

RAD1408 - Estatística Aplicada à Administração: Testes de Hipóteses - ANOVA

Testes de hipóteses: ANOVA

Prof. Dr. Evandro Marcos Saidel Ribeiro FEA-RP Universidade de São Paulo

O gerente de vendas das lojas *Minotauro* quer determinar se existe diferença nas vendas de acordo com a marca de tênis com preços equivalentes. São consideradas três diferentes marcas: *Verd*, *Pluma* e *Konversa*. É selecionada uma amostra aleatória de 18 lojas, para coletar informações durante uma semana de vendas. O preço dos tênis são aproximadamente iguais. A Tabela 1 apresenta os volumes de vendas (em milhares de dólares) dos tênis em cada uma das lojas, obtido ao final de um período de experiência de uma semana.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de t	ênis		
Verd	Pluma	Konversa	ersa	
8,60	3,	20	4,60	
7,20	2,	40	6,00	
5,40	2,	00	4,00	
6,20	1,	40	2,80	
5,00	1,	80	2,20	
4,00	1,	60	2,80	

Existem evidências de alguma diferença na média das vendas entre as várias marcas?

Com base nesta amostra, o que o gerente de vendas deve concluir para a população em geral (vendas com relação à marca) ?

Diferenças entre mais de duas médias:

ANOVA: Análise da Variância (ANalysis Of VAriance).

ANOVA de Fator Único: Para identificar diferenças em mais de dois grupos, os grupos são classificados de acordo com níveis de um "**fator**" de interesse. Por exemplo, níveis de "**Marca**". A análise da variação entre os grupos e dentro do grupo leva a conclusão sobre possíveis diferenças entre as médias dos grupos.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca c	le tênis	
Verd	Pluma	Konversa	
	8,60	3,20	4,60
	7,20	2,40	6,00
	5,40	2,00	4,00
	6,20	1,40	2,80
	5,00	1,80	2,20
	4,00	1,60	2,80

Diferenças entre mais de duas médias:

ANOVA: Análise da Variância (ANalysis Of VAriance):

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único: Para identificar diferenças em mais de dois grupos, os grupos são classificados de acordo com níveis de um "**fator**" de interesse. Por exemplo, níveis de "**Marca**". A análise da variação entre os grupos e dentro do grupo leva a conclusão sobre possíveis diferenças entre as médias dos grupos.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca c	le tênis	
Verd	Pluma	Konversa	
	8,60	3,20	4,60
	7,20	2,40	6,00
	5,40	2,00	4,00
	6,20	1,40	2,80
	5,00	1,80	2,20
	4,00	1,60	2,80
	_	_	
	x_{Fr}	x_M	X _{Fun}

Diferenças entre mais de duas médias:

ANOVA: Análise da Variância (ANalysis Of VAriance):

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

H₁: pelo menos uma das médias é diferente das outras.

ANOVA de Fator Único: Para identificar diferenças em mais de dois grupos, os grupos são classificados de acordo com níveis de um "**fator**" de interesse. Por exemplo, níveis de "**Marca**". A análise da variação entre os grupos e dentro do grupo leva a conclusão sobre possíveis diferenças entre as médias dos grupos.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de tênis			
Verd	Pluma	Konversa		
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	
	_	_	_	
	x_{Fr}	x_M	X _{Fur}	

Diferenças entre mais de duas médias:

ANOVA: Análise da Variância (ANalysis Of VAriance):

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

H₁: pelo menos uma das médias é diferente das outras.

Amostra

ANOVA de Fator Único: Para identificar diferenças em mais de dois grupos, os grupos são classificados de acordo com níveis de um "**fator**" de interesse. Por exemplo, níveis de "**Marca**". A análise da variação entre os grupos e dentro do grupo leva a conclusão sobre possíveis diferenças entre as médias dos grupos.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de tênis		
Verd	Pluma	Konversa	
	8,60	3,20	4,60
	7,20	2,40	6,00
	5,40	2,00	4,00
	6,20	1,40	2,80
	5,00	1,80	2,20
	4,00	1,60	2,80
	_	_	
	X_{Fr}	x_M	X _{Fur}

Diferenças entre mais de duas médias:

ANOVA: Análise da Variância (ANalysis Of VAriance):

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

H₁: pelo menos uma das médias é diferente das outras.

Amostra → Inferência sobre população

ANOVA de Fator Único: Para identificar diferenças em mais de dois grupos, os grupos são classificados de acordo com níveis de um "**fator**" de interesse. Por exemplo, níveis de "**Marca**". A análise da variação entre os grupos e dentro do grupo leva a conclusão sobre possíveis diferenças entre as médias dos grupos.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de tênis			
Verd	Pluma	Konversa		
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	
	_	_	_	
	x_{Fr}	x_M	X _{Fur}	

Diferenças entre mais de duas médias:

ANOVA: Análise da Variância (ANalysis Of VAriance):

 H_0 : $\mu_1 = \mu_2 = \mu_3 = ...$

H₁: pelo menos uma das médias é diferente das outras.

Amostra → Inferência sobre população

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

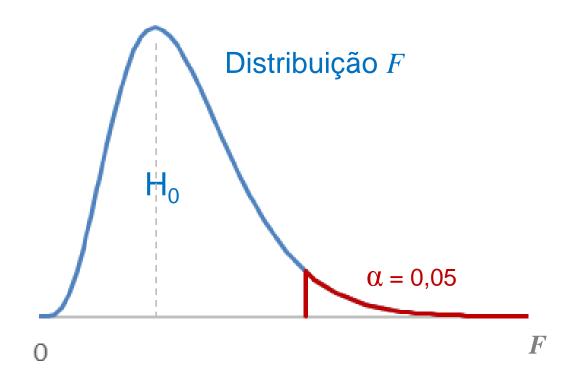
Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral



$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

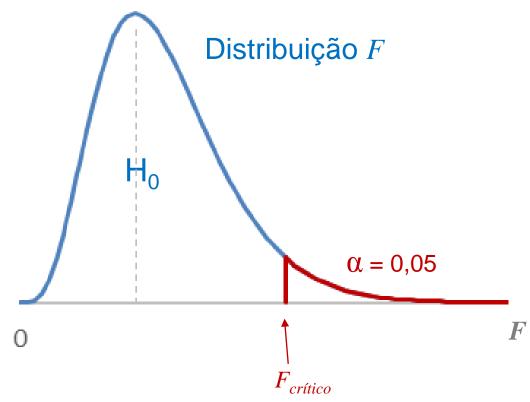
Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral



$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $oldsymbol{S}_{\overline{oldsymbol{x}}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

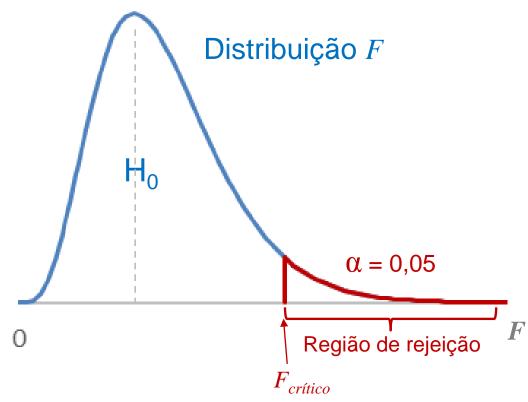
Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral



$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $S_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

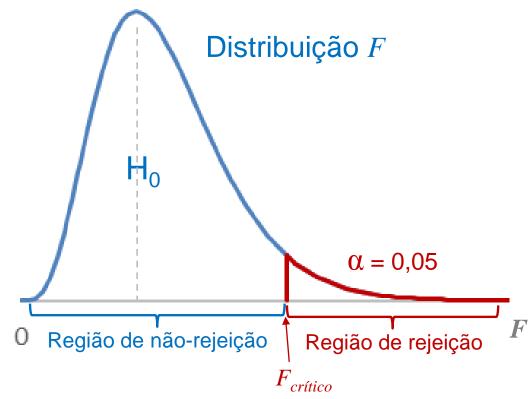
Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral



$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral

Ex.: Marcas de tênis.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral

Ex.: Marcas de tênis.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca da tânic

		iviarca de tenis	
	Verd	Pluma	Konversa
	8,60	3,20	4,60
	7,20	2,40	6,00
	5,40	2,00	4,00
	6,20	1,40	2,80
7	5,00	1,80	2,20
	4,00	1,60	2,80

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral

Ex.: Marcas de tênis.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca do tônic

		iviarca de ter	115
_	Verd	Pluma	Konversa
	8,60	3,20	4,60
	7,20	2,40	6,00
	5,40	2,00	4,00
	6,20	1,40	2,80
~	5,00	1,80	2,20
_	4,00	1,60	2,80

$$x_{Fr} = x_M = x_{Fun} =$$

médias

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{r}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral

Ex.: Marcas de tênis.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca do tônic

	iviarca d	ie tenis	
Verd	Pluma	Konversa	
	8,60	3,20	4,60
	7,20	2,40	6,00
	5,40	2,00	4,00
	6,20	1,40	2,80
▼	5,00	1,80	2,20
	4,00	1,60	2,80

$$x_{Fr} = 6.1$$
 $x_{M} = 2.1$ $x_{Fun} = 3.7$ médias

ANOVA de Fator Único com tamanhos amostrais iguais.

$$F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$$

 $s_{\overline{x}}^2$ é a variância das médias amostrais

 s_p^2 é a média das variâncias amostrais

Graus de liberdade:

Numerador: $gl_1 = k - 1$

Denominador: $gl_2 = k (n - 1)$

k = número de amostras

n = tamanho amostral

Ex.: Marcas de tênis.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de tên	İS	
Verd	Pluma	Konversa	
8,60	3,20	4,60)
7,20	2,40	6,00)
5,40	2,00	4,00)
6,20	1,40	2,80)
5,00	1,80	2,20)
4,00	1,60	2,80)

$$x_{Fr} = 6.1$$
 $x_{M} = 2.1$ $x_{Fun} = 3.7$ médias

$$s_{Fr}^2 = 2.71$$
 $s_M^2 = 0.43$ $s_{Fun}^2 = 2.01$ variâncias

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca de tênis

$oldsymbol{F}$		$n s_{\overline{x}}^2$
1 teste	_	$\overline{S_p^2}$

	iviarca de ter	115
Verd	Pluma	Konversa
8,60	3,20	4,60
7,20	2,40	6,00
5,40	2,00	4,00
6,20	1,40	2,80
5,00	1,80	2,20
4,00	1,60	2,80
6,07	2,07	3,73
2,71	0,43	2,01

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

0,43

 $F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2}$

2,01 Variâncias

Tabela	T. Venuas na se		\mathbf{s}_p	
	Marca de tênis			k = número de amostras = 3
Verd	Pluma	Konversa		n = tamanho amostral = 6
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	
	6,07	2,07	3,73	Médias

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

() () () () () () () () () ()			$_{-}$	
Marca de tênis			k = número de amostras = 3	
Verd	Pluma	Konversa		- n = tamanho amostral = 6
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	

Variância das médias: $S_{\overline{x}}^2 = 4,037$

1,60

2,07

2,01 Variâncias

3,73 Médias

2,80

4,00

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na sem	nana (US\$ 1.000,00)
-------------------------	----------------------

2,07

0,43

$oldsymbol{F}$	_	$n s_{\overline{x}}^2$
* teste	_	$\overline{S_p^2}$

145C14 2. Verraus na Sernana (657 1.666,667)				\cdot
Marca de tênis			k = número de amostras = 3	
Verd	Pluma	Konversa		n = tamanho amostral = 6
8	3,60	3,20	4,60	
7	⁷ ,20	2,40	6,00	
5	5,40	2,00	4,00	
6	5,20	1,40	2,80	
5	5,00	1,80	2,20	
4	ł,00	1,60	2,80	
				· \/ariância das m

3,73 Médias

2,01 Variâncias

Variância das médias: $S_{\overline{x}}^2 = 4,037$

Média das variâncias: $S_p^2 = 1,717$

6,07

ANOVA de Fator Único com tamanhos amostrais iguais.

rabela 1. Vendas na semana (OS\$ 1.000,00)	Tabela 1.	Vendas na semana	(US\$ 1.000,00)
--	-----------	------------------	-----------------

2,07

0,43

$oldsymbol{F}$	$-\frac{n s_{\overline{x}}^2}{}$	$= 6 \times 4,037$
teste	$-\frac{1}{S_p^2}$	1,717

Tabela 1. Vendas na semana (059 1.000,00)			\mathfrak{s}_n	
Marca de tênis			k = número de amostras = 3	
Verd	Pluma	Konversa		n = tamanho amostral = 6
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	

3,73 Médias

2,01 Variâncias

Variância das médias: $S_{\overline{x}}^2 = 4,037$

Média das variâncias: $S_p^2 = 1,717$

6,07

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana	(US\$ 1.000,00)
----------------------------	-----------------

2,07

0,43

$F_{\cdot \cdot \cdot} =$	$=\frac{n S_{\overline{x}}^2}{1}$	$= 6 \times 4,037$	= 14,1045549
- teste -	S_p^2	1,717	

Tabela	T. Vendas na se		\mathfrak{I}_n	
	Marca de tênis			k = número de amostras = 3
Verd	Pluma	Konversa		n = tamanho amostral = 6
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	

3,73 Médias

2,01 Variâncias

Variância das médias: $S_{\overline{x}}^2 = 4,037$

Média das variâncias: $S_p^2 = 1,717$

6,07

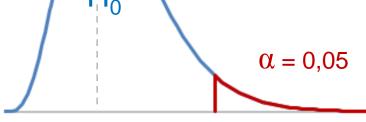
ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

		<u> </u>	<u>, , , </u>	
	k = núme			
Verd	Pluma	Konversa		n = tama
	8,60	3,20	4,60	II – tarria
	7,20	2,40	6,00	
	5,40	2,00	4,00	
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	
	6,07	2,07	3,73	Médias
	2,71	0,43	2,01	Variâncias

 $F_{teste} = \frac{n \, s_{\bar{x}}^2}{s_p^2} = \frac{6 \times 4,037}{1,717} = 14,1045549$

k = número de amostras = 3n = tamanho amostral = 6



Variância das médias: $S_{\overline{x}}^2 = 4,037$

Média das variâncias: $S_p^2 = 1,717$

 $\alpha = 0.05$

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca de tênis					
Verd	Pluma	Konversa			
	8,60	3,20	4,60		
	7,20	2,40	6,00		
	5,40	2,00	4,00		
	6,20	1,40	2,80		
	5,00	1,80	2,20		

1,60

2,07

0,43

 $F_{teste} = \frac{n \, s_{\overline{x}}^2}{s_p^2} = \frac{6 \, x \, 4,037}{1,717} = 14,1045549$

k = número de amostras = 3n = tamanho amostral = 6

 $gI_1 = k - 1 = 2$

2,80

3,73 Médias

2,01 Variâncias

 $gl_2 = k (n - 1) = 15$

Variância das médias: $S_{\overline{r}}^2 = 4,037$

Média das variâncias: $S_p^2 = 1,717$

4,00

6,07

ANOV	A de F	Ta	abela A-5	Distribuição F (alfa = 0,05 na cauda DIREITA)						
		α –	0,05		Número de Graus de Liberdade do Numerador (gl ₁)				dor (gl₁)	
		u –	0,03	1	2	3	4	5	6	
Tabela 1.	. Vendas	l 2)	1	161,448	199,500	215,707	224,583	230,162	233,986	
	_	6)	2	18,513	19,000	19,164	19,247	19,296	19,330	
	M	형	3	10,128	9,552	9,277	9,117	9,013	8,941	
Verd	Pl	nac	4	7,709	6,944	6,591	6,388	6,256	6,163	
	8,60	Denominador	5	6,608	5,786	5,409	5,192	5,050	4,950	
		Si C	6	5,987	5,143	4,757	4,534	4,387	4,284	
	7,20	Ď	7	5,591	4,737	4,347	4,120	3,972	3,866	$\alpha = 0.05$
	5,40	op	8	5,318	4,459	4,066	3,838	3,687	3,581	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	6,20		9	5,117	4,256	3,863	3,633	3,482	3,374	
		da	10	4,965	4,103	3,708	3,478	3,326	3,217	
	5,00	Liberdade	11	4,844	3,982	3,587	3,357	3,204	3,095	
	4,00	Ħ	12	4,747	3,885	3,490	3,259	3,106	2,996	
	•	de	13	4,667	3,806	3,411	3,179	3,025	2,915	4,037
	6,07		14	4,600	3,739	3,344	3,112	2,958	2,848	
	2,71	Graus	15	4,543	3,682	3,287	3,056	2,901	2,790	4 747
		e G	16	4,494	3,634	3,239	3,007	2,852	2,741	1,717

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca de tênis					
Verd	Pluma	Konversa			
	8,60	3,20	4,60		
	7,20	2,40	6,00		
	5,40	2,00	4,00		
	6,20	1,40	2,80		
	5,00	1,80	2,20		

1,60

2,07

0,43

 $F_{teste} = \frac{n S_{\overline{x}}^2}{S^2} = \frac{6 \times 4,037}{1,717} = 14,105$ k = número de amostras = 3

n = tamanho amostral

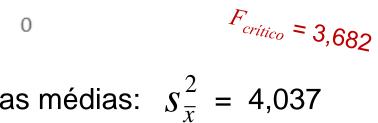
 $gI_1 = k - 1 = 2$

2,80

3,73 Médias

2,01 Variâncias

 $gl_2 = k (n - 1) = 15$



Variância das médias: $S_{\overline{r}}^2 = 4,037$

Média das variâncias: $S_n^2 = 1,717$

4,00

6,07

 $F_{crítico} = 3,682$

ANOVA de Fator Único com tamanhos amostrais iguais.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca d		k = núr	
Verd	Pluma	Konversa		n = tan
	8,60	3,20	4,60	$gl_1 = k$
	7,20	2,40	6,00	$gl_2 = k$
	5,40	2,00	4,00	J 2
	6,20	1,40	2,80	
	5,00	1,80	2,20	
	4,00	1,60	2,80	
	6,07	2,07	3,73	Médias

0,43

 $F_{teste} = \frac{n S_{\overline{x}}^2}{S_p^2} = \frac{6 \times 4,037}{1,717} = 14,105$ k = número de amostras = 3 n = tamanho amostral = 6

 $gl_1 = k - 1 = 2$ $gl_2 = k (n - 1) = 15$

2,01 Variâncias

Variância das médias: $S_{\overline{x}}^2 = 4,037$

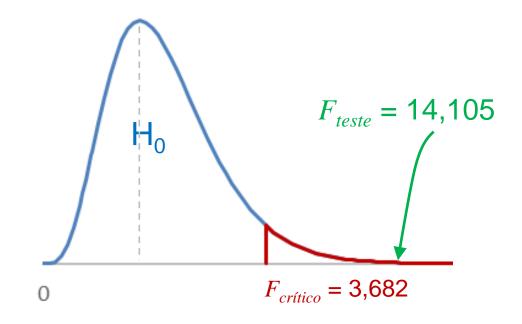
Média das variâncias: $S_p^2 = 1,717$

ANOVA de Fator Único com tamanhos amostrais iguais.

 H_0 : $\mu_{Verd} = \mu_{Pluma} = \mu_{Konversa}$

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de tênis					
Verd	Pluma	Konversa				
8,60	3,20	4,60				
7,20	2,40	6,00				
5,40	2,00	4,00				
6,20	1,40	2,80				
5,00	1,80	2,20				
4,00	1,60	2,80				
6,07	2,07	3,73	Médias			
2,71	0,43	2,01	Variâncias			



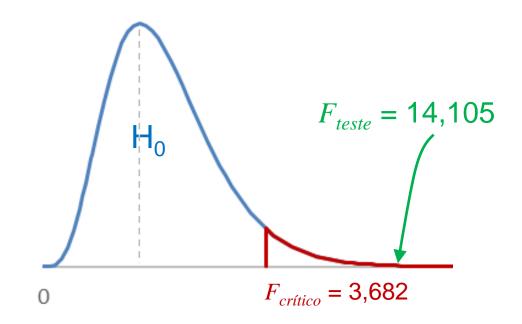
ANOVA de Fator Único com tamanhos amostrais iguais.

 μ_0 : $\mu_{Verd} = \mu_{Pluma} = \mu_{Konversa}$

H₁: pelo menos uma das médias é diferente das outras.

Tabela 1. Vendas na semana (US\$ 1.000,00)

	Marca de tênis						
Verd	Pluma	Konversa	_				
8,60	3,20	4,60					
7,20	2,40	6,00					
5,40	2,00	4,00					
6,20	1,40	2,80					
5,00	1,80	2,20					
4,00	1,60	2,80	_				
6,0	7 2,07	3,73	Médias				
2,73	1 0,43	2,01	Variâncias				



ANOVA de Fator Único com tamanhos amostrais iguais.

 μ_0 : $\mu_{Verd} = \mu_{Pluma} = \mu_{Konversa}$

H₁: pelo menos uma das médias é diferente das outras.

 $F_{crítico} = 3,682$

Tabela 1. Vendas na semana (US\$ 1.000,00)

0,43

H_∩ é rejeitada. Marca de tênis Pluma Verd Konversa 4,60 8,60 3,20 7,20 2,40 6,00 5,40 2,00 4,00 $F_{teste} = 14,105$ H_0 6,20 1,40 2,80 5,00 1,80 2,20 4,00 1,60 2,80 6,07 3,73 Médias 2,07

2,01 Variâncias

ANOVA de Fator Único com tamanhos amostrais iguais.

 μ_0 : $\mu_{Verd} = \mu_{Pluma} = \mu_{Konversa}$

H₁: pelo menos uma das médias é diferente das outras.

Tabela 1. Vendas na semana (US\$ 1.000,00)

Marca de tênis Zerd Pluma Konversa H₀ é rejeitada.

Existem evidências de diferença na média das vendas entre as marcas de tênis com precos equivalentes.

Verd	Pluma	Konversa		Lentre as marcas de tênis com preços equivalentes.
	8,60	3,20	4,60	
	7,20	2,40	6,00	
	5,40	2,00	4,00	$F_{teste} = 14,105$
	6,20	1,40	2,80	H_0
	5,00	1,80	2,20	
	4,00	1,60	2,80	
	6,07	2,07	3,73	Médias
	2,71	0,43	2,0	Variancias $Variancias$ Var

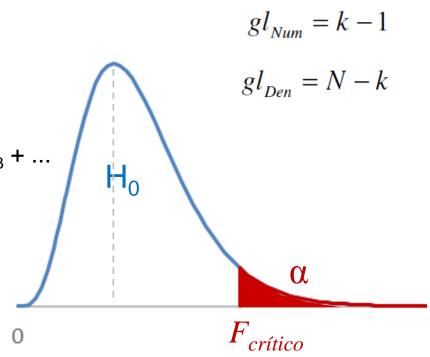
ANOVA de Fator Único com tamanhos amostrais diferentes.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = ...$

H₁: pelo menos uma das médias é diferente das outras.

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

 $F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1} \right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N-k} \right]} \quad \begin{array}{l} \overline{\overline{x}} & = \text{m\'edia geral} \\ k & = \text{n\'umero de amostras (grupos)} \\ n_i & = \text{n\'umero de elementos da amostra } i \\ N & = \text{n\'umero de elementos} = n_1 + n_2 + n_3 + \dots \\ \overline{x}_i & = \text{m\'edia da amostra } i \end{array}$ S_i^2 = variância da amostra i



ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Tabela 2. Número de machucados na cabeça

Categoria de carro						
Subcompacto	Compacto	Médio	Grande			
681	643	469	384			
428	655	727	656			
917	442	525	602			
898	514	454	687			
420	525	259	360			
669						

ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Tabela 2. Número de machucados na cabeça

Categoria de carro					
Subcompacto	Compacto	Médio	Grande		
681	643	469	384		
428	655	727	656		
917	442	525	602		
898	514	454	687		
420	525	259	360		
669					

$$k = 4$$

$$N = 21$$

ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Tabela 2. Número de machucados na cabeça

Categoria de carro							
Subcompacto	Subcompacto Compacto Médio Grande						
681	643	469	384				
428	655	727	656				
917	442	525	602				
898	514	454	687				
420	525	259	360				
669							

$$k = 4$$
 $n_i = [6; 5; 5; 5]$
 $N = 21$

ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Tabela 2. Número de machucados na cabeça

	Categoria de carro					
S	ubcompacto	Compacto	Médio	Grande		
	681	643	469	384		
	428	655	727	656		
	917	442	525	602		
	898	514	454	687		
	420	525	259	360		
	669					

$$\overline{\overline{x}} = 567,38$$
 $k = 4$
 $n_i = [6; 5; 5; 5]$
 $N = 21$

ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Os dados sobre machucados na cabeça são listados na Tabela 2 em quatro categorias diferentes de carros, Subcompacto, Compacto, Médio, Grande.

Tabela 2. Número de machucados na cabeça

		•			34
	_	\mathcal{X}			
Subcompacto	Compacto	Médio	Grande	_	k
681	643	469	384	_	n_i
428	655	727	656		i^{\prime}
917	442	525	602		N
898	514	454	687		
420	525	259	360		
669					
668,83	555,80	486,80	537,80	Médias	
216,41	90,95	167,66	154,61	Desvios padrão)
46834,17	8272,70	28110,20	23905,20	Variâncias	

ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Os dados sobre machucados na cabeça são listados na Tabela 2 em quatro categorias diferentes de carros, Subcompacto, Compacto, Médio, Grande.

Tabela 2. Número de machucados na cabeça

	Categoria d	de carro		$\mathcal{X} = 567,38$
Subcompacto	Compacto	Médio	Grande	k = 4
681	643	469	384	$n_i = [6; 5; 5; 5]$
428	655	727	656	$n_i = [0, 0, 0, 0]$
917	442	525	602	N = 21
898	514	454	687	
420	525	259	360	$X_i = [668,83; 555,8; 486,8; 537,8]$
669				
668,83	555,80	486,80	537,80	Médias
216,41	90,95	167,66	154,61	Desvios padrão
46834,17	8272,70	28110,20	23905,20	Variâncias

ANOVA de Fator Único com tamanhos amostrais diferentes:

Caso: Machucado na cabeça em batida de carro.

Os dados sobre machucados na cabeça são listados na Tabela 2 em quatro categorias diferentes de carros, Subcompacto, Compacto, Médio, Grande.

Tabela 2. Número de machucados na cabeça

	_	Categoria de carro							
	_	Grande	Médio	Compacto	Subcompacto				
		384	469	643	681				
		656	727	655	428				
		602	525	442	917				
		687	454	514	898				
		360	259	525	420				
	_				669				
	 Médias	537,80	486,80	555,80	668,83				
padrão	Desvios pa	154,61	167,66	90,95	216,41				
as	Variância	23905,20	28110,20	8272,70	46834,17				

$$\overline{\overline{X}} = 567,38$$
 $k = 4$
 $n_i = [6; 5; 5; 5]$
 $N = 21$
 $\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$
 $S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$

Machucado na cabeça em batida de carro: O nro de machucados é diferente por carro:
$$F_{teste} = \frac{\sum n_i (\overline{x}_i - \overline{x})^2}{\left[\sum (n_i - 1)s_i^2\right]}$$

$$= \frac{\sum n_i (\overline{x}_i - \overline{x})^2}{\left[\sum (n_i - 1)s_i^2\right]}$$

$$= \frac{\sum (n_i - 1)s_i^2}{\left[\sum (n_i - 1)s_i^2\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Categoria	i	n_i		
Subcompacto	1	6		
Compacto	2	5		
Médio	3	5		
Grande	4	5		

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Categoria	i	n_i
Subcompacto	1	6
Compacto	2	5
Médio	3	5
Grande	4	5

6
$$(668,83 - 567,38)^2 = 61.755,51$$

Machucado na cabeça em batida de carro: O nro de machucados é diferente por categoria?

Machucado na cabeça em batida de carro: O nro de machucados é diferente por care
$$F_{teste} = \frac{\left[\sum_{i=1}^{\infty} n_i \left(\overline{x}_i - \overline{x} \right)^2 \right]}{\left[\sum_{i=1}^{\infty} n_i \left(\overline{x}_i - \overline{x} \right)^2 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i \left(\overline{x}_i - \overline{x} \right)^2 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i \left(\overline{x}_i - \overline{x} \right)^2 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i \left(\overline{x}_i - \overline{x} \right)^2 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i \left(\overline{x}_i - \overline{x} \right)^2 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n_i - 1 \right]} = \frac{\left[\sum_{i=1}^{\infty} n_i - 1 \right]}{\left[\sum_{i=1}^{\infty} n$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Categoria
$$i$$
 n_i Subcompacto16Compacto25Médio35

Grande

$$6 (668,83 - 567,38)^2 = 61.755,51$$

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

				cados é diferente por cat
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Cor}$ H_1 : pelo menos uma	npacto das	= μ _{Médio} médias	= μ _{Grande} é diferente das outras.
$F_{teste} = \frac{\begin{bmatrix} \kappa - 1 \end{bmatrix}}{\begin{bmatrix} \kappa - 1 \end{bmatrix}}$	Categoria	i	n_i	
$\sum (n_i - 1)s_i^2$	Subcompacto	1	6	•
N-k	Compacto	2	5	
$\overline{\overline{X}} = 567,38$	Médio	3	5	
k = 4	Grande	4	5	•
$n_i = [6; 5; 5; 5]$				
N = 21			↓ 6 (668,8	$33 - 567,38)^2 = 61.755,51$

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeça e	m batida de carro: O n	ro de	machu	cados é diferente por cat
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{1 - 1}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Com}$ H_1 : pelo menos uma	npacto ⁼ das r	= μ _{Médio} nédias (= μ _{Grande} é diferente das outras.
$F_{teste} = \frac{\begin{bmatrix} k-1 \end{bmatrix}}{[\sum (n-1)a^2]}$	Categoria	i	n_i	
$\sum (n_i - 1)s_i^2$	Subcompacto	1	6	
N-k	Compacto	2	5	
$\overline{\overline{X}} = 567,38$	Médio	3	5	
k = 4	Grande	4	5	
$n_i = [6; 5; 5; 5]$				
<i>N</i> = 21			↓	
$\overline{X}_i = [668,83; 555,8; 486,8;$	537,8]		6 (668,8	$(33 - 567,38)^2 = 61.755,51$
$s^2 = [46924.17, 9272.7, 2914]$	0.2: 22005.2.1			

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeça er	n batida de carro: O n	ro de	machu	cados é diferer	nte por ca
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{1 - 1}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Con}$ H_1 : pelo menos uma	npacto [:] das r	= μ _{Médio} nédias	= μ _{Grande} é diferente das	outras.
$F_{teste} = $	Categoria	i	n_{i}	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	
$\sum (n_i - 1)s_i^2$	Subcompacto	1	<u>_</u> 6	61.755,51	
N-k	Compacto	2	5	670,59	
$\overline{\overline{X}} = 567,38$	Médio	3	5	32.466,45	
	Grande	4	5	4.375,16	
$k = 4$ $n_i = [6; 5; 5; 5]$ $N = 21$			6 (668,8	33 – 567,38) ² = 61.	755,51
$X_i = [668,83; 555,8; 486,8; 5]$	537,8]				·

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 2^{\circ}$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

Machucado na cabeça em	batida de carro: O n	ro de	machu	ıcados é diferer	nte por cat		
$\begin{bmatrix} \sum n_i (\overline{x}_i - \overline{\overline{x}})^2 \end{bmatrix} \qquad \begin{array}{l} H_0: \ \mu_{Subcompacto} = \mu_{Compacto} = \mu_{Médio} = \mu_{Grande} \\ H_1: \ pelo \ menos \ uma \ das \ médias \ \acute{e} \ diferente \ das \ o \\ \end{array}$							
$F_{teste} = $	Categoria	i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$			
$\sum_{i} (n_i - 1)s_i^2$	Subcompacto	1	6	61.755,51			
N-k	Compacto	2	5	670,59			
$\frac{\overline{\overline{X}}}{\overline{X}} = 567.38$	Médio	3	5	32.466,45			
$\frac{b}{b}$	Grande	4	5	4.375,16			

$$(6-1)$$
 $46.834,17 = 234.170,83$

Machucado na cabeça em batida de carro: O nro de machucados é diferente por categoria?

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 2^{\prime}$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeça en	n batida de carro: O n	ro de	e machu	ıcados é diferer	nte por cat
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{1 - 1}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Com}$ H_1 : pelo menos uma	pacto das	= $\mu_{ ext{Médio}}$ médias	= μ _{Grande} é diferente das	outras.
$F_{teste} = $	Categoria	i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	
$\sum_{i} (n_i - 1)s_i^2$	Subcompacto	1	<u>6</u>	61.755,51	
N-k	Compacto	2	5	670,59	
$\overline{\overline{X}} = 567.38$	Médio	3	5	32.466,45	
k = 4	Grande	4	5	4.375,16	
N = 4					

(6-1) 46.834,17 = 234.170,83

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N-k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$H_0$$
: $\mu_{Subcompacto} = \mu_{Compacto} = \mu_{Médio} = \mu_{Grande}$

H	1:	pe	0	menos	uma	das	médias	é	diferente	das	outras.
---	----	----	---	-------	-----	-----	--------	---	-----------	-----	---------

i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$
1	<u>6</u>	61.755,51
2	5	670,59
3	5	32.466,45
4	5	4.375,16
	<i>i</i> 1 2 3 4	1 6 2 5

$$(6-1)$$
 $46.834,17 = 234.170,83$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 2^{\circ}$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeça e	m batida de carro: O n	ro de	e machu	ıcados é difere	nte por categoria
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{1 - 1}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Com}$ H_1 : pelo menos uma	npacto das	= $\mu_{Médio}$ médias	= μ _{Grande} é diferente das	outras.
$F_{teste} = $	Categoria	i	n_{i}	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	$(n_i-1)s_i^2$
$\left \frac{\sum (n_i - 1)s_i^2}{N - k} \right $	Subcompacto	1	<u>6</u>	61.755,51	234.170,83
	Compacto	2	5	670,59	33.090,80
$\overline{\overline{X}} = 567.38$	Médio	3	5	32.466,45	112.440,80
l	Grande	4	5	4.375,16	95.620,80

$$(6 - 1) 46.834,17 = 234.170,83$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 2^{\prime}$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeç	em batida de carro: O n	ro de	machu	ıcados é difere	nte por categoria
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{1 - \overline{x}}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Cor}$ H_1 : pelo menos uma	npacto ⁼ das r	= µ _{Médio} nédias	= μ _{Grande} é diferente das	outras.
$F_{teste} = $	Categoria	i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	$(n_i-1)s_i^2$
$\left \frac{\sum (n_i - 1)s_i^2}{N - k} \right $	Subcompacto	1	6	61.755,51	234.170,83
	Compacto	2	5	670,59	33.090,80
$\overline{\overline{X}} = 567,38$	Médio	3	5	32.466,45	112.440,80
1 .	Grande	4	5	4.375,16	95.620,80
K = 4		Sc	oma	99.267,72	475.323,23

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N-k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

Machucado na cabeça em batida de carro: O nro de machucados é diferente por categoria							
$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{l_{i-1}}\right]$	H_0 : $\mu_{Subcompacto} = \mu_{Con}$ H_1 : pelo menos uma	npacto = das n	= µ _{Médio} nédias	$\mu_{\text{Grande}} = \mu_{\text{Grande}}$ s é diferente das	outras.		
$F_{teste} = $	Categoria	i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	$(n_i-1)s_i^2$		
$\left \frac{\sum (n_i - 1)s_i^2}{N - k} \right $	Subcompacto	1	6	61.755,51	234.170,83		
	Compacto	2	5	670,59	33.090,80		
$\overline{\overline{X}} = 567,38$	Médio	3	5	32.466,45	112.440,80		
1	Grande	4	5	4.375,16	95.620,80		
K = 4		So	ma	99.267,72	475.323,23		
$n_i = [6; 5; 5; 5]$	k-1 =	3	,	Variância Entre =	33.089,24		

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N-k}\right]}$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 21$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeça em batida de carro: O nro de machucados é diferente por categoria							
$\left\lceil \frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{1 - 1} \right\rceil$	H_0 : $\mu_{Subcompacto} = \mu_{Cont}$ H_1 : pelo menos uma	mpacto = das n	= μ _{Médio} nédias	= μ _{Grande} é diferente das	outras.		
$F_{teste} = \frac{\left[\begin{array}{c} k - 1 \\ \hline \left[\begin{array}{c} \sum (n_i - 1)s_i^2 \\ N - k \end{array}\right] \right]}$	Categoria	i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	$(n_i-1)s_i^2$		
	Subcompacto	1	6	61.755,51	234.170,83		
	Compacto	2	5	670,59	33.090,80		
$\overline{\overline{X}} = 567,38$	Médio	3	5	32.466,45	112.440,80		
	Grande	4	5	4.375,16	95.620,80		
k = 4		So	ma	99.267,72	475.323,23		
$n_i = [6; 5; 5; 5]$	k-1 =	3	V	ariância Entre =	33.089,24		
<i>N</i> = 21	N-k =	17	Va	riância Dentro =	27.960,19		

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$F_{teste} = \frac{\left[\frac{\sum n_i (\bar{x}_i - \bar{\bar{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]} = 1,1834$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$N = 2^{\prime}$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

Machucado na cabeça em batida de carro: O nro de machucados é diferente por categoria							
$\left \frac{\sum n_i(x_i - x_i)}{\sum n_i(x_i - x_i)} \right $ H ₁ : pe	_{ubcompacto} = μ _{Con} lo menos uma	_{npacto} = das n	= μ _{Médio} nédias	= μ _{Grande} é diferente das	outras.		
$F_{teste} = \frac{\left[\begin{array}{c} k-1 \\ \hline \end{array}\right]}{\left[\begin{array}{c} k-1 \\ \hline \end{array}\right]} = 1,1834$	Categoria	i	n_{i}	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	$(n_i-1)s_i^2$		
$\sum_{i} (n_i - 1)s_i^2$	Subcompacto	1	6	61.755,51	234.170,83		
N-k	Compacto	2	5	670,59	33.090,80		
$\overline{\overline{X}} = 567.38$	Médio	3	5	32.466,45	112.440,80		
,	Grande	4	5	4.375,16	95.620,80		
K = 4		So	ma	99.267,72	475.323,23		
$n_i = [6; 5; 5; 5]$	k-1 =	3	V	/ariância Entre =	33.089,24		
N = 21	N-k =	17	Va	riância Dentro =	27.960,19		
$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$				$F_{teste} =$	1,1834		

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

1,1834

Machucado na cabeça em batida de carro: O nro de machucados é diferente por categoria?

$$\sum_{\text{veste}} n_i \left(\overline{x}_i - \overline{\overline{x}} \right)^2$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

_	k-1	
$F_{teste} = -$	$\begin{bmatrix} \mathbf{\nabla} (\mathbf{r} & 1) \mathbf{r}^2 \end{bmatrix}$	= 1,1834
	$\sum (n_i - 1)s_i^2$	
	N-k	
_		

Categoria	i	n_i	$n_i(\overline{x}_i - \overline{\overline{x}})^2$	$(n_i-1)s_i^2$
Subcompacto	1	6	61.755,51	234.170,83
Compacto	2	5	670,59	33.090,80
Médio	3	5	32.466,45	112.440,80
Grande	4	5	4.375,16	95.620,80
	Sc	oma	99.267,72	475.323,23
k-1 =	3	Variância Entre =		33.089,24
N-k =	17	Variância Dentro =		27.960,19

 $F_{teste} =$

$$\overline{X} = 567,38$$
 $gl_{Num} = k - 1 = 3$ $k = 4$ $n_i = [6; 5; 5; 5]$ $gl_{Den} = N - k = 17$

$$gl_{Den} = N - k = 17$$

 $gl_{Num} = k - 1 = 3$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}\right]}{\left[\sum (n_i - 1)s_i^2\right]} =$$

$$\left[\frac{1}{N-k} \right]$$

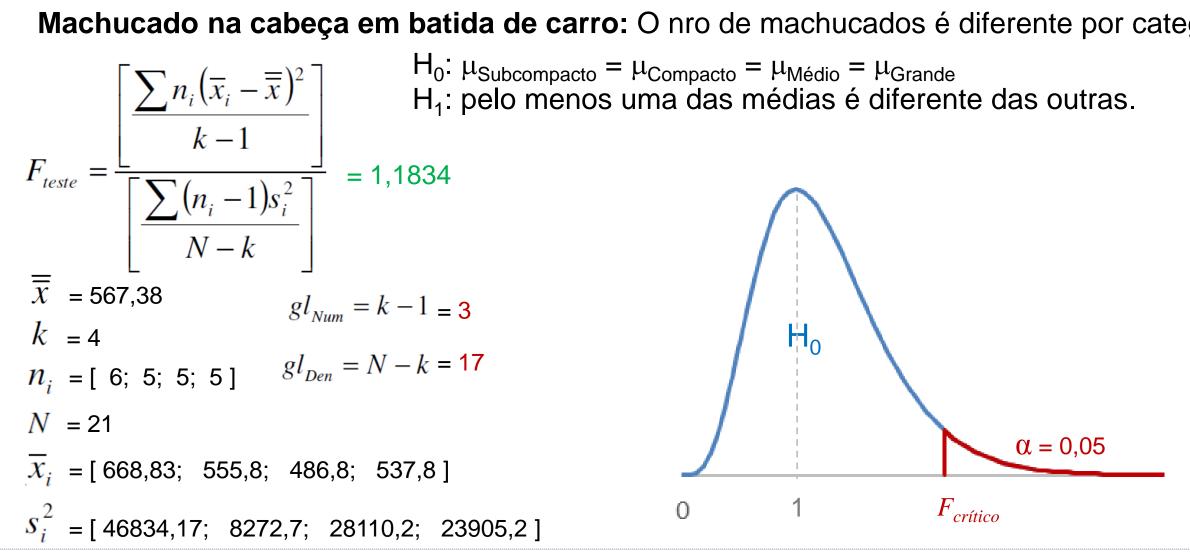
$$\overline{X} = 567,38$$

$$k = 4$$

$$\overline{\overline{X}} = 567,38$$
 $gl_{Num} = k - 1 = 3$ $k = 4$ $gl_{Den} = N - k = 17$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$



N = 21

RAD1408 - Estatística Aplicada à Administração: ANOVA de fator único com tamanhos amostrais diferentes

Machucado na cabeça em batida

$$F_{teste} = \frac{\left[\frac{\sum n_{i}(\overline{x}_{i} - \overline{\overline{x}})^{2}}{k - 1}\right]}{\left[\frac{\sum (n_{i} - 1)s_{i}^{2}}{N - k}\right]} = 1,1834$$

$$\overline{\overline{X}} = 567,38$$
 $gl_{Num} = k - 1 = 3$ $k = 4$ $gl_{Den} = N - k = 17$ $gl_{Den} = N - k = 17$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 2390]$$

Tabela A-5 Distribuição F (alfa = 0,05 na o						r categoria?
~ -	0,05					
u –	0,03	1	2	3	4	s.
2)	1	161,448	199,500	215,707	224,583	5.
<u>6</u>	2	18,513	19,000	19,164	19,247	
Denominador (gl	3	10,128	9,552	9,277	9,117	
l ac	4	7,709	6,944	6,591	6,388	
Ē	5	6,608	5,786	5,409	5,192	
2	6	5,987	5,143	4,757	4,534	
	7	5,591	4,737	4,347	4,120	
용	8	5,318	4,459	4,066	3,838	
<u>e</u>	9	5,117	4,256	3,863	3,633	
ďa	10	4,965	4,103	3,708	3,478	
)er	11	4,844	3,982	3,587	3,357	
Graus de Liberdade do	12	4,747	3,885	3,490	3,259	
g	13	4,667	3,806	3,411	3,179	
<u>8</u>	14	4,600	3,739	3,344	3,112	
<u>ī</u>	15	4,543	3,682	3,287	3,056	
9	16	4,494	3,634	3,239	3,007	
ge	17	4,451	3,592	3,197	2,965	
ero	18	4,414	3,555	3,160	2,928	

$$F_{teste} = \frac{\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{}\right]}$$

$$H_0$$
: $\mu_{\text{Subcompacto}} = \mu_{\text{Compacto}} = \mu_{\text{Médio}} = \mu_{\text{Grande}}$

$$\overline{\overline{X}} = 567,38$$
 $gl_{Num} = k - 1 = 3$ $k = 4$ $gl_{Den} = N - k = 17$

$$gl_{Num} = k - 1 = 3$$

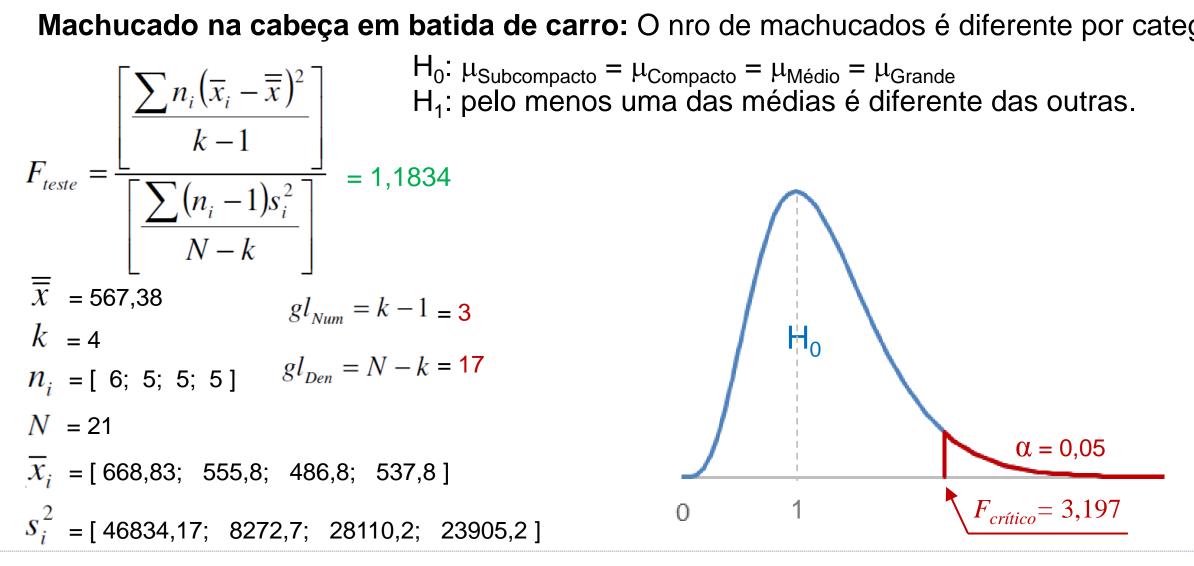
$$k = 4$$

$$gl_{Den} = N - k = 17$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$



$$\left[\frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}\right]$$

$$F_{teste} = \frac{\left[\sum (n_i - 1)s_i^2\right]}{\left[\frac{N - k}{N - k}\right]} = 1.18$$

$$\overline{\overline{X}} = 567,38$$

$$k = 4$$

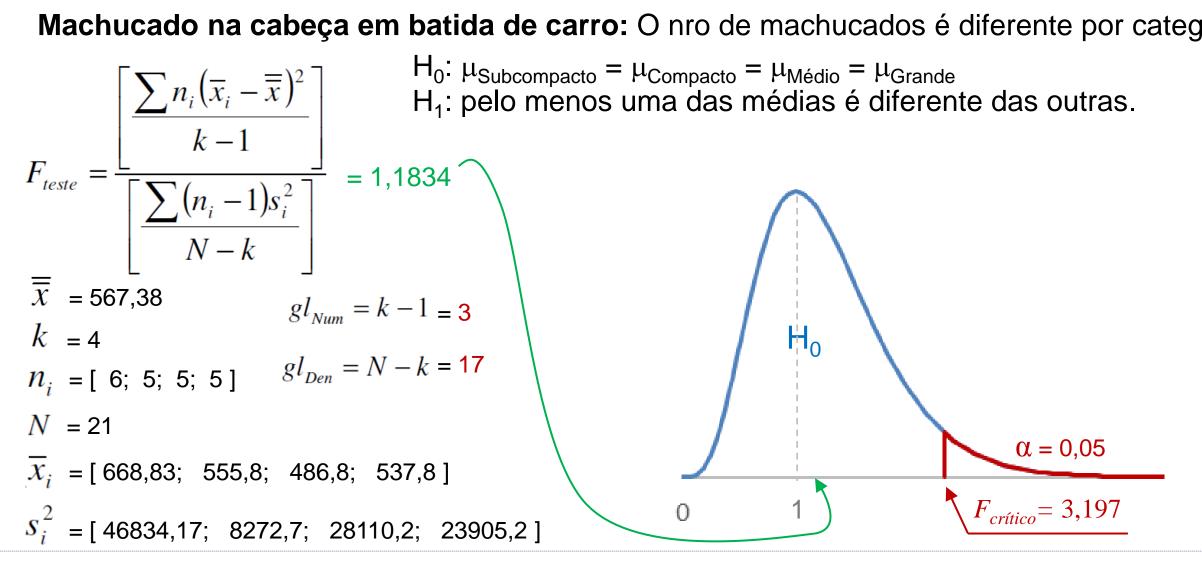
$$\overline{\overline{X}} = 567,38$$
 $gl_{Num} = k - 1 = 3$ $k = 4$ $n_i = [6; 5; 5; 5]$ $gl_{Den} = N - k = 17$

$$gl_{Dan} = N - k = 17$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$



Machucado na cabeça em batida de carro: O nro de machucados é diferente por ca
$$\begin{bmatrix}
\sum n_i (\overline{x}_i - \overline{\overline{x}})^2 \\
k-1
\end{bmatrix}$$

$$F_{teste} = \frac{\sum (n_i - 1)s_i^2}{N-k}$$

$$= 1,1834$$

$$\overline{\overline{x}} = 567,38$$

$$gl_{Num} = k-1 = 3$$

$$k = 4$$

$$n_i = [6; 5; 5; 5]$$

$$gl_{Den} = N-k = 17$$

$$\left[\frac{\sum (n_i - 1)s_i^2}{N - k}\right]$$

$$\frac{1}{\sum_{i} (n_i - 1) s_i^2} = 1,1834$$

$$gl_{Num} = k - 1 = 3$$

$$k = 4$$

$$gl_{Den} = N - k = 17$$

$$N = 21$$

$$\overline{X}_i = [668,83; 555,8; 486,8; 537,8]$$

$$S_i^2 = [46834,17; 8272,7; 28110,2; 23905,2]$$

