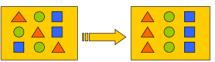


FERRAMENTAS ADMINISTRATIVAS DE TQC

- · As 7 ferramentas tradicionais:
 - 1. Estratificação;
 - 2. Folha de Verificação;
 - 3. Diagrama de Causa-Efeito;
 - 4. Diagrama de Pareto;
 - 5. Diagrama de Dispersão;
 - 6. Histograma;
 - 7. Carta de Controle.

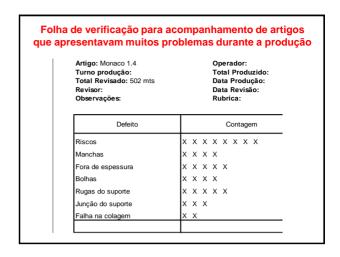


1. ESTRATIFICAÇÃO E FLUXOGRAMA

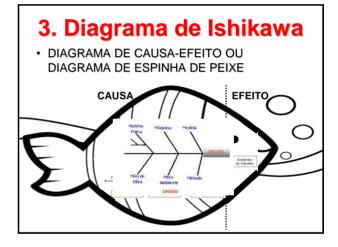
Estratificação

- Divisão de um grupo em diversos subgrupos com base em fatores apropriados, os quais são conhecidos como fatores de estratificação:
 - 1. Permite focalizar as ações.
 - Os fatores máquina, matéria-prima, mão-de-obra, métodos, medidas e meio ambiente são categorias naturais para a estratificação de dados

2. Folha de Verificação

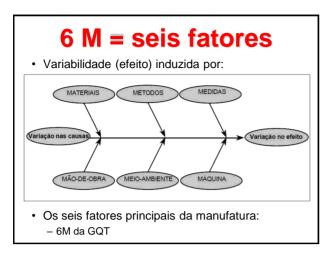

Folha de Verificação

- Formulário no qual itens a serem examinados já estão impressos, com o objetivo de facilitar a coleta e o registro de dados
- · Principais objetivos:
 - 1. Facilitar a coleta e dados
 - 2. Organizar os dados durante a coleta, eliminando a necessidade de rearranjo manual posterior
- Normalmente são elaboradas após a definição das categorias para estratificação dos dados.


EXEMPLOS:

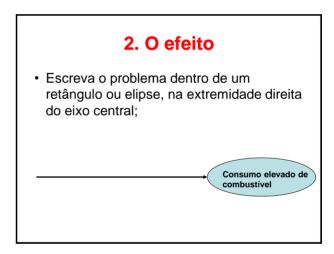
- Folha de verificação para:
 - distribuição de um item de controle de um processo produtivo;
 - classificação de defeitos;
 - identificação de causas de defeitos.

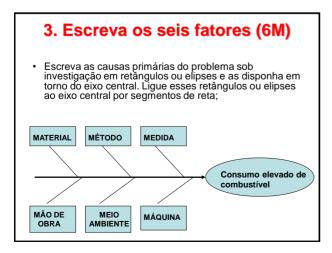
Distribuição de um processo produtivo - Distribuição da espessura de parede de um perfii extrudado em PVC rígido - Espessura nominal de 40 mm com tolerância de +/- 0.8 mm

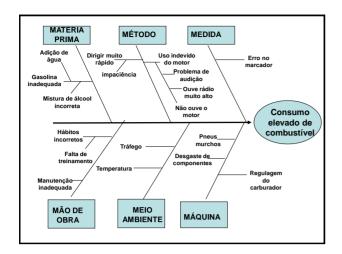


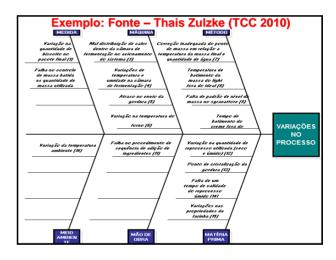
O QUE É?

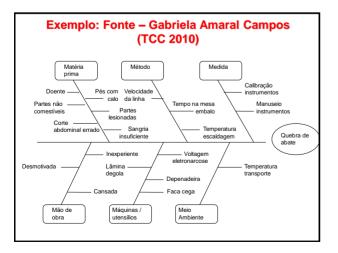
- Proposto por Kaoru Ishikawa na década de 60.
- Auxilia a identificar e classificar as possíveis causas, tanto de problemas específicos de um processo como de características da qualidade de um produto

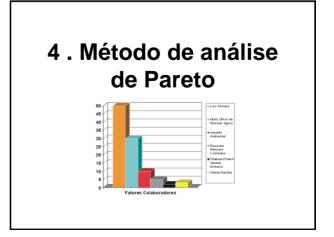

Diagrama de Ishikawa


- Representação gráfica:
 - "EFEITO" e todas as "CAUSAS" possíveis que o influenciam
 - > CAUSA = variáveis que causam a variabilidade.
 - Ex.: equipamento mal calibrado
 - EFEITO = característica de qualidade ou problema a ser estudado.
 - Ex.: porcentagem de não conformes

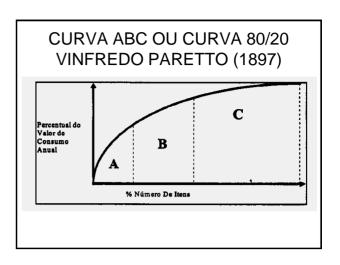


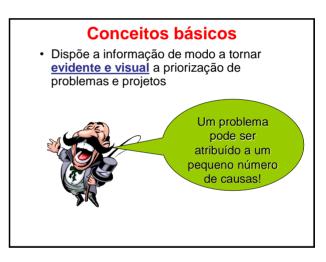

4. Identifique as sub-causas • Identifique as causas secundárias dentro de cada causa primária. Escreva estas causas ao redor da respectiva causa primária. Brainstorming

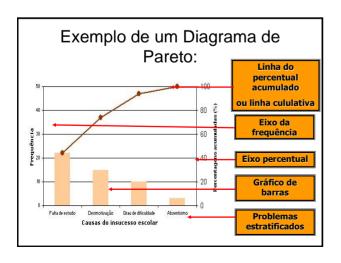


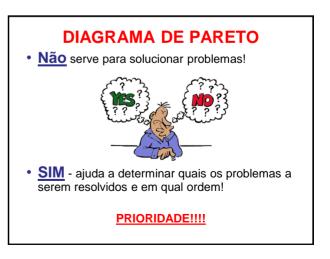

Comentários

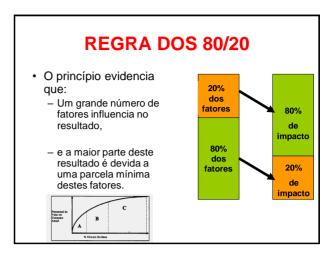
- Perguntar repetidamente e responder:
 - "Que tipo de variabilidade (nas causas) poderia afetar a característica da qualidade de interesse ou resultar no problema considerado?"
- O grau de importância de cada causa:
 - estabelecido com base em dados:
- · Escolha causas e efeitos mensuráveis;
- O diagrama não tem a função de
 - identificar qual é a causa fundamental do problema considerado.

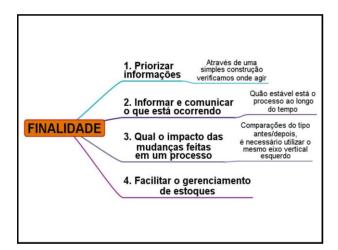

Exemplos reais na indústria de alimentos





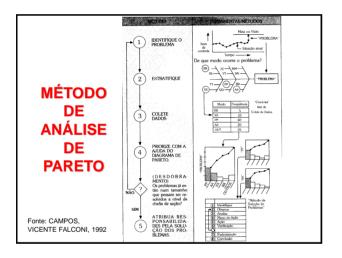


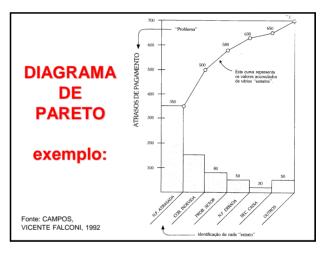


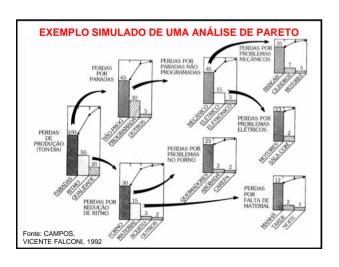


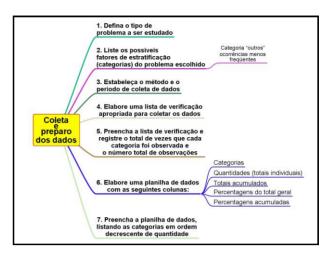
Um exemplo de utilização: ESTOQUE

- Perguntas essenciais:
 - 1. Qual a importância do item do estoque?
 - 2. Como os itens são controlados?


MÉTODO DE ANÁLISE DE PARETO – IMPORTÂNCIA:


 Permite dividir um problema grande em um número de problemas menores, que são mais fáceis de serem resolvidos com o envolvimento das pessoas da empresa.

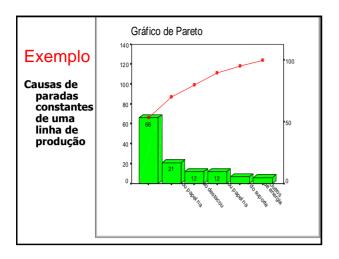


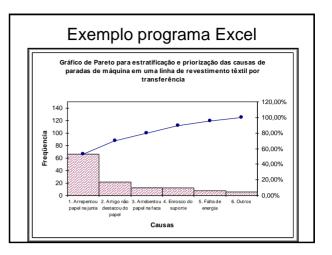


Planilha genérica de dados

Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5
Categoria	Quantidade	Total Acumulado	Porcentagem do total geral (%)	Porcentagem acumulada (%)
1. ZYXW	Q1	Q1	Q1/Qtotal x 100	P1
2. YZWX	Q2	Q1 + Q2	Q2/Qtotal x 100	P1 + P2
3. WXZY	Q3	Q1 + Q2 + Q3	Q3/Qtotal x 100	P1 + P2 + P3
Outros				
Totais	Qtotal		100%	

Construção do Gráfico


- Trace dois eixos verticais de mesmo comprimento e um eixo horizontal
- Marque o eixo vertical no lado esquerdo com a escala de zero até o total da coluna Quantidade (Q) da planilha de dados.
- Identifique o nome da variável representada neste eixo e a unidade de medida utilizada, caso seja necessário
- Marque o eixo vertical do lado direito com uma escala de zero até 100%
 - Identifique este eixo como "Percentagem acumulada (%)
- Divida o eixo horizontal em um número de intervalos igual ao número de categorias constantes na planilha de dados


Construção do Gráfico

- Identifique cada intervalo do eixo horizontal escrevendo os nomes das categorias, na mesma ordem em que eles aparecem na planilha de dados
- Construa um gráfico de barras utilizando a escala do eixo vertical do lado esquerdo
- Construa a curva de Pareto marcando os valores acumulados (percentagem acumulada), acima e no lado direito (ou no centro) do intervalo de cada categoria, e ligue os pontos por segmentos de reta

Construção do Gráfico

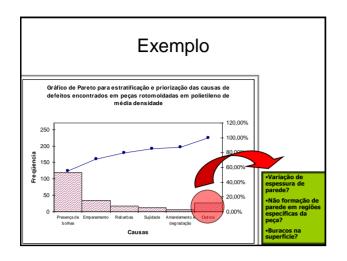
- Registre outras informações que devam constar no gráfico:
 - -Título
 - Período de coleta de dados
 - Número total de itens inspecionados
 - Objetivo do estudo realizado

DIAGRAMA DE PARETO POR EFEITO E POR CAUSAS

- DIAGRAMA DE PARETO POR EFEITO (para resultados indesejados)
- DIAGRAMA DE PARETO POR CAUSA (causas no processo)

Gráfico de Pareto para Efeitos

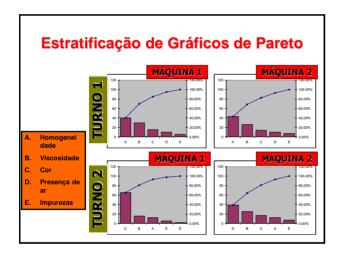
- · Qualidade:
 - Percentual de produtos defeituosos, número de reclamações de clientes, número de devoluções de produtos
- Custo:
 - Perdas de produção, gastos com reparos de produtos dentro do prazo de garantia, custos de manutenção de equipamentos
- Entrega
 - Índices de atraso de entrega, índices de entrega em quantidade e local errados, falta de matéria-prima em estoque
- Moral:
 - Índices de reclamações trabalhistas, índices de demissões, absenteísmo
- Segurança:
 - Número de acidentes de trabalho, índices de gravidade dos acidentes, número de acidentes sofridos por usuários do produto


Gráfico de Pareto para Causas

- Máquinas:
 - Desgaste, manutenção, modo de operação, tipo de ferramenta utilizada
- · Matérias-primas:
 - Fornecedor, lote, tipo, armazenamento, transporte
- Medições:
 - Calibração e precisão dos instrumentos de medição, método de medição
- · Meio Ambiente:
 - Temperatura, umidade, iluminação, clima
- Mão-de-obra:
 - Idade, treinamento, saúde, experiência
- · Métodos:
 - Informação, atualização, clareza das instruções

Categoria "Outros"

- Se a freqüência da categoria "outros" representar mais de 10% do total de observações, isto significa que as categorias analisadas não foram classificadas de forma adequada e conseqüentemente muitas ocorrências acabaram se enquadrando sob esta classificação.
- Neste caso, deve ser adotado um modo diferente de classificação das categorias

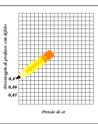

Cada ocorrência da categoria "outros" deve ser completamente identificada

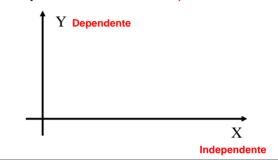
Estratificação de Gráficos de Pareto

 A comparação de gráficos de Pareto construídos considerando diferentes níveis de fatores de estratificação de interesse pode ser muito útil para a identificação das causas fundamentais de um problema.

A estratificação de gráficos de Pareto nos permite identificar se a causa do problema considerado é comum a todo o processo ou se existem causas específicas associadas a diferentes fatores que compõem o processo

Comparação de Gráficos de Pareto ao longo do tempo


- A comparação de gráficos de Pareto ao longo do tempo nos fornece indicações sobre a estabilidade do processo
 - São gráficos construídos ao longo de um determinado intervalo de tempo e que permitem a visualização de alterações na sequência de ordenação das categorias


DIAGRAMA DE DISPERSÃO

 É um método gráfico utilizado para verificar a existência e tipo de relacionamento entre duas variáveis!

Diagrama de dispersão

 Permite comparar o comportamento conjunto de duas variáveis quantitativas

Conceitos Básicos

- A maioria dos estudos estatísticos = Análise de mais de uma variável
 - Qual a relação existente entre estas duas variáveis?????
 - Entender os tipos de relações entre as variáveis = aumento na eficiência dos métodos de controle.
 - Detecção de possíveis problemas e facilita o planejamento de ações de melhoria.

Conceitos Básicos

- · Questões pertinentes:
 - Queremos simplesmente explorar a natureza da relação?
 - Algumas variáveis explicam ou modificam outras?
 - Algumas variáveis são variáveis resposta e outras são variáveis explanatórias?

•Variável resposta = mede o resultado de um processo

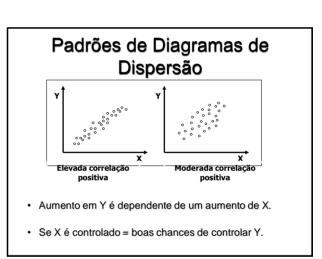
•Variável explanatória = procura explicar os resultados observados

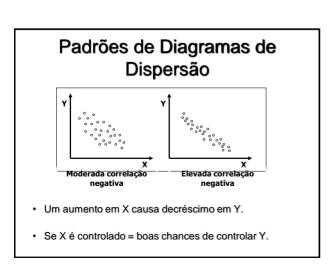
Conceitos Básicos

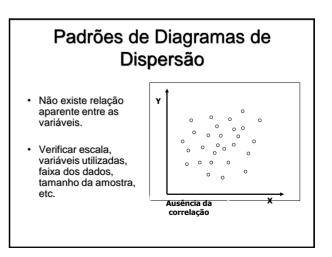
- Exemplo de variável resposta e variável explanatória:
 - O álcool tem vários efeitos sobre o corpo humano. Um destes efeitos é a queda da temperatura do corpo. Para estudar este efeito, os pesquisadores dão a ratos várias dosagens diferentes de álcool e medem a variação da temperatura do corpo de cada rato nos 15 minutos subsequentes.
 - A quantidade de álcool é a variável explanatória, e a variação da temperatura é a variável resposta

Adaptado de Moore, 1995

Diagrama de Dispersão

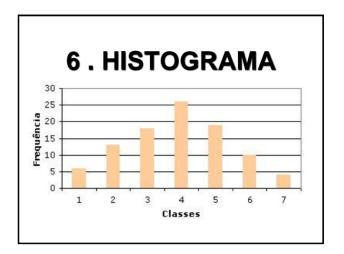

- Variáveis apresentadas podem ser:
 - Duas causas de um processo
 - Pressão e temperatura da caldeira
 - Uma causa e um efeito do processo
 Peso do produto e tempo
 - de recalque
 - Dois efeitos de um processo
 - Temperatura de saída e eficiência na esterilização




Interpretação do Diagrama de Dispersão

- O padrão evidenciado em um diagrama de dispersão nos fornece informações sobre o tipo de relacionamento existente entre as variáveis consideradas
- O diagrama de dispersão verifica se duas variáveis estão relacionadas, porém não pode provar se existe uma relação de causa e efeito!

Interpretação do Diagrama de Dispersão • Na análise: - verificar a presença de pontos discrepantes ou atípicos - Outras denominações • Outliers • pontos anômalos • pontos suspeitos. • É uma observação individual que se afasta do padrão global do gráfico



ANÁLISE DE CORRELAÇÃO

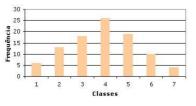
- A correlação r estará sempre entre -1 e 1
- Valor absoluto de r > 1 = recalcule = erro de cálculo!
- r muito próximo de 1 ou r muito próximo de -1 = forte correlação entre x e y!
- | r | muito próximo de 0 = fraca correla
- | r | = 1 = dados sobre uma reta!

HISTOGRAMA

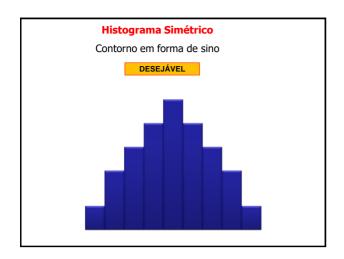
 GRÁFICO QUE RESUME A VARIAÇÃO DOS DADOS.

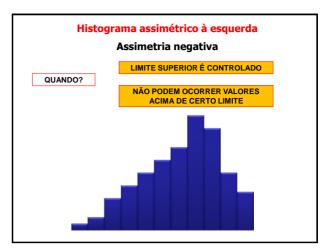
Natureza ilustrativa

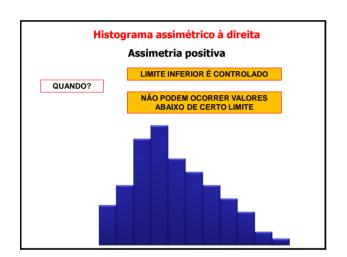
 Possibilita visualizar padrões que dificilmente seria vistos em uma simples tabela de dados.

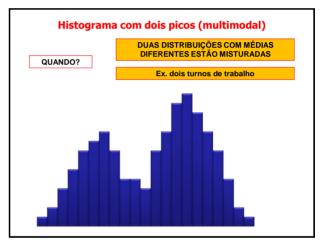

Interpretação simples

- Quanto maior a barra:
 - -maior a frequencia
 - -mais importante

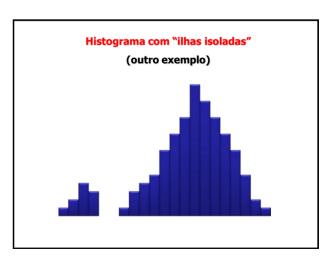


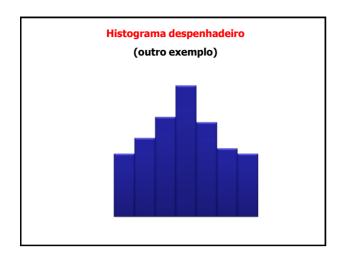

HISTÓRICO

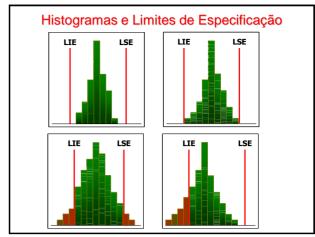

 O desenvolvimento do histograma é creditado a A. M. Guerry, 1833, que rearranjou o gráfico de barras para descrever dados quantitativos na análise de dados criminais, tal como a idade do criminoso.

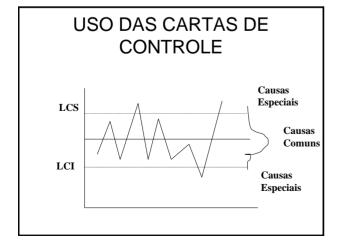


Tipos de Histogramas









Carta de Controle

- GRÁFICO DE CONTROLE ou CARTAS DE CONTROLE:
 - Orienta a estabilidade do processo.
 - Pente fino; só para controles estáveis.

CARTAS DE CONTROLE

- Comumente utilizadas para o acompanhamento durante o processo;
- Determina uma faixa estatisticamente determinadas:
 - linha superior (LSC limite superior de controle)
 - linha inferior (LIC limite inferior de controle)
 - linha média do processo

RESUMO DA UTILIDADE DAS FERRAMENTAS DE QT

RESUMO DAS UTILIDADES						
FERRAMENTAS	O QUE É	PARA QUE UTILIZAR				
FOLHA DE VERIFICAÇÃO	Planilha para a coleta de dados	Para facilitar a coleta de dados pertinentes a un problema				
DIAGRAMA DE PARETO	Diagrama de barra que ordena as ocorrências do maior para o menor	Priorizar os poucos mas vitais				
DIAGRAMA DE CAUSA E EFEITO	Estrutura do método que expressa, de modo simples e fácil, a série de causa de um efeito (problema)	Ampliar a quantidade de causas potenciais a serem analisadas				
DIGRAMA DE DISPERSÃO	Gráfico cartesiano que representa a relação entre duas variáveis	Verificar a correlação entre duas variáveis				
HISTOGRAMA	Diagrama de barra que representa a distribuição da ferramenta de uma população	Verificar o comportamento de um processo em relação à especificação				
FLUXOGRAMA	São fluxos que permite a visão global do processo por onde passa o produto	Estabelecer os limites e conhecer as atividades				
GRÁFICO DE CONTROLE	Gráfico com limite de controle que permite o monitoramento dos processos	Verificar se o processo está sob controle				
5W1H	É um documento de forma organizada para identificar as ações e a responsabilidade de cada um.	Para planejar as diversas ações que será desenvolvida no decorrer do trabalho.				

R	RELAÇÃO ENTRE AS FERRAMENTAS								
FERRA MENTA	Folha de Verifica ção	Diagra ma de Pareto	Diagra ma de causa e efeito	Diagra ma de Disper são	Gráfi co de contro le	Histo gra ma	Fluxo grama	Brain Stor ming	5W1H
Folha de Verifica ção		х	х	x		х		х	х
Diagrama de Pareto	х		Х			х		х	
Diagrama de causa e efeito	х	х			х	х		х	
Gráfico de controle	x		х			х			
Diagrama de dispersão	x		х						
5W1H	X							Х	

REFERÊNCIAS

- VIEIRA, S. Estatística para a qualidade: como avaliar com precisão a qualidade em produtos e serviços. Rio de Janeiro: Elsevier, 1999. 198p.
- MEIRELES, M. Ferramentas administrativas para identificar, observar e analisar problemas: organizações com foco no cliente. São Paulo: Arte & Ciência, 2001. 144. p
- KUME, HITOSHI. Métodos estatísticos para melhoria da qualidade. São Paulo: Editora Gente. 1993. 245p.
- RIBEIRO JUNIOR, J. I.; FARIA, R. O.; SANTOS, N. T. Ferramentas estatísticas básicas da qualidade: guia prático do SAS. Viçosa: UFV, 2006. 157p.

Construção do Histograma

- Colete n dados referentes à variável cuja distribuição será analisada
 - É aconselhável que n seja maior do que 50 para que possa ser obtido um padrão representativo da distribuição
- Determine o número de intervalos de classe (k)
 - Raiz quadrada do número de observações (tamanho da amostra)
 - Não existe uma única regra universal para a determinação de k. Sugere-se o uso da tabela abaixo:

Tamanho da amostra (n)	Número de intervalos (k)		
< 50	5 - 7		
50 - 100	6 - 10		
100 - 250	7 - 12		
> 250	10 - 20		

Construção do Histograma

- Identifique o menor valor (Min) e o maior valor (Max) da amostra
- Calcule a amplitude total dos dados (R)

$$R = Max - Min$$

- Calcule o comprimento de cada intervalo

$$h = \frac{R}{k}$$

- h é denominado amplitude da classe
- Arredonde o valor de h de forma que seja obtido um número conveniente. Este número deve ser um múltiplo inteiro da unidade de medida dos dados da amostra

Construção do Histograma

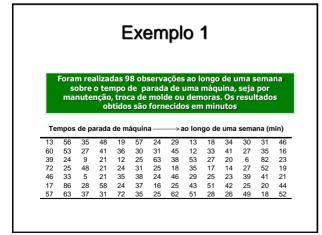
· Calcule os limites de cada intervalo

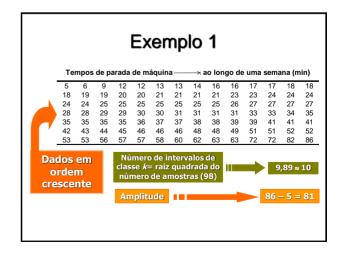
$$\begin{aligned} & \text{LI}_1 = \text{Min} - \frac{h}{2} \\ & \text{LS}_1 = \text{LI}_1 + h \end{aligned} \qquad \begin{aligned} & \text{Limites da 1° classe} \\ & \text{LI}_2 = \text{LS}_1 \\ & \text{LS}_2 = \text{LI}_2 + h \end{aligned} \qquad \begin{aligned} & \text{Limites da 2° classe} \\ & \text{LS}_i = \text{LI}_i + h \\ & \text{LI}_i = \text{LS}_{i-1} \end{aligned} \qquad \end{aligned}$$

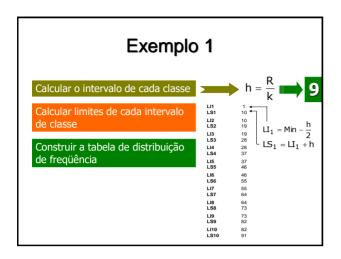
Construção do Histograma

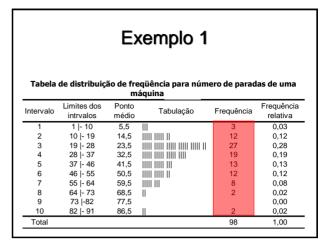
- Continue estes cálculos até que seja obtido um intervalo que contenha o maior valor da amostra (Max) entre os seus limites. Observe que, seguindo este procedimento, o número final de intervalos será igual a K +1
- Construa uma tabela de distribuição de freqüência, constituída pelas seguintes colunas:
 - Número da ordem de cada intervalo (i)
 - Limites de cada intervalo
 - Os intervalos s\u00e3o fechados \u00e0 esquerda e abertos \u00e0 direita: as observa\u00f3\u00f3es iguais ao limite superior do intervalo i -1, o qual \u00e0 igual ao limite inferior do intervalo i, pertence ao intervalo i
 - NOTAÇÃO:

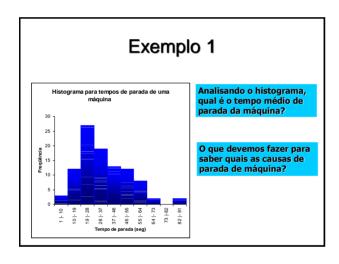
Construção do Histograma


· Ponto médio xi do i-ésimo intervalo


$$x_i = \frac{(LI_i + LS_i)}{2}$$


- Tabulação: contagem dos dados pertencente a cada intervalo
- Frequência (fi) do i-ésimo intervalo
 - Fi é o número de observações do i-ésimo intervalo
- Observe que a soma de todos os valores de fi deve ser igual ao tamanho da amostra (n)
- Frequência relativa (fi/n) do i-ésimo intervalo


Construção do Histograma


- · Desenhe o histograma
 - Construa uma escala no eixo horizontal para representar os limites dos intervalos
 - Construa uma escala no eixo vertical para representar as frequências dos intervalos
 - Desenhe um retângulo em cada intervalo, com base igual ao comprimento (h) e altura igual a frequência (f) do intervalo
- Registre outras informações importantes que devam constar no gráfico:
 - Título
 - Período de coleta de dados
 - Tamanho da amostra

