PRO5802 - Programação de Produção Intermitente (2021)

Aula 3 – Teoria de Scheduling

Prof. Daniel de Oliveira Mota

Jobs and machines

• Data (assumed to be given)

т	number of machines
n	number of jobs
p _{ij}	processing time of job j at machine i
p_{j}	processing time of job <i>j</i> at when all machines are identical
r_{j}	release date of job j
d_{j}	due date of job j
wj	weight of job j

Description of a Scheduling Problem

Examples:

- Paper bag factory
- Gate assignment
- Tasks in a CPU
- Traveling Salesman

FF3 | r_j | Σ w_j T_j

- $P_m \mid r_j$, $M_j \mid \Sigma w_j T_j$
- $I \mid r_j prmp \mid \Sigma w_j C_j$
- I | S_{jk} | C_{max}

Machine environment $\boldsymbol{\alpha}$

• Single machine and machines in parallel

1	single machine
P_m	m identical machines in parallel
Q_m	m machines in parallel w/different speeds v_i
R_m	m unrelated machines in parallel

Machine environment α (2)

• Machines in series

F_m	flow shop: all jobs processed in the same order on the machines
FF _c	flexible flow shop: same as flow shop but with c stages of parallel machines
J_m	job shop: each job has its own routing
FJ _c	flexible job shop: same as job shop but with c stages of parallel machines
O _m	open shop: each job has to processed on all machines but no routing restrictions

Machine Environment

Processing characteristics and constraints β

	could be empty!
r _j	Release dates
S _{jk}	sequence dependent setup times
S _{ijk}	sequence and machine dependent setup times
prmp	preemption
prec	precedence constraints

Processing characteristics and constraints β (2)

brkdwn	breakdowns
M _j	machine eligibility restrictions
prmu	permutation
block	blocking
nwt	no waiting
recrc	recirculation

Processing Restrictions and Constraints

Objectives γ

• Performance measures of individual jobs

C_{j}	completion time of job j
L_j	lateness = $C_j - d_j$
T_j	tardiness = $max(L_j, 0)$
E_{j}	earliness = max(- L_{j} , 0)
U_{j}	unit penalty = 1 if $C_j > d_j$ and 0 otherwise
$h_j(C_j)$	h_j is a non-decreasing cost function

Objectives γ (2)

• Functions to be minimized

$C_{\max} = \max C_j$	makespan
$L_{\max} = \max L_j$	maximum lateness
$\Sigma w_j C_j$	total weighted completion time
$\Sigma w_j (1 - e^{-rC_j})$	total weighted discounted C_j
$\Sigma w_j T_j$	total weighted tardiness
$\Sigma w_j U_j$	weighted number of tardy jobs
$\Sigma w_j' E_j + \Sigma w_j'' T_j$	total weighted earliness and tardiness

Objective Functions

Complexity of Makespan Problems

Classes of Schedules

- Nondelay (greedy) schedule
 - No machine is kept idle while a task is waiting for processing.

An optimal schedule need not be nondelay!

Example: P₂ | | C_{max}

jobs	1	2	3	4	5	6	7	8	9	10
pj	8	7	7	2	3	2	2	8	8	15

Como funciona na prática?

Flow Shops

- Each job must follow the same route.
 - There is a sequence of machines.
- There may be limited buffer space between neighboring machines.
 - The job must sometimes remain in the previous machine: **Blocking**.
- The main objective in flow shop scheduling is the makespan.
 - It is related to utilization of the machines.
- If the First-come-first-served principle is in effect, then jobs cannot pass each other.
 - Permutation flow shop

Directed Graph for F_m|prmu|C_{max}

Example F4|prmu|C_{max}

5 jobs on 4 machines with the following processing times

jobs	j ₁	j ₂	j ₃	j ₄	j ₅
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
p_{3,j_k}	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

Directed Graph in the Example

Gantt Chart in the Example

Slope Heuristic

• Slope index A_i for job j

$$A_{j} = -\sum_{i=1}^{m} (m - (2i - 1))p_{ij}$$

- Sequencing of jobs in decreasing order of the slope index
- Consider 5 jobs on 4 machines with the following processing times

jobs	j ₁	j ₂	j ₃	j ₄	j ₅
р _{1, jk}	5	2	3	6	3
р _{2,jk}	1	4	3	4	4
р _{3,jk}	4	4	2	4	4
Р _{4, j_k}	3	6	3	5	5

$$A_{1} = -(3 \times 5) - (1 \times 4) + (1 \times 4) + (3 \times 3) = -6$$

$$A_{2} = -(3 \times 5) - (1 \times 4) + (1 \times 4) + (3 \times 6) = +3$$

$$A_{3} = -(3 \times 3) - (1 \times 2) + (1 \times 3) + (3 \times 3) = +1$$

$$A_{4} = -(3 \times 6) - (1 \times 4) + (1 \times 4) + (3 \times 2) = -12$$

$$A_{5} = -(3 \times 3) - (1 \times 4) + (1 \times 1) + (3 \times 5) = +3$$

Sequences 2,5,3,1,4 and 5,2,3,1,4 are optimal and the makespan is 32.

Classification of Scheduling Problems

5 job single machine exercise

minimize $\Sigma w_j C_j$

where C_j is the completion time of job j,

 p_i is the processing time of job *j*,

 w_i is the weight (priority) of job j

j	p_{j}	w _j
1	4	3
2	1	1
3	3	10
4	10	15
5	2	4

Regular objective functions

- Regular objective functions
 - non-decreasing in $C_1, ..., C_n$
 - most objective functions considered in this class are regular
- Non-regular objective functions
 - Example: $\Sigma w_j' E_j + \Sigma w_j'' T_j$
 - Much harder to solve!

Discussion on complexity

What does complexity mean?

- Complexity is an indication of how much <u>computation</u> is required to solve a problem
- Significance of the complexity of a scheduling problem
 - Does an efficient algorithm for solving the problem exist?
 - Worst case analysis

Problems and instances

- A problem is the generic description of a problem
- An instance refers to a problem with a given set of data
- The <u>size</u> of an instance refers to the length of the data string necessary to specify the instance (on a computer)
 - In this class the size of an instance is usually measured in the number of jobs *n*

The classes ${\cal P}$ and ${\cal N}{\cal P}$

- Class ${\cal P}$
 - The class P contains all decision problems for which there exists a Turing machine algorithm that leads to the right yes-no answer in a number of steps bounded by a polynomial in the length of the encoding
- Class MP
 - The class \mathcal{NP} contains all decision problems for which the correct answer, <u>given a proper clue</u>, can be verified by a Turing machine in a number of steps bounded by a polynomial in the length of the encoding

Problem reduction

- Problem P <u>polynomially reduces</u> to problem P' if a polynomial time algorithm for P' implies a polynomial time algorithm for problem P
 - Denoted $P \propto P^\prime$
 - P' is at least as hard as P

The classes *MP* - hard and *MP* - complete

- Class *MP* hard
 - A problem P is called *MP* hard if the entire class *MP* polynomially reduces to problem P
 - Problem P is at least as hard as all the problems in \mathcal{NP}
- Class *MP* complete (not in the textbook)
 - A problem P is called \mathcal{NP} complete if it is both in classes \mathcal{NP} and \mathcal{NP} -hard

Pseudopolynomial algorithms

- Polynomial time algorithms exist for some \mathcal{WP} -hard problems under the appropriate encoding of the problem data
- Such problems are referred to as *MP*-hard in the ordinary sense and the algorithms are called <u>pseudopolynomial</u>
- Problem P is called <u>strongly *NP*-hard</u> if a pseudopolynomial algorithm for it does not exist

Some *MP*-hard problems

- \mathcal{NP} -hard in the ordinary sense
 - PARTITION
- Strongly *MP*-hard
 - SATISFIABILITY
 - 3-PARTITION
 - HAMILTIONIAN CIRCUIT
 - CLIQUE

https://news.mit.edu/2009/explainer-pnp

http://www.claymath.org/sites/default/files/pvsnp.pdf

• Mãos à obra!!!

Example 2 (1|batch| $\Sigma w_i C_i$)

 $\Sigma w_i C_i = 2 \cdot 3 + (1 + 4 + 4) \cdot 10 + (1 + 4) \cdot 15 = 171$

Example 3 $(1|r_i; pmtn|L_{max})$

i	1	2	3	4
p_i	2	1	2	2
r _i	1	2	2	7
d_i	2	3	4	8

Example 4 ($J3 | p_{ij}=1 | C_{max}$)

ij	1	2	3	4
1	M_{1}	M_3	M_2	M_{1}
2	M_2	M_3		
3	M_3	M_1		
4	M_1	M_3	M_1	
5	M_3	M_1	M_2	M_3

