
RAD1408 - Estatística Aplicada à Administração: Testes de hipóteses a partir de duas amostras

Inferências sobre duas proporções:

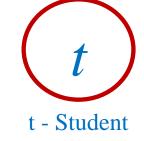
$$H_0: p_1 = p_2$$

Estatística teste:

Inferências sobre duas médias: Amostras Emparelhadas $H_{\bullet}, \mu_d = 0$

Estatística teste:

sendo \overline{d} a média de todas as diferenças amostrais $d_i=x_{i1}-x_{i2}$; e s_d é o desvio padrão das diferenças amostrais


Inferências sobre duas médias: Amostras

Independentes

$$H_0: \mu_1 = \mu_2$$

Estatística teste:

$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}},$$

Comparação da variação em duas amostras: Teste F para comparação de variância

$$H_0: \sigma_1^2 = \sigma_2^2$$

Estatística teste:

$$F_{toste} = \frac{s_1^2}{s_2^2},$$

F

Distribuição F

sendo s_1^2 a maior das duas variâncias amostrais.

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

Teste de hipótese para duas médias

O tipo de disposição de mercadorias utilizado em

um supermercado afeta as vendas dos produtos? Como gerente regional de vendas da *BLK Alimentos* você deseja comparar o volume de vendas de refrigerantes da marca *BLK* quando o produto é exposto em uma localização normal de prateleira com o volume de vendas quando o produto é exposto em posições especiais de ponta de corredor. Para testar a eficácia da exposição em ponta de corredor você seleciona 20 filiais da cadeia de supermercados que apresentam volumes de vendas similares. Depois disso, você designa aleatoriamente 10 dentre as 20 para um grupo (grupo 1) e as outras 10 para outro grupo (grupo 2). Os gerentes das 10 lojas do grupo 2 passam a utilizar a exposição em locais especiais em ponta de corredor. Ao final de uma semana são registradas as vendas do refrigerante da marca *BLK*. De que modo você determinaria se as vendas do refrigerante *BLK* nas lojas que fizeram uso da exposição promocional de ponta de corredor são iguais àquelas ocorridas quando o refrigerante é exposto em prateleiras com localização regular?

Como utilizar as respostas para essas perguntas de modo a incrementar as vendas dos refrigerantes BLK? Utilize as informações a seguir:

Tabela 1. Comparação de vendas (volume) de acordo com o local de exposição do produto

Normal					Ponta	Ponta de Corredor				
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	

Teste de hipótese para duas médias

O tipo de disposição de mercadorias utilizado em

um supermercado afeta as vendas dos produtos? Como gerente regional de vendas da *BLK Alimentos* você deseja comparar o volume de vendas de refrigerantes da marca *BLK* quando o produto é exposto em uma localização normal de prateleira com o volume de vendas quando o produto é exposto em posições especiais de ponta de corredor. Para testar a eficácia da exposição em ponta de corredor você seleciona 20 filiais da cadeia de supermercados que apresentam volumes de vendas similares. Depois disso, você designa aleatoriamente 10 dentre as 20 para um grupo (grupo 1) e as outras 10 para outro grupo (grupo 2). Os gerentes das 10 lojas do grupo 2 passam a utilizar a exposição em locais especiais em ponta de corredor. Ao final de uma semana são registradas as vendas do refrigerante da marca *BLK*. De que modo você determinaria se as vendas do refrigerante *BLK* nas lojas que fizeram uso da exposição promocional de ponta de corredor são iguais àquelas ocorridas quando o refrigerante é exposto em prateleiras com localização regular?

Como utilizar as respostas para essas perguntas de modo a incrementar as vendas dos refrigerantes BLK? Utilize as informações a seguir:

Tabela 1. Comparação de vendas (volume) de acordo com o local de exposição do produto

Normal					Ponta	Ponta de Corredor				
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	

Duas médias

Normal						Ponta de Corredor					
22	34	52	62	30	52	71	76	54	67		
40	64	84	56	59	83	66	90	77	84		

Duas médias

Inferências sobre duas médias: **Amostras**

Independentes $H_0: \mu_1 = \mu_2$

Estatística teste:
$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl = \text{escolha o menor entre} \quad (n_1 - 1) \in (n_2 - 1)$$

$$\alpha = 0.05$$

$$\alpha = 0.05$$

Normal					Ponta de Corredor					
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	
									:-1-1 0000	

Duas médias

Afirmativa:
$$\mu_n = \mu_{pc}$$

Inferências sobre médias: duas **Amostras**

Independentes
$$H_0: \mu_1 = \mu_2$$

Estatística teste:
$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl = \text{escolha o menor entre} \quad (n_1 - 1) \in (n_2 - 1)$$

$$\alpha = 0.05$$

$$\alpha = 0.05$$

Normal						Ponta de Corredor					
22	34	52	62	30	52	71	76	54	67		
40	64	84	56	59	83	66	90	77	84		

Duas médias

Afirmativa: $\mu_n = \mu_{pc}$ Oposto: $\mu_n \neq \mu_{pc}$

Inferências sobre duas médias: **Amostras**

Independentes $H_0: \mu_1 = \mu_2$

Estatística teste:
$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
 escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$
$$\alpha = 0.05$$

$$\alpha = 0.05$$

Normal						Ponta de Corredor				
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	

Duas médias

Afirmativa: $\mu_n = \mu_{pc}$

Oposto: $\mu_n \neq \mu_{pc}$

 H_0 : $\mu_n = \mu_{pc}$

 H_1 : $\mu_n \neq \mu_{pc}$

Inferências sobre duas médias: **Amostras**

Independentes $H_0: \mu_1 = \mu_2$

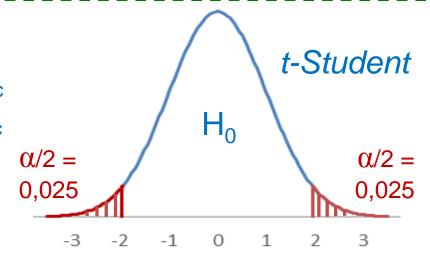
Estatística teste:

$$gl = \text{escolha o menor entre} \quad (n_1 - 1) \in (n_2 - 1)$$

$$\alpha = 0.05$$

$$\alpha = 0.05$$

Normal					Ponta de Corredor					
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	


Duas médias

Afirmativa:
$$\mu_n = \mu_{pc}$$

Oposto: $\mu_n \neq \mu_{pc}$

$$H_0$$
: $\mu_n = \mu_{pc}$

 H_1 : $\mu_n \neq \mu_{pc}$

Inferências sobre duas médias: Amostras

Independentes $H_0: \mu_1 = \mu_2$

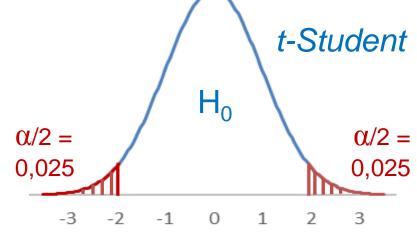
Estatística teste:
$$t_{teste} = \frac{x_1 - \frac{x_2}{\sqrt{s_1^2}}}{\sqrt{s_1^2}}$$

$$= \frac{1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$\alpha = 0.05$$

Normal						Ponta de Corredor				
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	
	•	•		•	•				0 11 1 00	



Duas médias

Afirmativa: $\mu_n = \mu_{pc}$

Oposto: $\mu_n \neq \mu_{pc}$

 H_0 : $\mu_n = \mu_{pc}$ H_1 : $\mu_n \neq \mu_{pc}$

Inferências sobre duas médias: **Amostras**

Independentes

$$H_0: \mu_1 = \mu_2$$

Estatística teste:

$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

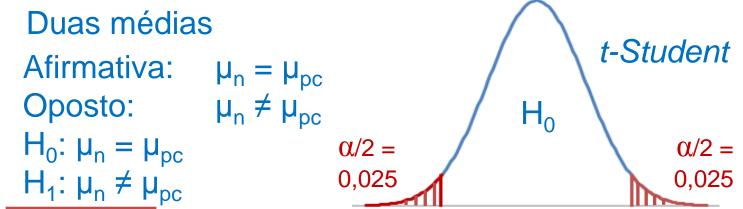
$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$

$$ql = 9$$

$$\alpha = 0.05$$

Г	Tabela A-3		Distr	ibuição t: Valores Crític	cos t							
A			Área em Uma Cauda									
C		0,005	0,01	0,025	0,05	0,10						
Н	Graus de		Área	em Dua<u>s</u> Cau das								
H	Liberdade	0,01	0,02	0,05	0,10	0,20						
	1	63,657	31,821	12,706	6,314	3,078						
	2	9,925	6,965	4,303	2,920	1,886						
	3	5,841	4,541	3,182	2,353	1,638						
	4	4,604	3,747	2,776	2,132	1,533						
Infer	5	4,032	3,365	2,571	2,015	1,476						
Inde	6	3,707	3,143	2,447	1,943	1,440						
	7	3,499	2,998	2,365	1,895	1,415						
Estat	8	3,355	2,896	2.306	1,860	1,397						
	9	3,250	2,821	2,262	1,833	1,383						
	10	3,169	2,764	2,228	1,812	1,372						

grau de liberdade:


gl = escolha o menor entre $(n_1 - 1) \text{ e } (n_2 - 1)$ $n_n = n_{pc} = 10$ gl = 9 $\alpha = 0.05$

Normal					Ponta de Corredor					
22	34	52	62	30	52	71	76	54	67	
40	64	84	56	59	83	66	90	77	84	
	•	•			•	•			1 1 0000	

Evandro Saidel - 2022

 $t_c = 2,262$

-2

 $t_c = -2,262$

-1

0

1

Inferências sobre duas médias: **Amostras**

Independentes

$$H_0: \mu_1 = \mu_2$$

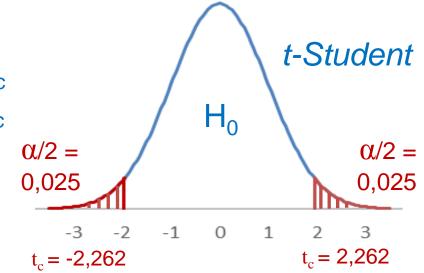
$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$

$$ql = 9$$

$$\alpha = 0.05$$


Duas médias

Afirmativa:
$$\mu_n = \mu_{pc}$$

Oposto:
$$\mu_n \neq \mu_{pc}$$

$$H_0$$
: $\mu_n = \mu_{pc}$

$$H_1$$
: $\mu_n \neq \mu_{pc}$

t-Student
$$x_n = 50.3$$
 $s_n = 18,726$

$$x_{pc} = 72.0$$
 $s_{pc} = 12.543$

Inferências sobre duas médias: **Amostras**

$$H_0: \mu_1 = \mu_2$$

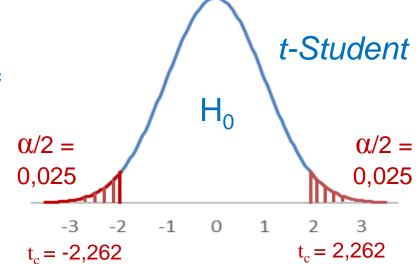
$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$

$$gl = 9$$

$$\alpha = 0.05$$



Duas médias

Afirmativa:
$$\mu_n = \mu_{pc}$$

Oposto: $\mu_n \neq \mu_{pc}$

$$H_0$$
: $\mu_n = \mu_{pc}$

$$H_1$$
: $\mu_n \neq \mu_{pc}$

t-Student
$$x_n = 50.3$$
 $s_n = 18,726$

$$\bar{x}_{pc} = 72.0$$
 $s_{pc} = 12.543$

$$t_{\text{teste}} = \frac{(50,3 - 72,0)}{\text{raiz}[(18,726^2 + 12,542^2)/10]}$$

$$t_{\text{teste}} = -3,04455$$

Inferências sobre duas médias: **Amostras**

 $H_0: \mu_1 = \mu_2$ Independentes

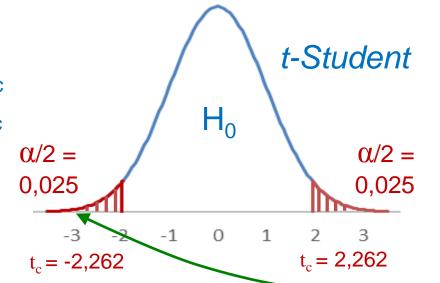
Estatística teste:
$$t_{teste} = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{s_1^2} + \frac{s_2^2}{s_2^2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$

$$gl = 9$$

$$\alpha = 0.05$$


Duas médias

Afirmativa:
$$\mu_n = \mu_{pc}$$

Oposto: $\mu_n \neq \mu_{pc}$

$$H_0$$
: $\mu_n = \mu_{pc}$

 H_1 : $\mu_n \neq \mu_{pc}$

t-Student
$$x_n = 50.3$$
 $s_n = 18,726$

$$x_{pc} = 72.0$$
 $s_{pc} = 12.543$

$$t_{\text{teste}} = \frac{(50,3 - 72,0)}{\text{raiz}[(18,726^2 + 12,542^2)/10]}$$

$$t_{\text{teste}} = -3,04455$$

Inferências sobre duas médias: **Amostras**

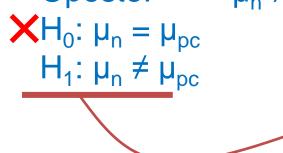
Independentes

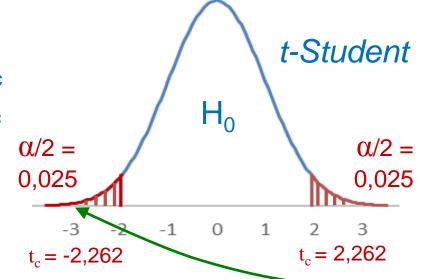
$$H_0: \mu_1 = \mu_2$$

$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$


$$gl = 9$$


$$\alpha = 0.05$$

Duas médias

Afirmativa: $\mu_n = \mu_{pc}$ Oposto: $\mu_n \neq \mu_{pc}$

t-Student
$$x_n = 50.3$$
 $s_n = 18,726$

$$x_{pc} = 72.0$$
 $s_{pc} = 12.543$

$$t_{\text{teste}} = \frac{(50,3 - 72,0)}{\text{raiz}[(18,726^2 + 12,542^2)/10]}$$

$$t_{\text{teste}} = -3,04455$$

Inferências sobre duas médias: **Amostras**

Independentes

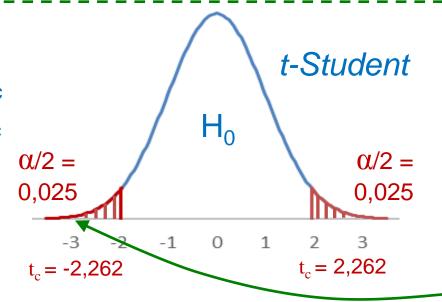
$$H_0: \mu_1 = \mu_2$$

$$t_{teste} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$

$$gl = 9$$


$$\alpha = 0.05$$

Duas médias

Afirmativa: $\mu_n = \mu_{pc}$ Oposto: $\mu_n \neq \mu_{pc}$

 $\times H_0$: $\mu_n = \mu_{pc}$ H_1 : $\mu_n \neq \mu_{pc}$

$$x_n = 50.3$$
 $s_n = 18.726$

$$x_{pc} = 72.0$$
 $s_{pc} = 12.543$

$$t_{\text{teste}} = \frac{(50,3 - 72,0)}{\text{raiz}[(18,726^2 + 12,542^2)/10]}$$

$$t_{\text{teste}} = -3,04455$$

Inferências médias: sobre duas **Amostras**

 $H_0: \mu_1 = \mu_2$ Independentes

Estatística teste:
$$t_{teste} = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{s_1^2 + \frac{s_2^2}{s_2^2}}}}$$

H₀ é rejeitada.

Não podemos afirmar que as vendas nas lojas que fazem exposição normal são iguais as vendas nas lojas que fizeram exposição na ponta do corredor.

$$gl =$$
escolha o menor entre $(n_1 - 1)$ e $(n_2 - 1)$

$$n_n = n_{pc} = 10$$
 $gl = 9$ $\alpha = 0.05$

$$gl = 9$$

$$\alpha = 0.05$$