PRO5802 - Programação de Produção Intermitente (2021)

Aula 3 - Teoria de Scheduling

Prof. Daniel de Oliveira Mota

Jobs and machines

- Data (assumed to be given)

m	number of machines
n	number of jobs
$p_{i j}$	processing time of job j at machine i
p_{j}	processing time of job j at when all machines are identical
r_{j}	release date of job j
d_{j}	due date of job j
w_{j}	weight of job j

Description of a Scheduling Problem

machine environment

Examples:

- Paper bag factory

FF3 $\left|r_{j}\right| \Sigma w_{j} T_{j}$

- Gate assignment
- Tasks in a CPU
- Traveling Salesman
$P_{m}\left|r_{j}, M_{j}\right| \Sigma w_{j} T_{j}$
I| $r_{j} \operatorname{prmp} \mid \Sigma w_{j} C_{j}$
$I\left|\mathrm{~s}_{\mathrm{jk}}\right| \mathrm{C}_{\max }$

Machine environment α

- Single machine and machines in parallel

I	single machine
P_{m}	m identical machines in parallel
Q_{m}	m machines in parallel w/different speeds v_{i}
R_{m}	m unrelated machines in parallel

Machine environment α (2)

- Machines in series

F_{m}	flow shop: all jobs processed in the same order on the machines
$F F_{c}$	flexible flow shop: same as flow shop but with c stages of parallel machines
J_{m}	job shop: each job has its own routing
$F J_{c}$	flexible job shop: same as job shop but with c stages of parallel machines
O_{m}	open shop: each job has to processed on all machines but no routing restrictions

Machine Environment

Processing characteristics and constraints β

	could be empty!
r_{j}	Release dates
$s_{j k}$	sequence dependent setup times
$s_{i j k}$	sequence and machine dependent setup times
prmp	preemption
prec	precedence constraints

Processing characteristics and constraints β (2)

brkdwn	breakdowns
M_{j}	machine eligibility restrictions
prmu	permutation
block	blocking
$n w t$	no waiting
recre	recirculation

Processing Restrictions and Constraints

Objectives γ

- Performance measures of individual jobs

C_{j}	completion time of job j
L_{j}	lateness $=C_{j}-d_{j}$
T_{j}	tardiness $=\max \left(L_{j}, 0\right)$
E_{j}	earliness $=\max \left(-L_{j}, 0\right)$
U_{j}	unit penalty $=1$ if $C_{j}>d_{j}$ and 0 otherwise
$h_{j}\left(C_{j}\right)$	h_{j} is a non-decreasing cost function

Objectives $\gamma(2)$

- Functions to be minimized

$C_{\max }=\max C_{j}$	makespan
$L_{\max }=\max L_{j}$	maximum lateness
$\Sigma w_{j} C_{j}$	total weighted completion time
$\Sigma w_{j}\left(1-e^{-r} C_{j)}\right)$	total weighted discounted C_{j}
$\Sigma w_{j} T_{j}$	total weighted tardiness
$\Sigma w_{j} U_{j}$	weighted number of tardy jobs
$\Sigma w_{j} E_{j}+\Sigma w_{j}^{\prime \prime} T_{j}$	total weighted earliness and tardiness

Objective Functions

Complexity of Makespan Problems

Classes of Schedules

- Nondelay (greedy) schedule
- No machine is kept idle while a task is waiting for processing.

An optimal schedule need not be nondelay!

Example: $\mathrm{P}_{2}| | \mathrm{C}_{\max }$

jobs	1	2	3	4	5	6	7	8	9	10
p_{j}	8	7	7	2	3	2	2	8	8	15

Como funciona na prática?

Flow Shops

- Each job must follow the same route.
- There is a sequence of machines.
- There may be limited buffer space between neighboring machines.
- The job must sometimes remain in the previous machine: Blocking.
- The main objective in flow shop scheduling is the makespan.
- It is related to utilization of the machines.
- If the First-come-first-served principle is in effect, then jobs cannot pass each other.
- Permutation flow shop

Directed Graph for $\mathrm{F}_{\mathrm{m}} \mid$ prmu $\mid \mathrm{C}_{\max }$

Example F4|prmu|C $\mathrm{C}_{\text {max }}$

5 jobs on 4 machines with the following processing times

jobs	j_{1}	j_{2}	j_{3}	j_{4}	j_{5}
$p_{1, j_{k}}$	5	5	3	6	3
$p_{2, j_{k}}$	4	4	2	4	4
$p_{3, j_{k}}$	4	4	3	4	1
$p_{4, j_{k}}$	3	6	3	2	5

Directed Graph in the Example

\rightarrow Critical path

Gantt Chart in the Example

Slope Heuristic

- Slope index A_{j} for job j

$$
A_{j}=-\sum_{i=1}^{m}(m-(2 i-1)) p_{i j}
$$

- Sequencing of jobs in decreasing order of the slope index
- Consider 5 jobs on 4 machines with the following processing times

jobs	j_{1}	j_{2}	j_{3}	j_{4}	j_{5}
$\mathrm{p}_{1, \mathrm{j} \mathrm{k}}$	5	2	3	6	3
$\mathrm{p}_{2, \mathrm{jk}}$	1	4	3	4	4
$\mathrm{p}_{3, \mathrm{j} \mathrm{k}}$	4	4	2	4	4
$\mathrm{p}_{4, \mathrm{j}, \mathrm{k}}$	3	6	3	5	5

Sequences 2,5,3,1,4 and 5,2,3,1,4 are optimal and the makespan is 32 .

$$
\begin{aligned}
& A_{1}=-(3 \times 5)-(1 \times 4)+(1 \times 4)+(3 \times 3)=-6 \\
& A_{2}=-(3 \times 5)-(1 \times 4)+(1 \times 4)+(3 \times 6)=+3 \\
& A_{3}=-(3 \times 3)-(1 \times 2)+(1 \times 3)+(3 \times 3)=+1 \\
& A_{4}=-(3 \times 6)-(1 \times 4)+(1 \times 4)+(3 \times 2)=-12 \\
& A_{5}=-(3 \times 3)-(1 \times 4)+(1 \times 1)+(3 \times 5)=+3
\end{aligned}
$$

Classification of Scheduling Problems

5 job single machine exercise

minimize $\Sigma w_{j} C_{j}$
where C_{j} is the completion time of job j,
p_{j} is the processing time of job j,
w_{j} is the weight (priority) of job j

j	p_{j}	w_{j}
1	4	3
2	1	1
3	3	10
4	10	15
5	2	4

Regular objective functions

- Regular objective functions
- non-decreasing in C_{1}, \ldots, C_{n}
- most objective functions considered in this class are regular
- Non-regular objective functions
- Example: $\Sigma w_{j}{ }^{\prime} E_{j}+\Sigma w_{j}{ }^{\prime \prime} T_{j}$
- Much harder to solve!

Discussion on complexity

What does complexity mean?

- Complexity is an indication of how much computation is required to solve a problem
- Significance of the complexity of a scheduling problem
- Does an efficient algorithm for solving the problem exist?
- Worst case analysis

Problems and instances

- A problem is the generic description of a problem
- An instance refers to a problem with a given set of data
- The size of an instance refers to the length of the data string necessary to specify the instance (on a computer)
- In this class the size of an instance is usually measured in the number of jobs n

The classes \boldsymbol{P} and $\mathscr{N} P$

- Class \boldsymbol{P}
- The class \boldsymbol{P} contains all decision problems for which there exists a Turing machine algorithm that leads to the right yes-no answer in a number of steps bounded by a polynomial in the length of the encoding
- Class NP
- The class $\mathbb{N P}$ contains all decision problems for which the correct answer, given a proper clue, can be verified by a Turing machine in a number of steps bounded by a polynomial in the length of the encoding

Problem reduction

- Problem P polynomially reduces to problem P^{\prime} if a polynomial time algorithm for P^{\prime} implies a polynomial time algorithm for problem P
- Denoted $\mathrm{P} \propto \mathrm{P}^{\prime}$
- P^{\prime} is at least as hard as P

The classes NP-hard and NP-complete

- Class NP-hard
- A problem P is called $\mathscr{N} P$ - hard if the entire class $\mathscr{N} P$ polynomially reduces to problem P
- Problem P is at least as hard as all the problems in $\mathscr{N P}$
- Class VP-complete (not in the textbook)
- A problem P is called $V P$-complete if it is both in classes $V P$ and $V \mathbb{P}$-hard

Pseudopolynomial algorithms

- Polynomial time algorithms exist for some NP-hard problems under the appropriate encoding of the problem data
- Such problems are referred to as NP-hard in the ordinary sense and the algorithms are called pseudopolynomial
- Problem P is called strongly NP-hard if a pseudopolynomial algorithm for it does not exist

Some NP-hard problems

- NP-hard in the ordinary sense
- PARTITION
- Strongly VP-hard
- SATISFIABILITY
- 3-PARTITION
- HAMILTIONIAN CIRCUIT
- CLIQUE
https://news.mit.edu/2009/explainer-pnp
http://www.claymath.org/sites/default/files/pvsnp.pdf
- Mãos à obra!!!

Example 2 (1|batch $\left.\mid \Sigma w_{i} C_{i}\right)$

i	1	2	3	4	5	6
p_{i}	3	2	2	3	1	1
w_{i}	1	2	1	1	4	4

	2		3	1	5		4	6
0	1	3	4		10	11	15	
t								

$\Sigma w_{i} C_{i}=2 \cdot 3+(1+4+4) \cdot 10+(1+4) \cdot 15=171$

Example $3\left(1\left|r_{i} ; p m t n\right| L_{\max }\right)$

i	1	2	3	4
p_{i}	2	1	2	2
r_{i}	1	2	2	7
d_{i}	2	3	4	8

Example $4\left(J 3\left|p_{i j}=1\right| C_{\max }\right)$

i 灭	1	2	3	4
1	M_{1}	M_{3}	M_{2}	M_{1}
2	M_{2}	M_{3}		
3	M_{3}	M_{1}		
4	M_{1}	M_{3}	M_{1}	
5	M_{3}	M_{1}	M_{2}	M_{3}

M_{1}	1	5	4	3	1	4
M_{2}	2		5	1		
M_{3}	5	3	1	4	5	2

