

Solving the Job-Shop Scheduling
Problem with Reinforcement

Learning

University of Applied Sciences and Arts FHNW

School of Engineering

September 2020

David Schlebusch Abstract

 2

Keywords: Reinforcement Learning,
Optimization,
Scheduling,
Shop-Floor Scheduling,
Job-Shop Scheduling Problem

Author: David Schlebusch, david.schlebusch@students.fhnw.ch

Professors: Adrian Specker, adrian.specker@fhnw.ch
Raoul Waldburger, raoul.waldburger@fhnw.ch

Editor: Roger Siegenthaler, roger.siegenthaler@students.fhnw.ch

Date: Thursday, September 24, 2020

Version: 1

Abstract:
This literature research explores the research done into solving the job-shop
scheduling problem with linear optimization and reinforcement learning methods. It
looks at a timeline of the problem and how methods to solve it have changed over
time. The research should give an understanding of the problem and explore possible
solutions. For that, an extensive search for papers was done on Scopus, a research
paper database. 27 promising papers were selected, rated, and categorized to
facilitate a quick understanding of the problem and show potential research gaps. Two
such gaps were found; Firstly, little research has been done on how reinforcement
learning can be improved by implementing data or process mining strategies to further
improve accuracy. Secondly, no research was found connecting reinforcement learning
with a takt schedule, like the one proposed by the SRS project. The gathered papers
give an extensive overview of the problem and demonstrate a multitude of solutions
to the job-shop scheduling problem, which are discussed in detail in the results of this
report. This should provide all the necessary information to be able to implement one’s
own version of reinforcement learning for the job-shop scheduling problem.

mailto:david.schlebusch@students.fhnw.ch
mailto:adrian.specker@fhnw.ch
mailto:raoul.waldburger@fhnw.ch
mailto:roger.siegenthaler@students.fhnw.ch

David Schlebusch Table of Contents

 3

Table of Contents

1 Introduction .. 5

1.1 Structure of this Document .. 5

2 The Job-Shop Scheduling Problem ... 6

2.1 Model of the Job-Shop Scheduling Problem .. 6

2.2 The complexity of the JSSP ... 6

3 Optimization ... 8

3.1 Finite Methods .. 8

3.2 Iterative Methods .. 8

3.3 Heuristic Methods ... 9
3.3.1 Genetic Algorithms ... 9
3.3.2 Particle Swarm Optimization .. 9
3.3.3 Tabu Search .. 9
3.3.4 Variable Neighborhood Search ... 10

4 Reinforcement Learning .. 11

4.1 Fundamentals .. 12
4.1.1 Markov Decision Process .. 12
4.1.2 Model-Based versus Model-Free Learning ... 12
4.1.3 Online and Offline Learning .. 13

4.2 ϵ-Greedy .. 13

4.3 Temporal Difference Learning .. 13

4.4 Q-Learning ... 14

4.5 Deep Q Networks ... 14
4.5.1 Extensions of the DQN .. 14

5 Literature Review .. 16

5.1 Approach ... 16

5.2 Research Questions ... 17

5.3 Search Terms ... 17

5.4 Classification.. 18
5.4.1 Relevance .. 18
5.4.2 Categorization ... 19

5.5 Relevance .. 20

5.6 Overview of Found Papers ... 24

6 Summary .. 32

David Schlebusch

 4

6.1 The Job-Shop Scheduling Problem .. 32

6.2 Solutions ... 33
6.2.1 Concrete solutions to JSSP .. 33

6.3 Results ... 34

7 Conclusion .. 36

7.1 Future Lookout .. 36

8 Glossary .. 37

9 Bibliography ... 38

10 Table of Figures... 42

11 Table of Tables .. 43

David Schlebusch

 5

1 Introduction

This literature research is done to answer a problem created by the novel solution to
the job-shop scheduling problem (JSSP) with a takt proposed by Walburger as a smart
scheduling recommender system (SRS). SRS has the goal to reduce the makespan of
jobs by introducing a takt so that each step of the jobs can be done in one shift (time-
unit) and the next step of the job in the following shift and so on. This should reduce
the makespan of the job to exactly the number of steps in shifts, which simplifies
planning and helps keep the shop-floor footprint low since no large temporary stores
should be needed. Furthermore, it should also guarantee delivery on time, since the
makespan per product is now fixed to a certain number of shifts.
This approach prompts the question of how job-shop scheduling is solved at the
moment and what research has been done previously, in particular with a focus on a
production takt.

1.1 Structure of this Document

This document is structured as follows. After this introduction, the JSSP is described
and the problem is defined. In the following two chapters different optimization and
reinforcement learning (RL) methods, relevant to the problem, are elaborated to lay
a foundation for the methods analyzed in the literature research. The fourth chapter
goes into the literature stating the research question, the methodological approach,
and the found papers categorized into two lists, closing with a discussion of the found
results in chapter 6. Lastly, this report concludes with a summary of the work done
and a future lookout.

David Schlebusch

 6

2 The Job-Shop Scheduling Problem

Job-Shop scheduling can get very complex with the growth of the production facility.
Many factors play into the prioritization of a job to guarantee the delivery of a product
on time. A prioritization based purely on the due date is an easy and naïve approach,
which can be managed by most companies quite well. However, the utilization of the
machinery and the processing time leaves room for optimization.
While in theory the JSSP could be solved by a linear algorithm, the many factors
playing into the successful optimization of the problem makes the processing time on
a normal computer infeasible [1], since linear programming optimization belongs to
the NP-hard problems [2]. In practice, a heuristic approach is most commonly used.

2.1 Model of the Job-Shop Scheduling Problem

In general, the job shop scheduling problem follows the set of rules below:
(1) there exists a set of orders
(2) an order has an ordered set of jobs
(3) an order has a due date
(4) there exists a set of machines
(5) a job can be performed on exactly one machine
(6) one machine can only perform one job at a time
(7) the order of jobs within an order must be kept
(8) the time for each job to process is known

The manufacturing works from a backlog of orders (1), where each order has a set of
ordered jobs (2) to perform in order (7). Each task must be done before the due date
(3). A job can usually only be performed on one machine (5), if this is not the case
and this possibility should be modeled, the model can be adapted to the manufacturing
process. In the regular case a machine can do only one job at the time (6) should that
not be the case it might be needed to split the machine into virtual ones for the model.
To allow the algorithm to find a solution to the scheduling problem, the machining
time for each job needs to be known (8).

2.2 The complexity of the JSSP

The JSSP is highly scalable in complexity and is directly dependent on the structure of
the factory and the number of jobs it can process and the variations of the jobs
themselves. The solvability of the problem becomes quickly very hard, the 10 x 10
problem state by Muth et al. [3] remained unsolvable for 20 years, though it was
stated in 1963. At the time researchers tried to solve the problem with linear

David Schlebusch

 7

programming and branch and bound algorithms. As of 2016, it was still impossible to
solve the problem of size 20 x 15 as a mixed-integer program in under an hour [4].

Figure 1: A Gantt-Chart representation of a solution for a 3 × 3 problem by Yamada et al. [5].

David Schlebusch

 8

3 Optimization

Mathematical optimization or mathematical programming belongs to a highly studied
field with a lot of disciplines taking interest in it from computer sciences to engineering
and economics. Optimization has its goal to find the optimal solution to a
mathematically stated problem which is often referred to as minimization or
maximization of the problem. Optimization problems which are NP-complete often
must use heuristic optimization methods to find solutions since they normally perform
better than brute force, since brute force search can take a lot of time. In general
optimization strategies can be classified into three categories. Finite optimization
techniques, like the simplex algorithm, perform computation until the global maximum
of the function is found. These calculations are highly computation intensive and take
a lot of time. Iterative methods only try to find a good enough or approximated
solution to the problem. One example is gradient descent which is used in machine
learning (ML). The problem of these iterative methods is that they choose a starting
point at random and then explore it into the next minima. In complex environments,
they seldom explore the whole solution space. For iterative methods to work a
classification problem is normally needed. With heuristic methods, intelligent guessing
based on stochastics is used. Compared to the other two methods, heuristics do not
guarantee a mathematical solution to the problem, but in practice, the found solution
or state is normally a good enough approximation.

3.1 Finite Methods

Finite optimization methods like linear programming are guaranteed to find the
mathematical correct solution to the given problem function. The problem with them
is that it can take a lot of time to calculate and can quickly become infeasible to solve
on average consumer machines or even supercomputers. Problems that are solved
mathematical should not have any time pressing matter and should not be done too
often since renting powerful hardware can be quite expensive. To help solve linear
programming problems very sophisticated software exists, which can speed up
calculations significantly compared to a naïve approach learned in a calculus class.
Using such software to solve the problem should be considered every time. One of
these programs called Gurobi is available as closed-source and is known as one of the
market leaders in the field.

3.2 Iterative Methods

Iterative methods pick a starting point in the solution space at random and then start
exploring the surrounding, generally speaking, the algorithm looks at its surrounding

David Schlebusch

 9

and picks the direction which brings it closer to the solution. The problem with these
algorithms is that if they land at a local minimum they will stay there since no move
can give them a better solution. The calculations to find the next direction step can
be very expensive to calculate which is why they normally only performed once per
problem and the iterations stop when one minimum is found. When working on
classification problems these methods are a good match. In ML the problem of finding
only a shallow minimum for a single problem is averaged out by the sheer number of
problems given to the model.

3.3 Heuristic Methods

Compared to finite algorithms and convergent iterative methods, heuristic methods
are not guaranteed to find a mathematical solution. Still, heuristics can be a very
powerful tool to get approximate solutions to a problem. Some of the better known
are genetic algorithms (GA), particle swarm optimization (PSO), tabu search (TS), and
variable neighborhood search (VNS).

3.3.1 Genetic Algorithms

GAs take their inspiration from nature trying to project evolution on to an agent. It
works by creating a set of agents with random parameters (analogous to DNA made
from chromosomes and gens) and tests their performance on the value function.
When all calculations are done, the ones who performed best are taken for a new
iteration (generation). In the new generation, mutations are introduced into the
parameters and the size is restocked to its original and a new life cycle begins. To
further improve the algorithm a lot of different methods of DNA splicing and
transferring is done to refine the best genetic code for the given problem. Research
trying to combine RL with GAs has been done [6].

3.3.2 Particle Swarm Optimization

PSO copies its strategy from nature as well, trying to simulate a flock of birds or school
of fish. The idea being that every individual particle knows the optimum in its
immediate neighborhood and is drawn to it but at the same time, it is communicating
with all other particles in the swarm, which are trying to pull the particle to a better
optimum. This method guarantees that in theory the complete solution environment
is explored.

3.3.3 Tabu Search

TS is a local or neighborhood search algorithm that uses a memory list to avoid cyclic
behavior and in comparison, to basic local search a worsening the target value is
allowed as well. Figure 2 shows the implementation of TS in pseudocode.

David Schlebusch

 10

Figure 2: Pseudocode for Tabu Search form Wikipedia [7].

3.3.4 Variable Neighborhood Search

Similar to TS the basis of VNS uses local search to find a local optimum. When one is
found a transfer of the search is made to a new neighborhood. A neighborhood is
defined from intuition and informed guessing by the implementer of the algorithm.
There are various extensions of the VNS algorithm and its application reaches from
scheduling to routing and location problems.

David Schlebusch

 11

4 Reinforcement Learning

Reinforcement Learning (RL) is an agent-based
optimization strategy using probabilities in
Markov decision chains to decide the next step
of the agent. In the learning process, the agent
has to build a balance between the exploration
of new solutions while not forgetting already
found good solutions, for that normally the ϵ-
Greedy algorithm is used. Unlike other ML
algorithms, no labeled data is need for RL, since
only a good enough solution is needed and a
trade-off between exploitation and exploration
is made. With that, RL belongs to the
unsupervised learning category. The general
goal of an RL agent is to traverse an
environment as efficiently as possible while conforming to a set of rules given by or
added to the environment.
In comparison to greedy optimization strategies, RL agents are allowed to do steps
with negative rewards, if at the end of an episode a net gain is achieved. With that RL
works very well for games like Go where planning ahead can give great rewards [8]
as well as many more applications mentioned by Li [9].

Figure 4: Deep RL Applications by Li [9].

Figure 3: The typical framing of an RL scenario
by Megajuice [48].

David Schlebusch

 12

4.1 Fundamentals

4.1.1 Markov Decision Process

The MDP is an extension of Markov chains. MDP provides a framework for modeling
decision making and is very useful for optimization problems. MDPs lay the ground for
most RL algorithms as well.
An MDP is described as a 4-tuple (𝑆𝑆,𝐴𝐴,𝑃𝑃𝑎𝑎 ,𝑅𝑅𝑎𝑎) [10] [10], where

− 𝑆𝑆 is a set of state space,
− 𝐴𝐴 is a set of actions called the action space (alternatively, 𝐴𝐴𝑠𝑠is the set of actions

available from state 𝑠𝑠),
− 𝑃𝑃𝑎𝑎(𝑠𝑠, 𝑠𝑠′) = Pr(𝑠𝑠𝑡𝑡+1 = 𝑠𝑠′| 𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎) is the probability that action 𝑎𝑎 in state

time 𝑡𝑡 will lead to a state 𝑠𝑠′ at time 𝑡𝑡 + 1,
− 𝑅𝑅𝑎𝑎(𝑠𝑠, 𝑠𝑠′) is the immediate reward (or expected immediate reward) received

after transitioning from state 𝑠𝑠 to state 𝑠𝑠′, due to action 𝑎𝑎

4.1.2 Model-Based versus Model-Free Learning

When building an RL algorithm for a problem the question comes if a model-based or
model-free learning algorithm can or should be used. In general if the model of the
environment, in other words, the “rules”, are known a model-based approach can be
used to train the algorithms with known state transitions, for example, the chess
computer AlphaZero [11]. In some cases, the RL algorithm can learn the model as
well like in World Models [12]. Model-free algorithms like DQN are optimally used
when state transitions are neither known nor can be learned directly other than by
exploring the environment.

Figure 5: A non-exhaustive, but useful taxonomy of algorithms in modern RL by OpenAi [13].

David Schlebusch

 13

4.1.3 Online and Offline Learning

Offline learning is the approach of pretraining a model with a fixed data set and
environment and then moving it over to production. With its fixed policies and
decisions, this reduces the expenses needed to be made to implement the model in
production, since the results of the trained model can be exported as a decision matrix
and applied to new incoming environments. The behavior of the model stays
consistent. With this approach, the model cannot react to environmental changes,
which were not in the training set previously.
Online learning means a continuous updating of policies while the model is in
production. This makes the model highly adaptive and able to react to changes in the
environment, which were not observed previously. Since the environment changes
cannot be predicted the changes to the model might not be desired by the creator.
Thus online learning can be prone to seasonal overtraining since no shuffling of the
data is done, it learns a certain sequence of events, instead of handling every event
uniquely [14].

4.2 ϵ-Greedy

The epsilon greedy algorithm offers a solution to the multi-armed bandit problem [15].
The problem with learning algorithms is that they tend to prefer to choose the actions
which are known to offer the greatest rewards, thus strongly limits the exploration of
the solution space. To solve the exploitation versus exploration problem ϵ-Greedy was
developed. It states that a certain percentage of actions need to be completely
random, to allow the exploration of new solutions. If fast learning is desired an epsilon
value of 0.1 is recommended, but 0.01 will give a higher accuracy overall, another
technique is to change epsilon value over time [16]. Though there are other
exploitation-exploration strategies when it comes to RL, ϵ-Greedy is one of the most
commonly found and very essential for many algorithms to work.

4.3 Temporal Difference Learning

Temporal difference learning (TD) is an RL method that regularly updates the value
function by predicting the final outcome iteratively, in comparison to Monte Carlo
methods, which wait for the whole process to finish to update the function. Instead
of waiting until the end state is reached, each step updates the model to get a better
prediction for the end state. TD-lambda (TD(λ)) adds the possibility of a decay in the
reward, so more or less reward can be given for more distant states. TD(λ) was first
introduced as TD-Gammon, learning the game backgammon in 1992 and was nearly
as good as top human players [17].
Below describes the algorithm for TD-Gammon [18]:

David Schlebusch

 14

where:

𝑤𝑤𝑡𝑡+1 − 𝑤𝑤𝑡𝑡 is the amount to change the weight from its value on the previous
turn.

𝑌𝑌𝑡𝑡+1 − 𝑌𝑌𝑡𝑡 is the difference between the current and previous turn’s board
evaluations.

𝛼𝛼 is the “learning rate” parameter
𝜆𝜆 is a parameter that affects how much the present difference in board

evaluations should feedback to previous estimates. λ = 0 makes the
program correct only the previous turn's estimate; λ = 1 makes the
program attempt to correct the estimates on all previous turns; values
of λ between 0 and 1 specify different rates at which the importance
of older estimates should "decay" with time.

∇𝑤𝑤𝑌𝑌𝑘𝑘 is the gradient of neural-network output with respect to weights: that
is, how much changing the weight affects the output.

4.4 Q-Learning

The Q-Learning algorithm was developed to find the best solution for a finite MDP
given enough computational time. The Q in Q-Learning stands for the quality of the
found solution. Q-Learning works with a table listing all state combinations. After each
action, the Q is updated. Q-Learning belongs to the model-free algorithms. The state
transitions are dependent on the chosen action and the previous state. Q-Learning
was first introduced by Watkins et al. [19] in 1989.

4.5 Deep Q Networks

Deep Q Networks (DQN) was created by combining convolutional networks, known
from ML, with Q-tables. This enables the algorithm to have a kind of receptive field,
by enabling the model to give weights to the perceived inputs. The first DQN was
developed by the researchers at Deepmind in 2013 [20]. DQN became famous when
a trained model was able to beat the best-known human player in Go in 2015 [8].
With its success, DQN are now considered one of the best solutions when a self-
learning algorithm is needed. Its ability to look ahead for future rewards and take
previous actions into account in a single computation cycle makes DQN very fast in
learning, while still keeping the benefits from evolution-based algorithms because it
does not have to throw away failed mutations.

4.5.1 Extensions of the DQN

While the benefits of only having one actor running at a time increase learning speed
and lowers computation time, it makes overtraining of the model easy. This is why an

David Schlebusch

 15

extension of the DQN model was made called asynchronous advantage actor-critic
(A3C) [21]. The benefits of the new approach are that that multiple agents train in
their own environment separately and critique the actions taken by their colleagues
compared to what they learned.

David Schlebusch

 16

5 Literature Review

Research into the job-shop or shop-floor scheduling problem dates back into the
seventies [22]. The proposed solutions to the problem vary strongly in complexity and
approach. Besides, reality often differs heavily from the research.
In general, most shop-floor scheduling is based on a prioritization of incoming jobs
into a stack, which will be worked through from the top, while new jobs are added to
the bottom. The ordering is often split into at least two levels, a rough overlooking
level, and a finer more detailed level. Once a job is on the stack no rescheduling is
normally done. In practice, the top level of the job pool is selected by the due date,
while the fine level is selected by computer-aided calculations and the intuition of the
shop-floor manager. The manager often uses the help of graphical tools, mostly in the
form of Gant charts, to order the selected jobs, to maximize the utilization of his
resources.
This literature research looks into what RL methods are used for job-shop
prioritization, how they are implemented what the benefits and challenges are, as well
as how they could be implemented with a takt based scheduling system proposed by
the SRS project.

5.1 Approach

The preliminary literature search was done with keywords in the Scopus paper
database. The search terms that were used can be found in Table 1. To decide if the
paper was on the topic of this literature research a quick readthrough of the abstract
and in some cases the conclusion was done. If deemed appropriate the paper was
saved for further reading. When selecting papers, a focus was put on uniqueness and
publishing date to gather a wide variety of research. In addition to papers found on
Scopus, interesting citations of the found papers as well as recommendations from
fellow scholars were added to the pool of relevant research.

David Schlebusch

 17

5.2 Research Questions

The following research question was formulated during the project:

What research has been done solving the job-shop
scheduling problem with reinforcement learning?

5.3 Search Terms

Table 1: Number of search results for used keywords.

Key Words Database Articles

reinforcement AND learning Scopus 50017

machine AND learning AND scheduling Scopus 3767

reinforcement AND learning AND planning Scopus 2381

reinforcement AND learning AND scheduling Scopus 1347

takt Scopus 563

reinforcement AND learning AND data AND mining Scopus 553

deep AND reinforcement AND learning AND scheduling Scopus 287

reinforcement AND learning AND job AND scheduling Scopus 215

reinforcement AND learning AND job-shop Scopus 113

reinforcement AND learning AND job-shop AND
scheduling

Scopus 109

scheduling AND takt Scopus 57

q1 AND job-shop AND scheduling Scopus 45

process AND mining AND job-shop Scopus 37

flexible AND manufacturing AND systems AND
reinforcement AND learning

Scopus 34

reinforcement AND learning AND data AND mining AND
scheduling

Scopus 25

1 The search term “Q” comes from “Deep Q Learning” which comes from “Q Learning” which is a
reinforcement learning algorithm introduced by Watkins 1989 [19] and later refined into “Deep Q
Learning” (DQN) by people at Deepmind [20].

David Schlebusch

 18

reinforcement AND learning AND shop-floor Scopus 17

learning AND takt Scopus 13

reinforcement AND learning AND process AND mining
AND scheduling

Scopus 12

job-shop AND takt Scopus 10

reinforcement AND learning AND data AND mining AND
job-shop

Scopus 2

machine AND learning AND takt Scopus 1

reinforcement AND learning AND process AND mining
AND shop-floor

Scopus 1

reinforcement AND learning AND process AND mining
AND job-shop

Scopus 0

reinforcement AND learning AND takt Scopus 0

The keyword search on Scopus resulted in a lot of hits when searching for
reinforcement and learning even in combination with scheduling there are quite a few
results. RL in the combination of job scheduling, job-shop, or shop-floor starts to thin
out the results and brings the results in line with the research question. The table
above shows that there is some research done into takt, but as of today not in
combination with RL algorithms. The same can be said for process mining in
combination with RL which yields only a few results.

5.4 Classification

The found papers were rated for relevance and categorized.

5.4.1 Relevance

To better navigate the number of selected papers a relevance matrix was created,
which can be found in Table 2. The following criteria were marked from 0 to 5:

− Reinforcement Learning
− Scheduling
− Job-Shop
− Machine Learning
− Heuristic Algorithms
− Data / Process Mining
− Takt
− Relevance

David Schlebusch

 19

Reinforcement Learning:
Describes the papers' relevance for RL using TD as a basis and the variants thereof.
This category helps to distinguish between RL and genetic or swarm algorithms as
well as papers that only applied other ML methods.
Scheduling:
To rate the paper according to scheduling problems, since there are scheduling
problems, which are not part of the JSSP but more in general or software focused.
Some papers have very low relevance to a scheduling problem in general since they
only use it as an initial position.
Job-Shop:
As mentioned above some papers focus on scheduling without the JSSP in focus. This
criterion tries to show the significance of the paper for the JSSP.
Machine Learning:
Indicates the significance of ML in the paper. Though RL is a subcategory of ML it was
not counted in this column, so a paper is either focused on RL or other ML methods.
Heuristic Algorithms:
All papers which proposed heuristic methods like GA and PSO are rated in this
category. Since heuristics are an ample part of the JSSP and show how the problem
was solved before the introduction of RL algorithms.
Data / Process Mining:
This category shows if it was used for the approach in the paper.
Takt:
The relevance of it in the paper.
Relevance:
To indicate the overall significance of the work in relation to the stated research
question a relevance score was given, on a subjective basis by the author.

5.4.2 Categorization

Next to the matrix, each paper was categorized into one of the following main topics:
− Data Mining
− Reinforcement Scheduling
− Swarm Scheduling
− Takt Planning
− Predictive Scheduling
− Genetic Scheduling
− Simulation Scheduling
− Repair Scheduling
− Scheduling Graph Modelling
− Linear Scheduling

This should help gain a fast understanding of the topic of the paper and help the
readers quickly find the papers they are looking for.

David Schlebusch

 20

5.5 Relevance

Table 2: Paper relevance matrix.

Title R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

Sc
he

du
lin

g

Jo
b-

Sh
op

M
ac

hi
ne

 L
ea

rn
in

g

H
eu

ri
st

ic
 A

lg
or

ith
m

s

D
at

a
/

Pr
oc

es
s

M
in

in
g

Ta
kt

R
el

ev
an

ce

A Branch-and-Bound Algorithm for the Continuous- Process Job-Shop Scheduling Problem
0 5 5 0 3 0 0 1

A data mining approach for population-based methods to solve the JSSP
0 2 4 0 3 5 0 2

A Reinforcement Learning Approach to Job-shop Scheduling
5 4 4 0 0 0 0 5

David Schlebusch

 21

A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
5 4 4 0 0 0 0 4

A review of machine learning in dynamic scheduling of flexible manufacturing systems
0 1 1 1 1 0 0 1

A Review of Machine Learning in Scheduling
2 2 2 2 0 0 0 2

An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-
objective job-shop scheduling problem

0 2 2 0 5 0 0 1

Can a takt plan ever survive beyond the first contact with the trades on-site?
0 0 0 0 0 0 4 1

Classical Planning in MDP Heuristics: with a Little Help from Generalization
0 4 0 0 5 0 0 0

Data Centers Job Scheduling with Deep Reinforcement Learning
5 3 0 0 0 0 0 1

Deep Reinforcement Learning for Semiconductor Production Scheduling
5 4 4 0 0 0 0 5

Design, Implementation and Evaluation of Reinforcement Learning for an Adaptive Order
Dispatching in Job Shop Manufacturing Systems

5 5 5 0 0 0 0 5

Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement
learning

5 4 4 0 0 0 0 5

Genetic algorithm in flexible work shop scheduling based on multi-objective optimization
0 1 1 0 3 0 0 0

David Schlebusch

 22

Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-
Dimensional Transformation

0 3 3 4 0 0 0 2

Local Search Genetic Algorithms for the Job Shop Scheduling Problem
0 4 4 0 5 0 0 3

MINERVA: A Reinforcement Learning-based Technique for Optimal Scheduling and Bottleneck
Detection in Distributed Factory Operations

5 4 4 0 0 0 0 5

Minimizing total energy cost and tardiness penalty for a scheduling-layout problem in a
flexible job shop system, A comparison of four metaheuristic algorithms

0 4 2 0 4 0 0 1

Multiple Resource Management and Burst Time Prediction using Deep Reinforcement
Learning

4 3 0 0 0 0 0 2

Optimization of global production scheduling with deep reinforcement learning
5 5 5 0 0 0 0 5

Optimization of setup times in the furniture industry
0 3 3 0 0 0 0 0

Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement
learning with graph convolutional network

5 4 5 0 0 0 0 5

Real-time scheduling for a smart factory using a reinforcement learning approach
5 4 4 0 2 0 0 5

Research on Open-pit Mine Vehicle Scheduling Problem with Approximate Dynamic
Programming

4 4 0 0 0 0 0 0

Scheduling and Rescheduling with Iterative Repair
2 5 0 0 1 0 0 3

David Schlebusch

 23

Solving batch process scheduling/planning tasks using reinforcement learning
3 4 0 0 0 0 0 2

The disjunctive graph machine representation of the job shop scheduling problem
0 5 3 0 0 0 0 1

Table 2 shows the relevance of the papers to the above-defined categories. Overall, quite a few papers have been found focusing
on the JSSP and RL, some of them strongly satisfying the research question. A few papers were found showing the evolution of
solutions to the JSSP from linear programming to heuristic and give valuable insight into how the problem should be modeled and
what the problems and pitfalls are. A few papers were on a more precise level no longer relevant to the research question, these
have a low mark in overall relevance. The matrix shows as well that the fields of process and data mining in combination with RL for
the JSSP has barely been explored. No linkage of RL and a takt schedule could be found in the research, which leaves the topic open
for further exploration.

David Schlebusch

 24

5.6 Overview of Found Papers

Table 3: Detailed overview of 27 found papers with a summary.

Ca
te

go
ry

Ti
tle

Au
th

or

Ye
ar

Ke
yw

or
ds

Su
m

m
ar

y

Li
ne

ar

Sc
he

du
lin

g

A Branch-and-Bound
Algorithm for the
Continuous- Process
Job-Shop Scheduling
Problem

George Bozoki, Jean-Paul
Richard

19
70

 − - One of the earliest papers found on the JSSP.
Solving the problem with a branch and bound
algorithm. [22]

Da
ta

 M
in

in
g

A data mining
approach for
population-based
methods to solve
the JSSP

Mohammad Mahdi
Nasiri, Sadegh Salesi,
Ali Rahbari, Navid
Salmanzadeh
Meydani, Mojtaba
Abdollai

20
18

 − Scheduling
− Job shop
− Data mining
− Population generation
− Particle swarm

optimization
− Genetic algorithm

Data mining-based approach to generate an
improved initial population for population-based
heuristics/meta- heuristics solving the JSSP.
Using genetic and swarm algorithms to validate
the rules gathered from the mined data. The
initial mined population outperformed random
populations. The paper suggests applying the
mining technique to other scheduling problems.
[23]

David Schlebusch

 25

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

A Reinforcement
Learning Approach
to Job-shop
Scheduling

Wei Zhang, Thomas G.
Dietterich 19

95
 − - RL for the job shop scheduling problem replacing

Zweben’s iterative repair method with a TD
algorithm. The results showed that in speed
TD(λ) outperforms Zweben’s iterative repair
method but given enough time Zweben’s
iterative repair method will find the optimal
solution and it will be similar to the TD(λ)
solution. [24]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

A reinforcement
learning approach to
parameter
estimation in
dynamic job shop
scheduling

Jamal Shahrabi,
Mohammad Amin
Adibi, Masoud
Mahootchi

20
17

 − Reinforcement learning
− Q–factor
− Dynamic job shop

scheduling
− Variable neighborhood

search

Recommends an online Q-factor algorithm with
VNS for DJSS to be able to react to breakdowns
and new jobs dynamically. ε-greedy is adjusted
to the state of the shop floor. [25]

Pr
ed

ic
tiv

e
Sc

he
du

lin
g

A review of machine
learning in dynamic
scheduling of flexible
manufacturing
systems

Paolo Priore, David de
la Fuente, Alberto
Gomez, Javier Puente

20
01

 − Discrete Simulation
− Dispatching Rules
− Dynamic Scheduling
− Flexible Manufacturing

Systems
− Machine Learning

A review of literature on dynamic scheduling of
FMSs using ML and classification thereof. [26]

Pr
ed

ic
tiv

e
Sc

he
du

lin
g

A Review of Machine
Learning in
Scheduling

Haldun Aytug,
Siddhartha
Bhattacharyya, Gary J.
Koehler, Jane L.
Snowdon

19
94

 − - Gives a clear definition of the scheduling
problem. Discusses existing methods and
explains the need for ML for the JSSP. [27]

David Schlebusch

 26

Sw
ar

m
 S

ch
ed

ul
in

g
An improved particle
swarm optimization
with decline
disturbance index
(DDPSO) for multi-
objective job-shop
scheduling problem

Fuqing Zhao, Jianxin
Tang, Junbiao Wang,
Jonrinaldi

20
13

 − particle swarm
optimization

− expanded job shop
scheduling problem

− multi-objective job
shop scheduling
problem

− decline disturbance
− adaptive meta-

Lamarckian strategy

Discussion of an improved PSO method. A very
good definition of the JSSP with all constraints.
[28]

Ta
kt

 P
la

nn
in

g

Can a takt plan ever
survive beyond the
first contact with the
trades on-site?

Otto Alhava, Vili
Rinne, Enni Laine,
Lauri Koskela

20
19

 − takt planning
− takt control (TPTC)
− job sequencing
− work in progress
− making do/task

diminishment
− tolerance management

In theory, a takt plan can significantly reduce
throughput. In reality, the shop prioritized
keeping up the schedule instead of producing
quality goods, which lead to delays. A new
method for problem management was needed.
[29]

Pr
ed

ic
tiv

e
Sc

he
du

lin
g

Classical Planning in
MDP Heuristics: with
a Little Help from
Generalization

Andrey Kolobov, Mausam,
Daniel S. Weld

20
10

 − - The paper proposes a novel heuristic approach
to solve an MDP scheduling problem. [30]

David Schlebusch

 27

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Data Centers Job
Scheduling with
Deep Reinforcement
Learning

Sisheng Liang, Zhou
Yang, Fang Jin, Yong
Chen

20
20

 − job scheduling
− cluster scheduling
− deep reinforcement

learning
− actor critic

RL applied to the job scheduling problem of
processor resources. Their model showed better
results when learning the rules itself instead of
the fixed rule models previously used. [31]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Deep Reinforcement
Learning for
Semiconductor
Production
Scheduling

Bernd Waschneck,
Andre ́ Reichstaller,
Lenz Belzner, Thomas
Altenmüller, Thomas
Bauernhansl,
Alexander Knapp,
Andreas Kyek

20
18

 − Production Scheduling
− Reinforcement
− Learning
− Machine Learning
− Semiconductor

Manufacturing

Discusses the benefits and problems of an RL
solution for the JSSP. To solve the problem, they
suggest using multiple agents working in
cooperation to achieve a balance of optimization
goals. A reduction of lot delay was achieved. The
paper further ratifies the benefits of flexibility
coming from RL. [32]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Design,
Implementation and
Evaluation of
Reinforcement
Learning for an
Adaptive Order
Dispatching in Job
Shop Manufacturing
Systems

Andreas Kuhnle, Louis
Schäfer, Nicole
Stricker, Gisela Lanza

20
19

 − Reinforcement
Learning,

− Production Scheduling
− Order Dispatching
− Methodical Approach

A very comprehensive guide for creating RL
models for the JSSP. It covers design, evaluation,
and implementation on a methodical level. It
states as well that a “Digital Twin” is one of the
required prerequisites for a successful
application of RL [33]

David Schlebusch

 28

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Dynamic scheduling
for flexible job shop
with new job
insertions by deep
reinforcement
learning

Shu Luo

20
20

 − Flexible job shop
scheduling

− New job insertion
− Dispatching rules
− Deep reinforcement

learning
− Deep Q network

A very comprehensive paper of a concrete
implementation of a DQN for the JSSP. Literature
research compares other methods to the
proposed one in the paper. The results show a
significant performance increase in tardiness
when comparing to naive scheduling methods
like FIFO. [34]

Sw
ar

m

Sc
he

du
lin

g

Genetic algorithm in
flexible work shop
scheduling based on
multi-objective
optimization

Yahui Wang, Liuqiang
Fu, Yongqiang Su,
Qian Yang & Linfeng
Wu

20
18

 − Multi-objective
− optimized genetic

algorithm
− flexible work shop
− scheduling

Experimental proof of a performance increase in
flexible workshop scheduling using a GA. This
paper is very sparse with information. It states it
study was done to legitimize further research.
[35]

Pr
ed

ic
tiv

e
Sc

he
du

lin
g

Hybrid Deep Neural
Network Scheduler
for Job-Shop
Problem Based on
Convolution Two-
Dimensional
Transformation

Zelin Zang, Wanliang
Wang, Yuhang Song,
Linyan Lu, Weikun Li,
Yule Wang, and
Yanwei Zhao

20
19

 − - ML used to extract scheduling knowledge from
historical data. [36]

Ge
ne

tic

Sc
he

du
lin

g

Local Search Genetic
Algorithms for the
Job Shop Scheduling
Problem

Beatrice M. Ombuki,
Mario Ventresca 20

04
 − genetic algorithms

− local search
− tabu search
− job shop scheduling
− combinatorial

optimization

A great introduction to the JSSP. Solved the JSSP
with local search GA. [37]

David Schlebusch

 29

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

MINERVA: A
Reinforcement
Learning-based
Technique for
Optimal Scheduling
and Bottleneck
Detection in
Distributed Factory
Operations

Tara Elizabeth
Thomas, Jinkyu Koo,
Somali Chaterji,
Saurabh Bagchi

20
18

 − - The paper tackles tow problems at the same
time. First, it solves the JSSP by introducing a
reinforcement algorithm based on Q-learning.
Second, it proposes a way to find the bottleneck
resources on the schedule. The proposed model
performs significantly better than naïve ones like
FIFO and the bottleneck indication is superior to
average waiting time and utilization. [38]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Minimizing total
energy cost and
tardiness penalty for
a scheduling-layout
problem in a flexible
job shop system, A
comparison of four
metaheuristic
algorithms

Ahmad Ebrahimi,
Hyun Woo Jeon,
Seokgi Lee, Chao
Wang

20
20

 − Scheduling
− Layout
− Energy consumption
− Transportation time
− Hybrid metaheuristic
− Flexible job shop

A comparison of different optimization models
to optimize the energy consumption of a shop-
floor layout. [39]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Multiple Resource
Management and
Burst Time
Prediction using
Deep Reinforcement
Learning

Vaibhav Kumar,
Siddhant Bhambri,
Prashant Giridhar
Shambharkar

20
19

 − reinforcement learning
− job scheduling
− Deep-Q Network

Developed DQN to solve job burst time detection
and scheduling thereof. [40]

David Schlebusch

 30

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Optimization of
global production
scheduling with
deep reinforcement
learning

Bernd Waschneck,
André Reichstaller,
Lenz Belzner, Thomas
Altenmüller, Thomas
Bauernhansl,
Alexander Knapp,
Andreas Kyek

20
18

 − Production Scheduling
− Reinforcement

Learning
− Machine Learning in

Manufacturing

The paper discusses the use of a DQN in Industry
4.0 over multiple production facilities optimizing
for different goals. The results showed that after
2 days of training the DQN was on par with
previous heuristics without prior knowledge of
the environment. They argue that a DQN is a
superior solution to JSSP due to its flexibility and
training speed. [41]

Si
m

ul
at

io
n

Sc
he

du
lin

g

Optimization of
setup times in the
furniture industry

Tomasz Gawroński

20
12

 − Dispatching rule
− Dynamic scheduling
− Furniture
− Sequence-dependent

setup

Simulation-based priority matrix for the JSSP.
[42]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Petri-net-based
dynamic scheduling
of flexible
manufacturing
system via deep
reinforcement
learning with graph
convolutional
network

Liang Hua, Zhenyu Liu,
Weifei Hua, Yueyang
Wang, Jianrong Tana,
Fei Wu

20
20

 − Dynamic scheduling
− Petri nets
− Deep reinforcement

learning Graph
− convolutional networks
− Digital twin
− Flexible Manufacturing

Systems

The paper solves the JSSP with an extension of a
DQN with a Petri-net convolution layer. It
analyses the benefits of being a smaller model
size. The paper gives a programmatic overview
of their used algorithms, too. [43]

Re
in

fo
rc

em
en

t
Sc

he
du

lin
g

Real-time scheduling
for a smart factory
using a
reinforcement
learning approach

Yeou-Ren Shiue, Ken-
Chuan Lee, Chao-Ton
Su

− Machine learning
− Q-learning
− Real-time scheduling
− Reinforcement learning
− Shop floor control

The paper proves the superiority of an RL
algorithm compared to a GA for the JSSP of an
FMS. [44]

David Schlebusch

 31

Re
in

fo
rc

em
en

t
Le

ar
ni

ng

Research on Open-
pit Mine Vehicle
Scheduling Problem
with Approximate
Dynamic
Programming

Te Xu, Fengyuan Shi,
Wenbo Liu

20
19

 − Open-pit mine
− Vehicle scheduling
− Approximate Dynamic

Programming

The paper proposes an ADP learning algorithm
based on Q-Learning to solve the scheduling of
query tuck routes of an open-pit mine. They
propose a dynamic model to schedule in real-
time depended on the weather and other
conditions. [45]

Re
pa

ir
Sc

he
du

lin
g

Scheduling and
Rescheduling with
Iterative Repair

Monte Zweben,
Eugene Davis, Brian
Daun, Michael J. Deale

19
93

 − - A scheduling system that uses iterative repair.
Iteratively repairing a schedule with better
options till a good solution is found. The paper
compares different repair heuristics to balance
accuracy and computational time. [46]

Re
pa

ir
Sc

he
du

lin
g

Solving batch
process
scheduling/planning
tasks using
reinforcement
learning

E. C. Martinez

19
99

 − Batch Process
Management

− Scheduling
− Learning
− Combinatorial

Optimization

A combination of RL and iterative repair to find a
good schedule. [47]

Sc
he

du
lin

g
Gr

ap
h

M
od

el
lin

g The disjunctive
graph machine
representation of
the job shop
scheduling problem

Jacek Błażewicz, Erwin
Pesch, Małgorzata
Sterna

20
00

 − Disjunctive graph
− Graph representations
− Graph matrix
− Scheduling theory

The paper discusses how to model a schedule on
a graph and from a matrix from it, on which one
can perform optimizations. [1]

Table 3 is the collection of 27 papers found during the literature research. Each paper was classified into a category and summarized.
The summary is kept short to quickly give an overview and should be used together with the relevance matrix to determine the
importance of the paper.

David Schlebusch

 32

6 Summary

The research found agrees that the JSSP is NP-hard and thus with higher complexities
it remains unsolvable in a useful time frame on current generation hardware [37] [41].
While other methods of optimization like GA and PSO have been explored and studied
elaborately, it has been found that, especially when it comes to a highly flexible and
adaptive work floor environment, an RL approach is superior [34] [36] [44].

Figure 6: This table shows results obtained by Shiue et al. [44] comparing different JSSP optimizers, indicating
that RL is superior.

6.1 The Job-Shop Scheduling Problem

The JSSP is extensively researched with papers discussing the topic found on Scopus
dating back till 1970 [22], where the researchers made use of a branch and bound
algorithm to minimize completion time (makespan) of jobs. With increasing
computational power researchers in 1993 at NASA started experimenting with iterative
methods and created the iterative repair method to find an optimal schedule for their
space shuttle launches [46]. In 1995 one of the first RL methods for the JSSP was
introduced expanding on the previous work done by NASA [24]. Combining the
iterative repair method with TD they managed to bring down the calculation time while
maintaining accuracy. With more computing time researchers explored different
optimization strategies mostly genetic [37] and particle swarm algorithms [28]. With
a lot of new research done in ML in recent years, it opened the field for new ideas and
techniques in RL as well. Researchers at Deepmind managed to extend the Q-Learning
algorithm and develop an agent, who can play Go, who won against the human world
champion, which was previously thought to be impossible for a computer [8]. The

David Schlebusch

 33

algorithm found by Deepmind was quickly adapted to JSSP and opened a large field
of studies on how to perfect it for the JSSP [25] [31] [38] [32].
The idea of the problem is very consistent over all papers, defining the problem
without any huge deviations, mostly in a linear programming problem type of style.
The research agrees as well on the topic that the problem is NP-hard and thus not
solvable in realistic time as a linear programming problem [37] [41].
The research further agrees that the JSSP can be modeled as an MDP, where RL is a
powerful method to solve it. As a prerequisite to making RL work the factory needs to
be of the so-called Industry 4.0 (“Smart Factory”) type and have a digital twin of their
resources [44].

6.2 Solutions

There are various ways to solve the JSSP with different benefits and deficits and
approaches have changed over time as well. The need for RL for job-shop scheduling
was discussed as early as 1994 [27]. In general, it can be said that as long as the
production goals of the factory are met, the algorithm and heuristic used to achieve
the goal have their merit. Taking a closer look at the different strategies it quickly
becomes apparent what the pros and cons of each method are. While nearly any JSSP
can be stated as a linear programming problem, the solving of one by mathematical
means is rarely discussed and quickly dismissed since the computation time exceeds
the benefits of finding a perfect solution. Since close to perfect solutions are generally
accepted as good enough, this makes iterative and heuristic methods perfect
candidates to solve the problem.
To solve the problem various variants of GAs, VNS, TS, and PSO where explored often
in combination with TD. Since the success of deep Q-Learning, the focus of research
has changed strongly to versions of it. Researched showed that given enough time
nearly all proposed optimization algorithms will find a good enough solution which will
not significantly differ to their competitors [24], but it was found that deep Q-Learning
algorithms offer a huge advantage in processing time and flexibility in comparison to
the other approaches [44]. DQNs are highly and quickly adaptable to new
environments and need only a short amount of training time in comparison. When it
comes to complexity, DQNs are also scalable over multiple factories and allow multi-
target optimization, by training multiple agents in cooperation with different priorities.
All these points make deep Q-Learning the superior solution to JSSPs.

6.2.1 Concrete solutions to JSSP

Shahrabi et al. [25] proposed a Q-Learning approach using VNS to find the close to
best solution for JSSP. The proposed algorithm starts over with the old state if the
planning horizon is violated ending in zero rewards. If the planning horizon is met, a
reward is calculated, and the new schedule is used for the next iteration.

David Schlebusch

 34

Figure 7: The proposed flow of the solution for the JSSP by Shahrabi et al. [25].

The work done by Priore et al. [26] suggests using online learning for scheduling since
the model is faster to react and adapt to environmental changes and manual
overwrites, such as breakdowns and rushed jobs.
Research done by Thomas et al. [38] suggests a domain-specific language (DSL) to
simplify the description of the shop-floor and the production jobs for orders to enable
easier development of optimization solutions for the JSSP.

6.3 Results

The literature research yields a large number of papers trying to solve the JSSP in
various ways. The found research indicates that the future of solving the JSSP is
heading into the direction of self-learning agents like DQNs. The need for RL was
already discussed in 1994 [27]. And as of today, a complete guide to how to design,
implement, and validate a DQN model for the JSSP [33], is given over diverse papers.
Open remains the question of how deep Q-Learning can be applied to other job-shop
management styles, in particular the one of a takt, where no research was found,
referring to the results shown in Table 1.

David Schlebusch

 35

In addition, while a lot of comparisons between models were made, till today there is
no standard job database or creation ruleset to allow a deeper and more accurate
comparison between models. Some models were only validated versus naïve methods
like FIFO, which are barely used in commercial production scheduling systems.
Further, most of the research only used labor simulations and real-world validation of
the methods is missing.

David Schlebusch

 36

7 Conclusion

The JSSP is a highly researched topic with a lot of improvements happening over the
years. Starting from a simple branch and bound algorithms to heuristics like GA and
PSO, with the current state of research focusing strongly on RL in particular DQNs.
Finding a niche to further improve and extend existing methods is difficult. The results
of the literature show that so far no-one has touched the subject of RL in a takt
production environment, like the one proposed by the SRS project, which should be
further explored. From the solutions other researchers proposed, applying a DQN to
the SRS project seems the most reasonable.

7.1 Future Lookout

The next steps for the SRS project will be to create a value function and define a data
set to enable training. After that, a model of the SRS should be created in the OpenAi
gym environment to allow the testing of different reinforcement algorithms. The
OpenAi gym is the research standard when it comes to testing RL algorithms [20].
The results of that would be integrated into the final system.

David Schlebusch

 37

8 Glossary

Table 4: Abbreviations and synonyms

Abbreviation Word

A3C Asynchronous Advantage Actor-Critic

DQN Deep Q Network

GA Genetic Algorithm

JSSP Job-Shop Scheduling Problem

ML Machine Learning

MDP Markov Decision Process

PSO Particle Swarm Optimization

RL Reinforcement Learning

TS Tabu Search

TD Temporal Difference Learning

VNS Variable Neighborhood Search

David Schlebusch

 38

9 Bibliography

[1] J. Błażewicz, E. Pesch and M. Sterna, "The disjunctive graph machine
representation of the job shop scheduling problem," European Journal of
Operational Research, vol. 127, no. 2, pp. 317-331, 1 12 2000.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[3] J. F. Muth and G. L. Thompson, Industrial scheduling, Englewood Cliffs, N.J.,
Prentice-Hall, 1963.

[4] W.-Y. Ku and J. C. Beck, "Mixed Integer Programming Models for Job Shop
Scheduling: A Computational Analysis," Computers & Operations Research, vol.
73, pp. 165-173, 2016.

[5] T. Yamada and R. Nakano, "Chapter 7: Job-shop scheduling," in Genetic
algorithms in engineering systems, The Institution of Electrical Engineers, 1997,
p. 134–160.

[6] M. M. Drugan, "Reinforcement learning versus evolutionary computation: A
survey on hybrid algorithms," Swarm and Evolutionary Computation, vol. 44, pp.
228-246, 2019.

[7] Wikipedia, "Tabu search," 11 8 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Tabu_search. [Accessed 28 8 2020].

[8] D. Silver, A. Huang, A. Guez, C. J. Maddison, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D.
Grewe, J. Nham, N. Kalchbrenner and Sutsk, "Mastering the game of Go with
deep neural networks and tree search," Nature, vol. 529, no. 7567, pp. 484-489,
2016.

[9] Y. Li, "DEEP REINFORCEMENT LEARNING: AN OVERVIEW," 15 10 2018.
[Online]. Available: https://arxiv.org/abs/1810.06339. [Accessed 20 8 2020].

[10] Wikipedia, "Markov decision process," 14 8 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Markov_decision_process. [Accessed 29 8 2020].

[11] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan and D. Hassabis, "A
general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play," Science, 2018.

[12] D. Ha and J. Schmidhuber, "World Models," 27 3 2018. [Online]. Available:
https://arxiv.org/pdf/1803.10122.pdf. [Accessed 29 8 2020].

David Schlebusch

 39

[13] OpenAi, "Part 2: Kinds of RL Algorithms," OpenAi, 2018. [Online]. Available:
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-
below. [Accessed 29 8 2020].

[14] A. Clemmer, "What are the pros and cons of offline vs. online learning? In what
scenarios are each useful?," Quora, 12 11 2012. [Online]. Available:
https://www.quora.com/What-are-the-pros-and-cons-of-offline-vs-online-
learning-In-what-scenarios-are-each-useful. [Accessed 30 8 2020].

[15] V. Kuleshov and D. Precup, "Algorithms for multi-armed bandit problems,"
Journal of Machine Learning Research , vol. 1, pp. 1-48, 2000.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Massachusetts: The MIT Press Cambridge, 2014.

[17] G. Tesauro, "TD-Gammon: A Self-Teaching Backgammon Program," in
Applications of Neural Networks, Boston, Springer, 1995, pp. 267-285.

[18] Wikipedia, "TD-Gammon," 17 2 2020. [Online]. Available:
https://en.wikipedia.org/wiki/TD-Gammon. [Accessed 28 8 2020].

[19] C. J. C. H. Watkins, "Learning from Delayed Rewards," 5 1989. [Online].
Available: http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf. [Accessed 20 8
2020].

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M.
Riedmiller, "Playing Atari with Deep Reinforcement Learning," 19 12 2013.
[Online]. Available: https://arxiv.org/pdf/1312.5602.pdf. [Accessed 20 8 2020].

[21] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver and
K. Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning," 4 2
2016. [Online]. Available: https://arxiv.org/pdf/1602.01783.pdf. [Accessed 29 8
2020].

[22] G. Bozoki and J.-P. Richard, "A branch-and-bound algorithm for the continuous-
process job-shop scheduling problem," A I I E Transactions , vol. 2, no. 3, pp.
246-252, 1970.

[23] M. M. Nasiri, S. Salesi, A. Rahbari, N. S. Meydani and M. Abdollai, "A data mining
approach for population-based methods to solve the JSSP," Soft Computing, vol.
23, p. 11107–11122, 2019.

[24] W. Zhang and T. G. Dietterich, "A reinforcement learning approach to job-shop
scheduling," IJCAI'95: Proceedings of the 14th international joint conference on
Artificial intelligence, vol. 2, pp. 1114-1120, 1995.

[25] J. Shahrabi, M. A. Adibi and M. Mahootchi, "A reinforcement learning approach
to parameter estimation in dynamic job shop scheduling," Computers &
Industrial Engineering, vol. 110, pp. 75-82, 2017.

David Schlebusch

 40

[26] P. Priore, D. d. l. Fuente, A. Gomez and J. Puente, "A review of machine learning
in dynamic scheduling of flexible manufacturing systems," Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, vol. 15, pp. 251-263, 2001.

[27] H. Aytug, S. Bhattacharyya, G. J. Koehler and J. L. Snowdon, "A Review of
Machine Learning in Scheduling," Transactions on Engineering Management, vol.
41, no. 2, pp. 165-171, 1994.

[28] F. Zhao, J. Tang, J. Wang and Jonrinaldi, "An improved particle swarm
optimization with decline disturbance index (DDPSO) for multi-objective job-
shop scheduling problem," Computers & Operations Research, vol. 45, pp. 38-
50, 2014.

[29] O. Alhava, V. Rinne, E. Laine and L. Koskela, "Can a Takt Plan Ever Survive
Beyond the First Contact With the Trades On-Site?," in Proceedings of the 27th
Annual Conference of the International Group for Lean Construction, 2019.

[30] A. Kolobov, Mausam and D. S. Weld, "Classical Planning in MDP Heuristics: with
a Little Help from Generalization," in Proceedings of the 20th International
Conference on Automated Planning and Scheduling, Toronto, 2010.

[31] S. Liang, Z. Yang, F. Jin and Y. Chen, "Data Centers Job Scheduling with Deep
Reinforcement Learning," in Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 2020.

[32] B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauernhansl, A.
Knapp and A. Kyek, "Deep Reinforcement Learning for Semiconductor
Production Scheduling," in 29th Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC), 2018.

[33] A. Kuhnle, L. Schäfer, N. Stricker and G. Lanza, "Design, Implementation and
Evaluation of Reinforcement Learning for an Adaptive Order Dispatching in Job
Shop Manufacturing Systems," in 52nd CIRP Conference on Manufacturing
Systems, 2019.

[34] S. Luo, "Dynamic scheduling for flexible job shop with new job insertions by
deep reinforcement learning," Applied Soft Computing Journal, vol. 91, 2020.

[35] Y. Wang, L. Fu, Y. Su, Q. Yang and L. Wu, "Genetic algorithm in flexible work
shop scheduling based on multi-objective optimization," Journal of
Interdisciplinary Mathematics, vol. 21, no. 5, pp. 1249-1254, 2018.

[36] Z. Zang, W. Wang, Y. Song, L. Lu, W. Li, Y. Wang and Y. Zhao, "Hybrid Deep
Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-
Dimensional Transformation," Computational Intelligence and Neuroscience, vol.
2019, no. 2, pp. 1-19, 2019.

[37] B. M. Ombuki and M. Ventresca, "Local Search Genetic Algorithms for the Job
Shop Scheduling Problem," Applied Intelligence, vol. 21, pp. 99-109, 2004.

David Schlebusch

 41

[38] T. E. Thomas, J. Koo, S. Chaterji and S. Bagchi, "MINERVA: A Reinforcement
Learning-based Technique for Optimal Scheduling and Bottleneck Detection in
Distributed Factory Operations," in 10th International Conference on
Communication Systems & Networks (COMSNETS), 2018.

[39] A. Ebrahimi, H. W. Jeon, S. Lee and C. Wang, "Minimizing total energy cost and
tardiness penalty for a scheduling-layout problem in a flexible job shop system:
A comparison of four metaheuristic algorithms," Computers & Industrial
Engineering, vol. 141, 2020.

[40] V. Kumar, S. Bhambri and P. G. Shambharkar, "Multiple Resource Management
and Burst Time Prediction using Deep Reinforcement Learning," in Eighth
International Conference on Advances in Computing, Communication and
Information Technology CCIT, 2019.

[41] B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauernhansl, A.
Knapp and A. Kyek, "Optimization of global production scheduling with deep
reinforcement Optimization of global production scheduling with deep
reinforcement learning," in 51st CIRP Conference on Manufacturing Systems,
2018.

[42] T. Gawroński, "Optimization of setup times in the furniture industry," Annals of
Operations Research , vol. 201, pp. 169-182, 2012.

[43] L. Hua, Z. Liu, W. Hua, Y. Wang, J. Tana and F. Wu, "Petri-net-based dynamic
scheduling of flexible manufacturing system via deep reinforcement learning
with graph convolutional network," Journal of Manufacturing Systems, vol. 55,
pp. 1-14, 2020.

[44] Y.-R. Shiue, K.-C. Lee and C.-T. Su, "Real-time scheduling for a smart factory
using a reinforcement learning approach," Computers & Industrial Engineering,
vol. 125, pp. 604-614, 2018.

[45] T. Xu, F. Shi and W. Liu, "Research on Open-pit Mine Vehicle Scheduling Problem
with Approximate Dynamic Programming," in 2019 IEEE International
Conference on Industrial Cyber Physical Systems (ICPS), Taipei, 2019.

[46] M. Zweben, E. Davis, B. Daun and M. J. Deale, "Scheduling and Rescheduling
with Iterative Repair," IEEE Transactions on Systems Man and Cybernetics , vol.
23, no. 6, pp. 1588-1596, 1993.

[47] E. C. Martinez, "Solving batch process scheduling/planning tasks using
reinforcement learning," Computers & Chemical Engineering, vol. 23, pp. 527-
530, 1999.

[48] Wikipedia, "Reinforcement learning," Wikipedia, 22 7 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Reinforcement_learning. [Accessed 20 8 2020].

David Schlebusch

 42

10 Table of Figures

Figure 1: A Gantt-Chart representation of a solution for a 3 × 3 problem by Yamada
et al. [5]. ... 7
Figure 2: Pseudocode for Tabu Search form Wikipedia [7]. 10
Figure 3: The typical framing of an RL scenario by Megajuice [48]. 11
Figure 4: Deep RL Applications by Li [9]. ... 11
Figure 5: A non-exhaustive, but useful taxonomy of algorithms in modern RL by
OpenAi [13]. .. 12
Figure 6: This table shows results obtained by Shiue et al. [44] comparing different
JSSP optimizers, indicating that RL is superior. .. 32
Figure 7: The proposed flow of the solution for the JSSP by Shahrabi et al. [25]. ... 34

https://d.docs.live.net/910f6ebc385c86fc/Reinforcement%20Learning%20approach%20for%20Job.docx#_Toc49783808

David Schlebusch

 43

11 Table of Tables

Table 1: Number of search results for used keywords. ... 17
Table 2: Paper relevance matrix. ... 20
Table 3: Detailed overview of 27 found papers with a summary. 24
Table 4: Abbreviations and synonyms ... 37

	1 Introduction
	1.1 Structure of this Document

	2 The Job-Shop Scheduling Problem
	2.1 Model of the Job-Shop Scheduling Problem
	2.2 The complexity of the JSSP

	3 Optimization
	3.1 Finite Methods
	3.2 Iterative Methods
	3.3 Heuristic Methods
	3.3.1 Genetic Algorithms
	3.3.2 Particle Swarm Optimization
	3.3.3 Tabu Search
	3.3.4 Variable Neighborhood Search

	4 Reinforcement Learning
	4.1 Fundamentals
	4.1.1 Markov Decision Process
	4.1.2 Model-Based versus Model-Free Learning
	4.1.3 Online and Offline Learning

	4.2 ϵ-Greedy
	4.3 Temporal Difference Learning
	4.4 Q-Learning
	4.5 Deep Q Networks
	4.5.1 Extensions of the DQN

	5 Literature Review
	5.1 Approach
	5.2 Research Questions
	5.3 Search Terms
	5.4 Classification
	5.4.1 Relevance
	5.4.2 Categorization

	5.5 Relevance
	5.6 Overview of Found Papers

	6 Summary
	6.1 The Job-Shop Scheduling Problem
	6.2 Solutions
	6.2.1 Concrete solutions to JSSP

	6.3 Results

	7 Conclusion
	7.1 Future Lookout

	8 Glossary
	9 Bibliography
	10 Table of Figures
	11 Table of Tables

