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Abstract: 
This literature research explores the research done into solving the job-shop 
scheduling problem with linear optimization and reinforcement learning methods. It 
looks at a timeline of the problem and how methods to solve it have changed over 
time. The research should give an understanding of the problem and explore possible 
solutions. For that, an extensive search for papers was done on Scopus, a research 
paper database. 27 promising papers were selected, rated, and categorized to 
facilitate a quick understanding of the problem and show potential research gaps. Two 
such gaps were found; Firstly, little research has been done on how reinforcement 
learning can be improved by implementing data or process mining strategies to further 
improve accuracy. Secondly, no research was found connecting reinforcement learning 
with a takt schedule, like the one proposed by the SRS project. The gathered papers 
give an extensive overview of the problem and demonstrate a multitude of solutions 
to the job-shop scheduling problem, which are discussed in detail in the results of this 
report. This should provide all the necessary information to be able to implement one’s 
own version of reinforcement learning for the job-shop scheduling problem. 
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1 Introduction 

This literature research is done to answer a problem created by the novel solution to 
the job-shop scheduling problem (JSSP) with a takt proposed by Walburger as a smart 
scheduling recommender system (SRS). SRS has the goal to reduce the makespan of 
jobs by introducing a takt so that each step of the jobs can be done in one shift (time-
unit) and the next step of the job in the following shift and so on. This should reduce 
the makespan of the job to exactly the number of steps in shifts, which simplifies 
planning and helps keep the shop-floor footprint low since no large temporary stores 
should be needed. Furthermore, it should also guarantee delivery on time, since the 
makespan per product is now fixed to a certain number of shifts. 
This approach prompts the question of how job-shop scheduling is solved at the 
moment and what research has been done previously, in particular with a focus on a 
production takt. 

1.1 Structure of this Document 

This document is structured as follows. After this introduction, the JSSP is described 
and the problem is defined. In the following two chapters different optimization and 
reinforcement learning (RL) methods, relevant to the problem, are elaborated to lay 
a foundation for the methods analyzed in the literature research. The fourth chapter 
goes into the literature stating the research question, the methodological approach, 
and the found papers categorized into two lists, closing with a discussion of the found 
results in chapter 6. Lastly, this report concludes with a summary of the work done 
and a future lookout.  
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2 The Job-Shop Scheduling Problem 

Job-Shop scheduling can get very complex with the growth of the production facility. 
Many factors play into the prioritization of a job to guarantee the delivery of a product 
on time. A prioritization based purely on the due date is an easy and naïve approach, 
which can be managed by most companies quite well. However, the utilization of the 
machinery and the processing time leaves room for optimization. 
While in theory the JSSP could be solved by a linear algorithm, the many factors 
playing into the successful optimization of the problem makes the processing time on 
a normal computer infeasible [1], since linear programming optimization belongs to 
the NP-hard problems [2]. In practice, a heuristic approach is most commonly used. 

2.1 Model of the Job-Shop Scheduling Problem 

In general, the job shop scheduling problem follows the set of rules below: 
(1) there exists a set of orders  
(2) an order has an ordered set of jobs  
(3) an order has a due date 
(4) there exists a set of machines 
(5) a job can be performed on exactly one machine 
(6) one machine can only perform one job at a time 
(7) the order of jobs within an order must be kept 
(8) the time for each job to process is known 

The manufacturing works from a backlog of orders (1), where each order has a set of 
ordered jobs (2) to perform in order (7). Each task must be done before the due date 
(3). A job can usually only be performed on one machine (5), if this is not the case 
and this possibility should be modeled, the model can be adapted to the manufacturing 
process. In the regular case a machine can do only one job at the time (6) should that 
not be the case it might be needed to split the machine into virtual ones for the model. 
To allow the algorithm to find a solution to the scheduling problem, the machining 
time for each job needs to be known (8). 

2.2 The complexity of the JSSP 

The JSSP is highly scalable in complexity and is directly dependent on the structure of 
the factory and the number of jobs it can process and the variations of the jobs 
themselves. The solvability of the problem becomes quickly very hard, the 10 x 10 
problem state by Muth et al. [3] remained unsolvable for 20 years, though it was 
stated in 1963. At the time researchers tried to solve the problem with linear 
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programming and branch and bound algorithms. As of 2016, it was still impossible to 
solve the problem of size 20 x 15 as a mixed-integer program in under an hour [4].  

 
Figure 1: A Gantt-Chart representation of a solution for a 3 × 3 problem by Yamada et al. [5]. 



David Schlebusch  

 8 

3 Optimization 

Mathematical optimization or mathematical programming belongs to a highly studied 
field with a lot of disciplines taking interest in it from computer sciences to engineering 
and economics. Optimization has its goal to find the optimal solution to a 
mathematically stated problem which is often referred to as minimization or 
maximization of the problem. Optimization problems which are NP-complete often 
must use heuristic optimization methods to find solutions since they normally perform 
better than brute force, since brute force search can take a lot of time. In general 
optimization strategies can be classified into three categories. Finite optimization 
techniques, like the simplex algorithm, perform computation until the global maximum 
of the function is found. These calculations are highly computation intensive and take 
a lot of time. Iterative methods only try to find a good enough or approximated 
solution to the problem. One example is gradient descent which is used in machine 
learning (ML). The problem of these iterative methods is that they choose a starting 
point at random and then explore it into the next minima. In complex environments, 
they seldom explore the whole solution space. For iterative methods to work a 
classification problem is normally needed. With heuristic methods, intelligent guessing 
based on stochastics is used. Compared to the other two methods, heuristics do not 
guarantee a mathematical solution to the problem, but in practice, the found solution 
or state is normally a good enough approximation. 

3.1 Finite Methods 

Finite optimization methods like linear programming are guaranteed to find the 
mathematical correct solution to the given problem function. The problem with them 
is that it can take a lot of time to calculate and can quickly become infeasible to solve 
on average consumer machines or even supercomputers. Problems that are solved 
mathematical should not have any time pressing matter and should not be done too 
often since renting powerful hardware can be quite expensive. To help solve linear 
programming problems very sophisticated software exists, which can speed up 
calculations significantly compared to a naïve approach learned in a calculus class. 
Using such software to solve the problem should be considered every time. One of 
these programs called Gurobi is available as closed-source and is known as one of the 
market leaders in the field. 

3.2 Iterative Methods 

Iterative methods pick a starting point in the solution space at random and then start 
exploring the surrounding, generally speaking, the algorithm looks at its surrounding 
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and picks the direction which brings it closer to the solution. The problem with these 
algorithms is that if they land at a local minimum they will stay there since no move 
can give them a better solution. The calculations to find the next direction step can 
be very expensive to calculate which is why they normally only performed once per 
problem and the iterations stop when one minimum is found. When working on 
classification problems these methods are a good match. In ML the problem of finding 
only a shallow minimum for a single problem is averaged out by the sheer number of 
problems given to the model. 

3.3 Heuristic Methods 

Compared to finite algorithms and convergent iterative methods, heuristic methods 
are not guaranteed to find a mathematical solution. Still, heuristics can be a very 
powerful tool to get approximate solutions to a problem. Some of the better known 
are genetic algorithms (GA), particle swarm optimization (PSO), tabu search (TS), and 
variable neighborhood search (VNS). 

3.3.1 Genetic Algorithms 

GAs take their inspiration from nature trying to project evolution on to an agent. It 
works by creating a set of agents with random parameters (analogous to DNA made 
from chromosomes and gens) and tests their performance on the value function. 
When all calculations are done, the ones who performed best are taken for a new 
iteration (generation). In the new generation, mutations are introduced into the 
parameters and the size is restocked to its original and a new life cycle begins. To 
further improve the algorithm a lot of different methods of DNA splicing and 
transferring is done to refine the best genetic code for the given problem. Research 
trying to combine RL with GAs has been done [6]. 

3.3.2 Particle Swarm Optimization 

PSO copies its strategy from nature as well, trying to simulate a flock of birds or school 
of fish. The idea being that every individual particle knows the optimum in its 
immediate neighborhood and is drawn to it but at the same time, it is communicating 
with all other particles in the swarm, which are trying to pull the particle to a better 
optimum. This method guarantees that in theory the complete solution environment 
is explored. 

3.3.3 Tabu Search 

TS is a local or neighborhood search algorithm that uses a memory list to avoid cyclic 
behavior and in comparison, to basic local search a worsening the target value is 
allowed as well. Figure 2 shows the implementation of TS in pseudocode. 
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Figure 2: Pseudocode for Tabu Search form Wikipedia [7]. 

3.3.4 Variable Neighborhood Search 

Similar to TS the basis of VNS uses local search to find a local optimum. When one is 
found a transfer of the search is made to a new neighborhood. A neighborhood is 
defined from intuition and informed guessing by the implementer of the algorithm. 
There are various extensions of the VNS algorithm and its application reaches from 
scheduling to routing and location problems. 
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4 Reinforcement Learning 

Reinforcement Learning (RL) is an agent-based 
optimization strategy using probabilities in 
Markov decision chains to decide the next step 
of the agent. In the learning process, the agent 
has to build a balance between the exploration 
of new solutions while not forgetting already 
found good solutions, for that normally the ϵ-
Greedy algorithm is used. Unlike other ML 
algorithms, no labeled data is need for RL, since 
only a good enough solution is needed and a 
trade-off between exploitation and exploration 
is made. With that, RL belongs to the 
unsupervised learning category. The general 
goal of an RL agent is to traverse an 
environment as efficiently as possible while conforming to a set of rules given by or 
added to the environment. 
In comparison to greedy optimization strategies, RL agents are allowed to do steps 
with negative rewards, if at the end of an episode a net gain is achieved. With that RL 
works very well for games like Go where planning ahead can give great rewards [8] 
as well as many more applications mentioned by Li [9]. 

 
Figure 4: Deep RL Applications by Li [9]. 

Figure 3: The typical framing of an RL scenario 
by Megajuice [48]. 
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4.1 Fundamentals 

4.1.1 Markov Decision Process 

The MDP is an extension of Markov chains. MDP provides a framework for modeling 
decision making and is very useful for optimization problems. MDPs lay the ground for 
most RL algorithms as well. 
An MDP is described as a 4-tuple (𝑆𝑆,𝐴𝐴,𝑃𝑃𝑎𝑎 ,𝑅𝑅𝑎𝑎) [10] [10], where  

− 𝑆𝑆 is a set of state space, 
− 𝐴𝐴 is a set of actions called the action space (alternatively, 𝐴𝐴𝑠𝑠is the set of actions 

available from state 𝑠𝑠), 
− 𝑃𝑃𝑎𝑎(𝑠𝑠, 𝑠𝑠′) = Pr(𝑠𝑠𝑡𝑡+1 = 𝑠𝑠′| 𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎) is the probability that action 𝑎𝑎 in state 

time 𝑡𝑡 will lead to a state 𝑠𝑠′ at time 𝑡𝑡 + 1, 
− 𝑅𝑅𝑎𝑎(𝑠𝑠, 𝑠𝑠′) is the immediate reward (or expected immediate reward) received 

after transitioning from state 𝑠𝑠 to state 𝑠𝑠′, due to action 𝑎𝑎 

4.1.2 Model-Based versus Model-Free Learning 

When building an RL algorithm for a problem the question comes if a model-based or 
model-free learning algorithm can or should be used. In general if the model of the 
environment, in other words, the “rules”, are known a model-based approach can be 
used to train the algorithms with known state transitions, for example, the chess 
computer AlphaZero [11]. In some cases, the RL algorithm can learn the model as 
well like in World Models [12]. Model-free algorithms like DQN are optimally used 
when state transitions are neither known nor can be learned directly other than by 
exploring the environment. 

 
Figure 5: A non-exhaustive, but useful taxonomy of algorithms in modern RL by OpenAi [13]. 
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4.1.3 Online and Offline Learning 

Offline learning is the approach of pretraining a model with a fixed data set and 
environment and then moving it over to production. With its fixed policies and 
decisions, this reduces the expenses needed to be made to implement the model in 
production, since the results of the trained model can be exported as a decision matrix 
and applied to new incoming environments. The behavior of the model stays 
consistent. With this approach, the model cannot react to environmental changes, 
which were not in the training set previously. 
Online learning means a continuous updating of policies while the model is in 
production. This makes the model highly adaptive and able to react to changes in the 
environment, which were not observed previously. Since the environment changes 
cannot be predicted the changes to the model might not be desired by the creator. 
Thus online learning can be prone to seasonal overtraining since no shuffling of the 
data is done, it learns a certain sequence of events, instead of handling every event 
uniquely [14]. 

4.2 ϵ-Greedy 

The epsilon greedy algorithm offers a solution to the multi-armed bandit problem [15]. 
The problem with learning algorithms is that they tend to prefer to choose the actions 
which are known to offer the greatest rewards, thus strongly limits the exploration of 
the solution space. To solve the exploitation versus exploration problem ϵ-Greedy was 
developed. It states that a certain percentage of actions need to be completely 
random, to allow the exploration of new solutions. If fast learning is desired an epsilon 
value of 0.1 is recommended, but 0.01 will give a higher accuracy overall, another 
technique is to change epsilon value over time [16]. Though there are other 
exploitation-exploration strategies when it comes to RL, ϵ-Greedy is one of the most 
commonly found and very essential for many algorithms to work. 

4.3 Temporal Difference Learning  

Temporal difference learning (TD) is an RL method that regularly updates the value 
function by predicting the final outcome iteratively, in comparison to Monte Carlo 
methods, which wait for the whole process to finish to update the function. Instead 
of waiting until the end state is reached, each step updates the model to get a better 
prediction for the end state. TD-lambda (TD(λ)) adds the possibility of a decay in the 
reward, so more or less reward can be given for more distant states. TD(λ) was first 
introduced as TD-Gammon, learning the game backgammon in 1992 and was nearly 
as good as top human players [17]. 
Below describes the algorithm for TD-Gammon [18]: 
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where: 

𝑤𝑤𝑡𝑡+1 − 𝑤𝑤𝑡𝑡 is the amount to change the weight from its value on the previous 
turn. 

𝑌𝑌𝑡𝑡+1 − 𝑌𝑌𝑡𝑡 is the difference between the current and previous turn’s board 
evaluations. 

𝛼𝛼 is the “learning rate” parameter 
𝜆𝜆 is a parameter that affects how much the present difference in board 

evaluations should feedback to previous estimates. λ = 0 makes the 
program correct only the previous turn's estimate; λ = 1 makes the 
program attempt to correct the estimates on all previous turns; values 
of λ between 0 and 1 specify different rates at which the importance 
of older estimates should "decay" with time. 

∇𝑤𝑤𝑌𝑌𝑘𝑘 is the gradient of neural-network output with respect to weights: that 
is, how much changing the weight affects the output. 

4.4 Q-Learning 

The Q-Learning algorithm was developed to find the best solution for a finite MDP 
given enough computational time. The Q in Q-Learning stands for the quality of the 
found solution. Q-Learning works with a table listing all state combinations. After each 
action, the Q is updated. Q-Learning belongs to the model-free algorithms. The state 
transitions are dependent on the chosen action and the previous state. Q-Learning 
was first introduced by Watkins et al. [19] in 1989. 

4.5 Deep Q Networks 

Deep Q Networks (DQN) was created by combining convolutional networks, known 
from ML, with Q-tables. This enables the algorithm to have a kind of receptive field, 
by enabling the model to give weights to the perceived inputs. The first DQN was 
developed by the researchers at Deepmind in 2013 [20]. DQN became famous when 
a trained model was able to beat the best-known human player in Go in 2015 [8]. 
With its success, DQN are now considered one of the best solutions when a self-
learning algorithm is needed. Its ability to look ahead for future rewards and take 
previous actions into account in a single computation cycle makes DQN very fast in 
learning, while still keeping the benefits from evolution-based algorithms because it 
does not have to throw away failed mutations. 

4.5.1 Extensions of the DQN 

While the benefits of only having one actor running at a time increase learning speed 
and lowers computation time, it makes overtraining of the model easy. This is why an 
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extension of the DQN model was made called asynchronous advantage actor-critic 
(A3C) [21]. The benefits of the new approach are that that multiple agents train in 
their own environment separately and critique the actions taken by their colleagues 
compared to what they learned. 
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5 Literature Review 

Research into the job-shop or shop-floor scheduling problem dates back into the 
seventies [22]. The proposed solutions to the problem vary strongly in complexity and 
approach. Besides, reality often differs heavily from the research. 
In general, most shop-floor scheduling is based on a prioritization of incoming jobs 
into a stack, which will be worked through from the top, while new jobs are added to 
the bottom. The ordering is often split into at least two levels, a rough overlooking 
level, and a finer more detailed level. Once a job is on the stack no rescheduling is 
normally done. In practice, the top level of the job pool is selected by the due date, 
while the fine level is selected by computer-aided calculations and the intuition of the 
shop-floor manager. The manager often uses the help of graphical tools, mostly in the 
form of Gant charts, to order the selected jobs, to maximize the utilization of his 
resources. 
This literature research looks into what RL methods are used for job-shop 
prioritization, how they are implemented what the benefits and challenges are, as well 
as how they could be implemented with a takt based scheduling system proposed by 
the SRS project. 

5.1 Approach 

The preliminary literature search was done with keywords in the Scopus paper 
database. The search terms that were used can be found in Table 1. To decide if the 
paper was on the topic of this literature research a quick readthrough of the abstract 
and in some cases the conclusion was done. If deemed appropriate the paper was 
saved for further reading. When selecting papers, a focus was put on uniqueness and 
publishing date to gather a wide variety of research. In addition to papers found on 
Scopus, interesting citations of the found papers as well as recommendations from 
fellow scholars were added to the pool of relevant research. 
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5.2 Research Questions 

The following research question was formulated during the project: 

What research has been done solving the job-shop 
scheduling problem with reinforcement learning? 

5.3 Search Terms 

Table 1: Number of search results for used keywords. 

Key Words Database Articles 

reinforcement AND learning Scopus 50017 

machine AND learning AND scheduling Scopus 3767 

reinforcement AND learning AND planning Scopus 2381 

reinforcement AND learning AND scheduling Scopus 1347 

takt Scopus 563 

reinforcement AND learning AND data AND mining Scopus 553 

deep AND reinforcement AND learning AND scheduling Scopus 287 

reinforcement AND learning AND job AND scheduling Scopus 215 

reinforcement AND learning AND job-shop Scopus 113 

reinforcement AND learning AND job-shop AND 
scheduling 

Scopus 109 

scheduling AND takt Scopus 57 

q1 AND job-shop AND scheduling Scopus 45 

process AND mining AND job-shop Scopus 37 

flexible AND manufacturing AND systems AND 
reinforcement AND learning 

Scopus 34 

reinforcement AND learning AND data AND mining AND 
scheduling 

Scopus 25 

                                        
1 The search term “Q” comes from “Deep Q Learning” which comes from “Q Learning” which is a 
reinforcement learning algorithm introduced by Watkins 1989 [19] and later refined into “Deep Q 
Learning” (DQN) by people at Deepmind [20]. 
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reinforcement AND learning AND shop-floor Scopus 17 

learning AND takt Scopus 13 

reinforcement AND learning AND process AND mining 
AND scheduling 

Scopus 12 

job-shop AND takt Scopus 10 

reinforcement AND learning AND data AND mining AND 
job-shop 

Scopus 2 

machine AND learning AND takt Scopus 1 

reinforcement AND learning AND process AND mining 
AND shop-floor 

Scopus 1 

reinforcement AND learning AND process AND mining 
AND job-shop 

Scopus 0 

reinforcement AND learning AND takt Scopus 0 
 
The keyword search on Scopus resulted in a lot of hits when searching for 
reinforcement and learning even in combination with scheduling there are quite a few 
results. RL in the combination of job scheduling, job-shop, or shop-floor starts to thin 
out the results and brings the results in line with the research question. The table 
above shows that there is some research done into takt, but as of today not in 
combination with RL algorithms. The same can be said for process mining in 
combination with RL which yields only a few results. 

5.4 Classification 

The found papers were rated for relevance and categorized. 

5.4.1 Relevance 

To better navigate the number of selected papers a relevance matrix was created, 
which can be found in Table 2. The following criteria were marked from 0 to 5: 

− Reinforcement Learning 
− Scheduling 
− Job-Shop 
− Machine Learning 
− Heuristic Algorithms 
− Data / Process Mining  
− Takt 
− Relevance 
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Reinforcement Learning:  
Describes the papers' relevance for RL using TD as a basis and the variants thereof. 
This category helps to distinguish between RL and genetic or swarm algorithms as 
well as papers that only applied other ML methods. 
Scheduling:  
To rate the paper according to scheduling problems, since there are scheduling 
problems, which are not part of the JSSP but more in general or software focused. 
Some papers have very low relevance to a scheduling problem in general since they 
only use it as an initial position. 
Job-Shop:  
As mentioned above some papers focus on scheduling without the JSSP in focus. This 
criterion tries to show the significance of the paper for the JSSP. 
Machine Learning:  
Indicates the significance of ML in the paper. Though RL is a subcategory of ML it was 
not counted in this column, so a paper is either focused on RL or other ML methods. 
Heuristic Algorithms:  
All papers which proposed heuristic methods like GA and PSO are rated in this 
category. Since heuristics are an ample part of the JSSP and show how the problem 
was solved before the introduction of RL algorithms.  
Data / Process Mining:  
This category shows if it was used for the approach in the paper.  
Takt:  
The relevance of it in the paper. 
Relevance:  
To indicate the overall significance of the work in relation to the stated research 
question a relevance score was given, on a subjective basis by the author. 

5.4.2 Categorization 

Next to the matrix, each paper was categorized into one of the following main topics: 
− Data Mining 
− Reinforcement Scheduling 
− Swarm Scheduling 
− Takt Planning 
− Predictive Scheduling 
− Genetic Scheduling 
− Simulation Scheduling 
− Repair Scheduling 
− Scheduling Graph Modelling 
− Linear Scheduling 

This should help gain a fast understanding of the topic of the paper and help the 
readers quickly find the papers they are looking for. 
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5.5 Relevance 

Table 2: Paper relevance matrix. 

Title R
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A Branch-and-Bound Algorithm for the Continuous- Process Job-Shop Scheduling Problem 
0 5 5 0 3 0 0 1 

A data mining approach for population-based methods to solve the JSSP 
0 2 4 0 3 5 0 2 

A Reinforcement Learning Approach to Job-shop Scheduling 
5 4 4 0 0 0 0 5 
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A reinforcement learning approach to parameter estimation in dynamic job shop scheduling 
5 4 4 0 0 0 0 4 

A review of machine learning in dynamic scheduling of flexible manufacturing systems 
0 1 1 1 1 0 0 1 

A Review of Machine Learning in Scheduling 
2 2 2 2 0 0 0 2 

An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-
objective job-shop scheduling problem 

0 2 2 0 5 0 0 1 

Can a takt plan ever survive beyond the first contact with the trades on-site? 
0 0 0 0 0 0 4 1 

Classical Planning in MDP Heuristics: with a Little Help from Generalization 
0 4 0 0 5 0 0 0 

Data Centers Job Scheduling with Deep Reinforcement Learning 
5 3 0 0 0 0 0 1 

Deep Reinforcement Learning for Semiconductor Production Scheduling 
5 4 4 0 0 0 0 5 

Design, Implementation and Evaluation of Reinforcement Learning for an Adaptive Order 
Dispatching in Job Shop Manufacturing Systems 

5 5 5 0 0 0 0 5 

Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement 
learning 

5 4 4 0 0 0 0 5 

Genetic algorithm in flexible work shop scheduling based on multi-objective optimization 
0 1 1 0 3 0 0 0 
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Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-
Dimensional Transformation 

0 3 3 4 0 0 0 2 

Local Search Genetic Algorithms for the Job Shop Scheduling Problem 
0 4 4 0 5 0 0 3 

MINERVA: A Reinforcement Learning-based Technique for Optimal Scheduling and Bottleneck 
Detection in Distributed Factory Operations 

5 4 4 0 0 0 0 5 

Minimizing total energy cost and tardiness penalty for a scheduling-layout problem in a 
flexible job shop system, A comparison of four metaheuristic algorithms 

0 4 2 0 4 0 0 1 

Multiple Resource Management and Burst Time Prediction using Deep Reinforcement 
Learning 

4 3 0 0 0 0 0 2 

Optimization of global production scheduling with deep reinforcement learning 
5 5 5 0 0 0 0 5 

Optimization of setup times in the furniture industry 
0 3 3 0 0 0 0 0 

Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement 
learning with graph convolutional network 

5 4 5 0 0 0 0 5 

Real-time scheduling for a smart factory using a reinforcement learning approach 
5 4 4 0 2 0 0 5 

Research on Open-pit Mine Vehicle Scheduling Problem with Approximate Dynamic 
Programming 

4 4 0 0 0 0 0 0 

Scheduling and Rescheduling with Iterative Repair 
2 5 0 0 1 0 0 3 
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Solving batch process scheduling/planning tasks using reinforcement learning 
3 4 0 0 0 0 0 2 

The disjunctive graph machine representation of the job shop scheduling problem 
0 5 3 0 0 0 0 1 

 
Table 2 shows the relevance of the papers to the above-defined categories. Overall, quite a few papers have been found focusing 
on the JSSP and RL, some of them strongly satisfying the research question. A few papers were found showing the evolution of 
solutions to the JSSP from linear programming to heuristic and give valuable insight into how the problem should be modeled and 
what the problems and pitfalls are. A few papers were on a more precise level no longer relevant to the research question, these 
have a low mark in overall relevance. The matrix shows as well that the fields of process and data mining in combination with RL for 
the JSSP has barely been explored. No linkage of RL and a takt schedule could be found in the research, which leaves the topic open 
for further exploration. 
  



David Schlebusch  

 24 

5.6 Overview of Found Papers 

Table 3: Detailed overview of 27 found papers with a summary. 

Ca
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Ye
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Su
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ne

ar
 

Sc
he

du
lin

g 

A Branch-and-Bound 
Algorithm for the 
Continuous- Process 
Job-Shop Scheduling 
Problem 

George Bozoki, Jean-Paul 
Richard  

 

19
70

 − - One of the earliest papers found on the JSSP. 
Solving the problem with a branch and bound 
algorithm. [22] 

Da
ta

 M
in

in
g 

A data mining 
approach for 
population-based 
methods to solve 
the JSSP 

Mohammad Mahdi 
Nasiri, Sadegh Salesi, 
Ali Rahbari, Navid 
Salmanzadeh 
Meydani, Mojtaba 
Abdollai 

20
18

 − Scheduling 
− Job shop 
− Data mining 
− Population generation 
− Particle swarm 

optimization 
− Genetic algorithm 

Data mining-based approach to generate an 
improved initial population for population-based 
heuristics/meta- heuristics solving the JSSP. 
Using genetic and swarm algorithms to validate 
the rules gathered from the mined data. The 
initial mined population outperformed random 
populations. The paper suggests applying the 
mining technique to other scheduling problems. 
[23] 
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Re
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fo
rc

em
en

t 
Sc

he
du

lin
g 

A Reinforcement 
Learning Approach 
to Job-shop 
Scheduling 

Wei Zhang, Thomas G. 
Dietterich 19

95
 − - RL for the job shop scheduling problem replacing 

Zweben’s iterative repair method with a TD 
algorithm. The results showed that in speed 
TD(λ) outperforms Zweben’s iterative repair 
method but given enough time Zweben’s 
iterative repair method will find the optimal 
solution and it will be similar to the TD(λ) 
solution. [24] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

A reinforcement 
learning approach to 
parameter 
estimation in 
dynamic job shop 
scheduling 

Jamal Shahrabi, 
Mohammad Amin 
Adibi, Masoud 
Mahootchi 

20
17

 − Reinforcement learning 
− Q–factor 
− Dynamic job shop 

scheduling 
− Variable neighborhood 

search 

Recommends an online Q-factor algorithm with 
VNS for DJSS to be able to react to breakdowns 
and new jobs dynamically. ε-greedy is adjusted 
to the state of the shop floor. [25] 

Pr
ed

ic
tiv

e 
Sc

he
du

lin
g 

A review of machine 
learning in dynamic 
scheduling of flexible 
manufacturing 
systems  

Paolo Priore, David de 
la Fuente, Alberto 
Gomez, Javier Puente 

20
01

 − Discrete Simulation 
− Dispatching Rules 
− Dynamic Scheduling 
− Flexible Manufacturing 

Systems 
− Machine Learning 

A review of literature on dynamic scheduling of 
FMSs using ML and classification thereof. [26] 

Pr
ed

ic
tiv

e 
Sc

he
du

lin
g 

A Review of Machine 
Learning in 
Scheduling 

Haldun Aytug, 
Siddhartha 
Bhattacharyya, Gary J. 
Koehler, Jane L. 
Snowdon 

19
94

 − - Gives a clear definition of the scheduling 
problem. Discusses existing methods and 
explains the need for ML for the JSSP. [27] 
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Sw
ar

m
 S

ch
ed

ul
in

g 
An improved particle 
swarm optimization 
with decline 
disturbance index 
(DDPSO) for multi-
objective job-shop 
scheduling problem 

Fuqing Zhao, Jianxin 
Tang, Junbiao Wang, 
Jonrinaldi 

20
13

 − particle swarm 
optimization 

− expanded job shop 
scheduling problem 

− multi-objective job 
shop scheduling 
problem 

− decline disturbance 
− adaptive meta-

Lamarckian strategy 

Discussion of an improved PSO method. A very 
good definition of the JSSP with all constraints. 
[28] 

Ta
kt

 P
la

nn
in

g 

Can a takt plan ever 
survive beyond the 
first contact with the 
trades on-site? 

Otto Alhava, Vili 
Rinne, Enni Laine, 
Lauri Koskela 

20
19

 − takt planning 
− takt control (TPTC) 
− job sequencing 
− work in progress 
− making do/task 

diminishment 
− tolerance management 

In theory, a takt plan can significantly reduce 
throughput. In reality, the shop prioritized 
keeping up the schedule instead of producing 
quality goods, which lead to delays. A new 
method for problem management was needed. 
[29] 

Pr
ed

ic
tiv

e 
Sc

he
du

lin
g 

Classical Planning in 
MDP Heuristics: with 
a Little Help from 
Generalization 

Andrey Kolobov, Mausam, 
Daniel S. Weld 

20
10

 − - The paper proposes a novel heuristic approach 
to solve an MDP scheduling problem. [30] 
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Re
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fo
rc

em
en

t 
Sc

he
du

lin
g 

Data Centers Job 
Scheduling with 
Deep Reinforcement 
Learning 

Sisheng Liang, Zhou 
Yang, Fang Jin, Yong 
Chen 

20
20

 − job scheduling 
− cluster scheduling 
− deep reinforcement 

learning 
− actor critic 

RL applied to the job scheduling problem of 
processor resources. Their model showed better 
results when learning the rules itself instead of 
the fixed rule models previously used. [31] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

Deep Reinforcement 
Learning for 
Semiconductor 
Production 
Scheduling 

Bernd Waschneck, 
Andre ́ Reichstaller, 
Lenz Belzner, Thomas 
Altenmüller, Thomas 
Bauernhansl, 
Alexander Knapp, 
Andreas Kyek 

20
18

 − Production Scheduling 
− Reinforcement 
− Learning 
− Machine Learning 
− Semiconductor 

Manufacturing 

Discusses the benefits and problems of an RL 
solution for the JSSP. To solve the problem, they 
suggest using multiple agents working in 
cooperation to achieve a balance of optimization 
goals. A reduction of lot delay was achieved. The 
paper further ratifies the benefits of flexibility 
coming from RL. [32] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

Design, 
Implementation and 
Evaluation of 
Reinforcement 
Learning for an 
Adaptive Order 
Dispatching in Job 
Shop Manufacturing 
Systems 

Andreas Kuhnle, Louis 
Schäfer, Nicole 
Stricker, Gisela Lanza 

20
19

 − Reinforcement 
Learning, 

− Production Scheduling 
− Order Dispatching 
− Methodical Approach 

A very comprehensive guide for creating RL 
models for the JSSP. It covers design, evaluation, 
and implementation on a methodical level. It 
states as well that a “Digital Twin” is one of the 
required prerequisites for a successful 
application of RL [33] 
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Re
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fo
rc

em
en

t 
Sc

he
du

lin
g 

Dynamic scheduling 
for flexible job shop 
with new job 
insertions by deep 
reinforcement 
learning 

Shu Luo 

20
20

 − Flexible job shop 
scheduling 

− New job insertion 
− Dispatching rules 
− Deep reinforcement 

learning 
− Deep Q network 

A very comprehensive paper of a concrete 
implementation of a DQN for the JSSP. Literature 
research compares other methods to the 
proposed one in the paper. The results show a 
significant performance increase in tardiness 
when comparing to naive scheduling methods 
like FIFO. [34] 

Sw
ar

m
 

Sc
he

du
lin

g 

Genetic algorithm in 
flexible work shop 
scheduling based on 
multi-objective 
optimization 

Yahui Wang, Liuqiang 
Fu, Yongqiang Su, 
Qian Yang & Linfeng 
Wu 

20
18

 − Multi-objective 
− optimized genetic 

algorithm 
− flexible work shop 
− scheduling 

Experimental proof of a performance increase in 
flexible workshop scheduling using a GA. This 
paper is very sparse with information. It states it 
study was done to legitimize further research. 
[35] 

Pr
ed

ic
tiv

e 
Sc

he
du

lin
g 

Hybrid Deep Neural 
Network Scheduler 
for Job-Shop 
Problem Based on 
Convolution Two-
Dimensional 
Transformation 

Zelin Zang, Wanliang 
Wang, Yuhang Song, 
Linyan Lu, Weikun Li, 
Yule Wang, and 
Yanwei Zhao 

20
19

 − - ML used to extract scheduling knowledge from 
historical data. [36] 

Ge
ne

tic
 

Sc
he

du
lin

g 

Local Search Genetic 
Algorithms for the 
Job Shop Scheduling 
Problem 

Beatrice M. Ombuki, 
Mario Ventresca 20

04
 − genetic algorithms 

− local search 
− tabu search 
− job shop scheduling 
− combinatorial 

optimization 

A great introduction to the JSSP. Solved the JSSP 
with local search GA. [37] 
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Re
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en

t 
Sc

he
du

lin
g 

MINERVA: A 
Reinforcement 
Learning-based 
Technique for 
Optimal Scheduling 
and Bottleneck 
Detection in 
Distributed Factory 
Operations 

Tara Elizabeth 
Thomas, Jinkyu Koo, 
Somali Chaterji, 
Saurabh Bagchi 

20
18

 − - The paper tackles tow problems at the same 
time. First, it solves the JSSP by introducing a 
reinforcement algorithm based on Q-learning. 
Second, it proposes a way to find the bottleneck 
resources on the schedule. The proposed model 
performs significantly better than naïve ones like 
FIFO and the bottleneck indication is superior to 
average waiting time and utilization. [38] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

Minimizing total 
energy cost and 
tardiness penalty for 
a scheduling-layout 
problem in a flexible 
job shop system, A 
comparison of four 
metaheuristic 
algorithms 

Ahmad Ebrahimi, 
Hyun Woo Jeon, 
Seokgi Lee, Chao 
Wang 

20
20

 − Scheduling 
−  Layout 
− Energy consumption 
− Transportation time 
− Hybrid metaheuristic 
− Flexible job shop 

A comparison of different optimization models 
to optimize the energy consumption of a shop-
floor layout. [39] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

Multiple Resource 
Management and 
Burst Time 
Prediction using 
Deep Reinforcement 
Learning 

Vaibhav Kumar, 
Siddhant Bhambri, 
Prashant Giridhar 
Shambharkar 

20
19

 − reinforcement learning 
− job scheduling 
− Deep-Q Network 

Developed DQN to solve job burst time detection 
and scheduling thereof. [40] 
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Re
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rc

em
en

t 
Sc

he
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lin
g 

Optimization of 
global production 
scheduling with 
deep reinforcement 
learning 

Bernd Waschneck, 
André Reichstaller, 
Lenz Belzner, Thomas 
Altenmüller, Thomas 
Bauernhansl, 
Alexander Knapp, 
Andreas Kyek 

20
18

 − Production Scheduling 
− Reinforcement 

Learning 
− Machine Learning in 

Manufacturing 

The paper discusses the use of a DQN in Industry 
4.0 over multiple production facilities optimizing 
for different goals. The results showed that after 
2 days of training the DQN was on par with 
previous heuristics without prior knowledge of 
the environment. They argue that a DQN is a 
superior solution to JSSP due to its flexibility and 
training speed. [41] 

Si
m

ul
at

io
n 

Sc
he

du
lin

g 

Optimization of 
setup times in the 
furniture industry 

Tomasz Gawroński 

20
12

 − Dispatching rule 
− Dynamic scheduling 
− Furniture 
− Sequence-dependent 

setup 

Simulation-based priority matrix for the JSSP. 
[42] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

Petri-net-based 
dynamic scheduling 
of flexible 
manufacturing 
system via deep 
reinforcement 
learning with graph 
convolutional 
network 

Liang Hua, Zhenyu Liu, 
Weifei Hua, Yueyang 
Wang, Jianrong Tana, 
Fei Wu 

20
20

 − Dynamic scheduling 
− Petri nets 
− Deep reinforcement 

learning Graph 
− convolutional networks 
− Digital twin 
− Flexible Manufacturing 

Systems 

The paper solves the JSSP with an extension of a 
DQN with a Petri-net convolution layer. It 
analyses the benefits of being a smaller model 
size. The paper gives a programmatic overview 
of their used algorithms, too. [43] 

Re
in

fo
rc

em
en

t 
Sc

he
du

lin
g 

Real-time scheduling 
for a smart factory 
using a 
reinforcement 
learning approach 

Yeou-Ren Shiue, Ken-
Chuan Lee, Chao-Ton 
Su 

 

− Machine learning 
− Q-learning 
− Real-time scheduling 
− Reinforcement learning 
− Shop floor control 

The paper proves the superiority of an RL 
algorithm compared to a GA for the JSSP of an 
FMS. [44] 



David Schlebusch  

 31 

Re
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em
en

t 
Le

ar
ni

ng
 

Research on Open-
pit Mine Vehicle 
Scheduling Problem 
with Approximate 
Dynamic 
Programming 

Te Xu, Fengyuan Shi, 
Wenbo Liu 

20
19

 − Open-pit mine 
− Vehicle scheduling 
− Approximate Dynamic 

Programming 

The paper proposes an ADP learning algorithm 
based on Q-Learning to solve the scheduling of 
query tuck routes of an open-pit mine. They 
propose a dynamic model to schedule in real-
time depended on the weather and other 
conditions. [45] 

Re
pa

ir 
Sc

he
du

lin
g 

Scheduling and 
Rescheduling with 
Iterative Repair 

Monte Zweben, 
Eugene Davis, Brian 
Daun, Michael J. Deale 

19
93

 − - A scheduling system that uses iterative repair. 
Iteratively repairing a schedule with better 
options till a good solution is found. The paper 
compares different repair heuristics to balance 
accuracy and computational time. [46] 

Re
pa

ir 
Sc

he
du

lin
g 

Solving batch 
process 
scheduling/planning 
tasks using 
reinforcement 
learning 

E. C. Martinez 

19
99

 − Batch Process 
Management 

− Scheduling 
− Learning 
− Combinatorial 

Optimization 

A combination of RL and iterative repair to find a 
good schedule. [47] 

Sc
he

du
lin

g 
Gr

ap
h 

M
od

el
lin

g The disjunctive 
graph machine 
representation of 
the job shop 
scheduling problem 

Jacek Błażewicz, Erwin 
Pesch, Małgorzata 
Sterna 

20
00

 − Disjunctive graph 
− Graph representations 
− Graph matrix 
− Scheduling theory 

The paper discusses how to model a schedule on 
a graph and from a matrix from it, on which one 
can perform optimizations. [1] 

 
Table 3 is the collection of 27 papers found during the literature research. Each paper was classified into a category and summarized. 
The summary is kept short to quickly give an overview and should be used together with the relevance matrix to determine the 
importance of the paper. 
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6 Summary 

The research found agrees that the JSSP is NP-hard and thus with higher complexities 
it remains unsolvable in a useful time frame on current generation hardware [37] [41]. 
While other methods of optimization like GA and PSO have been explored and studied 
elaborately, it has been found that, especially when it comes to a highly flexible and 
adaptive work floor environment, an RL approach is superior [34] [36] [44]. 

 
Figure 6: This table shows results obtained by Shiue et al. [44] comparing different JSSP optimizers, indicating 
that RL is superior. 

6.1 The Job-Shop Scheduling Problem 

The JSSP is extensively researched with papers discussing the topic found on Scopus 
dating back till 1970 [22], where the researchers made use of a branch and bound 
algorithm to minimize completion time (makespan) of jobs. With increasing 
computational power researchers in 1993 at NASA started experimenting with iterative 
methods and created the iterative repair method to find an optimal schedule for their 
space shuttle launches [46]. In 1995 one of the first RL methods for the JSSP was 
introduced expanding on the previous work done by NASA [24]. Combining the 
iterative repair method with TD they managed to bring down the calculation time while 
maintaining accuracy. With more computing time researchers explored different 
optimization strategies mostly genetic [37] and particle swarm algorithms [28]. With 
a lot of new research done in ML in recent years, it opened the field for new ideas and 
techniques in RL as well. Researchers at Deepmind managed to extend the Q-Learning 
algorithm and develop an agent, who can play Go, who won against the human world 
champion, which was previously thought to be impossible for a computer [8]. The 



David Schlebusch  

 33 

algorithm found by Deepmind was quickly adapted to JSSP and opened a large field 
of studies on how to perfect it for the JSSP [25] [31] [38] [32]. 
The idea of the problem is very consistent over all papers, defining the problem 
without any huge deviations, mostly in a linear programming problem type of style. 
The research agrees as well on the topic that the problem is NP-hard and thus not 
solvable in realistic time as a linear programming problem [37] [41]. 
The research further agrees that the JSSP can be modeled as an MDP, where RL is a 
powerful method to solve it. As a prerequisite to making RL work the factory needs to 
be of the so-called Industry 4.0 (“Smart Factory”) type and have a digital twin of their 
resources [44]. 

6.2 Solutions 

There are various ways to solve the JSSP with different benefits and deficits and 
approaches have changed over time as well. The need for RL for job-shop scheduling 
was discussed as early as 1994 [27]. In general, it can be said that as long as the 
production goals of the factory are met, the algorithm and heuristic used to achieve 
the goal have their merit. Taking a closer look at the different strategies it quickly 
becomes apparent what the pros and cons of each method are. While nearly any JSSP 
can be stated as a linear programming problem, the solving of one by mathematical 
means is rarely discussed and quickly dismissed since the computation time exceeds 
the benefits of finding a perfect solution. Since close to perfect solutions are generally 
accepted as good enough, this makes iterative and heuristic methods perfect 
candidates to solve the problem.  
To solve the problem various variants of GAs, VNS, TS, and PSO where explored often 
in combination with TD. Since the success of deep Q-Learning, the focus of research 
has changed strongly to versions of it. Researched showed that given enough time 
nearly all proposed optimization algorithms will find a good enough solution which will 
not significantly differ to their competitors [24], but it was found that deep Q-Learning 
algorithms offer a huge advantage in processing time and flexibility in comparison to 
the other approaches [44]. DQNs are highly and quickly adaptable to new 
environments and need only a short amount of training time in comparison. When it 
comes to complexity, DQNs are also scalable over multiple factories and allow multi-
target optimization, by training multiple agents in cooperation with different priorities. 
All these points make deep Q-Learning the superior solution to JSSPs. 

6.2.1 Concrete solutions to JSSP 

Shahrabi et al. [25] proposed a Q-Learning approach using VNS to find the close to 
best solution for JSSP. The proposed algorithm starts over with the old state if the 
planning horizon is violated ending in zero rewards. If the planning horizon is met, a 
reward is calculated, and the new schedule is used for the next iteration. 
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Figure 7: The proposed flow of the solution for the JSSP by Shahrabi et al. [25]. 

The work done by Priore et al. [26] suggests using online learning for scheduling since 
the model is faster to react and adapt to environmental changes and manual 
overwrites, such as breakdowns and rushed jobs.  
Research done by Thomas et al. [38] suggests a domain-specific language (DSL) to 
simplify the description of the shop-floor and the production jobs for orders to enable 
easier development of optimization solutions for the JSSP. 

6.3 Results 

The literature research yields a large number of papers trying to solve the JSSP in 
various ways. The found research indicates that the future of solving the JSSP is 
heading into the direction of self-learning agents like DQNs. The need for RL was 
already discussed in 1994 [27]. And as of today, a complete guide to how to design, 
implement, and validate a DQN model for the JSSP [33], is given over diverse papers.  
Open remains the question of how deep Q-Learning can be applied to other job-shop 
management styles, in particular the one of a takt, where no research was found, 
referring to the results shown in Table 1. 
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In addition, while a lot of comparisons between models were made, till today there is 
no standard job database or creation ruleset to allow a deeper and more accurate 
comparison between models. Some models were only validated versus naïve methods 
like FIFO, which are barely used in commercial production scheduling systems. 
Further, most of the research only used labor simulations and real-world validation of 
the methods is missing. 
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7 Conclusion 

The JSSP is a highly researched topic with a lot of improvements happening over the 
years. Starting from a simple branch and bound algorithms to heuristics like GA and 
PSO, with the current state of research focusing strongly on RL in particular DQNs. 
Finding a niche to further improve and extend existing methods is difficult. The results 
of the literature show that so far no-one has touched the subject of RL in a takt 
production environment, like the one proposed by the SRS project, which should be 
further explored. From the solutions other researchers proposed, applying a DQN to 
the SRS project seems the most reasonable. 

7.1 Future Lookout 

The next steps for the SRS project will be to create a value function and define a data 
set to enable training. After that, a model of the SRS should be created in the OpenAi 
gym environment to allow the testing of different reinforcement algorithms. The 
OpenAi gym is the research standard when it comes to testing RL algorithms [20]. 
The results of that would be integrated into the final system. 
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8 Glossary 

Table 4: Abbreviations and synonyms 

Abbreviation Word 

A3C Asynchronous Advantage Actor-Critic 

DQN Deep Q Network 

GA Genetic Algorithm 

JSSP Job-Shop Scheduling Problem 

ML Machine Learning 

MDP Markov Decision Process 

PSO Particle Swarm Optimization 

RL Reinforcement Learning 

TS Tabu Search 

TD Temporal Difference Learning 

VNS Variable Neighborhood Search 
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