da

pior

Etapa 2. Escreva o oposto da AO, na forma simbólica de forma a excluir a AO.

Nesta etapa considere a descrição da AO e escreva o oposto de forma a excluir todas as alternativas com relação à AO.

Como a AO considera a diferença, o oposto será a igualdade.

No problema específico o serviço de atendimento não seria nem melhor nem pior, seria igual:

Oposto: p = 0.5

Etapa 2. Escreva o oposto da AO, na forma simbólica de forma a excluir a AO.

Nesta etapa considere a descrição da AO e escreva o oposto de forma a excluir todas as alternativas com relação à AO.

Como a AO considera a diferença, o oposto será a igualdade.

No problema específico o serviço de atendimento não seria nem melhor nem pior, seria

igual:

Oposto: p = 0.5

Etapas

- 1. AO
- 2. Oposto ✓
- 3. $H_0 e H_1$
- 4. NS α
- 5. Estatística teste.
- 6. Decisão sobre H₀:
 - a) Tradicional.
 - b) valor P.
- 7. Conclusão AO.

Etapa 3. Expresse H₀ e H₁.

Nesta etapa observe como estão descritas AO e Oposto.

AO: $p \neq 0.5$ Oposto: p = 0.5

Para escrever H₀ e H₁, observe que H₀ sempre é a igualdade e que H₁ deve ser uma das duas alternativas entre "AO" e "Oposto". H₁ será aquela que não contém o sinal de igual.

 H_0 : p = 0.5 H_1 : $p \neq 0.5$

Como H₁ tem o sinal "≠", o teste será bilateral.

das

al.

Etapa 3. Expresse H₀ e H₁.

Nesta etapa observe como estão descritas AO e Oposto.

AO:
$$p \neq 0.5$$

Oposto: $p = 0.5$

Para escrever H₀ e H₁, observe que H₀ sempre é a igualdade e que duas alternativas entre "AO" e "Oposto". H₁ será aquela que não con 3. H₀ e H₁ ✓

$$H_0$$
: $p = 0.5$
 H_1 : $p \neq 0.5$

Como H₁ tem o sinal "≠", o teste será bilateral.

Etapas

- 1. AO
- 2. Oposto
- 4. NS α
- Estatística teste.
- Decisão sobre H₀:
 - a) Tradicional.
 - b) valor P.
- 7. Conclusão AO.

Etapa 4. Selecione o nível de significância α .

O nível de significância, representado por α , é a probabilidade de ocorrência de um erro do tipo I.

Erro do tipo I: Rejeitar a hipótese nula (rejeitar H₀) quando ela é verdadeira e não deve ser rejeitada

Quando não existe indicação do nível se significância, assuma α = 0,05.

$$\alpha = 0.05$$

Etapa 4. Selecione o nível de significância α .

O nível de significância, representado por α , é a probabilidade de ocorrência de um erro do tipo I.

Erro do tipo I: Rejeitar a hipótese nula (rejeitar H₀) quando ela é verdadeira e não deve ser rejeitada

Quando não existe indicação do nível se significância, assuma α = 0,05.

$$\alpha = 0.05$$

Etapas

- 1. AO
- 2. Oposto
- 3. $H_0 e H_1$
- 4. NS α 🗸
- 5. Estatística teste.
- 6. Decisão sobre H₀:
 - a) Tradicional.
 - b) valor P.
- 7. Conclusão AO.

Etapa 5. Verifique a distribuição a ser utilizada para calcular a estatística teste.

Como visto na etapa 3, trata-se de um teste sobre uma proporção populacional.

Um teste z, inferência sobre uma proporção, com a estatística teste dada por:

A partir da pesquisa:

$$\hat{p} = {}^{x}/_{n} = {}^{561}/_{1100} = 0.51$$

Pela hipótese H₀:

$$p = 0.5$$
 e assim $q = 0.5$

$$z_{teste} = \frac{0,51 - 0,50}{\sqrt{\frac{0,25}{1100}}}$$

$$z_{teste} = 0,663325$$

Etapa 5. Verifique a distribuição a ser utilizada para calcular a estatística teste.

Como visto na etapa 3, trata-se de um teste sobre uma proporção populacional.

Um teste z, inferência sobre uma proporção, com a estatística teste dada por:

A partir da pesquisa:

$$\hat{p} = {}^{x}/_{n} = {}^{561}/_{1100} = 0.51$$

Pela hipótese H₀:

$$p=0.5$$
 e assim $q=0.5$ e ass

$$z_{teste} = \frac{0.51 - 0.50}{\sqrt{\frac{0.25}{1100}}}$$

$$= \frac{0.51 - 0.50}{0.25}$$
6. Decisão sobre a) Tradicional. b) valor P. 7. Conclusão AO.

$$z_{teste} = 0,663325$$

Etapas

- 1. AO

- 5. Estatística teste. ✓
- 6. Decisão sobre H₀:
- 7. Conclusão AO.

Etapa 6. A partir da estatística teste utilize uma das abordagens para decidir sobre H₀.

A Etapa 6 consiste em rejeitar ou não rejeitar H₀, de acordo com uma das duas abordagens

- a) Método tradicional: Obtenha o(s) valor(es) crítico(s) e compare a estatística teste com o(s) valor(es) crítico(s). Se a estatística teste estiver na região de rejeição, rejeite H₀. Caso não esteja, não rejeite H₀.
- b) Método do valor P: a partir da estatística teste e do tipo de teste (H_1), determine o valor-P. Se valor-P < α , rejeite H_0 .

A seguir vamos detalhar cada abordagem neste exemplo específico.

Etapa 6 (a) - Abordagem pelo método tradicional

Esta abordagem consiste em comparar o valor obtido para a estatística teste, neste caso z_{teste} , com os valores críticos.

O(s) valor(es) crítico(s) separam a região de rejeição de H₀ (região crítica) da região de

não rejeição de H₀ (região de H₀).

Necessário para obter os valores críticos :

Saber a distribuição: Teste Z (Etapa 5)

Tipo de teste: Bilateral (Etapa 3)

Nível de significância: $\alpha = 0.05$ (Etapa 4)

Ver Tabela z, $\alpha/2 = 0.025$ $z_{crítico} = -1.96$ e 1.96

$$z_{teste} = 0,663325$$
 (Etapa 5)

Não rejeite H₀

Etapa 6 (a) - Abordagem pelo método tradicional

Esta abordagem consiste em comparar o va z_{teste} , com os valores críticos.

O(s) valor(es) crítico(s) separam a região de não rejeição de H_0 (região de H_0).

Necessário para obter os valores críticos : Saber a distribuição: Teste Z (Etapa 5) Tipo de teste: Bilateral (Etapa 3) Nível de significância: $\alpha = 0.05$ (Etapa 4)

Ver Tabela z, $\alpha/2 = 0.025$ $z_{crítico} = -1,96 \text{ e } 1,96$

 $z_{teste} = 0,663325$ (Etapa 5) **Etapas**

1. AO

Oposto

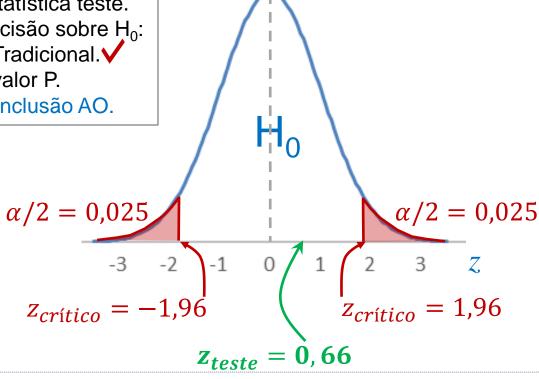
3. $H_0 e H_1$

4. NS α

Estatística teste.

Decisão sobre H₀:

Tradicional.


b) valor P.

Não rejeite H₀

7. Conclusão AO.

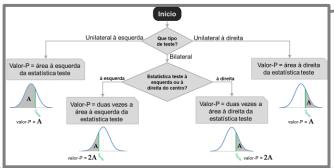
estatística teste, neste caso

região crítica) da região de

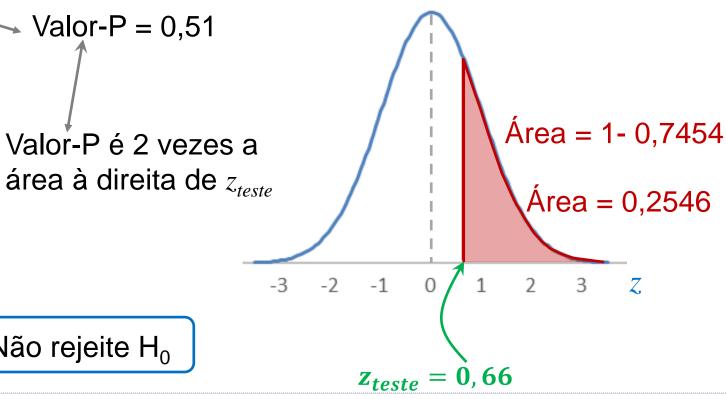
Etapa 6 (b) - Abordagem pelo método do valor-P

Esta abordagem consiste em comparar o valor-P com o nível de significância $\alpha=0.05$.

Se o valor-P < α , rejeite H₀


Se o valor- $P \ge \alpha$, Não rejeite H_0

Necessário para obter o valor-P:

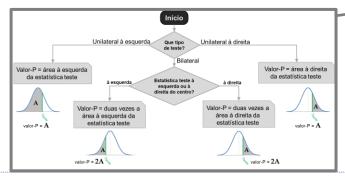

 $z_{teste} = 0,663325$ (Etapa 5)

Tipo de teste: Bilateral (Etapa 3)

Ver slide sobre valor-P:

Não rejeite H₀

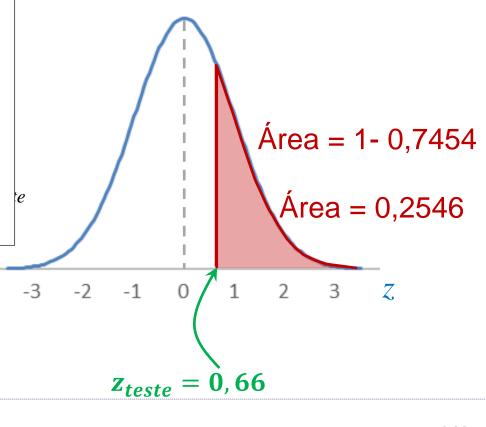
Etapa 6 (b) - Abordagem pelo método do valor-P


Esta abordagem consiste em comparar o valor-P com o nível de significância $\alpha=0.05$.

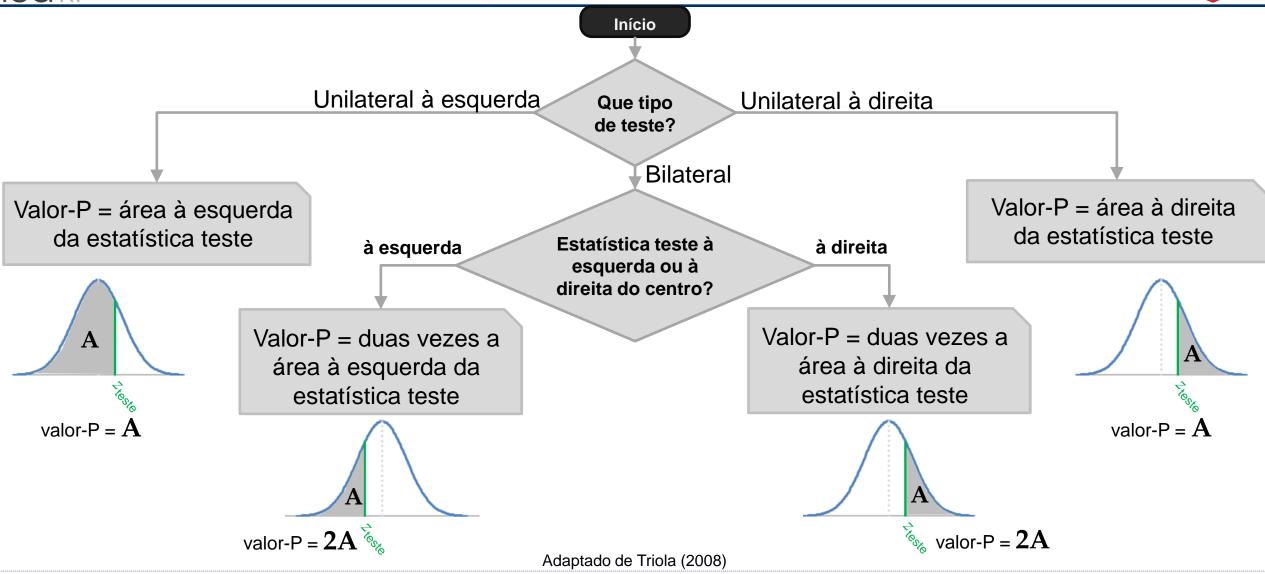
Se o valor-P < α , rejeite H₀ Se o valor-P $\geq \alpha$, Não rejeite H₀ Necessário para obter o valor-P:

 $z_{teste} = 0,663325$ (Etapa 5)

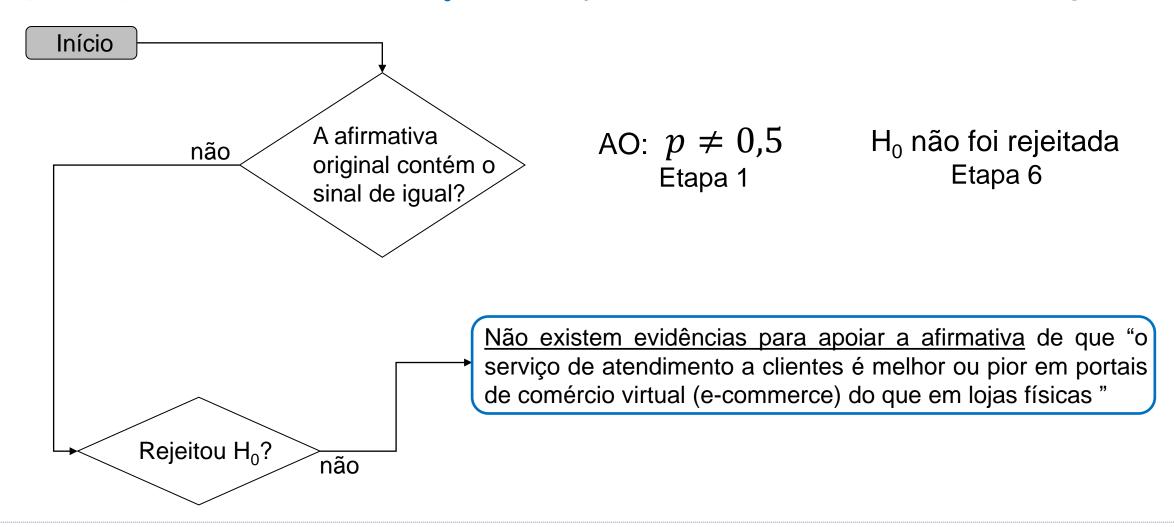
Tipo de teste: Bilateral (Etapa 3)

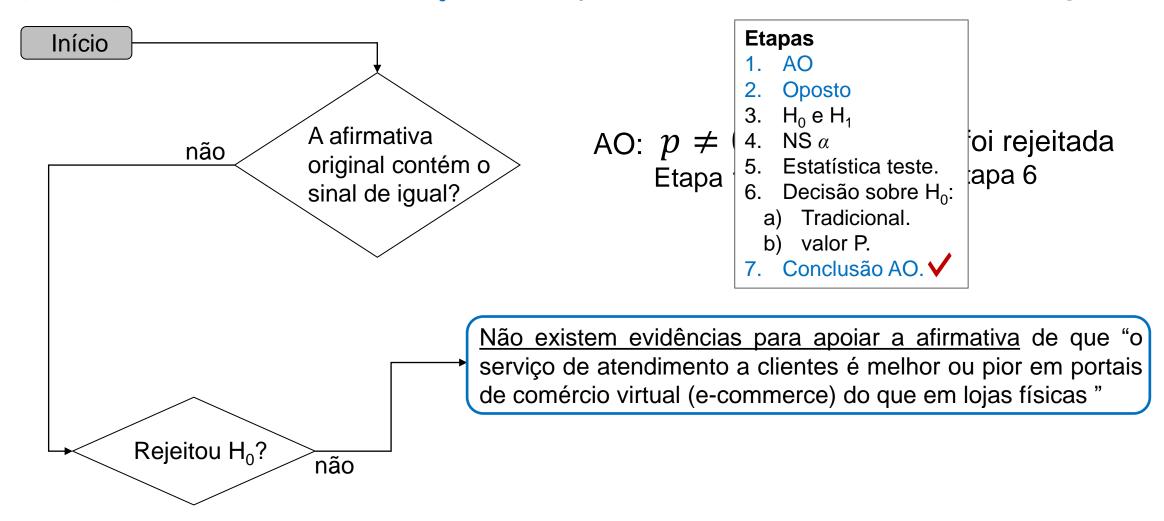

Ver slide sobre valor-P:

- 1. AO
- 2. Oposto
- 3. $H_0 e H_1$
- 4. NS α
- 5. Estatística teste.
- \bigvee_{i} 6. Decisão sobre H_0 :
 - a) Tradicional.
 - b) valor P. 🗸
 - 7. Conclusão AO.


Não rejeite H₀

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses - Determinação do valor-P




Etapa 7. Após a conclusão sobre H₀, estabeleça a conclusão sobre a Afirmativa Original

Etapa 7. Após a conclusão sobre H₀, estabeleça a conclusão sobre a Afirmativa Original

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses

Bibliografia

LEVINE, David M.; STEPHAN, David F.; KREHBIEL, Thimothy C.; BERENSON, Mark L. Estatística: Teoria e aplicações usando Microsoft® Excel em português, 6ª ed. Rio de Janeiro: LTC, 2012.

TRIOLA, M.F; Introdução à Estatística, 10^a ed. Rio de Janeiro: LTC, 2008.

