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Preface

The idea for this monograph was born during lunch conversations between
the authors. By that time, both of us had a lot of exposure in scheduling
research, and observed that a constant stream of invitations to review was
filling our desks with papers on flow shop research. We couldn’t help noticing
that, even though several monographs and edited volumes have appeared on
scheduling in general, most of these works survey the field by contributing a
single chapter to every production system such as the flow shop. In contrast,
flow shop systems appear to be the most studied in all of scheduling liter-
ature, offering unique contributions, occupying the research efforts of many
researchers around the globe.

This monograph is all about flow shops. We have organized selected results
into ten distinct flow shop systems and whenever possible, we have attempted
to exploit the connections. We used our subjective personal discretion in se-
lecting the results presented, and we apologize in advance to those (hopefully
few) in the audience whom we leave disappointed. We also include a limited
number of results that have not been published before. We have sought to
make the material accessible to a broad readership, and have tried hard to
simplify notation and reveal unifying concepts. In all, we know of no other
text dedicated to flow shop research at the breadth attempted here.

It is our hope that, by organizing in one place a huge body of flow shop
knowledge along distinct design features, we help scholars and practitioners
to identify easily what is known in the literature on problems of interest.
Moreover, we hope that results unique to flow shop research will provide the
seed for research in other areas of scheduling and in optimization in general.
Finally, our monograph may provide the impetus for methods and techniques
that have been tried successfully in other areas of optimization to be applied
to flow shop problems that are intractable as of now.

We are very grateful for the helpful suggestions of many friends and col-
leagues, notable among whom are Kenneth Baker, Xiuli Chao, Selçuk Kara-
bati, Michael Pinedo, Ruben Ruiz, and Gideon Weiss. Also, many thanks to
our Editor and friend, Frederick Hillier, for his patience and encouragement.

Hamilton Emmons and George Vairaktarakis

Cleveland, OH, U.S.A.
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Chapter 1

INTRODUCTION

We start by presenting the basic structure and language of flow shops,
and the conventions and notation to be adopted. The concepts of prece-
dence, permutation schedules and when they are optimal, graphic sched-
ule representations, dominance properties, heuristics and error bounds,
cyclic shops and other fundamentals are introduced.

In a manufacturing environment, the items being produced, or jobs, usually
can be decomposed into a number of tasks or operations each of which
is the smallest piece of work it is convenient to consider. Each task may re-
quire a variety of raw materials and subassemblies, machinery and equipment,
conveyors and operators, and has other characteristics, notably its required
processing time. Thus, the job generally goes through several stages of work
at a series of work stations, or machine groups. Each stage consists of one
or more productive facilities (drill presses, ovens, human inspectors, etc.),
collectively referred to as machines or most generally as processors.

There are many constraints on the times at which, or time intervals in
which, any task may be performed. It may be delayed because the needed
workers and/or equipment may be otherwise engaged, or raw materials may
not yet have been delivered. Some tasks may have to await the completion
of other tasks, usually when they are two parts of the same job; such prece-
dence relations are discussed in the next section. Other constraints may
further restrict the timing of tasks. A schedule is a specification of when
each task of a given job set is to be processed, and with what personnel,
equipment, etc. When speaking of schedules it will normally be understood
that we restrict attention to feasible schedules: those that satisfy all con-
straints. The classical problem of job shop scheduling is to determine an
optimal schedule: a feasible schedule that best achieves any one of several
possible objectives. These objectives are almost always expressed as functions
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2 1 INTRODUCTION

of the task completion times, and our goal is then to minimize this function
over all feasible schedules.

In full generality, this is often difficult to do, because the problem may be
very large and complex, and there may be multiple and possibly ill-defined
objectives. Solution procedures may be slow and laborious, and, when op-
timality is unattainable, are sometimes heuristic. A heuristic algorithm
produces a satisficing schedule, which is the best one we can find and
which gives satisfactory performance, but which is not guaranteed to be truly
optimal.

A certain manufacturing layout has widespread use and great practical
importance, and it is considerably more tractable. This is the flow shop, and
it will be the subject of this monograph.

Definition 1.1. A flow shop is a processing system in which the task se-
quence of each job is fully specified (this is called chain precedence, illus-
trated in Fig. 1.1), and all jobs visit the work stations in the same
order.

Most authors add the requirement that a job never revisits any stage. Thus
the stations can be numbered 1, 2, . . . , m, and every job visits them in numer-
ical order. In a pure flow shop each job has m tasks and visits all stages.
More generally, jobs may have fewer than m tasks and may skip over some
stations. Still, it is assumed that a job never visits any stage i′ < i after
it has visited stage i. This will be our assumption throughout most of this
monograph.

However, there is one other case that some authors include in the flow shop
category, and that we shall discuss in Chapt. 9: the reentrant flow shop. Jobs
in a reentrant shop may cycle back and be reprocessed at the same station, or
sequence of stations, multiple times. As long as all jobs follow the same path,
the system retains the defining characteristic of a flow shop. Nevertheless,
outside the one chapter on reentrant flow shops, we will require that jobs
move always forward, with no turning back.

Fig. 1.1 Chain precedence for a job in a flow shop

1.1 Assumptions and Conventions

There are many variations on this general flow shop structure. The most
fundamental model is the simple flow shop, which has the following char-
acteristics:
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• Each of the m stages or work stations can handle one operation at a
time: it consists of a single processor which is always available. When
an m-station flow shop has one machine at each station, it is called an
m -machine flow shop.

• A given number, n, of independent jobs require processing, each made up
of m well-ordered tasks with known requirements: task i of job j requires
processor i for a processing time pij ≥ 0. Thus, each task of a job requires
a different machine (no job visits a work station more than once), and the
machine sequence is the same for all jobs.

• All jobs are available simultaneously at the start (at time zero), and remain
available without interruption until all work on them is finished.

• Each job can be in only one place (in process on one machine) at a time.
• No preemption is allowed: once started, a task must be processed to

completion without interruption.
• When a job completes processing on one machine, it is immediately avail-

able to begin on the next. That is, there are no delays due to machine
setups, or transfer lags caused by transportation between machines, etc.

• Intermediate storage (that is, room for work in process to queue up) be-
tween successive machines is unlimited.

A more broadly encompassing model, to which we shall make brief refer-
ence from time to time, is the general job shop, which is described exactly
as the simple flow shop, with the one exception that the required machine
sequence of different jobs may differ. A more important generalization, from
our point of view, is the hybrid (or compound or flexible) flow shop, in
which work stations may consist of several functionally identical processors
in parallel.

We will first present results for the simple flow shop, and will relax each
assumption in subsequent chapters.

1.2 Terminology

Whenever possible, the following notation will be adhered to throughout this
monograph. We start with the given parameters that may be needed to define
a particular scheduling problem.

• n: number of jobs to be scheduled.
• m: number of stages (or work stations or machine groups) in the shop.

In a simple shop, each stage has one processor or machine. In a hybrid shop, a work

station may have a number of machines, not necessarily identical in all respects, but

all capable of procesing the tasks assigned to that station.

• Jj : job j (j = 1, . . . , n). Jobs are indexed in arbitrary order unless otherwise

specified.

• Mi: machine i, i.e., the machine at stage i (i = 1, . . . , m) in a simple
flow shop, or sometimes any one of the identical processors at stage i of a
hybrid flow shop.
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• Gi: Stage i (or work station i or machine group i) in a hybrid flow shop.
• ki: the number of machines at Gi in a hybrid flow shop.
• Mhi: machine h at Gi (h = 1, . . . , ki; i = 1, . . . , m) in a hybrid flow

shop.
• Tij : task i of Jj , i.e., the task of Jj processed at Gi; also called the

stage-i task. Tasks are often referred to as operations in the job shop literature, and

as activities in project scheduling parlance; we will generally use the term task. We

may write simply Ti when referring to an arbitrary task without concern for the job

it is part of.

• pij : processing time of Tij . However, for small shops, we generally use the

following simplified notation.

• aj , bj , cj : processing times of Jj at G1, G2, G3, respectively, in shop
with two or three stages. Sometimes aj [bj , cj ] may be used to denote the task

T1j [T2j , T3j ], as well as its processing time; or we may refer to a task processed at

G1 as an a-task, etc.

• pj = <p1j, p2j, . . . , pmj>: processing times of Jj on all machines.
• pi = (pi1, pi2, . . . , pin): processing times of all jobs at stage i.
• rj : ready time or release date of Jj : the earliest that Jj is available

to be processed. In a simple shop, rj = 0.

• dj : due date of Jj . A job completion time in excess of its due date
results in a late job and generally incurs a penalty.

• wj : the weight of Jj , a measure of its relative importance. Often, the
cost per unit time of lateness.

Other notation, for variables that are schedule-dependent:

• S: arbitrary schedule or sequence. For permutation schedules, we write
S = (i, j, . . . , k) , where each component is a job index.

• Si: schedule on Mi in a simple flow shop, or at Gi in a hybrid shop,
when sequences differ across stages.

• Wij(S): time delay or waiting time between completing Jj at stage i−1
and starting it at stage i.

• Cij(S): completion time of Tij.
• Ci(S):completion time of all the tasks scheduled on Mi. Thus, Cm(S)

is the makespan, often abbreviated C(S), and sometimes written Cmax(S).
• Lj(S) = Cmj(S) − dj : lateness of Jj . Note that Lj may be positive

or negative (in which case it is early).
• Tj(S) = max(0, Lj(S)): tardiness of Jj, the positive part of lateness.

An early job has negative lateness but zero tardiness.
• Uj(S): tardiness indicator, where Uj(S) = 1 if Jj is late, Uj(S) = 0

otherwise.

To simplify notation, the dependence on S will be suppressed when the con-
text makes it clear. Thus, we often write Cij(S) as Cij, etc.

A script or caligraphic capital will be used to denote sets. Two examples
that will be commonly used are:
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• J = {J1, J2, . . . , Jn}: the set of all jobs. More often, as convenient,
the elements of J may be the job indices: J = {1, 2, . . ., n}.

• M = {M1, M2, . . . , Mm}: the set of all processors. Alternatively, as
above, M may contain just the machine indices: M = {1, 2, . . ., m}.

Fig. 1.2 uses some of this notation to show the progress of a typical Jj through
an m-station shop using a Gantt chart: a graphical presentation of a work
schedule in which each task is represented by a bar laid out along a horizon-
tal time axis, the bar’s location and length showing the time position and
duration of task. Note that Jj is completed before its due date (Cj < dj); it
is early. We will generally think of earliness as negative lateness, as indicated
in the figure.

Fig. 1.2 Gantt chart for Jj

1.2.1 Problem Classification and Notation

To specify problems precisely and economically, the following shorthand no-
tation was introduced by Graham et al. (1979). The classification system
consists of three fields separated by bars: α|β|γ.

Type and Size

In the α-field is entered the type and size of the shop, starting in our case
with F for flow shop. For example:

• F m: the simple flow shop with m machines.
• F (k1, k2, . . . , km): the hybrid flow shop with ki identical machines in

parallel at stage i.

We will mention other types of job shops from time to time, to wit:

• Gm: the general job shop. Each job visits some or all of the m one-
machine stations with chain precedence, but the machine sequences of jobs
differ.

• Om: the open shop with m one-machine stations. The tasks of a job
may be processed in any order: there is no precedence.
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• Sm: the super shop. Some jobs have machine sequences specified, as in
Gm, and others have no required order, as in Om.

Special Features

In the second field are listed the special features of the shop in question that
deviate from the simple flow shop. Some examples are:

• rj : jobs arrive or become ready intermittently. That is, rj ≥ 0, as op-
posed to the default assumption that rj = 0.

• prec: precedence relationships exist between jobs.
• pmtn: preemption (i.e., interruption) of a task is permitted. The pre-

empted task may be resumed at a later time without penalty.
• (pmtn): preemption may or may not be permitted. This signifies that,

even if preemption is allowed, we do not use it because preemptive and non-
preemptive optima always have the same objective function value.

• perm: in the simple flow shop, this signifies that permutation sched-
ules only are considered : those schedules in which the same job order is
maintained at all machines. Such a shop is called a permutation flow shop.
For hybrid shops, the concept of a permutation schedule may be extended
as follows: given an ordering or job list, each job is scheduled sequentially in
list order to the successive work stations at the earliest feasible time that a
machine at that stage becomes available. In the literature, this restriction to
permutations is sometimes imposed when the general problem is intractable,
to facilitate finding a usable, even if suboptimal, solution. Also, in some shops,
it may be a technological necessity or a managerial requirement that no job
ever overtakes another.

• (perm): as with (pmtn), parentheses are used when a permutation
schedule will always be chose even if it is not required, either because there
always exists an optimal schedule that is permutation, or because all optimal
schedules are permutation.

Other features will be introduced as needed.

Objective Function

In the third or γ-field we enter the criterion to be minimized (maximiza-
tion criteria rarely arise naturally in scheduling problems, and can easily be
converted to minimizations by sign reversal). We will sometimes refer to the
objective as a cost function to emphasize that we are minimizing. Scheduling
objectives are functions of the completion times of the tasks. Indeed, through-
out this monograph all objectives are functions of job completion times; that
is, they depend only on the times that the last tasks of each job are com-
pleted. Properly, the criterion is a function of the schedule chosen, but we
understand that it depends on the schedule only through the completion
times that result. Some common objectives are encoded as follows:
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• Cmax: the maximal or latest completion time of any job. This crite-
rion, commonly called the makespan, has been by far the most exhaustively
studied.

• ΣCj : total completion time of all jobs, Σn
j=1Cj, which is equivalent to

the mean completion time (they differ only by a constant factor n).
• Reg: the class of all objective functions with the property of regularity.

Regular objectives or measures are functions R(C) of the job completion
times, C = (C1, C2, . . . , Cm) that increase only if at least one Cj increases.
Simply put, it is always desirable to complete a job earlier, if it can be done
without making any other job later. More formally stated, given any two
schedules producing completion times C and C′, regularity means that, if
C′

j ≤ Cj for all j, then R(C′) ≤ R(C). There are many regular objectives,
including Cmax and ΣCj. It is worth defining this class of criteria because we
can sometimes show that all such objectives share certain useful properties.

• Any: any function of job completion times. This includes all regular
measures, plus for example objectives that involve earliness penalties.

Sometimes we are concerned with two objectives, both of which we would
like to make as small as possible. While we cannot generally minimize both
simultaneously, we want our objective to somehow incorporate both goals.
Such objectives are called multicriteria objectives. There are three ways to
formulate them:

• hierarchical objective, (A|B): minimize A subject to a constraint
on B. For example, we might minimize total flow time while keeping the
makespan under some prespecified upper bound, written (ΣCj|Cmax ≤ D).

• composite objective, (αA + βB): minimize a linear combination of
the two objectives, for prespecified relative weights α and β.

• bicriteria objective, (A, B): instead of somehow combining the two
objectives into one, we find the schedules that produce the “best” pairs of
values, and present these options to the decision maker for final selection. To
define “best”, suppose arbitrary schedule Si has values (ai, bi) for the two
objectives (A, B) that we wish to make small. If ai ≤ aj and bi ≤ bj, with
at least one inequality strong, we say that Si dominates Sj . Clearly, only
non-dominated or efficient solutions are of interest, and it is the set of all
these solutions that we wish to determine.

As a simple example of this notation, the classic problem of scheduling n
jobs in a simple m-machine flow shop so as to complete all work as soon as
possible is encoded Fm||Cmax. Note how, since the simple shop contains all
default assumptions, there are no entries in the middle or β field.

1.3 Precedence

In rare cases, it may be possible to do the tasks of a job in any order, but
it is almost always necessary to complete certain tasks before others can be
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started. This may be true even when the tasks are parts of different jobs. Such
constraints on the order or sequence of tasks are referred to as precedence
requirements. Sometimes a single task awaits the completion of several oth-
ers, as when various parts must all be ready before they can be assembled. In
other situations the opposite is true: the completion of one task releases sev-
eral others. A large complex job may involve a great many tasks interrelated
in a tangled web of precedence relationships.

We say Ta has precedence over Tb, written Ta → Tb, when Ta must be
completed before Tb can be started. The precedence structure of a job can be
graphically shown as an acyclic directed graph or network in which tasks
are shown as small circles or nodes, and an arrow or arc connecting node a
to node b denotes precedence of Ta over Tb. A job consisting of eight tasks is
shown in Fig. 1.3. The precedence interrelationships are quite complicated.
For example, task S3 cannot begin until the last of its predecessor tasks
P1, P2, and P3 is done, while P1 also delays two other successor tasks S1
and S2.

Fig. 1.3 Example of a precedence diagram

There are several particular precedence relationships, often encountered in
practice, whose special structures lend themselves to simple analysis.

• A Chain as defined above, is a set of tasks that are completely sequenced,
resulting in a precedence network like that in Fig. 1.1. In flow shops, chains
are usually referred to as flow shop constraints.

• A String is a chain of tasks that must additionally be done contiguously,
i.e., consecutively without interruption. Thus, a string is a quantity of work
that behaves like a single task.

• An In-Tree is a connected acyclic graph where every node has precisely
one direct successor, except for the root node which has no successor. It
may be called a terminally rooted tree or assembly tree. If we eliminate
nodes S1, S2 and X in Fig. 1.3, we are left with an in-tree.

• An Out-Tree or initially rooted tree or branching tree is an in-tree with
all precedence relations reversed.
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Two graphs (or two sets of tasks interrelated by precedence) are in parallel
if every task in one set is unrelated to, or independent of, every task in the
other.

We extend the concept of precedence from tasks to jobs. We say Jj has
precedence over Jk, written Jj → Jk, if Tij has precedence over Tik for all
Mi on which both jobs require processing.

1.3.1 Precedence versus Dominance

We have already defined precedence: the requirement that one task be com-
pleted before another is started. The nature of the work imposes this con-
straint, which may not be violated. Thus, each job in a simple flow shop has
tasks in chain precedence: Tij has precedence over Ti+1,j for i = 1, . . . , m−1.

Another kind of ordering between two jobs (it could equally be defined
between tasks, but this has not been found useful) we shall call ordering by
dominance (or by preference or priority). The set of conditions under which
we prefer to schedule one job earlier than another is called a dominance
relation. Note that such relations are defined with respect to a criterion.

It will be useful to define two types of dominance: local and global.

Definition 1.2. Jj locally dominates Jk, if it would be less costly (or
at least no more costly) to schedule Jj before Jk when they are adjacent
in a schedule. Put another way, local priority signifies that Jj should not
immediately follow Jk (or equivalently, Jk should not immediately precede
Jj).

Definition 1.3. Jj globally dominates Jk, if there always exists an op-
timal schedule with Jj positioned earlier than Jk, if it is feasible to do so.

See Sect. 1.6 for a full discussion.
We shall use the following notation for these two types of ordering:

• a → b: Ta has precedence over Tb: Ta must be completed before Tb is
started.

• j → k: Jj has precedence over Jk: each task of Jj must be completed
before the corresponding task of Jk is started. In a pure flow shop, j → k
means Tij → Tik , i = 1, . . . , m.

• j � k: Jj has local dominance over Jk.

• j
global
� k: Jj has global dominance over Jk. We use the simpler notation

for local preference because we shall encounter it more often.
• j ∼ k: j � k and k � j. That is, the jobs have equal priority.

This is a convenient place to mention one other piece of ordering notation
that will be used from time to time.

• x ≺ [�] y: Tx precedes [follows] Ty (or, in a permutation schedule, Jx

precedes [follows] Jy).
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• x ≺≺ [��] y: Tx (or Jx) immediately precedes [follows] Ty (or Jy).

Note that “x precedes [follows] y” does not imply required precedence order-
ing, nor that one task or job is preferred before the other, but only that in
the schedule under discussion they happen to be so ordered.

1.4 The Permutation Flow Shop

In a simple flow shop, as jobs follow each other through a fixed sequence of
processors, is it ever desirable for one job to overtake another? First consider
a machine where several jobs have piled up waiting for service. Without loss
of time, we can pick any of them to process next. Downstream considerations
might well induce us to violate “first come, first served” discipline. Thus, we
should not always expect the best schedule to be a permutation schedule,
which maintains the same job order on all machines.

However, suppose that after Jj completes on Mi it is free to start immedi-
ately on Mi+1. If the following job, Jk, is to pass it, we must shunt aside Jj to
wait while Jk is processed on Mi and, overtaking Jj , on Mi+1. Thus, Mi+1 is
left idle for a time when it could have been occupied; an occurrence known as
inserted idle time. Surprisingly, even in this situation it may be desirable
to interchange jobs. That is, not only is it not always best to use a permuta-
tion schedule, it may not even be optimal to use a nondelay schedule: one
that keeps processors busy whenever possible. Instead, inserted idleness may
be beneficial.

The simplest example of this involves two jobs in a four-machine flow
shop, with the makespan objective: F4||Cmax. Suppose the processing times
are <1, 5, 5, 1> and <5, 1, 1, 5>. In Fig. 1.4a and b we show the two pos-
sible permutation schedules, while in Fig. 1.4c the optimal nonpermutation
schedule is shown. We use Gantt charts laid out by machine, with jobs dis-
tinguished by the color of shading. Note how the makespan (and the average
completion time, too) is shortened when we switch the job order after two
machines; the inserted idle time (one unit on M3) is worth it.

Fig. 1.4 Schedules for an instance of F4||Cmax with two jobs
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Of course, if we could restrict our attention to permutation schedules only,
our search for an optimal schedule would be greatly simplified, since there are
just n! job orderings, but (n!)m ways the jobs can be independently ordered
on each machine. There are situations where only permutation schedules
are acceptable, either because it is technologically impossible for one job to
pass another, or by management fiat, to keep things operationally simple. In
addition, there are cases when it can be shown that a permutation schedule
will always be optimal over all schedules. Two such situations will now be
presented.

Theorem 1.1 (Johnson, 1954; Yeung et al., 2009) For Fm||Any, there
exists an optimal schedule with the same job order on the first two processors.

Proof: In any other schedule, there must be two jobs scheduled successively
on M1 which are reversed on M2. We can interchange their tasks on M1 leav-
ing all other tasks unmoved, without violating any constraints and without
affecting any job completion time. �

Note that this result holds for any objective that is a function of the job
completion times (as are almost all criteria considered in this monograph).
Until very recently, it was thought to be true only for regular criteria, as
defined in Sect. 1.2.1. Most reasonable objectives are regular, but not all. For
example, penalties are not regular when jobs have due dates and earliness, as
well as lateness, penalties accrue. Since 1954, all papers and texts referencing
this result have included the regularity requirement until Yeung et al. (2009)
noted that it was not needed.

Theorem 1.2 (Johnson, 1954) For Fm||Cmax, there exists an optimal
schedule with the same job order on the last two processors.

The proof is very similar to that of Theorem 1.1, and involves interchanging
two adjacent jobs on the last machine, Mm. Further details are omitted. Note
that Theorem 1.1 applies to a large class of criteria, but Theorem 1.2 is true
only for the makespan objective because the job swap on Mm, while leaving
the makespan unaffected, does change two of the completion times.

These two results tell us that we need only consider permutation schedules
in two-machine flow shops, and in three-machine flow shops with makespan
objective.

1.5 Graphic Representation of Flow Shop Schedules

We have seen two kinds of diagrams that help us visualize aspects of task
scheduling. In Figs. 1.1 and 1.3, precedence relationships are shown graph-
ically. In a flow shop, we have the simple precedence structure of n par-
allel chains: n separate independent jobs each with chain precedence, as
in Fig. 1.1. The other kind of diagram is the Gantt chart, as illustrated in
Figs. 1.2 and 1.4. This shows the exact timing of tasks, given the precedence
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constraints and assuming a particular schedule has been chosen. It will be
useful to extend the precedence diagram to a precedence network, which
also includes the ordering imposed by a chosen schedule. For example, con-
sider the Gantt charts in Fig. 1.4. The initial precedence diagram for these
two jobs is given in Fig. 1.5a, where the chains are vertical so that each
row represents a machine. Figure 1.5b shows the precedence network for the
schedule in Fig. 1.4c, with additional arrows showing the job order on each
processor. Two extra arrows show the start and end of the schedule.

Note that each path from start to finish through a precedence network rep-
resents a sequence of tasks that must be done consecutively. Thus, adding up
the processing times along such a path gives a lower bound on the makespan
for this schedule. Since the time to complete all work is limited only by these
enforced sequences, it follows:

Theorem 1.3 The longest path, or critical path, through a precedence
network equals the makespan of the corresponding schedule.

We shall find this insight very useful.

Fig. 1.5 (a) Precedence diagram, and (b) Precedence network
for jobs scheduled in Figure 1.4c

1.6 Dominance Properties

The simplest scheduling problems involve finding the optimal ordering of
a set of objects (in our case, jobs). We call them sequencing problems.
Seeking the optimal permutation schedule in a flow shop is such a problem,
because the schedule is fully determined once the job order is fixed (although
admittedly a few more calculations will be needed to specify the start times
of each task on each processor).

Sequencing problems can be difficult to solve. By “easy” or “difficult” we
shall mean polynomially solvable or NP-complete, as defined in the Theory of
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Algorithmic Complexity which is reviewed in Appendix A. “Difficult” prob-
lems usually require some sort of implicit search procedure, such as dynamic
programming or branch-and-bound. To shorten the search for a “best” sched-
ule, it is sometimes possible to find characteristics that optimal schedules
possess, allowing us to limit our search to only sequences having those char-
acteristics. We call these desirable characteristics of schedules dominance
properties or elimination criteria, since the subset of schedules having
them constitutes a dominant set.

We usually prove the optimality of schedules with some characteristic by
starting with an arbitrary schedule that lacks it, and demonstrating that
the schedule is improved (or at least cannot become worse) by introducing it.
Most often, the desirable characteristic involves a partial job ordering, such as
that one job can always be scheduled before another, or a certain job should
(or should not) be scheduled last, etc. Thus, to show that Jk need never be
considered before Jj , we might start with an arbitrary schedule in which Jk

precedes Jj and show that the schedule is improved by interchanging the
jobs. We introduced this idea of “preference” or “priority” orderings between
two jobs earlier. Dominance instead relates two sets of schedules. Thus, if
Ji has priority over Jj , then schedules in which Ji precedes Jj constitute a
dominant subset.

As mentioned earlier, dominance or priority orderings between two jobs
may be local or global, a local ordering resulting when we find we can only
prove that one job should precede another when the two jobs in question
are adjacent in the schedule. For example, for F2|(perm)|ΣjTj , if aj ≤ ak,
bj = bk, and dj − bj ≤ dk − bk, then Jj has local priority over Jk; that is, any
schedule with Jk immediately before Jj can be improved (or at least made
no worse) by interchanging the jobs.

Technically, not all optimal schedules need have the property; alternative
optima may exist. For instance, in the example above, to be strictly correct
the conclusion should be, “there exists an optimal sequence in which Jj pre-
cedes Jk.” Still, this is enough to permit us to truncate the search tree, and
we will generally omit the language “there exists an optimal solution ...”.
As introduced in Sect. 2, when we show that Jj locally [globally] precedes

Jk in some optimal schedule, we write j � k [j global
� k] and we say “Jj

dominates Jk locally [globally]” or “j has local [global] priority over k”. The
set of conditions that lead to this job ordering are called priority rules or
dominance relations.

Of course, we cannot expect that every pair of jobs can be ordered by
priority. For instance, in the F2|(perm)|ΣjTj example mentioned above, the
three conditions will clearly not hold for most pairs of jobs, and only partial
ordering can be determined. Still, the results of such quickly-applied tests can
significantly shorten the search time, especially if several dominance relations
can be found. In case every pair of jobs can be ordered by priority (the
ordering is complete), the full sequence will thereby be established without
any need to search, as discussed in the next section.
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Sometimes we look for dominance relationships between unscheduled jobs
in the presence of an already established partial schedule σ. Given an initial
σ, we generally ask which jobs should be considered, or can be eliminated
from consideration, for the position immediately following σ. We defer further
discussion of this topic until Chap. 4.

One final remark is motivated by the possibility of applying several dom-
inance relations simultaneously. Since each property is existential (“there
exists an optimal schedule ...”), can they be accumulated? Logically, they
cannot: we might have one optimal schedule with property A, another with
property B, but none having both properties. However, it turns out that the
kind of properties we will be concerned with, though existential, are cumu-
lative, as can be seen by following the logic of the proofs.

1.6.1 Sequencing using Dominance

“Easy” problems, for which efficient or polynomial algorithms exist, are often
solved to optimality using priority ordering, without any searching. We can
do this if we can find a priority rule ordering pairs of jobs that is complete:
every pair of jobs is ordered by it. In such cases, we need to establish the
ordering criterion only for adjacent pairs of jobs (local dominance, which is
easier to prove), to fully determine the sequence. We now formalize this idea.

Definition 1.4. For any sequencing problem with objective function M (S)
assigning a real value to any sequence S of the n jobs, M (S) has the Com-
plete Priority Ordering (CPO) property if there exists a local priority
relation j � k, defined on all pairs of jobs Jj and Jk, which is:

(a) Transitive: (i � j and j � k) ⇒ i � k;
(b) Complete: j � k or k � j or both;
(c) Priority-Indicating: j � k ⇒ M (u, j, k, v) ≤ M (u, k, j, v),

∀ S = (u, j, k, v), where u and v are arbitrary subsequences.

Keep in mind that this relation depends solely on the characteristics of the
two jobs, and is independent of the number and properties of the other jobs,
and how they are ordered in the schedule.

If j � k and k � j, we say that j and k have equal priority, written j ∼ k.
It follows:

j ∼ k ⇒ M (u, j, k, v) = M (u, k, j, v) ∀ u, v

The following is an immediate consequence:

Theorem 1.4 If M (S) satisfies the CPO property, then any permutation
which orders the jobs from highest priority to lowest minimizes M (S) (and
the reverse order maximizes M (S)).

Very often, when the CPO property is present, job priority can be estab-
lished even more simply using a priority index, I(j), a number which is
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calculated for each Jj depending only on the given attributes of that job. If
we can find an index such that, give two adjacent jobs, the one with smaller
index should always come first, then we can establish priority order simply
by comparing index values:

i � j ⇐⇒ I(i) ≤ I(j)

We can then conclude:

Theorem 1.5 If there exists a function I(j) assigning a real value to each
Jj, such that

I(j) ≤ I(k) =⇒ M (u, j, k, v) ≤ M (u, k, j, v), ∀ S = (u, j, k, v),

then any permutation that orders the jobs from lowest index value to highest
minimizes M (S) (and the reverse order maximizes M (S)).

Proof: Considering the minimization objective, start with any sequence and
find the job with smallest I(j). If it is not at the start of the sequence,
interchange it with the job to its left and repeat until it is in first place. Each
interchange can only decrease M (S). Similarly, move the job with second
smallest index into second place, and repeat for all jobs in turn. �

A priority list is a preference ordering of jobs based on a priority index.
To specify whether the jobs are to be in nondecreasing or nonincreasing order
of I(j), we shall use the following shorthand notation. Suppose the list of jobs
is to be sequenced in nondecreasing order of I(j). As we move forward in the
schedule (→), the value of I(j) increases (↑). Combining these two directions,
we shall represent such a schedule as

↗I(j) = the sequence in which jobs are in nondecreasing order of I(j) .

Similarly, for the sequence in nonincreasing order of I(j), we write ↘ I(j).
Priority indices are clearly useful, if we can find them. This is usually

done, not surprisingly, by considering the change in objective function value
caused by interchanging the positions of an arbitrary pair of adjacent jobs:
M (u, j, k, v) − M (u, k, j, v). If the difference in values depends only on the
parameters of the two jobs interchanged (regardless of which jobs are chosen,
where they are in the schedule, and how all the other jobs are arranged
around them), and furthermore if this difference can be written as a function
of one of the job’s attributes minus that same function of the other job,
then that function can be used as a priority index to sequence all the jobs.
That is, if M (u, j, k, v) − M (u, k, j, v), once all common terms have been
cancelled, reduces to I(j) − I(k) for some function I(.), then I(i) ≤ I(j)
implies M (u, i, j, v) ≤ M (u, j, i, v) so I(j) is a priority index.
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1.7 Heuristics and Worst Case Analysis

When combinatorial problems are “difficult” (see Appendix for the precise
meaning of this word), we can only solve to optimality by some form of
exhaustive enumeration. There are techniques such as branch-and-bound and
dynamic programming (we will not discuss them here, referring the reader to
any Operations Research textbook) that with some ingenuity can curtail the
tedious process of considering every possible solution in our search for the
best one; these are called implicit enumeration techniques. Still, finding an
optimum remains laborious, and at some point, as the problem size grows, it
gets out of hand.

In such cases, we are often willing to settle for a good, but not necessar-
ily optimal, solution. Any procedure or algorithm that generates a solution
to a problem without any guarantee of optimality is called a heuristic. An
effective heuristic produces a good answer in a short time. But what does
“good” mean? Generally we measure the quality of a solution by its devi-
ation from the optimum. Thus, in a minimization problem, we might agree
that an objective function value 2% more than the best possible is “good”,
while 20% is not. But this raises another question. If we cannot find the op-
timum, how can we tell how close the heuristic solution is to it? Researchers
proposing new heuristics often report extensive computational results, using
simulation or implicit enumeration to find the optimum for a set of randomly
generated problem instances. They can then solve the same instances using
their heuristic, and make the comparison. Given a large and representative
sample of instances (how to choose representative instances is another can
of worms, not to be discussed here; see Hall and Posner (2001)), they can
then report the average performance of the heuristic. The difficulty often is
that only small to moderate sized instances can be solved to optimality, even
using a great deal of computer time, so we must extrapolate the performance
of the heuristic on smaller problems to its performance on larger ones; a risky
business.

Alternatively, one may develop a lower bound for the optimal value by
means of optimization techniques. Then, the average per cent relative gap of
the heuristic solution from the lower bound can be computed on randomly
generated problem instances. The lower bound must be easy to compute even
for large instances, and is hopefully not too far from optimum. If we can show
that our heuristic gives answers close to the lower bound, they must be very
close to optimum.

Another way to assess the quality of a heuristic is through worst case
analysis. Briefly, the worst case error bound or worst case performance ratio,
ρ, for a given heuristic H is the multiple of the optimal makespan such that
the heuristic always gives a makespan at least that good. Technically, if for
any instance, C�

max is the minimal makespan and CH
max is the makespan

produced by the heuristic, and if, for every instance, CH
max ≤ ρC�

max for
some positive constant ρ, then ρ is a worst case error bound for H, which
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may be written ρH . For example, if ρH = 1.2, then heuristic H is guaranteed
to find a solution to any instance with makespan value no more than 20%
more than the optimum. If ρH is as small as possible for H (that is, if there
is an instance for which CH

max = ρH C�
max), then the heuristic is said to be

tight. We remark that worst case performance is very conservative; average
performance of the heuristic is likely to be much better.

1.7.1 Cyclic Flow Shops

So far we have discussed the problem of scheduling a given set of n distinct
jobs, to be processed just once. Call this the static problem ; most of this
monograph will be concerned with it. However, from time to time we shall
look at a different kind of flow shop scheduling that is often encountered in
just-in-time and many other environments, where there are a finite number q
of job types or products to be manufactured in quantity. All jobs of one type
have the same processing times. Let rj , j = 1, . . . , q be the number of units
for a type-j job over a planning horizon. The goal is to maintain a nearly
constant flow of parts through the shop. To achieve this, the production
target is subdivided into identical subsets, as small as possible given the
required product mix ratio. This Minimal Part Set or MPS therefore contains
rj/d items of type j, where d is the greatest common divisor of the integers
r1, . . . , rq. If we let n be the total number of jobs in an MPS, then n =
Σq

j=1rj/d. Despite the motivation for this model, we will henceforth, as is
customary, ignore the fact that many of the jobs are identical.

In a cyclic flow shop, we wish to produce the n jobs in an MPS repeatedly
and indefinitely, so as to achieve some objective in steady state production.
The time required to complete an MPS is called the production cycle, and it
is this cycle time that is usually the objective, which we denote CT , to be
minimized.

We should mention one caveat with respect to this objective. Clearly, given
the requirement that we produce one MPS repeatedly, minimizing the cycle
time is equivalent to maximizing the output rate or throughput, which is
presumably the underlying goal. Suppose, however, we decide to produce two
MPS’s in each production run. The minimal cycle time to produce two sets
will generally be less than double the time for one set (it cannot be more), thus
increasing the throughput. Larger multiples of the MPS would give greater
gains in throughput. The downside is the possible loss of the smooth flow of
output, each product in small quantities proportional to need. Instead, we
might stay too long with one product, while stocking out for other products.

Cycle Time Compared to Makespan

A substantial part of this monograph will deal with minimizing makespan
in the static flow shop under various conditions and constraints. Clearly,
minimizing cycle time in the cyclic shop is closely related. To begin with,
we could approximate the cycle time by the makespan for a single MPS
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in isolation. Iterating this static schedule yields a feasible, but usually not
optimal, solution to the cyclic problem: an upper bound.

The relationship between the two objectives (makespan in the static case,
cycle time in the cyclic setting) can be easily seen. For a permutation schedule
over m machines, let

Skj [Ckj] = start time [completion time] on Mk of the job in position j.

Then, of course, the makespan is Cmn − S11. In a cyclic schedule, the cycle
time, Z, turns out to be the maximal machine occupancy of the MPS: Z =
maxk=1,...,m{Ckn−Sk1}. This can be easily seen with reference to Figure 1.6,
which, for an instance with m = n = 4, gives the Gantt chart for an arbitrary
schedule. The first iteration shows static production of the n jobs, while the
rest gives the cyclic continuation when the jobs make up an MPS. Note how,
for cyclic production, the block of work that constitutes an MPS repeats at
intervals that are determined by the longest occupied machine, M3.

Fig. 1.6 Comparison of makespan and cycle time

This is not to say that the cycle time shown in the figure is minimal, even
for the given permutation of jobs. In fact, if you look at the first production
run for a moment, you can see how tasks on each machine except M1 can be
moved to the right, to make the machine loading more compact. Actually, on
the last machine, they can always be made contiguous without affecting the
makespan, as they already are on M1. We will discuss in Sect. 4.19.1 how to
find the smallest cycle time for a given job sequence.

Given a mathematical program for one problem, it is now easy to formulate
a similar one for the other. The makespan objective is to minimize Cmn−S11;
for cycle time, we minimize Z, subject to Z ≥ Ckn − Sk1, k = 1, . . . , m. All
other constraints, whose function it is to interrelate the start and completion
times of the various tasks, will be identical.
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Chapter 2

THE TWO-MACHINE FLOW SHOP

Abstract The two-machine flow shop has attracted significant atten-
tion, especially when it comes to extensions of the basic makespan
model to include release times, setups, or other complications. As ex-
pected, we start our coverage with a full discussion of Johnson’s Rule
for makespan minimization. Then, we present extensions that incor-
porate setup/teardown times in automated manufacturing cells. When
arbitrary positive release times are assumed for jobs, the problem of
minimizing makespan in the two-machine flow shop is shown to be NP-
complete, and hence we discuss solution procedures, optimal and heuris-
tic. Even when a single server is used to perform setups, the problem is
shown strongly NP-complete, though special cases accept simple solu-
tions. Results on optimal lot streaming of a product are also presented.
Precedence constraints are postponed to a later chapter. Subsequently,
we survey results on objectives like ΣCj , Lmax, Tmax,ΣTj,ΣUj, as well
as corresponding multicriteria. Various manifestations of these models
come with setups, scarce resources, common deadlines, etc. Whenever
possible, we provide dominance properties, lower bounds, branch-and-
bound approaches, heuristics and computational results.

The simple flow shop with two stations, or two-machine flow shop, is the
most elementary of all multistage processing facilities. The following examples
demonstrate how fundamental this system is.

2.1 Examples

Surprisingly, few examples of two-machine flow shops are presented in the
literature, most likely because in terms of applications, researchers focus on

H. Emmons and G. Vairaktarakis, Flow Shop Scheduling: Theoretical Results, Algorithms,  
and Applications, International Series in Operations Research & Management Science 182,  
DOI 10.1007/978-1-4614-5152-5_2, © Springer Science+Business Media New York 2013 
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larger flow shops. The following examples are obvious applications with just
two stations.

• Al-Anzi and Allahverdi (2001) showed that the internet connectivity prob-
lem in 3-tiered client-server databases is a 2-machine flow shop with Σfj

objective. In this, end users seek connectivity to local or remote databases
through the Web using two separate servers: an application server and a
database server.

• See Nagar et al. (1995) for an application in the steel industry where each
job undergoes wire-drawing first, followed by annealing.

• Allahverdi and Al-Anzi (2002) showed that the scheduling of multimedia
data objects for WWW applications reduces to a 2-machine flow shop with
Lmax objective.

• Modern manufacturing systems may involve automated storage and re-
trieval stations, robotic loading and unloading of machines, transportation
robots, etc. Jobs are transported on pallets by a circulating conveyor, and
require special fixtures and tooling at each machine. Cells of this type with
two Computer Numerically Controlled (CNC) machines served by robots
are modeled by Levner et al. (1995) and Kogan and Levner (1998). They
can be efficiently analyzed as two-machine flow shops with transfer lags
(see Sect. 3.2.6).

We organize the rest of our discussion around the objective function to
be minimized. The most general single objectives to have been considered
(multiple objectives have received little attention) are Σn

j=1fj(Cj) (written
Σfj for short) and maxn

j=1 fj(Cj) (abbreviated fmax), where fj(t) is an ar-
bitrary nondecreasing function giving the cost of completing Jj at time t.
The simplest special cases, when fj(t) = t, are the total completion time and
the maximal completion time or makespan. We deal first with the makespan,
which has been far more studied than any other objective.

2.2 F2|(perm), (pmtn)|Cmax : Johnson’s Rule

First we note that, for any measure, preemption is never helpful on M1 (in
any schedule, a task on M1 that has been broken up can be consolidated at
its latest completion time without delaying any job, hence without necessi-
tating any change on M2), and for the makespan objective we never need
preemption on M2 (parts of a preempted task can be collected at its earliest
start time), so we will consider the nonpreemptive case only, understanding
that the solution remains optimal even if preemption is allowed. A problem
that may be preemptive or not is encoded (pmtn) in the three-field notation.

The basic result, to minimize the makespan in the nonpreemptive two-
machine flow shop, is one of the most famous in all of scheduling theory.
It is known as Johnson’s Rule, and provides a simple optimal scheduling
procedure running in time O(n logn). To simplify notation, we use <aj, bj>
for <pj1, pj2>. Recall that, by Theorem 1.1, we can confine our attention
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to permutation schedules, whether or not such a schedule is required for
technological or other reasons (this idea is conveyed by (perm) in the problem
name). Thus, a schedule can be specified simply by a job ordering. Since job
numbering is arbitrary, a typical schedule can be written S = (J1, J2, . . . , Jn),
which we will abbreviate as S = (1, 2, . . . , n). The precedence network for this
schedule is shown in Fig. 2.1, where we label the tasks of Jj by their processing
times rather than Tjk. We easily see that there are n routes through

Fig. 2.1 Precedence network for schedule (1, 2, ..., n) in a two-machine flow shop

the network, with route j traversing nodes a1, . . . , aj, bj, . . . , bn. Thus, since
the makespan for this schedule is the longest route or critical path, it can be
written

Cmax(S) = maxj=1,...,n Rj, (2.1)

where Rj is the length of route j:

Rj =
∑j

i=1 ai +
∑n

i=j bi.

Theorem 2.1 (Johnson’s Relation: Johnson, 1954)
For F2|(perm), (pmtn)|Cmax, provided aj = bj ∀Jj, a Complete Priority
Ordering exists, with

j � k ⇐⇒ min(aj, bk) ≤ min(ak, bj).

Proof: By Definition 1.4, the CPO property must be transitive, complete,
and priority-indicating. It is to establish transitivity that we need the extra
assumption: aj = bj ∀ Jj , as will be seen. We will discuss this further after
completing the proof. Taking each requirement in turn:

(a) Transitive: We must show that

min(ai, bj) ≤ min(aj, bi)
min(aj, bk) ≤ min(ak, bj)

}
⇒ min(ai, bk) ≤ min(ak, bi).

Consider the four processing times that appear on the left of the two hypothe-
ses: ai, aj, bj, and bk. If ai = min(ai, aj, bj, bk), then ai is less than all four of
the numbers on the right of the hypotheses: ai ≤ min(aj, ak, bi, bj), and the
conclusion follows. The same arguement applies if bk = min(ai, aj, bj, bk). If
aj = min(ai, aj, bj, bk), then:

aj ≤ min(ai, bj) ≤ (min(aj, bi),
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which would be a contradiction unless both weak inequalities hold as equali-
ties. Since aj = bj, aj < bj, and so:

aj = ai = min(aj , bi).

Thus, aj ≤ bi. Also, from the second hypothesis, aj ≤ ak. Combining these
results, aj = ai ≤ min(ak, bi), which gives our conclusion. A similar argument
takes care of the last case: bj = min(ai, aj, bj, bk).

(b) Complete: Any two numbers are ordered.

(c) Priority-indicating: Consider the change in objective function value if
we interchange Jj and Jk in any S = (u, j, k, v), to produce S′ = (u, k, j, v),
where u and v are partial schedules containing all other jobs. For this prob-
lem, M (u, j, k, v) = Cmax(S), given in (2.1). After cancelling like terms in
Cmax(S) and Cmax(S′) (note in Fig. 2.1 how the lengths of most routes are
unchanged by the job interchange), we get:

Cmax(S) − Cmax(S′) =
max(aj + bj + bk, aj +ak + bk) − max(ak + bk + bj, ak +aj + bj).

Using the identity for any real x, y, z:

max(x + y, x + z) = x + max(y, z) = x + y + z − min(y, z),

we have:

Cmax(S) − Cmax(S′) =
(aj +bk)+bj+ak−min(bj , ak) − [(ak+bj)+bk+aj−min(bk, aj)]

from which, after cancelling like terms, the result follows. �

The constraint aj = bj is needed for the following reason. Transitivity
implies i ∼ j and j ∼ k ⇒ i ∼ k, but this is not always true if aj = bj. Con-
sider jobs Ji, Jj and Jk, with processing times <2, 3>, <1, 1> and <4, 5>,
respectively. Johnson’s Relation gives i ∼ j, but both orderings i � j and
j � i depend on the properties of Jj : aj = bj = 1. The values of ai and bi

are irrelevant (as long as they are both greater than 1). The same thing is
true when we compare Jj and Jk. Thus, knowing that both Ji and Jk have
equal priority with Jj tells us nothing about the ordering of Ji and Jk. In
fact, in our example, i ∼ j and j ∼ k but i ∼ k. In one sense this is not
contradictory, but it does violate the strict definition of transitivity.

However, as the above proof shows, this problem will never arise as long
as aj = bj, ∀ Jj . This is not a seriously constraining requirement. Whenever
we find a job with equal processing times, we need only perturb one of them
slightly; say, by adding ε to aj . Assuming ε is much smaller than any pro-
cessing time, makespans are changed by at most nε, so the optimal sequence
remains optimal. We can thus solve the perturbed problem, and then restore
the original processing times.
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In fact, even this will not be necessary. The importance of Johnson’s Re-
lation lies in the simple and famous algorithm that comes from it, and that
algorithm, which we now state, automatically takes care of this ambiguity.

Theorem 2.2 (Johnson, 1954) For F2|(perm), (pmtn)|Cmax,
the following algorithm gives an optimal sequence:

Johnson’s Rule (JR) – Version 1

1. Find the smallest of all processing times: t = minj [min(aj , bj)].
2. If t = ak for some k, schedule Jk first;

If t = bk for some k, schedule Jk last;
break ties arbitrarily.

3. Remove Jk and repeat.

Proof: Suppose in some schedule Jk (as defined in the algorithm) is not
first [last] except for ties. Using Johnson’s relation, we can interchange it
successively with each job that precedes [follows] it. �

If there is more than one smallest task in Step 2, we can trace all tie-breaking
options and each will give us an optimal schedule. Additionally, there are
sometimes other optima that JR does not generate. For example, if one job,
say J1, has a very large task time on M1, so that a1 > Σn

j=2bj, and at the
same time b1 = minj bj , then all schedules with J1 last are optimal, with
C�

max = Σn
j=1aj + b1.

We will denote the schedule (or any of the schedules) obtained using this
rule JR(a, b). where a = (a1, . . . , an) and b = (b1, . . . , bn). Thus, if S� denotes
an optimal schedule, we can say:

For F2||Cmax, S� = JR(a, b), or simply S� = JR.

Another way to state the algorithm (as should be clear without proof):

Johnson’s Rule (JR) – Version 2

Let F ={Jj : aj < bj}, and L ={Jj : aj ≥ bj}. Then

JR(a, b) = (F :↗aj , L :↘bj)

That is, start with the jobs in F (for first) in increasing order of aj , and
after them schedule set L (for last) in decreasing order of bj . Stated this way,
it is easy to see that this schedule has the following useful property: if one
or more jobs are added to or removed from the set to be processed, after the
sequence is determined, the optimal order of the other jobs is unaffected.

Actually, the jobs with aj = bj could be put in either F or L; we put them
all in L arbitrarily. Each partition of such jobs between F and L gives an
optimal schedule.

Still another way to express Johnson’s Rule is:
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Johnson’s Rule (JR) – Version 3

JR(a, b) = ↗I(j) , where I(j) =
sign(aj − bj)
min(aj , bj)

=
{
−1/aj , aj < bj

1/bj , aj ≥ bj

Note how the jobs in F are given negative indices, assuring that they precede
jobs in L. Reciprocals are taken to reverse the ordering of jobs, as needed.
Clearly, now that we have reduced Johnson’s Rule to a listing by priority
index, transitivity is assured; we need not worry whether aj = bj for some j.

One more property of this simple algorithm may be noted: Johnson’s Rule
remains optimal if the two machines are not simultaneously available. To see
this, let Ri be the ready time of Mi. Then, having R2 > R1 is like adding a
dummy job Jd with ad = 0 and bd = R2 − R1. The case R2 < R1 is trivial.

A final remark is in order. We have assumed that every job visits both
machines: aj > 0, bj > 0 for all j. If there are additional jobs that only
require processing on one machine, they can be simply handled by assigning
them zero processing time on the other machine, and letting Johnson’s rule
position them. If aj = 0, they will be scheduled first, and if bj = 0, last. This
leads to the intuitive solution: schedule the “both-machines” jobs by JR,
appending the “M1-only” jobs at the end of M1 and putting the “M2-only”
jobs at the start of M2, both in any order.

2.2.1 F2|(perm), rj |Cmax and F2|(perm)|Lmax

Still with the makespan objective, suppose jobs are not all available simul-
taneously, but have different release dates, rj . We start with the observation
that this is equivalent to the problem where jobs all have the same release
time (rj = 0 for all j) but have different due dates, with the objective of min-
imizing maximal lateness. To understand this equivalence, it is convenient to
consider the decision versions of the two problems. Thus, for the first prob-
lem, namely F2|(perm), rj|Cmax, we ask: for any D ≥ 0, does there exist a
schedule with Cmax ≤ D? A three-job instance is shown in Fig. 2.2a, where
r = (1, 2, 6), a = (3, 7, 4), and b = (7, 2, 5) . The schedule given is optimal,
and clearly if we choose D = 21 as illustrated (or any D ≥ 19), the answer is
“yes”.

Fig. 2.2 Corresponding schedules to show the equivalence of
(a) F2|(perm), rj |Cmax and (b) F2|(perm)|Lmax
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To show the equivalence of this problem to F2|(perm)|Lmax, we must state
how an instance of one corresponds to an instance of the other. To do this, we
simply reverse time, interchange the roles of M1 and M2, define dj = D − rj

for each Jj , and ask the question: does there exist a schedule with Lmax ≤ 0?
Applying this to our numerical instance, we get the schedule in Fig. 2.2b.
Note how Lmax = L3 = −2, and approaches zero as D diminishes to Cmax,
so that each problem has the answer “yes” if and only if the other does.

In what follows we work exclusively with the makespan objective.

Theorem 2.3 (Lenstra et al., 1977)
F2|(perm), rj|Cmax is ordinary NP-complete.

Proof Outline: The reduction is from the NP-complete problem (a special
case of the Knapsack problem):

SUBSET SUM
INSTANCE: An integer V , and k positive integers vi : i ∈ T = {1, 2, . . . , k}.
QUESTION: Is there a subset S ⊂ T such that Σi∈Svi = V ?

to the decision version of our problem:

F2|(perm), rj |Cmax≤ B?
INSTANCE: An integer B, and n jobs Jj : j ∈ N = {1, 2 . . . , n}, each with
parameters <aj , bj; rj>, to be scheduled in a two-machine flow shop, where
aj [bj] is the processing time on M1 [M2], and rj is the ready time, of Jj .
QUESTION: Does there exist a schedule with Cmax ≤ B?

For any instance of Subset Sum, define an instance of F2|(perm), rj|Cmax

as follows:

• B := W + 1, where W = Σivi.
• n := k + 1
• <aj, bj; rj> := <vj , 0; 0>, j ∈ T
• <an, bn; rn> := <1, W − V ;V >

To see why the two problems will always have the same answer, we need only
note that we can only achieve a makespan of B (the answer “yes”) if Jn is
scheduled immediately upon arrival, and if the other jobs are schedulable on
M1 in the two intervals defined by the positioning of Jn. �

Since F2|(perm), rj|Cmax is NP-complete, only implicit search or approxi-
mation schemes have been proposed. Tadei et al. (1998) present a number of
lower bounds that are used at each node of a branch-and-bound algorithm.
Even though the authors do not state it explicitly, their bounds are valid
only when either bj > 0 ∀ Jj or aj > 0 ∀ Jj . Then, consider partial schedule
σ = (1, 2, . . . , r) with makespan C(σ) and let U be the set of unscheduled
jobs. With the above assumption, all tasks in U will contribute at least bj to
the makespan and hence

LB1 = C(σ) +
∑

j∈U bj.
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Alternatively, consider the Johnson schedule of jobs in U and add it to the
earliest time, say R̄, that these jobs can start on M1. Clearly, R̄ ≥ minj∈U rj.
Moreover, R̄ should be greater than the completion time of jobs in σ on M1,
i.e., R̄ ≥ C1 = maxj∈σ{rj + Σr

i=jai}. In conclusion,

LB2 = max{C1,minj∈U rj} + Cmax(JR(U)).

Hall (1994) and Kovalyov and Werner (1997) propose polynomial approx-
imation schemes : optimization algorithms that, for any ε > 0, produce a
schedule with makespan at most (1 + ε)C�

max, with running time polynomial
in n but exponential (and very great) in 1/ε. Hall’s algorithm runs in time
O(f(ε) · n logn), where the complex function f(ε), given in the paper, is a
huge multiplier: for ε = 1/2, as Hall notes, f(ε) is already 560 · 615 ≈ 1051.
Kovalyov and Werner propose a very different algorithm whose time perfor-
mance is O(g(ε) · (n + 1)6/ε+2). Here, the coefficient g(ε), again specified by
the authors, is much smaller (for ε = 1/2, g(ε) ≈ 109) but the running time
grows more rapidly in n. Thus, it performs better for small n, but Hall’s
algorithm will overtake it for large enough n. Such algorithms, with their
enormous run times, have theoretical but little practical interest.

Heuristics for this problem have been proposed by Potts (1985), each eval-
uated according to its error bound, ρ (see Sect. 1.7 for definition of error
bounds). Potts proposes the following approaches.

Heuristic A Use arbitrary sequence.

Heuristic R Use ↗rj.

Heuristic J Use Johnson’s Rule (JR).

Heuristic RJ
0. Initially, set J := {all jobs}, R := minj∈J rj, and k := 0.
1. Let F = {Jj : j ∈J , rj ≤R, aj < bj} and L= {Jj : j∈J , rj ≤R, aj ≥ bj}. If
F = φ, find any Ji ∈ F with smallest ai. If F = φ, find any Ji ∈ L with
largest bi.
2. Set k :=k+1, R:=R+ai, J :=J−{i}, and schedule Ji in position k.
3. If J = φ, stop. Else, set R := max{R,minj∈J rj} and go to Step 1.

Theorem 2.4 (Potts 1985) The worst case bounds for algorithms A, R, J,
and RJ are: ρA = 3, ρR = 2, ρJ = 2, and ρRJ = 2, and these bounds are
tight.

He also proposes an elaboration of heuristic RJ (details omitted) that has
error bound of 5/3.

2.2.2 F2|(perm), prec|Cmax

When precedence constraints between jobs are present in two-machine flow
shops, it will be convenient to use the theory of “transfer lags” to find the
schedule minimizing the makespan. This topic will be discussed in Chap.
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3. Thus, although the present problem does not directly involve lags, our
discussion of it will be postponed to Sect. 3.2.5.

2.2.3 F2|perm, sij, tij|Cmax

Sometimes, a machine must be prepared in some way before it can process a
certain job. It may need retooling, adjusting, etc. The time needed for such
preparation is called setup time. Similarly, after completing a job, we may
need an additional teardown time to clean up, put away tools and materials,
etc. We say that the setup (or teardown) of Jj is sequence-independent if it
depends only on Jj, not on the job that precedes (or follows) it. We call it
separable or anticipatory if the job does not have to be physically present:
the setup for a job on Mi+1 (or teardown on Mi−1) can proceed at the same
time that it is being processed on Mi.

The two-machine flow shop with sequence-independent and separable se-
tups and teardowns is another case that can be handled using the theory
of transfer lags. Suppose the processing of Jj on Mi is immediately pre-
ceded by a setup of length sij and followed by a teardown lasting tij, both
of which can proceed on Mi in the absence of Jj . This can be solved by a
simple extension of JR, as discussed in Sect. 4.18, where it is shown that, for
F2|perm, sij, tij|Cmax,

S� = JR(a + s1 − s2, b + t2 − t1).

2.2.4 Manufacturing Cells

Again, we mention a complex two-machine makespan minimization prob-
lem efficiently solved by the techniques of Chap. 3. Modern manufacturing
systems may include two Computer Numerically Controlled (CNC) machines
with robotic loading and unloading, automated storage and retrieval stations,
etc. Jobs are transported on pallets by a circulating conveyor, and require
special fixtures and tooling at each machine. For complete coverage, see Sect.
3.2.6.

2.2.5 F2|sij |Cmax with a Single Server

A problem of practical relevance arises when separable setups are required for
each task on each machine, and a single server (a worker, perhaps, or a robot)
must move among the machines, setting them up before the corresponding
task can be processed. Thus, setups cannot overlap each other, and we must
simultaneously schedule machines and server. In shorthand notation, we in-
dicate a shop with a single server by adding S in the first of the three fields.
The problem we now consider is F2,S|sij|Cmax.
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The Complexity of F2,S|sij|Cmax

Theorem 2.5 (Glass et al., 2000) F2,S|sij|Cmax is strongly NP-complete.

Proof Outline: We reduce the following strongly NP-complete problem:

3-PARTITION
INSTANCE: An integer V , and 3k positive integers vi : i ∈ T = {1, 2, ...,3k},
with Σi∈T vi = kV and V/4 < vi < V/2, for all i ∈ T .
QUESTION: Can T be partitioned into k disjoint sets S1,S2, ...,Sk with
|Sj| = 3 and Σi∈Sj vi = V for j = 1, 2, ..., k?

to the decision version of our problem:

F2,S|sij|Cmax≤ B?
INSTANCE: An integer B, and n jobs Jj, j = 1, 2, ..., n, each with parame-
ters <sij , pij>, to be scheduled in a two-machine flow shop, where sij is the
separable setup time and pij is the processing time of Jj on Mi, i = 1, 2, and
a single server who can only do one setup at a time.
QUESTION: Does there exist a schedule with Cmax ≤ B?

For any instance of 3-Partition, an instance of F2,S|sij, pij|Cmax is defined
as follows:

• B := 4kV
• n := 6k + 1
• <s1j, p1j ; s2j, p2j> := <vj , V ; 0, 0>, j ∈ T = {1, 2, ...,3k}
• <s1j, p1j ; s2j, p2j> := <0, 0 ; V, V >, j ∈ U = {3k + 1, ..., 5k+ 2}
• <s1j, p1j ; s2j, p2j> := <0, 0 ; 0, V >, j ∈ V = {5k + 3, ..., 6k+ 1}

Observe that each job requires processing on just one machine; it has zero
processing (hence setup) time on the other. The jobs in T are processed only
on M1 (their zero-length tasks can be placed at the end of the schedule); jobs
in U and V only on M2, with null tasks on M1 at the start.

Now, suppose an instance of 3-Partition has the answer “yes”. The
schedule in Fig. 2.3, where each job has been identified only by the set it
belongs to and setups are cross-hatched, is therefore feasible and clearly op-
timal. For the opposite implication, note that, to avoid overlapping setups,
each setup on M2 must be precisely synchronized with the processing of a
job on M1. This partitions the time on M1 so that sets of three jobs occupy
time 4V , implying that their setup times must total V . �

Fig. 2.3 Optimal schedule for NP-complete instance of F2, S|sij|Cmax
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Brucker et al. (2005) strengthened this result by showing that F2,S|sij|Cmax

is strongly NP-complete even when all setup times are equal (sij = s).
They also showed that another special case, F2, S|sij, pij = p|Cmax , is NP-
complete.

F2,S|(perm), (pmtn), sij = s, pij = p|Σfj , max fj

Brucker et al. (2005) found polynomial solutions for the special cases where
the objective functions are very general, but all tasks have identical processing
characteristics (sij = s, pij = p), differing only in their cost contributions.
The cost of each job is an arbitrary nondecreasing function of its completion
time, with the overall objective being to minimize either the total or the
maximum of these costs. There are two cases to consider (see Fig. 2.4).

1. s ≥ p The server is now always busy, back and forth between the
machines, as in Fig. 2.4(a). It is easy to see that preemption is never, and
permutation scheduling is always, desirable. The completion time for the job
in position k is Ck = 2ks + p, independent of the schedule. We thus have to
assign each job to a position to minimize our objective. For the Total Cost
case, this is the well-known Assignment Problem, solved in time O(n3) by the
Hungarian Method (Kuhn, 1955). To minimize the Maximal Cost of such an
assignment, we can adapt Lawler’s Rule (Lawler, 1973), an O(n2) algorithm
for single machine sequencing: schedule last the job that is least costly there.
More formally:

Lawler’s Rule for F2,S|(perm), (pmtn), sij = s, pij = p, s ≥ p|max fj

0. Set R :={1, 2, ..., n} and k := n.
1. Assign Jj to position k, where fj(2ks + p) = mini∈R{fi(2ks + p)}.
2. Set R := R− {j} and k := k − 1. If k = 0, stop. Otherwise, go to Step 1.

2. s ≤ p Now, an optimal nonpreemptive permutation schedule clearly
exists, as in Fig. 2.4(b). Again, the kth completion time, Ck = ks + (k + 1)p,
is sequence-independent, and the same two algorithms can be adapted.

Fig. 2.4 Schedules for F2,S|(perm), (pmtn), sij = s, pij = p|Σfj , max fj when
(a) s ≥ p, and (b) s ≤ p

2.2.6 Lot Streaming

So far the assumption has been that each job is typically different from any
other, even though this does not preclude many jobs having the same char-
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acteristics. Suppose now we are producing many identical copies (identical in
their processing requirements; they may differ in other respects) of a product.
We will consider each copy to be a job. We may prefer to process them in
batches due for example to limited material handling equipment, difficulty in
tracking individual jobs, etc. Often, the initial quantity of like jobs, called a
job lot, is a single customer’s order, and is processed in one or a small number
of sublots. The jobs of a sublot advance from machine to machine as a group:
the last job of a sublot must complete on M1 before the first can start on
M2. This is called lot streaming; in the three-field description we call it
lots. Clearly, the makespan is minimized when jobs are processed separately.
Therefore, we would like to know the makespan loss resulting from grouping
the job lot into sublots.

To define the problem precisely, we make the following additional assump-
tions:

• Consistent sublots The sublots remain fixed in size as they move from
machine to machine. Actually, although varying sublot sizes over many
machines can be advantageous, it is never helpful when m = 2, as Theorem
2.1 below shows.

• No machine idling Each machine must process each lot without interrup-
tion. This again is no restriction for m = 2, since on M1 [M2] there is no
loss in assuming that all jobs are processed consecutively starting [ending]
at time 0 [Cmax], but for m > 2 idle time on Mk, 1 < k < m, could shorten
the makespan.

• One type of job We shall confine ourselves to discussing this case; there
does not seem to be much research on the multiproduct case.

Potts and Baker (1989) considered problem F2|(perm), lots|Cmax when n
copies of a single product must be produced, in v sublots. The n jobs all have
processing times <a, b>. We let xik denote the number of jobs in sublot i
on Mk (we’ll call this sublot (i, k), or simply (i, k)). They first establish the
optimality of consistent sublots for m = 2. We give a simpler proof.

Theorem 2.1. For F2|(perm), lots|Cmax, if xik is the lot size of sublot i on
Mk, then there exists an optimal schedule in which xi1 = xi2, i = 1, . . . , v.

Proof: Suppose we are given an optimal schedule that lacks consistency. For
the given partition into sublots on M1, {xi1 : i = 1, . . . , v}, we will argue
that the same partition on M2 is also optimal. Consider the smallest index
r, 1 ≤ r ≤ v, such that xr1 = xr2.
• xr1 < xr2. The extra items in (r, 2) can be moved to the following sublot,

delaying them if necessary to make the new (r + 1, 2) a contiguous set.
Clearly, this is feasible and does not affect the makespan.

• xr1 > xr2. The last xr1−xr2 items of (r, 1) have been detached from (r, 2)
and make up the first part of (r+1, 2). Since they were part of (r, 1), they
are available to be reattached to (r, 2), shifting them earlier if necessary.
Again, this cannot increase the makespan.
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We have now made sublot r consistent. We can proceed iteratively through
the schedule, making successive sublots consistent as needed, in the same
way, until xi1 = xi2 for all i. �

Actually, by a time reversal argument, we could keep the partition on M2

unchanged and adjust the sublots on M1 to conform. Thus, this result holds,
not just for the makespan criterion, but for all criteria, even those that are
not regular, since every job completion time on the last machine is unaltered.
However, given that all jobs are identical, without job-dependent character-
istics such as weights or due dates, no other objective seems meaningful.

Now, with consistent sublots, we can denote the ith sublot simply xi. We
seek the vector (x1, x2, . . . , xv) to minimize makespan for given v. Although
of course xi must be an integer, we first relax this constraint for simplicity.
The fractional sublot sizes can then be rounded to give a good solution, or
with a little more care, the optimum.

It is first shown that in the optimal schedule every sublot (except the first)
is critical: processing on M1 concludes exactly at the time M2 becomes free
from the previous sublot, so that there is no idle time on M2 after the initial
wait for the first sublot (see Fig. 2.5). This implies that axi+1 = bxi which,
together with Σv

i=1xi = n, quickly gives:

xi = nqi−1(1 − q)/(1 − qv) , where q = b/a , (2.2)

and the resulting makespan is

C� = na(1 − qv+1)/(1 − qv) .

Fig. 2.5 Optimal schedule for sample instance of F2|(perm), lots|Cmax

For example, suppose a lot of 250 jobs is to be run in v = 5 sublots
on 2 machines, each job requiring times <a, b> = <3, 4>. Then (2.2) gives
(x1, . . . , x5) = (25.93, 34.57, 46.09, 61.46, 81.95), with a makespan of 1077.8,
as shown in Fig. 2.5. If every job is scheduled separately (v = 250), Cmax =
3 + 4(250) = 1003, while if all jobs are batched in one big lot, Cmax =
250(3 + 4) = 1750. Note how a small number of sublots gives us most of the
benefit of independent scheduling.

Since each of the v sublots must actually contain an integer number of
jobs, we really want to solve the discrete version of F2|(perm), lots|Cmax.
The continuous solution gives us a makespan, C�, that is a tight lower bound
on the optimal discrete makespan, so it is reasonable to search for the latter
starting with the rounded up value of C�. For each trial value C of the
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makespan, we check its feasibility and, if no set of v sublots can achieve it,
we increment C and try again.

To check the feasibility of C, let Xi = Σi
j=1xj be the total number of

jobs in the first i sublots. Then, given sublots (x1, . . . , xv), C must be large
enough to satisfy, for i = 1, . . . , v:

C ≥ a
∑i

j=1 xi + b
∑v

j=i xi = aXi + b(n − Xi−1) , with X0 = 0

and equality for at least one value of i. For fixed C this gives the recursion

Xi ≤ [C − b(n − Xi−1)]/a (2.3)

Observe that Xi is increasing in Xi−1 and hence it is beneficial to select
the largest possible integral Xi value that satisfies (2.3), except of course that
we also require Xi ≤ n, with Xv = n. If Xv < n, then the trial value C must
have been infeasible : too small to accommodate all n jobs. We then must
increment the value of C and try again, stopping when at last (2.3) permits
Xv ≥ n. Trietsch (1989) showed that the above procedure can be implemented
by a polynomial time algorithm that searches over possible values for C.

For the earlier example, with n = 250, v = 5 and <a, b> = <3, 4>, we
got C� = 1077.8. An initial trial value of 1078 gives

X1 ≤ min{(1078− 4 · 250)/3, 250} = 26, so let X1 = 26,

X2 ≤ min{(1078− 4 · 224)/3, 250} = 60.7, so let X2 = 60,

X3 ≤ min{(1078− 4 · 190)/3, 250} = 106, so let X3 = 106,

X4 ≤ min{(1078− 4 · 144)/3, 250} = 167.3, so let X4 = 167,

X5 ≤ min{(1078− 4 · 83)/3, 250} = 248.7, so X5 < 250.

Thus, the trial makespan was too small. Using an increment of 1, we try C =
1079, getting (X1, X2, X3, X4, X5) = (26, 61, 107, 169,250) which is clearly
optimal.

2.3 The Choice of Objective

For the two-machine flow shop, the makespan is the first and most studied
objective function. Now that we have introduced it, we pause to consider
what other objectives might be useful. Another popular choice is the sum
of the completion times of all jobs (or equivalently the average completion
time), denoted ΣCj . This objective is also referred to in the literature as flow
time. Assuming that each job is delivered to a customer upon its completion
Cj, the sum of completion times reflects the total manufacturing waiting (or
total flow) time experienced by all customers. Hence, flow time is a service
objective. Assuming further that all material costs are incurred at time t = 0,
the sum of completion times is a measure of capital utilization or work-in-
process costs which is a popular metric for plant performance.
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Gupta and Dudek (1971) argue that a general cost objective is better
approximated by ΣCj than by Cmax; a criterion that somehow combines
multiple objectives is better still. One way to incorporate two objectives in
a hierarchy is to optimize the secondary objective function, O2, subject to
a constraint on the primary criterion O1. The constraint may be a bound
(e.g., minimize ΣCj while keeping the makespan at ten weeks or less), or
we may require O1 to be kept at its optimal value if the remaining feasible
solution set is not too small. Another way, the composite criterion, includes
both functions in the objective, usually as a weighted average.

2.4 F2|(perm)|ΣCj

Minimizing total completion times in the two-machine flow shop, though an
apparently simple problem, is strongly NP-complete (Garey et al., 1976) even
though there always exists an optimal permutation schedule (Conway et al.,
1967). A few special cases, which we present next, have simple polynomial
solutions. Otherwise, the bulk of the literature on problem F2|(perm)|ΣCj

is devoted to the development of branch-and-bound algorithms supported by
lower bounding schemes. The rest of this section reviews these results.

2.4.1 Polynomially Solvable Cases

The following special cases have simple efficient solutions.

• When ai ≤ aj ⇒ bi ≤ bj (Panwalkar and Khan, 1976), we say that the
jobs are ordered by processing times (one job is shortest on both machines,
etc.). Now, Johnson’s Rule is the same as SPT, and is clearly optimal.

• When aj ≥ bj, S� = ↗aj .
• When bj = b (Van de Velde, 1990), S� = ↗aj.
• When aj ≤ bj, a much more complicated algorithm is given in Hoogeveen

and Kawaguchi (1999), with running time O(n2 logn).

2.4.2 Lower Bounds

Lower bounds, hopefully tight and easy to find, are useful to evaluate heuris-
tics when the optimum is incalculable, and in a branch-and-bound algorithm
to bound the completions of an intermediate solution at a node. Where possi-
ble, we will assume the second case: a partial schedule σ is already determined,
occupying each Mk up to time Ck(σ) and leaving a set U of unscheduled jobs.
If a simple lower bound is wanted, just set σ = φ, Ck(σ) = 0 and U = N .

Since C1(σ) < C2(σ), we really only care about the “stagger”: Δ = C2(σ)−
C1(σ). The extra delay C1(σ) must be added to the flow times of all remaining
jobs, and does not affect their scheduling; it will be ignored hereafter, as will
the already incurred cost of the jobs in σ. Also, for notational simplicity, we
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will redefine n as the number of jobs remaining to schedule: |U| = n. Thus,
the only effect of a predetermined partial schedule is that M2 is unavailable
until time Δ.

A single-machine lower bound LB1 is presented in Ahmadi and Bagchi
(1990) who observe that, since no job can start on M2 until it finishes on
M1, one may consider problem 1|rj|ΣCj on M2 where rj = max(aj, Δ) for
j = 1, 2, . . . , n. This problem is NP-complete, but the preemptive version
1|rj, pmtn|ΣCj is solvable in O(n logn) time by the Shortest Remaining Pro-
cessing Time (or SRPT) rule (see Schrage, 1968). Therefore, LB1 is produced
in O(n logn) time.

Two related bounds are presented in Ignall and Schrage (1965). For the
first, reindex the unscheduled jobs in SPT order of bj : b1 ≤ b2 ≤ . . . ≤ bn.
Then, if J[j] is the job in position j, clearly

C[j] ≥ max{Δ,minj aj} + Σj
i=1bi , j = 1, . . . , n.

Thus:

LB2 = nmax{Δ,minj aj}+
∑n

j=1(n−j+1)bj , where b1 ≤ b2 ≤ . . . ≤ bn.

By symmetry, the SPT order of a-tasks yields lower bound

LB3 =
∑n

j=1(n − j + 1)aj +
∑n

j=1 bj , where a1 ≤ a2 ≤ . . . ≤ an.

A lot of work has appeared in the literature on lower bounds based on
Lagrangean relaxation schemes. The first such scheme was developed by Van
de Velde (1990) and Hoogeveen and Van de Velde (1995) who worked on a
formulation that uses “positional processing times”. Using [j] to index the
job in position j of the permutation schedule, they considered the following
formulation, where the minimization is over all such schedules:

P minimize
∑n

j=1C[j] (2.4)
subject to C[j] ≥ C1[j] + b[j] , j∈J (2.5)

C[j] ≥ C[j−1] + b[j] , j∈J (2.6)

C1[j] = Σj
k=1a[k] , j∈J (2.7)

where C1[j] [C[j]] is the completion time of J[j] on M1 [M2], with C[0] = Δ.
Let λ = (λ1, . . . , λn) be nonnegative Langrangean multipliers associated with
inequalities (2.5). Then, inequalities

λj [C1[j] − C[j] + b[j]] ≤ 0 , j = 1, . . . , n

are summed up and added to the objective function in (2.4) to obtain

minimize L(λ) =
∑n

j=1[λjC1[j] + (1 − λj)C[j] + λjb[j]] (2.8)
subject to (2.6), (2.7)
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where we minimize over all permutations for fixed λ. We require that λj ≤ 1
for j = 1, . . . , n so as to avoid unecessarily small values for L(λ).

We first note that, without the constraint (2.5) to link the machines, (2.6)
can be written as an equality, yielding C[j] = Δ+ Σj

k=1b[k]. Substituting this
simplified (2.6) and (2.7) into the objective function, we now are left with
the unconstrained minimization of

L(λ) =
∑n

j=1[λj ·Σj
k=1a[k] +(1−λj)(Δ+Σj

k=1b[k])+λjb[j]] (2.9)

Now consider the restricted version of the above relaxation that we obtain by
setting all λj equal to a given constant: λj = c for j = 1, . . . , n. Note that the
last term in (2.9) and the term involving Δ become constants and hence do
not affect the optimization. Without them, the objective function becomes

L(c) =
∑n

j=1 [
∑j

k=1 (ca[k] + (1 − c)b[k])],

which is the total flowtime on a single machine with job processing times
pj = caj + (1 − c)bj. The well-known optimum for 1||ΣCj being SPT, the
restricted relaxed problem is solved in O(n logn) time. Binary search may
then be employed to solve the Lagrangean dual problem: max0≤c≤1 L(c).

Let L(c�) be the resulting lower bound. This bound was first developed
in Van de Velde (1990) and was later improved by Della Croce et al. (2002)
who showed that a sufficient condition for a permutation π of the n jobs to
solve the problem minimize L(λ) subject to (2.6), (2.7) is:

λiaj + (1 − λi)bj ≥ λjai + (1 − λj)bi when Ji precedes Jj in π. (2.10)

Hoogeveen and Van de Velde (1995) showed that value L(c�) is generally
inferior to the one obtained if we strengthen inequalities (2.5) as follows.
First, introduce slack variables Wj to get:

C[j] = C1[j] + W[j] + b[j] , j = 1, . . . , n . (2.11)

Here, W[j] ≥ 0 is the time J[j] must wait between machines; that is, between
completing a[j] and starting b[j]. Note that

W[j] = max(0, W[j−1] + b[j−1] − a[j]) , j = 1, . . . , n , (2.12)

as can be verified recursively, starting with W[1] = max(0, Δ−a[1]). It follows
that W[j] ≥ max(0, b[j−1] − a[j]), with b[0] ≡ Δ, so substitution for W[j] in
(2.11) gives

C[j] ≥ C1[j] + b[j] + max(0, b[j−1] − a[j]) , j = 1, . . . , n , (2.13)

which are more binding constraints than (2.5). If we replace (2.5) with (2.13)
in P, then the same relaxation yields the problem
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minimize L′(λ) = L(λ) +
∑n

j=1[λj max(0, b[j−1] − a[j])] (2.14)
subject to (2.6), (2.7).

When λj = c for all j, we get L′(c) = L(c) + cΣn
j=1 max(0, b[j−1] − a[j]). The

first term is the problem given in (2.8). The second term is equivalent to
the 2-machine no-wait flow shop problem of minimizing makespan, as will be
discussed in Chap. 6, where it will be shown to be solvable in O(n logn) time.
Thus, this is the time required to compute L′(c) for given c ∈ [0, 1]. Bisection
search over c ∈ [0, 1] provides an approximation for max0≤c≤1 L′(c), and
hence a lower bound for the original problem. Let L′(c��) be the resulting
value. By construction of the 2 relaxed formulations it is expected that L′(c��)
is a better lower bound than L(c�).

In a related article, Hoogeveen et al. (2006) further characterized relax-
ations for model P. They studied relaxations based on slack variables Ij for
inequalities (2.6), as in

C[j] = C[j−1] + b[j] + I[j] , j∈J . (2.15)

Here, I[j] ≥ 0 reflects the idle time on M2 after finishing the (j − 1)st task,
with I[1] = max(0, a[1] − Δ). Note that when I[j] > 0, W[j] = 0, and vice
versa. Working recursively using C[1] = max(a[1], Δ) + b[1], we see that

C[j] = max(a[1], Δ) +
∑j

i=1b[i] +
∑j

i=2I[i] , j∈J . (2.16)

Using (2.16) in (2.4) – (2.7), the following relaxation is obtained:

LP1 minimize n · max(a[1], Δ) +
∑n

j=1 [
∑j

i=1 b[i] +
∑j

i=2 I[i]]

subject to
∑j−1

i=1 b[i] +
∑j

i=2 I[i] −
∑j

i=2 a[i] ≥ 0 , j = 2, . . . , n ,

I[1] = max(0, a[1] − Δ) , I[j] ≥ 0 , j = 2, . . . , n .

Working similarly, one can replace (2.5) by (2.13) to obtain another relaxation
LP2 (details omitted). Hoogeveen et al. (2006) showed that LP1 and LP2

are equivalent formulations with O(n2) variables and O(n) constraints and
yield the same objective function value. They, too, investigated Lagrangean
relaxations obtained by relaxing inequalities (2.5) so as to obtain the for-
mulation minimize L(λ) subject to (2.6), (2.7), λ ≥ 0. Similarly, they re-
lax inequalities (2.6) using multipliers μ1, . . . , μn and obtained the formu-
lation minimize L′(μ) subject to (2.5), (2.7), μ ≥ 0. The authors proved
that the Lagrangean dual maximize λ≥0 L(λ) is equivalent to LP1 while
maximize μ≥0 L′(μ) is equivalent to LP2. They also performed experiments
showing that, on average, the deviation of the lower bound produced by LP1

from the optimal is under 1% for instances with 35 or 40 jobs.
A very different but equally creative formulation for F2||ΣCj is developed

in Akkan and Karabati (2004) for jobs with integer processing times. As
before, Wk ≥ 0 will denote the waiting time or delay of Jk between M1 and
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M2. We first rewrite (2.11):

C[j] =
∑j

i=1a[i] + W[j] + b[j] , j = 1, . . . , n . (2.17)

Adding over all positions, and regrouping terms, our objective becomes to
minimize:∑n

j=1 C[j] =
∑n

j=1 [(n − j + 1)a[j] + W[j] + b[j]]

We can now assign the cost

C′
[j] = (n − j + 1)a[j] + W[j] + b[j] (2.18)

to the job in position j. This cost depends only on the parameters of J[j],
and on the time that job must wait for M2.

In fact, we can gain further insight by introducing the variable Δj, the
time from the finish of Jj on M1 until Jj finishes on M2:

Δ[j] = C[j] − C1[j] = W[j] + b[j] , j = 1, . . . , n.

Δ[j] is the difference in time, or stagger, between the occupancies of the
two machines as seen by the next job to be scheduled, J[j+1]. It determines
whether J[j+1] will have to wait (that is, W[j+1] > 0, which results if a[j+1] <
Δ[j]) or not. Using (2.12):

Δ[j] = max{0, Δ[j−1] − a[j]} + b[j] , j = 1, . . . , n . (2.19)

with Δ[0] = Δ (assuming a partial schedule σ already exists producing an
initial stagger Δ; otherwise Δ[0] = 0).

The problem can now be formulated as a transshipment-type branching
network (for an introduction to transshipment problems, see for example
Winston (2003)) in which schedules are built, left to right, one job at a time.
Nodes represent partial schedules, with emanating arcs for each job that can
be scheduled next. All nodes with exactly j jobs scheduled make up stage j.
When branching from a node at stage j where the last job scheduled was J[j],
we need only know the stagger Δ[j]. If the next job is to be Jh (i.e., [j+1] = h),
then the new stagger is, from (2.19), Δh = max{0, Δ[j] − ah} + bh, and the
cost contribution is, from (2.18), C′

h = (n − j + 1)ah + Δh.
Note that, at any stage, a given stagger value may be attained by many

jobs, and the number of different staggers is usually not very large. Therefore,
to keep the number of nodes from growing to n! (as when we generate all job
sequences), the authors suggest that at each stage there be one node for every
distinct stagger value. This, as we have just seen, is the only datum needed to
extend the network to the next stage. On the down side, this means that we
cannot know what sequence of j jobs a level-j node represents: several partial
schedules may converge on this node. Thus, each node must have n branches,



40 2 THE TWO-MACHINE FLOW SHOP

and therefore will be generated with the same job(s) appearing more than
once.

Example 2.1: The following small example illustrates the network (see
Akkan and Karabati, 2004). It assumes no initial partial schedule, hence
Δ = Δ0 = 0. Let n = 3 with <aj , bj> = <10, 7>, <7, 3> and <1, 3>, for
j = 1, 2, and 3. Since any job in position 1 has Δ[1] = b[1], Δ[1] will take as
many values as the distinct b-tasks, i.e., 3 or 7, as in Figure 2.6. Observe that

Fig. 2.6 The transshipment network

two arcs end in node 1 because there are two jobs with bj = 3. According
to (2.18), the cost of the arcs from node 0 to node 1 are 3a2 + b2 = 24 and
3a3 + b3 = 6 for J2 and J3 respectively. The job sequence (1, 3, 2) has cost
3a1 + 7 + 2a3 + 9 + a2 + 5 = 60. Moreover, C1 = 17, C2 = 23, C3 = 20 and
ΣjCj = 60.

Evidently, a mincost unit flow from the source node to the sink that passes
through arcs that correspond to each job exactly once, provides an optimal
solution. By construction, the number of nodes in the network is of order
O(maxj bj ·n2), hence the number of arcs is O(maxj bj ·n3) because at most
n arcs emanate from each node. Relaxing this integrality constraint yields a
tight linear programming formulation.

2.4.3 Optimal Algorithms and Heuristics

Nearly every article in the literature where a lower bound is developed, con-
tains an associated branch-and-bound algorithm. Using the relaxation of the
transshipment network-based lower bound described earlier, at the root node
of their branch-and-bound algorithm, Akkan and Karabati (2004) were able
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to solve problems with as many as 60 (45) jobs when processing times are
drawn uniformly from [1, 10] ([1, 100]). However, the size of the network ren-
ders this lower bound too expensive for repeated use within a branch-and-
bound framework.

Hoogeveen and Van de Velde (1995) experimented with problems having
up to 30 jobs and processing times drawn uniformly from [1, 10]. For each
combination of parameters they randomly generated 40 problems and found
that in all combinations of parameters the median value of the relative per
cent error of L′(c̄) from the optimal flowtime value is slightly better than the
corresponding per cent error for L(c�).

Della Croce et al. (1996) experimented with various branch-and-bound
implementations based on combinations of the lower bounds LB1, LB2, LB3,
L(c�) and L′(c̄) and were able to consistently solve problems with up to
n = 25 jobs. Also, they developed a heuristic which was found to deviate
from the best amongst the 5 lower bounds by no more than 2.62% on average,
on randomly generated problems of up to n = 100 jobs. By exploiting the
sufficient condition (2.10), Della Croce et al. (2002) later improved upon the
latter branch-and-bound algorithm and were able to solve problems with up
to 45 (30) jobs for processing times drawn uniformly from [1, 10] ([1, 100]).

The branch-and-bound algorithm of Della Croce et al. (1996) runs faster
when using the heuristic solution obtained in T’kindt et al. (2002) at the
start node which results to about 25% reduction in the search tree. The al-
gorithm presented in T’kindt et al. (2002) is referred to as SACO and is a
metaheuristic based on ant colony optimization (ACO). Metaheuristics are
algorithms that make extensive use of neighborhood search and are equipped
with mechanisms that allow the search to deviate from local optima, tem-
porarily accepting inferior solutions so as to direct the search to other (hope-
fully more promising) areas of the search space. Metaheuristic algorithms are
mimetic in nature. ACO is a type of metaheuristic that emulates the manner
in which ants locate food sources – optimal solutions in our case. Specifically,
a pheromone matrix {τij} records the probability of scheduling Jj at position
i in a good schedule for the ΣCj criterion. Hence, value τij represents the
frequency by which a pheromone trail is used by ants as a means of sharing
information across the colony. Ji is scheduled on position j with probability
pij if it is found in the same position in previously identified “good” sched-
ules, or 1 − pij to create new promising schedules. Probability pij is usually
optimized experimentally by trial and error.

Using an improved pheromone updating rule, Lin et al. (2008) devel-
oped an alternative heuristic referred to as ACO and tested it on problems
F2|(perm)|ΣCj and F2|(perm)|(αΣCj + βCmax). For the former problem,
the authors experimented with problems with up to n = 500 jobs, running
50 iterations using 10 ants (i.e., simultaneous trials). It is found that, on aver-
age, ACO yields slightly better solutions than SACO. Rajendran and Ziegler
(2004) proposed two other ant colony optimization metaheuristics referred to
as M-MMAS and PACO. The former makes use of the idea of a max-min ant
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system; the latter incorporates relative distances between 2 scheduling posi-
tions for the same job. Algorithms M-MMAS and PACO outperform ACO
and SACO in terms of solution quality but require more CPU time.

A worst case analysis has been conducted for the simple heuristic: use the
permutation schedule with jobs sequenced in nondecreasing order of their
total processing time, aj + bj.

Theorem 2.6 (Hoogeveen and Kawaguchi, 1999)
For F2|(perm)|ΣCj, let

(a) Fa+b = the total flow time of schedule ↗(aj + bj).
(b) F � = the total flow time of the optimal schedule.

Then

Fa+b/F � ≤ 2y/(x + y), where x = minj{aj, bj} and y = maxj{aj, bj},
and this bound is tight.

2.4.4 F2|(perm)|ΣCj with Setups

Consider the mean flow time objective when there are separable and sequence-
independent setup times on M2 (there may also be setups on M1, but with no
preceding stage there is never the need to consider setup and processing sep-
arately, so their times can be combined). The proof of Theorem 1.1 requires
only minor modification to accommodate setup times, so we can continue to
confine ourselves to permutation schedules. Let sj be the time required to
set up M2 for Jj, and denote the problem as F2|(perm), sj|ΣCj.

Allahverdi (2000), besides proposing and comparing three heuristics, pro-
poses a branch-and-bound algorithm. As usual with sequencing problems,
schedules are built by adding jobs, one at a time, to a partial schedule. We
may build forwards in time, adding jobs at the end of an initial partial sched-
ule, as we assume here, or we may start with the final job and grow the
schedule backwards. We shall adopt the notation:

• σ : variously, a node or the initial partial sequence at that node,
• S : the set of scheduled jobs that make up σ, with cardinality s.
• U : the set of jobs that remain unscheduled, with cardinality u = n − s.

The author develops dominance relations and lower bounds to be used in the
search algorithm. We now summarize his results.

Dominance Properties

The following results state conditions under which jobs can be partially or-
dered, thus eliminating some job sequences from the search. They are given
by Allaverdi (2000) unless otherwise referenced. The proofs are by job inter-
change; details omitted.
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Theorem 2.7 (Bagga and Khurana, 1986) For F2|(perm), sj|ΣCj,

aj ≤ ak, bj ≤ bk

min{aj − sj , bk} ≤ min{ak − sk, bj}
sj + bj ≤ sk + bk

⎫⎬
⎭ ⇒ j

global
� k.

Theorem 2.8 For F2|(perm), sj|ΣCj,

bk ≤ bj

aj − sj ≤ ak − sk

sj + bj ≤ sk + bk

⎫⎬
⎭ ⇒ j

global
� k.

Theorem 2.9 For F2|(perm), sj|ΣCj,

aj ≤ sj + bj

aj − sj ≤ ak − sk

sj + bj ≤ sk + bk

⎫⎬
⎭ ⇒ j � k.

Lower Bounds

To bound total completion time for all schedules beginning with partial sched-
ule σ, Bagga and Khurana (1986) propose lower bounds separately for each
job. First, for jobs in S, the exact completion time can be used (we note that
the authors do not do so for the first lower bound, instead using the same
lower bound for these jobs as for the unscheduled ones, and thus producing
a somewhat weaker overall bound). It is probably easiest to compute these
completion times recursively. Thus, for j ≤ s:

C[j] = max{
∑j

i=1 a[i], C[j−1] + s[j]} + b[j], with C[0] = 0, (2.20)

where [j] is the index of the job in position j.

• First bound, LB1

Consider the job in position j > s. Its completion time must be at least the
time to process the first j jobs on M1, plus b[j]. The first s jobs have already
been scheduled; their time on M1 is, of course, Σs

i=1a[i] = Σi∈Sai. Since we
do not know which jobs occupy the next j − s positions, we use the smallest
of the remaining a-tasks to give a lower bound. Thus, for j > s:

C[j] ≥
∑

i∈S ai +
∑j−s

i=1 a[i] + b[j], (2.21)

where a[i] is the ith smallest a-task in U . Note that we do not know which job
contributes b[j], but this will not matter since we add them all up to bound
the total completion time, getting:∑n

j=1 C[j] ≥ LB1 ≡
∑s

j=1 C[j]+u
∑

i∈S ai+
∑u

i=1(u−i+1)a[i] +
∑

j∈U bj.

• Second bound, LB2

Applying a similar logic to M2, we have for j > s:

C[j] ≥ C[s] +
∑j−s

i=1 (s[i] + b[i]), (2.22)
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where s[i] + b[i] is the ith smallest value of sj + bj among jobs in U . Thus:∑n
j=1 C[j] ≥ LB2 ≡

∑s
j=1 C[j] + uC[s] +

∑u
i=1(u − i + 1)(s[i] + b[i]).

We can now use for our lower bound LB = max{LB1, LB2}.

Heuristics and Computational Results

Three heuristics are proposed for F2|(perm), sj|ΣCj. Heuristic H1 simply
schedules the jobs sequentially, starting at time zero, each time choosing
from the unscheduled set the job that completes earliest. Heuristics H2 [H3]
are similar, scheduling at each iteration the ordered pair [triple] of jobs whose
total completion time is minimal.

Clearly, H2 will require more (H3, much more) time at each step, but
even for the largest instances tested (ten 35-job replicates), where H3 took
about 20 times as long as H1, the CPU time was negligible. For such simple
greedy algorithms, all three heuristics performed remarkably well, with the
more complex giving better results. Thus, H3 gave results with average error
(deviation of the heuristic value from the optimum, divided by the optimum)
an order of magnitude smaller than those of H1. For the 35-job instances, the
average error for H1, H2 and H3 was 0.04, 0.008 and 0.003, respectively.

Using the above lower bounds and dominance relations, the branch-and-
bound optimization required about 30 minutes to sequence 35 jobs, using
C-programming on a Sun Sparc 10. Rather slow, but still probably useful.
The relative usefulness of the three dominance relations was reported in terms
of their average frequency, i.e. the average number of times they ordered a
pair of jobs by preference, in any one problem instance. For Theorems 2.7,
2.8, and 2.9, for each 35-job instance, the average frequencies were 110, 30,
and 140, respectively. Theorem 2.7 was the most useful, giving global order-
ing information fairly often. Theorem 2.9 also provided quite a few priority
orderings, but of the less useful local variety. Theorem 2.8, while global, was
not often applicable.

2.5 F2|(perm)|(ΣCj|minCmax)

This problem seems to have been first considered in Rajendran (1992) where
a branch-and-bound algorithm is presented that uses lower bounds LB2, LB3

of Ignall and Schrage (1965). Problems of size up to n = 10 jobs are solved.
For larger problems, the author presents 2 heuristics that revise the Johnson
schedule by interchanging adjacent jobs as long as the makespan doesn’t
increase and ΣCj decreases. The order in which these interchanges are made
is of the essence, and they are based on a couple of preference relationships.
The best of the 2 heuristics has average deviation from LB2, LB3 ranging
from 5% to 14% for problems up to n = 24 jobs.

Using the heuristics in Rajendran (1992) as benchmark, Neppalli et al.
(1996) developed a genetic algorithm that, with appropriate choice of pa-
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rameters, performs better by an average of 3% for problems with n = 10,
and 10% for problems with n = 80 jobs. The improved performance of the
genetic algorithm over the heuristics in Rajendran (1992) exhibits a linear
increasing trend as n increases.

Gupta et al. (2001) and T’Kindt et al. (2003) presented heuristics that
served as benchmark in T’Kindt et al. (2002) who developed the metaheuris-
tic SACO mentioned earlier for F2|(perm)|ΣCj. To ensure that the search is
over schedules that attain minimal makespan, let σ(1), σ(2), . . . , σ(i − 1) be
a partial schedule for F2|(perm)|ΣCj. Then, σ(i) = j is chosen with proba-
bility p0 to intensify amongst the “existing trails”, or 1 − p0 to diversify. If
σ(1), σ(2), . . . , σ(i−1), j can be extended to an optimal schedule with respect
to the makespan objective, then the choice σ(i) = j is admissible and value
τij is updated accordingly. T’Kindt et al. (2002) find that the best trade-off
between CPU time and solution quality is obtained when SACO uses 20 ants
and 100 iterations. They experiment with problems with up to n = 200 jobs
and find that SACO yields solutions that slightly improve upon the perfor-
mance of the heuristics presented in Gupta et al. (2001) and T’Kindt et al.
(2003). In problems with less than n = 25 jobs, it is shown that SACO is
nearly optimal.

2.6 F2|(perm)|(αΣCj+βCmax)

Nagar et al. (1995) found that, when bj ≥ aj for all jobs, the greedy algo-
rithm that schedules next a job that minimizes the marginal increase in the
objective function value, is near optimal. For this special case, the authors
develop a branch-and-bound algorithm that consistently solves problems with
n = 200 jobs within a few seconds. However, when the processing times are
randomly generated, results on problems with up to n = 14 jobs are reported.
Their branch-and-bound algorithm builds schedules from the start. Let V be
the value of the partial schedule at a node, and U = {unscheduled jobs}.
Then, disregarding the a-tasks and indexing the b-tasks in SPT order, the
quantity

V + α
∑

j∈U (n − j + 1)bj + β
∑

j∈U bj

gives a lower bound for the node.
Lin et al. (2008) tested the metaheuristics ACO, SACO, M-MMAS and

PACO on F2|(perm)|(αΣCj + βCmax) and found that PACO is dominant in
terms of solution quality while on average, ACO requires the least time.

2.7 F2|(perm)|fmax
Recall that the objective fmax seeks to minimize the largest job cost, where
each Jj incurs a cost fj(t) when completed at time t. By Theorem 1 of
Chap. 1, we can limit our search to permutation schedules. To begin with,
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consider the problem without precedence constraints. It is shown in Lenstra
et al. (1977) that even F2|(perm)|Lmax (the special case with fj(t) = t− dj)
is NP-complete, so no efficient algorithm is to be expected for the general
objective. Townsend (1977) gives a branch-and-bound algorithm, building
schedules backwards. Since Johnson’s Rule minimizes the completion time,
hence the cost, of the last job scheduled, it is a reasonable starting point. We
then consider modifying it using the single-machine result of Lawler (1973):
the sequence that minimizes the maximal cost of any job puts last the job
that is least costly there. This may lead us to place a different job in the
final position. We leave the rest in JR-sequence, thus minimizing the cost of
the last job. We now repeat this, for the penultimate job. We could continue
this way through all the positions, except that, when we place a job in any
position, we generally change the completion times of all the following jobs
which have already been scheduled. This may force us to reconsider earlier
decisions, hence the need to search. Consult the paper for further algorithmic
details; no computational results are given.

Finally, as usual when solving a scheduling problem by implicit search,
adding precedence constraints limits the number of feasible schedules, and so
only makes the problem easier to solve.

2.7.1 F2|(perm), sj|Lmax or Tmax

As noted above, minimizing Lmax (or Tmax, which is equivalent) in a two-
machine flow shop is already NP-complete. Allahverdi and Al-Anzi (2002)
propose a branch-and-bound algorithm. Each Jj now has a separable and
sequence-independent setup time sj on M2 (setups on M1 may be included in
task times without loss of generality), and a due date dj, as well as processing
times <aj, bj>. The presentation is similar to the one used to minimize ΣCj

by Allahverdi (2000), as discussed in Sect. 2.4.4. Please review that material,
as our approach and notation will be the same.

Dominance Properties

The following dominance orderings are due to Allahverdi and Al- Anzi (2002)
unless otherwise credited.

Theorem 2.10 (Dileepan and Sen, 1991) For F2|(perm), sj|Lmax,

dj ≤ dk,
min{aj − sj , bk} ≤ min{ak − sk, bj}

}
⇒ j � k.

Theorem 2.11 For F2|(perm), sj |Lmax,

bk ≤ bj, dj ≤ dk

aj − sj ≤ ak − sk

sj + bj − dj ≤ sk + bk − dk

⎫⎬
⎭ ⇒ j

global
� k.
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Theorem 2.12 For F2|(perm), sj |Lmax,

sk + bk ≤ dk − dj

bj ≥ ak − sk ≥ min{bk, aj − sj}

}
⇒ j � k.

Theorem 2.13 For F2|(perm), sj |Lmax,

ak ≥ sk + bk ≥ dk − dj ≥ 0
bj ≥ min{ak − sk, bk}

}
⇒ j � k.

Lower Bound

At an arbitrary node of the search tree, to bound maximal lateness for all
completions of the s-job initial partial schedule σ, we first bound C[j], where
[j] indexes the job in position j. As before, for jobs already scheduled (j ≤ s),
C[j] is fixed and can be computed recursively using (2.20). The two bounds
for C[j], j > s are also the same as those given in (2.21) and (2.22), except
that in (2.21) we do not know which job contributes b[j] so must replace it
with bmin = minj∈U bj . Using the greater of these as the overall bound on
completion time, we get as a lower bound, LB[j], on the lateness L[j] of the
job in position j, for j > s:

LB[j] = max{
∑

i∈S ai +
∑j−s

i=1 a[i] + bmin, C[s] +
∑j−s

i=1 (s[i] + b[i])} − dmax,

where dmax = maxj∈U dj . Since the lateness of an already-scheduled job is
known, we get finally:

Lmax ≥ max{maxj∈S Lj , maxn
j=s+1 LB[j]}. (2.23)

Heuristics

Dileepan and Sen (1991) propose two heuristics: (1) Heuristic HEDD, in which
the EDD schedule is improved by neighborhood search using adjacent pair job
interchanges; and (2) HJR, which uses the JR(a-s, b) schedule. Starting with
each of these schedules, Allahverdi and Al-Anzi (2002) give two algorithms
for further improvement. We outline one of them as an example. In it, a
sequence of initial partial schedules σi is developed, adding one job at a time,
so that σi contains i jobs, i = 1, ..., n.

Insertion Algorithm

1. Let (π1, π2, ..., πn) be the starting schedule, from either HEDD or HJR.
2. Set σ1 := (π1), and i := 2.
3. Create i candidate sequences for σi by inserting πi into each of the i pos-

sible positions in σi−1.
4. For each candidate, compute the lower bound on Lmax as given by (2.23).

Let σi be the one with the smallest bound, hence hopefully smallest Lmax.
5. Increment i. If i = n + 1, then stop, with final schedule S = σn; else go to

Step 3.
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This algorithm is applied to HEDD and HJR, and followed by a final adjacent-
pair-interchange procedure, to give two heuristic procedures; call them EDD-
INSERT and JR-INSERT. Another improvement process, called the Merge
Algorithm (details omitted) gives two more, EDD-MERGE and JR-MERGE.
All have time complexity O(n3).

Computational Results

Limited results are given for the branch-and-bound algorithm, with and with-
out the enhancement of dominance properties. The largest instances solved
to optimality have twelve jobs, so presumably running times become pro-
hibitive at that point. It is clear that preference orderings are very useful.
For nine-job instances, the time required to solve the problem with the help
of dominance properties is one tenth the time needed without them; and re-
sults for smaller instances show that this superiority is growing rapidly with
problem size. Running times are not given directly, but we assume them to be
proportional to the number of nodes searched, which is reported. Regrettably,
no comparison is made between dominance properties.

Heuristic performance is reported for several problem sizes; we will note
results only for the largest instances solved to optimality (12 jobs) and the
largest for which heuristic solutions are found (75 jobs). When the optimal
solution is available, performance is measured by average error (deviation of
the heuristic value from the optimum, as a fraction of the optimum), and
by the percentage of instances solved to optimality. For the large problems
where no optimal solution can be found, we replace the optimum with the
best value found by any of the heuristics. The results are:

12 jobs 75 jobs
Heuristic Avg Err % Opt Avg Err % Best

EDD-INSERT 0.24 81.2 0.03 77.6
EDD-MERGE 0.14 85.9 0.02 86.5
JR-INSERT 0.14 88.2 0.01 87.8
JR-MERGE 0.10 89.7 0.01 92.7

HJR gives a clearly better initial schedule than HEDD, and JR-MERGE gives
a somewhat better final result than JR-INSERT. It should be remarked that,
though MERGE has the same time complexity as INSERT, O(n3), it is con-
siderably more complicated and so will take longer to run. Also, keep in
mind that the results for the 75-job cases are deceptively impressive, since
comparison is to the best solution found, not the true optimum.

2.8 F2|(perm)|ΣTj

We now consider the case in which each Jj has a due date dj, and we wish to
minimize total tardiness. Koulamas (1994) presents a survey of the literature
on this objective. As always, permutation schedules constitute a dominant
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set. Despite this, the problem is still among the hardest problems: even the
special case with all due dates set to zero becomes simply F2|(perm)|ΣCj,
earlier shown to be strongly NP-complete.

2.8.1 Dominance properties

Sen et al. (1989) found the following priority relation for adjacent jobs:

Theorem 2.14 For F2|(perm)|ΣTj:

j � k ⇐⇒

⎧⎨
⎩

dj ≤ dk

bj − dj ≤ bk − dk

aj ≤ min{bj, ak}

Kim (1993) proposes the following dominance test:

Theorem 2.15 For F2|(perm)|ΣTj, to schedule jobs at the end of the se-
quence:

1. Find the longest makespan any nondelay schedule can have. This is given

by the reverse of JR; the proof parallels the proof that JR minimizes makespan.

2. If any dj is greater than this, schedule Jj last. Jj will never be tardy.

3. Remove Jj; recompute makespan and repeat as often as necessary.

Kim found this to give useful priority information more often than the pre-
vious Theorem.

Pan and Fan (1997) give other dominance criteria; for example:

Theorem 2.16 For F2|(perm)|ΣTj, for any two jobs Jj and Jk,

(a) if aj ≤ ak, bj ≤ bk, dj − bj ≤ dk − bk, then do not put Jj last;

(b) if aj ≤ ak, bj = bk, dj − bj ≤ dk − bk, then j
global
� k;

(c) if aj ≤ min{bj, ak}, bj ≤ bk, dj ≤ dk, then j � k.

2.8.2 Lower Bounds

Lower bounds have a variety of uses, such as to test heuristic solutions when
optima cannot be found, and to bound the completions of partial schedules
at a node of a branch-and-bound algorithm.

A first bound

Kim (1993) gives a branch-and-bound algorithm that builds schedules one
job at a time, starting with the last job, so that each node in the search tree
represents an ordered subset, σ, of jobs that will end the schedule. Kim’s
principal contribution is to derive a lower bound on the objective function at
any node. If a lower bound is sought for the entire problem, with no partial
schedule, the formula of Theorem 2.17 below (with u = n) gives it directly.
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Suppose the partial schedule σ at an arbitrary node includes s jobs, with
the set U of u = n − s jobs remaining to be sequenced at the start of the
schedule. We wish to find a lower bound on the total tardiness of the schedule.
Two separate total tardiness bounds are found, first for the jobs in σ, and
second for the unscheduled jobs in U . Their sum will then give the overall
bound. The two bounds are found as follows.

Since the jobs in σ are well ordered, their tardiness can be precisely cal-
culated if we know the times the two machines become available. Of course,
since M1 is never idle, that machine is occupied with the unscheduled jobs
for Σj∈U aj, at which time it becomes available. The availability of M2 is un-
known, depending on the undetermined first part of the schedule; instead, we
can use the makespan given by applying Johnson’s Rule to the unscheduled
set, as a lower bound.

Now, to find a bound on the tardiness of the u unscheduled jobs, note that,
if cj is a lower bound on the completion time, C[j], of the job in position j
(call that job J[j]), then

cj = max{a(1) + B(j), A(j) + b(1)}

where a(j) [b(j)] is the jth smallest task time on M1 [M2], and A(j) [B(j)] is the
sum of the j smallest task times on M1 [M2]. This is because the completion
of j jobs requires at least that one task on one machine and j tasks on the
other be processed sequentially.

Next note the following, proven by a pairwise interchange argument: given
two sets of u positive numbers, {xj}u

j=1 and {yj}u
j=1, the sum of the positive

parts of pairwise differences, Σu
j=1(xj − yj)+ is minimized if the two sets are

reindexed so that x1 ≤ x2 ≤ ... ≤ xu and y1 ≤ y2 ≤ ... ≤ yu. Applying this
result, we can bound the tardiness sum of any schedule by matching each
C[j] with the jth smallest due date, which we denote d(j). Thus, we have

Theorem 2.17 (Kim, 1993) For F2|(perm)|ΣTj with u jobs,
if d(j) is the jth smallest due date , then:∑u

j=1Tj =
∑u

j=1(C[j]−d[j])+ ≥
∑u

j=1(max{a(1)+B(j), A(j)+b(1)}−d(j))+.

Finally, the separate bounds on the scheduled and unscheduled jobs can be
added to give a lower bound on the total tardiness at the branch-and-bound
node corresponding to the partial schedule PS. Pan and Fan (1994) give a
slightly improved version of this bound.

A Tighter Bound

The two-machine specialization of a bound given by Chung et al. (2006) for
m machines (see Theorem 4.17) is worth mentioning. Assume that σ is an
initial partial schedule occupying Mk for a time Ck(σ) (k = 1, 2) and U is
the set of u unscheduled jobs that must follow it. For simplicity, renumber
the jobs in U , and the positions they will occupy, starting from 1, omitting
the jobs already scheduled. Let ski be a lower bound on the start time of
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the task in position i of Mk, obtained by ordering the tasks on each machine
independently in SPT order. For i = 1, . . . , u:

s1i = C1(σ) + A(i−1), with s11 = C1(σ),

s2i = max{s21+B(i−1), C1(σ)+A(i)}, with s21 = max{C2(σ), C1(σ)+a(1)}.
Now suppose some job Jj ∈ U is scheduled in position i. Given s1i, a

lower bound on that job’s tardiness is (s1i + aj + bj − dj)+. Defining δj =
dj − aj − bj , we now ask: what assignment of jobs to positions minimizes the
total tardiness, Σi(s1i − δj)+, thus assuring that we have a lower bound ? As
we saw above, we need δj = δ(i), the ith smallest value of δj . This gives for
our first bound:

LB1 = Σu
i=1(s1i − δ(i))+ , where δi = di − ai − bi .

Analogously, starting with s2i, we get a second bound:

LB2 = Σu
i=1(s2i − δ′(i))+ , where δ′i = di − bi ,

and the larger of the two is our bound.

2.8.3 Branch-and-Bound Algorithms

All three of the articles cited above present branch-and-bound algorithms
based on their results. Successive papers naturally report improved perfor-
mance, though each successive algorithm is less than an order of magnitude
faster than the previous. In the first paper, Sen et al. (1989) could handle
instances with job numbers in the low teens, while the latest results from Pan
and Fan (1997) could push it only to the high teens.

2.8.4 Heuristics

Sen et al. (1989) present a heuristic (the best of several they considered),
suggested by the three conditions given in Theorem 2.14:

The SPT-PI Algorithm

1. SPT : Find schedule S = ↗aj, breaking ties first by ↗(bj − dj), then by
↗dj, then arbitrarily.
2. PI (pairwise improvement) : find a local optimum by interchanging adjacent
pairs whenever this reduces the value of the objective.

Computational experiments show the heuristic works well, often giving the
optimal solution, at least for small problems and for some parameter ranges.
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2.8.5 F2|(perm), prep|ΣTj

A special case of the two-machine flow shop, often referred to as preprocess-
ing and hence denoted here by prep, occurs when the major work of each
job is performed on one machine, preceded by a relatively brief preparatory
processing on another machine. We also assume that larger jobs require more
preprocessing. Thus:

prep implies
{

aj ≤ bj , for all j
bi ≥ bj ⇒ ai ≥ aj, for all i, j

Here, the SPT schedule is unambiguous: SPT = ↗aj = ↗bj . Koulamas
(1996) discusses the total tardiness objective in a preprocessing environment.
Although permutation schedules constitute a dominant set, the problem is
still NP-complete: even with aj = 0, it reduces to 1||ΣTj, which is well known
to be NP-complete. We have a simple solution in the following special case:

Theorem 2.18 For F2|(perm), prep|ΣTj, SPT is optimal if all jobs are
tardy in SPT.

Otherwise, dominance conditions are developed, and used in a forward
branch-and-bound algorithm, BB. An O(n2 logn) heuristic is also proposed,
which is tested against BB and is found to give solutions deviating about 3%
from optimal for problems with 35 jobs.

2.9 F2|(perm), dj = d|ΣwjUj

There has been no published research on the problem of minimizing the
weighted number of late jobs in the two-machine flow shop (recall that Uj

is a lateness indicator variable: Uj = 1 if Jj is late; 0 otherwise) except in
the special case where all jobs have a common due date, which has been
considered by Józefowska et al. (1994). They also give results for the open
and the general job shop on two machines, but we shall stick to flow shops.

2.9.1 The Complexity of F2|(perm), dj = d|ΣUj

The authors first prove that even the simpler problem with unweighted ob-
jective is NP-complete.

Theorem 2.19 F2|dj = d|ΣUj is ordinary NP-complete

Proof Outline: The reduction is from the NP-complete problem:

2-PARTITION
INSTANCE: An integer V , and 2k positive integers
vi : i ∈ T = {1, 2, ..., 2k} such that Σi∈T vi = 2V .
QUESTION: Can T be partitioned into two disjoint sets S1 and S2 with
|S1| = |S2| = k and Σi∈S1vi = Σi∈S2vi = V ?
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to the decision version of our problem:

F2|dj = d|ΣUj ≤B?
INSTANCE: A real number B > 0, and n jobs with common due date d > 0
and processing times <aj, bj>, j ∈J to be scheduled in a two-machine flow
shop.
QUESTION: Does there exist a schedule with ΣjUj ≤ B?

2-Partition is known to remain NP-complete under the assumptions, which
we shall make, that k ≥ 2, V is divisible by k (so V ≥ k), and vi ≤ V .

Given an instance of 2-Partition, construct an instance of F2|dj = d|ΣUj

as follows:

• n := 6k;
• <aj, bj> := <3V + vj , 3V + 2V/k − vj>, j ∈ T = {1, 2, ...,2k};
• <aj, bj> := <1, m>, j ∈ U = {2k + 1, ..., 4k};
• <aj, bj> := <m, 1>, j ∈ V = {4k + 1, ..., 6k};
• B := k;
• d := 1 + 2km + 3kV + V + 2k;

where m = min{min i ai,min i bi}.
We claim that, if one of the two instances has the answer “yes”, then

the other must, too. First, assume the partitioning subsets S1 and S2 exist.
Consider the schedule S = (U ,S1,V,S2), with jobs arbitrarily sequenced
within each of the four sets. This schedule is illustrated in Fig. 2.7.

Fig. 2.7 Optimal schedule when a partition of T exists

To understand the figure, first note that, since Σi∈S1vi = V by hypothesis,
Σj∈S1aj = Σj∈S1bj = 3kV + V. It follows that the total processing time of
jobs in U ,V and S1 is d−1 on each machine, so that all (and only) these jobs
are on time. It can also be shown that t1 ≤ t2 (see Fig. 2.7), so S is feasible
(the operations of a job do not overlap) and has B = k tardy jobs.

To show the reverse implication, suppose the scheduling problem has a
solution with at most B = k tardy jobs. Assume exactly k are tardy (we
can always make more jobs tardy if necessary), and all of them are in T (by
definition of m, all jobs in T take longer on both machines than any job in
U or V, so interchanging any tardy job not in T with an early job in T can
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only improve the schedule). This implies that exactly k jobs in T are early
(call this set of jobs S1), as well as all jobs in U and V.

It remains to show that S1 defines a partition; that is, that Σi∈S1vi = V .
But if Σi∈S1vi > V , then the total time of all early tasks on M1 exceeds d−1
and the last job is tardy; while if Σi∈S1vi < V , then the total on M2 exceeds
d−1, and since jobs cannot start until time 1, the last of them must be tardy.
In each case, we reach a contradiction, so indeed Σi∈S1vi = V . �

2.9.2 F2|(perm), (pmtn), dj = d|ΣwjUj

Observe that an optimal schedule always exists in which the early jobs come
first, ordered by Johnson’s Rule (JR minimizes makespan, so makes all jobs
early when possible). This makes it clear that preemption can never be help-
ful, nor can reordering the jobs between stages; they are disallowed hereafter.
Assuming jobs are indexed by JR, Józefowska et al. (1994) give a dynamic
program that builds the schedule backwards, considering jobs successively to
be discarded (put into the late set). Defining

fk(u, v) = the minimal weighted number of late jobs for the jobs
in Jk = {Jk, ..., Jn}, given that the first job in Jk

starts at time u on M1 and no earlier than v on M2,

The recurrence is

fk(u, v) =

⎧⎨
⎩

fk+1(u, v) + wk , if max{u + ak, v} + bk > d,
min{fk+1(u, v) + wk, fk+1(u + ak,max{u + ak, v} + bk)},

otherwise,

with initial conditions fn+1(u, v) = 0 for 0 ≤ u, v ≤ d; where the first case is
when Jk alone cannot finish by d given the start times u and v. We evaluate
fk(u, v) for decreasing values of u, v (0 ≤ u ≤ v ≤ d) and k ∈ {1, ..., n} until
we reach the cost of an optimal schedule, f1(0, 0). Since each step takes a
fixed time, the program runs in time O(nd2).

2.10 F2|(perm), pij=uij − vijrij|(Σijrij |Cmax ≤ D)

Janiak (1989) considers the problem of completing all jobs by a given dead-
line, D>0, using minimal resources. The processing time pij of task Tij has
an upper bound or maximal value uij which can be shortened by the expen-
diture of a resource. Thus, if rij is the amount of resource allotted to Tij ,
and if uij and vij are given positive constants, then

pij = uij − vijrij, i = 1, 2, j = 1, 2, ..., n, with uij > 0, vij > 0.

Let wij be the largest amount of the resource that can be used to expedite
Tij. Then

0 ≤ rij ≤ wij ≤ uij/vij,
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where the last constraint assures that processing times are not negative.
We seek a list schedule S (since the criterion is a regular measure, only

permutation schedules need be considered) and a feasible resource allocation
R = {rij, i = 1, 2, j = 1, 2, ..., n} that minimize total resource consumption
ΣiΣjrij while achieving a makespan no greater than D. Using the notation
A|B to denote the heirarchical objective of minimizing A given B, we write
this Σijrij |Cmax≤D.

The complexity of this problem is stated without proof.

Theorem 2.20 (Janiak 1989)
F2|pij = uij − vijrij|(Σijrij |Cmax ≤ D) is NP-complete, even for
vi1=v, vi2 = 0. The reduction is from the Knapsack problem.

Consider the extreme cases, in which

(1) no resources are allocated, producing the min-cost solution which
gives the longest makespan, Cmax;

(2) the maximal amount is allocated to each task: the max-cost solution
giving the shortest possible makespan, Cmin.

In each case, we can use Johnson’s Rule (JR) to compute the makespan.
Clearly, the problem is infeasible whenever D < Cmin, and is trivial if the

deadline is already achieved at no cost (D ≥ Cmax) so we assume Cmin ≤
D < Cmax. Note also:

• For any fixed S, the problem reduces to an LP. Furthermore, it is shown
to be solvable by an O(n3) algorithm; call it Algorithm A.

• For any fixed R, we can determine using JR whether there exists a feasible
solution.

Finally, the following heuristic for F2|pij =uij−vijrij|(Σijrij |Cmax≤D) is
given:

Heuristic HJ (Janiak, 1989)

1. Find the list schedule SJ =JR(u1, u2), where ui=(ui1, ui2, ...uin).
That is, use Johnson’s Rule with no resource allocation.

2. Find a resource allocation RJ for schedule SJ , using Algorithm A.

A number of alternatives to Step 1 and an elaboration of Step 2 were pro-
posed, but computational tests showed the alternatives to be inferior, and
the extension to Step 2 gave no significant improvement. The heuristic gave
total resource usage 50% to 60% higher than a calculated lower bound on the
optimum.

2.11 Bicriteria Objectives

When we wish to give simultaneous consideration to two measures, there are
several approaches. We have already presented problems with a hierarchical
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objective (e.g., ΣCj|minCmax, discussed in Sect. 2.5), or a compound objec-
tive (we considered αΣCj + βCmax in Sect. 2.6). The third way to deal with
two measures is the bicriteria approach, in which the two objectives are not
combined into one function, but are left as a pair of measures of a schedule’s
merit. Generally, it is no longer possible to find a schedule that is “best” on
both counts. Instead, the most we can do is to eliminate all schedules that
are clearly not candidates for selection: the dominated schedules.

Definition 2.1. Schedule S dominates schedule S′ with respect to objectives
O1 and O2 if O1(S) ≤ O1(S′) and O2(S) ≤ O2(S′), with at least one strict
inequality. An undominated schedule is called efficient.

Our goal, then, is to present the decision maker with the entire set of ef-
ficient (that is, undominated) solutions from which to choose. We denote by
(O1, O2) the objective of finding all efficient solutions for the pair of mea-
sures O1 and O2, and we call (O1, O2) a bicriteria objective (note that all of
our other objectives, including hierarchical and compound, have single ob-
jective functions by which each schedule is measured). Since each separate
objective function satisfies Theorem 1.1, it remains sufficient to consider only
permutation schedules as candidates for the efficient set.

2.11.1 Branch-and-Bound for a Bicriteria Objective

Bicriteria problems are generally difficult, and published results often report
branch-and-bound algorithms. We briefly summarize here the special features
of this approach when applied to finding the efficient set for two objective
functions. As usual with sequencing problems, schedules are built job by job
either forwards from the start or backwards from the end. We will here assume
backwards generation of the schedule. Thus, each node represents a termi-
nating partial schedule, with a descendant node for each of the remaining
jobs that could be added at the start of it. Recall the notation:

• σ : a node, and also the partial sequence at that node.
• S: the set of jobs making up the partial sequence σ.
• U : the set of jobs that remain unscheduled at node σ.

Normally, at a node σ we compute a lower bound LBσ on the value of the
objective function for all completions of this partial schedule (that is, for
all descendants of this node), and compare it with an upper bound, UB, the
value of the best complete schedule yet generated. If LBσ ≥ UB, the node can
be discarded or fathomed. Now, with bicriteria, we require two lower bounds,
LBσ(O1) and LBσ (O2). Instead of a single schedule setting the upper bound,
we must define:

• E : the set of candidate efficient schedules.

Initially empty, E is updated at each node. We may generate a complete
schedule Sσ at node σ, perhaps by appending U in JR order to the front of
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σ if Cmax is one of the criteria, or in EDD order if a measure of tardiness is
of interest. We then add Sσ to E if no schedule in E dominates it, and then
eliminate from E any schedule that Sσ dominates. The node σ can then be
fathomed if, for any S′ ∈ E , O1(S′) ≤ LBσ(O1) and O2(S′) ≤ LBσ(O2). If
E was changed, other nodes may also be fathomable.

If σ is not fathomed, descendant nodes are created, one for each job in
U except those ruled out by dominance properties: conditions under which
a certain job need not be considered to immediately precede σ. We then
select the next node to analyze, perhaps choosing the one with smallest Sσ ,
or smallest lower bound on one of the criteria, continuing as usual until all
nodes are fathomed or fully expanded.

2.11.2 F2|(perm)|(ΣCj, Cmax)

An objective closely related to αΣCj + βCmax is the bicriteria objective
(ΣCj, Cmax). For F2|(perm)|(ΣCj, Cmax), Sayin and Karabati (1999) devel-
oped a branch-and-bound algorithm that solves a series of hierarchical opti-
mization problems where the makespan objective is required to be no greater
than an upper bound. The authors show that in some cases, the time re-
quired to solve F2|(perm)|(ΣCj, Cmax) is not greater than the time needed
for F2|perm|(ΣCj|minCmax). In their computational experiment they are
able to solve problems with up to n = 28 jobs.

2.11.3 Bicriteria Involving Cmax and a Measure of
Tardiness

Often, when considering multiple criteria in scheduling a set of jobs, one
important consideration is meeting customers’ due dates, as measured by
some function of job tardiness. Another is usually to maintain a high level
of resource utilization, achieved by keeping the makespan small. Daniels and
Chambers (1990) consider the dual objectives of Cmax and Tmax. Building
on their work, Liao et al. (1997) deal with the bicriteria (Cmax,ΣTj) and
(Cmax,ΣUj), where Uj is a zero-one tardiness indicator, so that ΣUj denotes
the number of tardy jobs.

Both papers develop similar branch-and-bound algorithms, and we discuss
them together. Note: in this section, schedules are built backwards.

Dominance Properties

For each bicriteria objective, conditions are given under which jobs can be
partially ordered, thereby enabling the pruning of some branches of the search
tree. When the conclusion of a Theorem is some property A, we mean “we
can limit our search for efficient schedules to those with property A”.
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• (Cmax, Tmax)

Theorem 2.21 For F2|(perm)|(Cmax, Tmax),

bk ≤ min{ak, bj}
dj ≤ dk

}
⇒ j

global
� k.

Theorem 2.22 For F2|(perm)|(Cmax, Tmax),

aj ≤ min{ak, bj}
dj ≤ dk

}
⇒ j � k.

Note how these elimination criteria combine Johnson’s Rule, which minimizes
Cmax, and Earliest Due Date (EDD = ↗dj) sequencing, a reasonable heuris-
tic for minimizing Tmax.

• (Cmax, ΣTj)

The following condition was first given for F2|(perm)|ΣTj by Sen et al.
(1989), but it works for Cmax, too, since the first hypothesis implies
min(aj, bk) ≤ min(ak, bj).

Theorem 2.23 For F2|(perm)|(Cmax,ΣTj),

aj ≤ min{ak, bj}
dj ≤ dk

bj − dj ≤ bk − bk

⎫⎬
⎭ ⇒ j � k.

• (Cmax, ΣUj)

Theorem 2.24 For F2|(perm)|(Cmax,ΣUj), suppose that Jj is the first job
in σ. Then

1. Jk is tardy when last in U
2. min{aj, bk} ≤ min{ak, bk}

}
⇒ j � k.

The first hypothesis means: Jk ∈ U is tardy when immediately before Jj .
This can be tested by scheduling the rest of the jobs in U using Johnson’s
Rule, in front of Jk. This completes them as early as possible, so if it makes
Jk tardy, any other arrangement will, too. Finally, for the last two Theorems,
recall that, when building the schedule backwards, a useful interpretation of
j � k is “Jk should not be scheduled immediately before Jj .”

Lower Bounds

The following bounds are given for the four objectives under discussion.

• Cmax

At any node σ, since the earliest completion of the initial partial schedule
results from sequencing U by JR, a lower bound on the makespan is:

LBσ(Cmax) = Cmax(Sσ), where Sσ = (JR(U ), σ).
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• Tmax

For Tmax, since Sσ puts jobs in σ as early as possible, one lower bound is
clearly

LB1σ(Tmax) = max j∈σ Tj(Sσ).

For another bound, this time based on U , suppose we schedule only M2, ig-
noring M1. Now, Tmax is minimized by scheduling M2 in EDD order. Adding
a minimal delay at the start of the schedule (nothing can start on M2 until
at least amin = min j∈U aj), and renumbering the jobs in ↗dj order, we have

LB2σ(Tmax) = maxk∈U (amin +
∑k

j=1 bj − dk).

A third lower bound comes from relaxing the M2 constraints, and scheduling
U on M1 by EDD. However, each job Jj , when completed on M1, must at
least incur the additional delay of bj. We adjust for this by redefining the due
date to be dj − bj. Reindexing in ↗(dj − bj) order, this results in

LB3σ(Tmax) = maxk∈U (
∑k

j=1 aj + bk − dk).

We can then evaluate the three bounds and select the best, LBσ(Tmax) =
max3

i=1 LBiσ(Tmax).

• ΣTj

As we have repeatedly noted, Sσ starts σ as early as possible, so it makes the
total tardiness of the jobs in σ as small as possible:

LB1σ(
∑

Tj) =
∑

j∈σ Tj(Sσ).

For the overall bound, we can add to this a lower bound on the total tar-
diness of the jobs in U . We start by finding lower bounds on the com-
pletion times of the jobs in each position. Suppose there are u jobs in
U . Recall that, as in (2.1), for an arbitrary schedule S = (1, 2, ..., u),
Cmax = max1≤k≤u{Σk

j=1aj + Σu
j=kbj}. For a lower bound on this quantity,

perform a monotone reindexing of the task times, separately on each machine,
defining a(i) [b(i)] as the ith smallest a-task [b-task] in U . Clearly, Σk

j=1aj is
minimized if aj is replaced by a(j), and so, if C[i] denotes a lower bound on
the completion time of the job in position i:

C[i] =

⎧⎨
⎩

minj∈U{aj + bj} , i = 1
maxk=1,...,i {

∑k
j=1 a(j) +

∑i−k+1
j=1 b(j)} , i = 2, ..., u− 1

Cmax(JR(U)) , i = u

where, in the first and last positions (i = 1 and u), stronger bounds (which
are self evident) have been substituted. The formula for the intermediate
positions is stronger than the one in Liao et al. (1997).

Reindexing the due dates so that d(1) ≤ d(2) ≤ ... ≤ d(u), it is straightfor-
ward to show that a lower bound on the total tardiness of the jobs in U is
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LB2σ(
∑

Tj) =
∑u

j=1 max{0, C[j] − d(j)}

Finally, LBσ(
∑

Tj) = LB1σ(
∑

Tj) + LB2σ(
∑

Tj).

• ΣUj

Using a similar approach, since Sσ starts σ as early as possible, it gives the
fewest tardy jobs in σ, so:

LB1σ(
∑

Uj) =
∑

j∈σ Uj(Sσ)

To this can be added a bound on the number tardy in U . Two such bounds
are given, each based on reducing the problem to single machine sequencing.
The following well-known procedure for minimizing the number of tardy jobs
on one machine, where Jj has parameters (pj, dj), j = 1, ..., n, starts with the
jobs in EDD = ↗dj order (guaranteed to complete all jobs on time if any
schedule can), and removes one job at a time until no tardy jobs remain.

Moore’s algorithm (MA(p, d)) (Moore, 1968) for 1||ΣUj

1. Let the first tardy job in ↗dj be in position f .
2. Let Jg be the longest job in the first f positions of ↗dj. Remove Jg.
3. Repeat Steps 1 and 2 until there are no more tardy jobs in ↗dj.
4. S� is the remaining ↗dj followed by the removed jobs in any order.

As above, we can relax the M1 [M2] constraints and schedule the jobs solely
on M2 [M1], making the same adjustments, but now using MA rather than
EDD. This produces the two lower bounds based on U :

LB2σ(
∑

Uj) =
∑

j∈U Uj(MA(b, d′)), where d′
j = dj − amin,

and

LB3σ(
∑

Uj) =
∑

j∈U Uj(MA(a, d′′)), where d′′
j = dj − bj.

Finally, the overall bound for ΣUj at node σ, LB = LB1+max{LB2, LB3}.

Heuristics

The above tree search becomes unwieldy for instances with more than about
30 jobs. While Liao et al. (1997) give no alternative approach for (Cmax,ΣTj)
and (Cmax,ΣUj), Daniels and Chambers (1990) propose the following heuris-
tic for (Cmax, Tmax). We seek to solve: minimize Cmax subject to Tmax ≤ B,
as B is varied over an appropriate range of values. For each B, we make
Cmax as small as possible by using Johnson’s Rule constrained by the tardi-
ness bound. The schedule is built backwards, job by job. At any point, if U
is the set of remaining unscheduled jobs, a job Jk ∈ U is eligible to be last if
Σj∈Uaj + bk − dk ≤ B. The eligible job latest in JR is placed last, and the
process repeated until U is empty. Of course, eligibility does not guarantee
that Tk ≤ B, so some backtracking may be necessary: if a job’s tardiness is
excessive, move it one position earlier, etc.
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We start by finding JR unconstrained, and letting the resulting maximal
job tardiness be our initial value for B. By decrementing B iteratively over
a suitable range, all efficient schedules can be generated.

Computational Experiments

The optimizing algorithm for each of the three bicriteria was encoded and
tested quite extensively. The program could solve problem instances of up to
about thirty jobs. The most significant findings were:

• Problems are harder to solve when a larger proportion of jobs is tardy. This
may be because, when jobs are mostly on time, good schedules depart little
from JR.

• The number of efficient schedules is very small. In Liao et al., this number
was reported as the average of over 20 randomly generated instances, for
about 30 categories. For (Cmax,ΣTj), there tended to be an average of two
or three efficient schedules for small (under 20 job) instances, dropping be-
low two for larger instances (25 to 30 jobs). For (Cmax,ΣUj), the average
was rarely more than two throughout the range of instance sizes (5 to 30
jobs). Daniels and Chambers (1990) give similar results for (Cmax, Tmax).
For the 675 instances generated, the number of efficient schedules averaged
about two, invariant over problem size and other parameter variations.
They also report that “a maximum of ten efficient solutions was encoun-
tered, while in over 50% of the problems only one schedule was efficient”.
This seems to be a surprising and unexplained result.

The (Cmax, Tmax) heuristic performed quite well. The solution found was
identical to the optimum in over 70% of the problems, and overall more
than 80% of the efficient solutions were identified. The authors propose a
reasonable measure of error for those heuristic solutions that were not in fact
efficient, and using it they report an average error of .29% with a maximum
of 10%.

2.12 Related Problems

We conclude by presenting a few simple extensions of some of the results
presented above, for manufacturing configurations similar to two-machine
flow shops.

2.12.1 G2|(pmtn)|Cmax

In the general job shop (the m-machine general shop is denoted Gm), the
machine sequence is specified for each job, but different jobs may follow dif-
ferent paths. With m = 2 and assuming each machine is visited at most once
(when jobs can visit machines more than once, we have a reentrant job shop
which is dealt with in another chapter), the following solution due to Jackson
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(1956) is a straightforward extension of JR, still with run time O(n logn),
which we present without proof. It can also be shown that we cannot improve
this solution using preemption (the argument used for the flow shop extends
readily to this case).

Clearly, all jobs are in one of the following two sets:

Jab = {jobs requiring first Ma, then Mb}, (a, b) = (1, 2) or (2,1)

In case there are jobs requiring only one machine, they can be assigned a zero
-time task on the other machine, given an arbitrary machine sequence, and
added to the appropriate set. Then the optimal schedule on each machine is

S�
1 = (J12(JR), J21); S�

2 = (J21(JR), J12).

That is, schedule J12 first on M1, ordered by Johnson’s Rule. Similarly, on M2

start with J21 using JR. Thereafter, any nondelay sequence can be followed
on both machines.

2.12.2 O2|(pmtn)|Cmax

Tasks in an open shop have no precedence ordering. The two-machine non-
preemptive open shop allows us so much freedom to schedule jobs that most
schedules are optimal. If, whenever a machine becomes idle, we simply throw
at it any available job not yet processed by it, we may expect to produce
a schedule with no idle time on either machine most of the time, giving a
makespan Cmax = max{Σjaj,Σjbj}, an obvious lower bound. Only occasion-
ally will this procedure be suboptimal, as when, at the time the last job should
start on M1, that same job is being processed on M2. This may introduce un-
necessary delay on M1, and thereby lengthen the makespan. Thus, it requires
some care to specify a procedure that will always guarantee optimality.

Pinedo (2008) proposes the following selection procedure:

Longest Alternate Processing Time Rule: whenever a machine becomes
idle, select for it the available job not yet processed by it with the longest
processing time on the other machine. A job already processed on the
other machine is assigned zero time there, hence lowest priority.

The algorithm resulting from iterating this rule has complexity O(n logn),
and we call the schedule it generates, LAPT . Then:

Theorem 2.25 (Pinedo 2008) For O2||Cmax, an optimal schedule is
S� = LAPT, and the resulting makespan is

C�
max = max(maxj(aj + bj),

∑
j aj ,

∑
j bj).

The proof results from a careful enumeration of cases, and will be omitted.
An algorithm developed in Gonzalez and Sahni (1976), although significantly
more complicated, solves O2||Cmax in O(n) time. Note that the smallest
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conceivable makespan is always achieved, so there can be no benefit from
allowing preemption.

2.12.3 S2||Cmax and S2|pmtn|Cmax

The super shop was defined by Strusevich (1991) as a combination of general
job shop and open shop. In the two-machine case, assuming all jobs visit
both stations, we have jobs in three sets: J12 and J21, which contain the jobs
that must visit the machines in subscript order, and J0, jobs whose tasks
can be done in either order. Let n12, n21, and n0 be the cardinalities of these
sets, so that n = n12 + n21 + n0. Setting n′ = max{n12, n21}, the author
presents algorithms with time complexity O(n+n′ logn′) for the preemptive
and nonpreemptive cases, which may have different solutions. He breaks the
proof down into thirteen cases, and presents the optimal solution for each.
Though polynomial, the algorithms are too complex to present here.

2.13 Closing Remarks

Johnson’s Rule and its extensions are the most important ideas behind
two-machine flow shop scheduling, and from them we can gain general in-
sights that are helpful in scheduling variations of the two-machine flow shop
with additional constraints. The main idea is to maximize the utilization of
facilities by scheduling jobs so as to:

(a) get all the machines to work as quickly as possible, so start with eligi-
ble jobs that pass quickly through the first few machines;

(b) keep the machines working as steadily as possible, so schedule early
those eligible jobs that tend to have increasing times on successive machines,
to give the later machines a backlog;

(c) let all the machines complete their work as nearly synchronously as
possible, so schedule late those eligible jobs that tend to have decreasing
times, so that once the early machines are done with them the remaining
work is soon over.

Such common-sense ideas may offer reasonable approaches for future research
on two-machine models not yet investigated.
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Optimization Algorithm to Solve a 2-machine Bicriteria Flowshop Scheduling
Problem, European Journal of Operational Research, 142, 250–257.

56. Townsend, W. (1977) Minimizing the Maximum Penalty in the Two-Machine
Flow Shop, Management Science, 24, 230–234.

57. Trietsch, D. (1989) Polynomial Transfer Lot Sizing Techniques for Batch Pro-
cessing on Consecutive Machines, Technical Report NPS-54-89-011, Naval Post-
graduate Scool, Monterey, CA.

58. Van de Velde, S.L. (1990) Minimizing the Sum of the Job Completion Times in
the Two-Machine Flow Shop by Lagrangean relaxation, Annals of Operations
Research, 26, 257–268.

59. Winston, W.L. (2003) Operations Research: Applications and Algorithms,
Duxbury Press (4th Edition).



Chapter 3

TRANSFER LAGS IN THE FLOW
SHOP

Abstract We define the types of transfer lags, positive and negative,
between stages of a flow shop, and discuss applications (transport times,
nonbottleneck machines, manufacturing cells, batch transfers, setup and
teardown times, master-slave systems, etc.). We show that the two-
machine makespan problem is NP-hard, but that a variety of models
can be efficiently solved using the Modified Johnson’s Rule and its ex-
tensions when our search is restricted to permutation schedules. We
extend the analysis to the two-stage hybrid shop, and then to the m
machine shop, for which bounds and heuristics are given. Further results
involving transfer lags are given in Chap. 4.

3.1 Preliminaries

Up to now, we have assumed that each successive operation of a job could
begin processing as soon as (but no sooner than) the upstream operation was
completed, subject only to machine availability. Now consider the possibility
that an additional time delay must elapse between completing a job at one
stage and starting it at the next. We call this extra delay a transfer lag, time
lag, or simply lag. We emphasize: at least this much time must pass even if
the required processor is ready and waiting. Let us define

�ij = the minimal additional delay or lag required, between
completing Jj at stage i and starting it at stage (i + 1).

It follows that, when we do not mention lags, we are assuming �ij = 0. In
a two-machine environment where each job has only one lag, we write �1j

as simply �j. Note that throughout this section Mi will denote either the
unique processor at stage i in a simple flow shop or any one of the identical
processors in a hybrid shop.
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3.1.1 Applications

Transfer lags are almost always present between stages of processing, but
often they are short enough to be negligible. The most commonly encountered
lag is probably the time to transport a job between processors. Another
kind of lag arises when we must allow each job to undergo a self-contained
process, such as cooling, paint drying, the settling of impurities out of a
liquid, etc., before proceeding to the next stage of processing. Here are some
more elaborate examples of lags.

• The time for processing on nonbottleneck processors. Suppose, for exam-
ple, there are m stations or machine groups through which each job must
flow. Single processors at the first and last stations are the constraining
resources. The intermediate stations are nonbottleneck, meaning that
any number of tasks can be simultaneously processed. Perhaps there are
many parallel machines at a station, or perhaps one machine, like a large
furnace for heat treatment, can accommodate many jobs at once. Each
job j requires a certain amount of processing time pij at each station Gi.
Such a system can be viewed as a two-machine flow shop with lags, where
aj = p1j, bj = pmj , and �j = Σm−1

i=2 pij. It is, in fact, useful to observe
that positive transfer lags are always equivalent to processing times at
an intermediate nonbottleneck station (i.e., one with effectively unlimited
processors).

• As detailed in Sect. 3.2.6, two-stage manufacturing cells, involving auto-
mated storage and retrieval, robotic machine loading/unloading, comput-
erized conveyors, etc. can be efficiently modeled as flow shops with lags.

• Industrial applications of F2|�j|Cmax include the case of consolidators that
receive orders to procure quantities of various items whose manufacture is
farmed out to subcontractors. The consolidator provides front-end support
through its Supply Department and completes the transaction with its De-
livery Department. The Supply Department assembles the raw materials
(from the inventory), loads the trucks which deliver this material to the
manufacturer, and performs an inspection before the consignment leaves.
All of these make up the a-task of the consolidator. The actual manufac-
ture of the orders makes up the transfer lag. After this, the b-task involves
loading the finished goods onto the trucks of the Delivery Department and
taking them to their destination.

• Another two -machine application is found in parallel computer sched-
uling. A common parallel programming paradigm employs the fork and
join concept. In this, a single computational job is broken up into a thread
of fork operations (or tasks) which involve collection and transmission of
data needed by a remote processor. Each remote processor performs the
necessary work to receive, and analyze the data. Upon execution of a task,
the corresponding remote processor returns the results to a single post-
processing computational thread that synchronizes the completed tasks.
Evidently, fork and join operations can be executed by two nCube hy-
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percube processors, one responsible for preprocessing tasks, and the other
for postprocessing tasks. They make up a flow shop, with the spawned
threads functioning as lags. A particular application of this is the VLSI
CAD problem that involves visualizations of objects in a 2-dimensional
region. The region may be divided into n parts by a stage -1 processor;
each part is sent to a slave computer, and the results are returned to a
postprocessing site.

In some situations, negative lags may arise. That is, it may be possible to
start a job at a following stage before it is finished at the preceding stage. Such
overlapping processing is sometimes called lap scheduling or lap phasing.
Here are some ways this can happen.

• Setup times (except for those that are sequence-dependent, which are not
in question here) are not considered explicitly when they are attached
(the term used in Baker (2005)), meaning that they are tied to the jobs
so that setup of Jj on Mi cannot begin until Jj is present. In this case,
setups can be simply added to processing times. However, when setups are
separable, so that Mi+1 can be set up for Jj while that job is still being
processed on Mi, then the setup time can be treated as a negative lag.

• The job may be to construct or renovate a large machine or structure, with
the processors being workers and equipment. For example, while exterior
painting must follow installation of siding, windows, etc. on a new house,
painting can start on one wall while construction continues on the others.

• Negative lags often arise when the operations to be performed on each
processor are actually compound tasks, and each subtask can be passed
on to the next processor when ready. For example, the job may be to
manufacture many identical items (e.g., iron bars or plastic moldings), and
may be subdivided into several transfer batches or sublots for scheduling
flexibility (see Fig. 3.1a, further discussed below).

3.1.2 Types of Lags

So far, we have defined a lag as the minimal time from completing a job
at one stage to starting it at the next. This is the most natural, intuitive
meaning of the term, and we will continue to use it. However, other types of
“lags” can be defined.

Example 3.1: Suppose a job is divided into b equal batches, as in the
final example above, and let h1 and h2 be the batch times (in hours) on M1

and M2, respectively (or on any two processors at successive stages). Now,
although total processing time on M1 is bh1, the job can start on M2 as
early as h1 hours after it starts on M1 (see Fig. 3.1a for the case h1 < h2).
However, if h1 > h2 (see Fig. 3.1b), M2 will be idle between batches, which is
wasted time. To economize, all batches but the last should be consolidated
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on M2, i.e., delayed until they are contiguous (see Fig. 3.1c). Now the timing
constraint becomes: completion time on M2 must be at least h2 hours after
completion time on M1.

We can now recognize four types of lags, one or more of which could be a
constraint on any job:

• A start-start lag, SSij, often called simply a start lag, is the minimal
additional delay required between starting Jj on Mi and starting it on
Mi+1. In Example 3.1, with h1 < h2, we had SS1j = h1.

• A finish-finish lag, F Fij, or stop lag for short, is the minimal additional
delay required between completing Jj on Mi and completing it on Mi+1.
In Example 3.1, with h1 > h2, we had FF1j = h2.

• A start-finish lag, SFij, is the minimal additional delay required be-
tween starting Jj on Mi and completing it on Mi+1.

• A finish-start lag, F Sij, is the minimal additional delay required be-
tween completing Jj on Mi and starting it on Mi+1. This is the same as
our original lag �ij .

Fig. 3.1a A job with b transfer batches, with times h1 = 4, h2 = 7

Fig. 3.1b A job with b transfer batches, with times h1 = 7, h2 = 4

Fig. 3.1c Same job with batches on M2 consolidated to the right

Denoting the start time [finish time] of Jj on Mi as Sij [Cij], the four
constraints can be mathematically expressed:

Si+1,j − Sij ≥ SSij

Ci+1,j − Cij ≥ FFij

Ci+1,j − Sij ≥ SFij

Si+1,j − Cij ≥ FSij
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Fortunately, it will not be necessary to work with all these lag types,
because each one can be reduced to any other. Referring to Fig. 3.2 (which
shows the two tasks scheduled as close together as possible), we can see how
the other three types are equivalent to the basic (finish-start) lag:

SSij = �ij + pij

FFij = �ij + pi+1,j

SFij = �ij + pij + pi+1,j

FSij = �ij

Thus, whenever a start-start lag is specified, we can replace it with a lag
�ij = SSij − pij; and similarly for the others.

Finally, we may need to satisfy more than one of these constraints. For
instance, in Example 3.1, we may not know the relative magnitudes of h1

and h2 in advance. If so, we can simply require that both the start-start and
the finish-finish constraints be observed. Since both specify earliest times at
which the second operation can be processed, we take the maximum to enforce
both. We conclude that the general expression for the lag of Jj between Mi

and Mi+1 is

�ij = max{SSij − pij , FFij − pi+1,j, SFij − pij − pi+1,j, FSij}

where we only take the maximum over those lag types that are operative
(others may be given the value −∞). If no lags are defined, �ij = 0. In
summary, then, when we introduce a lag �ij , we are imposing the constraint:
Si+1,j ≥ Cij + �ij .

Fig. 3.2 The basic finish-start lag, �ij

Whenever we allow negative lags, we need to constrain how negative they
can be, as mentioned in Johnson (1959). If, for instance, the second opera-
tion of a job could start earlier than the first (�1j < −p1j), the very meaning
of the term “flow shop” becomes ambiguous: the first job scheduled, for ex-
ample, could start processing on M2 before M1. Similarly, if the magnitude
of a negative lag exceeded the processing time at the following stage, say
�1j < −p2j, the job might finish on M2 before finishing on M1. If this were
true of the last job scheduled, the makespan could be determined on some
machine other than the last. Of course, even more negative lags could move a
succeeding task completely ahead of its predecessor. The following constraint
alleviates these difficulties:

�ij ≥ max{−pij ,−pi+1,j} = −min{pij, pi+1,j}
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and we shall assume it unless otherwise stated.

3.1.3 Notation

For problem classification, in the usual three-field notation, we will signal the
presence of lags by introducing �ij (or �j if there are only two stages) in the
second field. If the nature of the situation rules out negative lags, we write
�ij ≥ 0. When listing the parameter values for an arbitrary job Jj across all
stages, we will write

<p1j, p2j, . . . , pmj; �1j, �2j, . . . , �m−1,j>.

When there are only two or three stages, we simplify the notation as usual
by writing p1j := aj , p2j := bj, p3j := cj.

We review some other notation introduced in earlier chapters. The pro-
cessing times for all jobs on an arbitrary machine Mi will be given by the
vector pi = (pi1, pi2, . . . , pin). A job sequence (or permutation schedule) that
specifies the order Ju, Jv, . . . , Jw will be written S = (u, v, . . . , w). If Jj has
precedence over Jk, we write j → k, while if Jj has local priority over Jk (Jj

is preferred before Jk when they are adjacent), we use j � k.

3.2 The Two-Machine Flow Shop with Lags

Here, we limit ourselves to the case in which the flow shop has just two stages,
and each stage has only one machine. As we have seen, when there are no
lags, a permutation schedule is always optimal in a two-machine flow shop for
any regular measure. With lags, this is no longer true. Consider, for example,
the instance of F2|�j|Cmax with two jobs whose parameters <aj, bj; �j> are
<1, 1; 6> and <2, 2; 2> for j=1 and 2, respectively. In Fig. 3.3a and b, the
permutation schedules (1, 2) and (2, 1) are shown, each with Cmax = 10.
Clearly, Fig. 3.3c gives the optimal schedule, with Cmax = 8.

Fig. 3.3 Why permutation schedules are not always optimal

Of course, there are frequently situations in practice where only permu-
tation schedules are feasible. This may be due to production line or other
physical constraints which make it impossible or at least impractical to rear-
range the jobs once their sequence has been established. It may be because
the information system at the first stage uses a queue to maintain a record
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of job status. On the other hand, second stage processing may be simplified
if a stack is used to keep track of work in process. This leads to a “last in,
first out” strategy, in which the order of jobs on M2 is the exact reverse of
their order on M1. Finally, in some settings, no constraints are operative and
we seek the minimal makespan over all schedules.

These three versions of the two-machine makespan problem are denoted:

• F2|perm, �j|Cmax, when the job order cannot change from M1 to M2;
• F2|rvrs, �j|Cmax, when the job order on M2 is the reverse of that on M1;
• F2|�j|Cmax, when the orders of jobs on each machine are unrelated;

and we will discuss them in turn.

3.2.1 F2|perm, �j|Cmax

It was Mitten (1959a,b) who first observed that the O(n logn) algorithm
of Johnson (1954) could be extended to handle SS and FF lags (though,
as pointed out in Johnson (1959), the same idea was used for a different
application in Johnson (1954)). In fact, the result holds for general lags �j :

Theorem 3.1 Modified Johnson’s Rule (MJR) (Mitten, 1959b)

For F2|perm, �j|Cmax, the optimal schedule is S� = JR(a + �, b + �).

That is, apply Johnson’s Rule (JR) to the n jobs as though they had process-
ing times aj + �j and bj + �j on M1 and M2, respectively. This extension of
JR to incorporate lags is generally referred to as the modified Johnson’s Rule,
and will be abbreviated MJR (which could also stand for the Mitten-Johnson
Rule).

To see this, note that the digraph representing the task sequence of a
typical schedule S = (1, 2, . . . , n) looks like Fig. 3.4a. For future reference,
we give in Fig. 3.4b the equivalent portrayal of a three-machine flow shop
without lags. Recall how the arrows represent enforced sequence, and why
the lags are therefore not interconnected by arrows, since lags are equivalent
to a stage with many processors and no waiting. If instead we have a middle
station with just one machine, tasks must wait their turn for processing there,
hence the additional arrows in Fig. 3.4b. Although finding the longest path
through the latter digraph is difficult (see Sect. 4.7), Theorem 3.1 tells us
that the longest path through the graph of Fig. 3.4a is easily found.

Proof of Theorem 3.1: For the schedule S = (1, 2, . . . , n), Fig. 3.4a shows
that the makespan (i.e., the longest path) can be expressed:

Cmax(S) = maxj=1,...,n[
∑j

i=1 ai + �j +
∑n

i=j bi]

= maxj=1,...,n[
∑j

i=1(ai + �i) +
∑n

i=j(bi + �i) −
∑n

i=1 �i]

Since the final sum is sequence-independent, the result is established. �
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Fig. 3.4 Directed graph representation of schedule (1, . . . , n)
for (a) F2|perm, �j |Cmax, and (b) F3|perm|Cmax

Johnson’s relation now becomes

Theorem 3.2 F2|perm, �j|Cmax has the API property, with

j � k ⇐⇒ min(aj + �j , bk + �k) < min(ak + �k, bj + �j)

or, in terms of a priority index,

j � k ⇐⇒ I(j) < I(k), where I(j) =
{
−1/(aj + �j), aj ≤ bj

1/(bj + �j), aj > bj

All the algorithms for F2||Cmax can be modified accordingly. For example:

Theorem 3.3 (Modified Johnson’s Rule – Version 2)
For F2|perm, �j|Cmax, let

F ={j : aj < bj}, and L ={j : aj ≥ bj}.
Then S� = (F : ↗(aj + �j), L : ↘(bj + �j))

Example 3.2: In a three-stage flow shop, there are only single machines at
stations G1 and G3, but enough processors at the intermediate station that
no job ever has to wait here. At each stage, there is a setup time sij as well
as a processing time pij (i = 1, 2, 3; j = 1, ..., n). All setups are separable:
they can be done in advance of the job’s arrival from the previous stage. We
seek a permutation schedule of the following 5 jobs to complete all the work
as soon as possible.

j s1j p1j s2j p2j s3j p3j

1 3 3 2 8 4 8
2 5 8 2 5 8 3
3 3 7 2 9 3 4
4 3 4 2 9 4 6
5 7 5 2 3 7 6

First, observe that G1 and G3 can be treated as a two-machine flow shop,
with G2 providing a positive (finish-start) lag of p2j for job j. Since each job
effectively has its own dedicated processor at G2, the setups there can be done
in advance and so may be ignored for scheduling purposes. The third stage
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setup contributes a negative component to the finish-start lag, as M3 can be
prepared while the job is still in process elsewhere. In Fig. 3.5, a typical job
is shown, scheduled as early as possible.

Fig. 3.5 Earliest start times on three machines for a job with separable setups

We conclude that we effectively have an instance of F2|perm, �j|Cmax,
with aj = s1j + p1j, �j = p2j − s3j, and bj = s3j + p3j. In the following
table, these parameters are calculated, and we find the optimal schedule,
S� = JR(a+�, b+�) using Theorem 3.3. With F={1, 4, 5} and L={2, 3}, we
compute the appropriate values of aj +�j or bj +�j and get S� = (5, 1, 4, 3, 2).

j aj �j bj aj + �j bj + �j

1 6 4 12 10
2 13 -3 11 8
3 10 6 7 13
4 7 5 10 12
5 12 -4 13 8

The subject of separable setups will be discussed in greater generality in
Sect. 4.18; for the two-machine case, see Theorem 4.1.

3.2.2 When are Permutation Schedules Optimal?

As we know, in the absence of lags (i.e., when �ij = 0 for all i, j), Johnson’s
Rule (Johnson, 1954) solves the two-stage flow shop in time O(n logn), giving
a permutation schedule that is optimal over all schedules. Mitten’s extension,
above, finds the optimal permutation schedule when lags are present, still in
O(n logn), but we have seen that nonpermutation schedules may be superior.
However, we can state conditions under which a permutation schedule is
always optimal. Both Lemma 3.1 and Theorem 3.4 (somewhat reinterpreted)
come from Johnson (1959).

Lemma 3.1 For F2|�j|Cmax, once the job order on M1 is fixed, it is optimal
to schedule jobs on M2 in order of availability.
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That is, the schedule on M2 is S�
2 = ↗(Cj1 + �j). The proof, a simple

Adjacent Pair Interchange (API) argument, is omitted. As a consequence,
we can say:

Theorem 3.4 (Johnson, 1959) For F2|�j|Cmax, if

�i ≤ minj{�j + max(aj , bj)}, for all jobs i,

then a permutation schedule is optimal over all schedules.

Proof: We need to show that, for the theorem to hold, it is sufficient that
either �i ≤ �j +aj or �i ≤ �j +bj for each pair of jobs. First, corresponding to
any instance of F2|�j|Cmax, consider the backward instance in which the
roles of aj and bj are interchanged; or equivalently, in which the jobs must
visit M2 before M1. By symmetry, every schedule of the original instance
can be paired with a schedule of the backward instance in which the tasks
are done in reverse order on each machine, both schedules having the same
makespan. Thus, the backward instance is really the same instance with time
reversed, and has the same minimal makespan.

Now consider any feasible schedule that is not permutation. There must
be a pair of jobs, Ji and Jj , which are consecutive on M1 with Ji before Jj ,
but in the reverse order (and not necessarily consecutive) on M2.

• If �i ≤ �j +aj , then on M2 move Ji to the position immediately before Jj ,
allowing Jj and perhaps other tasks on M2 to shift later.
The new schedule is feasible, since Ji is schedulable on M2 at least as early
as Jj was, and all other tasks are at the same time or later. The makespan
can only be shorter.

• If �i ≤ �j +bj, consider the backward instance. Now bj plays the role of aj ,
and we interchange Ji and Jj on M1 (the tasks being contiguous in this
case). By symmetry, we can draw all the same conclusions.

Clearly, we can repeat the above operation as often as necessary, reordering
pairs of jobs until the two sequences agree. �

3.2.3 F2|rvrs, �j|Cmax

When we impose the requirement that the order of processing of jobs on
M2 must be precisely the reverse of the order on M1, the problem is greatly
simplified. Without lags, of course, the first job done on M2 must be the last
on M1, so there can be no overlap, and we quickly see that any sequence is
optimal, giving Cmax = Σn

i=1(aj + bj).
With nonnegative lags, it remains true that all tasks on M1 must be com-

pleted prior to initiating any task on M2. Note how this model could reflect
a situation in which all tasks are actually processed on the same machine.
It has been studied as a master-slave model (see Sahni, 1993), in which
both tasks of each job are done on a single master processor, while the lag



3.2 The Two-Machine Flow Shop with Lags 77

represents an intermediate task for which a large number of slave processors
are available. Sahni (1993) presented the following O(n logn) algorithm un-
der the assumption that �j ≥ 0, but it carries over without difficulty to the
case of unconstrained lags.

Theorem 3.5 (Sahni, 1993) For F2|rvrs, �j|Cmax,

S� = (S�
1 , S�

2) = (↘�j ,↗�j),
where S�

i = the optimal schedule on Mi. In case some jobs have equal lags,
ties may be broken arbitrarily provided S�

2 is the reverse of S�
1 .

Proof: Consider any feasible schedule, S, other than S�. There must be two
adjacent jobs on M1, Jj and Jk, with Jj before Jk but �j < �k. By the reverse
requirement, Jk must immediately precede Jj on M2. Now consider schedule
S′ which is identical to S except that Jj and Jk are interchanged on both
machines. Because �j < �k, Jj can start at least as early on M2 as Jk did in
S; earlier, if possible. Thus the makespan of S′ can be no longer than that
of S, and may be shorter. This process of job interchange can, of course, be
repeated as often as needed to generate S�. �

3.2.4 F2|�j|Cmax

Lenstra (unpublished) is credited with showing that the version of our prob-
lem with unrestricted sequencing is strongly NP-complete (see, e.g., Lawler
et al. (1993)). We present below a proof due to Dell’Amico (1996), who
also shows that, even if preemptions are allowed, F2|pmtn, �j|Cmax remains
strongly NP-complete. He also gives some approximate approaches to the
problem without preemption. The rest of this section is based on Dell’Amico
(1996), where much more detail and other algorithms and results are to be
found.

The Complexity of F2|�j|Cmax

Theorem 3.6 F2|�j|Cmax is strongly NP-complete.

Proof Outline (Dell’Amico, 1996): We reduce the following strongly NP-
complete problem:

3-PARTITION
INSTANCE: An integer V , and 3k positive integers vi : i ∈ T = {1, 2, ...,3k},
with Σi∈T vi = kV and V/4 < vi < V/2, for all i ∈ T .
QUESTION: Can T be partitioned into k disjoint sets S1,S2, ...,Sk with
|Sj| = 3 and Σi∈Sj vi = V for j = 1, 2, ..., k?

to the decision version of our problem:

F2|�j|Cmax≤B?
INSTANCE: An integer B, and n jobs Jj : j ∈ N = {1, 2, ..., n}, each with
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parameters <aj, bj; �j>, to be scheduled in a two-machine flow shop, where
aj [bj] is the processing time of Jj on M1 [M2], and �j is the lag between M1

and M2.
QUESTION: Does there exist a schedule with Cmax ≤ B?

For any instance of 3-Partition, define an instance of F2|�j|Cmax as follows:

• B := 2V (k + 1)
• n := 4k + 2
• <aj, bj; �j> := <vj , vj, V − vj>, j ∈ T
• <aj, bj; �j> := <V, V, 2V >, j = 3k + 1, ..., 4k
• <aj, bj; �j> := <0, 2V, 0>, j = 4k + 1
• <aj, bj; �j> := <2V, 0, 0>, j = 4k + 2

We claim that, if one of the two instances has the answer “yes”, then so does
the other. First, note that B = Σn

j=1aj = Σn
j=1bj, which is an obvious lower

bound on the makespan. Any schedule achieving this makespan would have
no idle time on either machine and would certainly be optimal. This can occur
only when the “filler” jobs, namely {Jj : j = 3k+1, ..., 4k+2}, are scheduled
precisely as shown in Fig. 3.6. This leaves the other jobs, {Jj : j ∈ T } to
be fitted precisely into the remaining gaps, which is possible only if we can
partition them into k subsets whose processing times on each machine add
to V . �

Fig. 3.6 Optimal schedule for NP-complete instance of F2|�j |Cmax≤B?.

Lower Bounds on Cmax

The following lower bounds, denoted LB, are easily obtained. They help us
assess how good a heuristic solution is, and contribute to the design of heuris-
tic algorithms. We mention in passing the simplest bounds: Σjaj , Σjbj, and
maxj{aj + �j + bj}, which collectively have a worst case performance ra-
tio of 0.5. That is, the maximum of them is guaranteed to be at least half
the optimal value. In computational experiments, they were greatly outper-
formed by the following bounds, which are based on relaxed versions of the
basic problem, though these too have performance ratios of 0.5.

• Define Problem R as the relaxation of F2|�j|Cmax in which we allow task
overlap on M1 (i.e., M1 behaves like n parallel identical machines). Thus,
both stage 1 and the lag are nonbottleneck, and together they effectively
provide release times for M2. The problem of scheduling M2 is essentially
the same one covered by Lemma 3.1, and the same solution results, namely:
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R: 1|rj|Cmax, with rj = aj + �j , pj = bj, has S� = ↗rj .
Now, LBR = Cmax(↗rj).

• Similarly, if we make M2 nonbottleneck, we get a single machine problem,
call it Problem Q, where each Jj has a delivery time qj = �j + bj and we
wish to schedule the jobs on M1 to minimize the latest time of delivery:
maxj{Cj1 + qj}, which we abbreviate (C + q)max. As with Problem R, a
simple API argument on M1 shows that
Q: 1|qj|(C + q)max, with qj = �j + bj , pj = aj, has S� = ↘qj,
and we have LBQ = Cmax(↘qj).

• Another way to relax F2|�j|Cmax to get an easily solved problem is to
shorten the lags until a permutation schedule is optimal, according to
Theorem 3.4. Thus, for Problem T , suppose we define new lags

�′j = min{�j,mini{�i + max(ai, bi)}}.

Then �′j ≤ mini{�i + max(ai, bi)} = mini{�′i + max(ai, bi)}, and so

T : F2|�′j|Cmax has S� = JR(a + �′, b + �′).

Since shortening the lags can only shorten the minimal makespan, we get
LBT = Cmax(JR(a + �′, b + �′)).

Heuristic Algorithms

Several heuristics (i.e., approximation algorithms) result from the above lower
bounds. Keep in mind that a heuristic gives a feasible solution and so the
makespan it generates is an upper bound, B, on the optimum.

• Algorithm AQ starts by solving Problem Q to determine the sequence on
M1. Then, using Lemma 3.1, it schedules M2 in order of availability. This
is a feasible solution of the original problem, and the resulting makespan
gives a bound BQ = C�

max(AQ).
• A similar algorithm, AR, can be based on Problem R with time reversed,

producing another bound, BR = C�
max(AR).

• For a heuristic, AT, based on adjusting the sizes of the lags, we increase the
shortened lags, �′j , of Problem T until they are all bigger than the original
values �j (so that the makespan will give an upper bound), but in such
a way that a permutation schedule will still be optimal. The inequality
required for Theorem 3.4,

�′j ≤ mini{�′i + max(ai, bi)},
will be maintained if we add the same constant, K, to all lags. To make
the bound as tight as possible, we set K at the smallest value that will
produce new lags, �′′j = �′j+K satisfying �′′j ≥ �j for all j. Thus, choose K =
maxj{�j −�′j}. Now, the solution of F2|�′′j |Cmax is S� = JR(a+�′′, b+�′′),
and this schedule, with the original �j replacing �′′j , produces bound, BT .
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Each of the three heuristics has a worst case performance ratio of 2 (i.e.,
the values obtained are never more than twice the true optimal makespan).
However, computational results for a variety of randomly generated instances
with up to 1000 jobs show much better average performance, which rapidly
improves as problem sizes grow. The upper bound Bm = min{BQ, BR, BT}
generated by using the best of the three schemes was tested against the
optimal makespan.

It was found that Bm performs worst when lags tended to be larger than
processing times. When lags averaged 5 times processing times, and for small
(up to 200 jobs) problem instances, Bm rarely equalled the optimum and
averaged 6% over it. For instances with 400 to 1000 jobs, the optimum was
found about half the time, and the error averaged less than 1%.

When processing times averaged the same size as the lags or larger, the
heuristic performed superbly, finding the optimum in 88% of small instances
generated, and virtually all large ones.

3.2.5 F2|(perm), prec|Cmax

This problem does not seem to belong in the chapter on lags. However, as
we shall see, certain special cases can be easily solved by grouping jobs with-
out lags into “composite jobs” with lags. First, it is clear that, for the basic
two-machine flow shop, even with precedence constraints added, there al-
ways exists a permutation schedule that minimizes any measure, even if such
schedules are not mandated by technological or other requirements. A prece-
dence constraint between two jobs, by definition, already forces the specified
job order on both machines. For jobs not constrained by precedence, The-
orem 1.1 applies. Thus, we will only consider permutation schedules in this
section.

Now, recall that a chain of jobs must be executed in a given order, though
not necessarily consecutively. By contrast, a group or contiguous set of jobs
must be processed without interruption, but may be done in any order. A
string of jobs has both properties: on every machine, all the work must be
done continuously and in the same prespecified sequence. We assume now
that the jobs to be scheduled in a two-machine flow shop form parallel
chains or parallel groups or parallel strings: they can be partitioned
into independent subsets, each of which is of one of these three types. We
start with the most constrained case, which is easiest to handle, in which a
set of parallel strings is to be scheduled to minimize makespan.

F2|(perm), strings|Cmax

Consider the early-start schedule of any string S in isolation, as illustrated in
Fig. 3.7a for a five-job string. Its makespan, C, is easily computed. Suppose S
consists of u jobs having processing times ai and bi (i = 1, . . . , u) on M1 and
M2, respectively. Since the idle time between certain tasks on M2 is wasted,
we can right-shift or consolidate tasks as shown in Fig. 3.7b without affecting
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the makespan, thereby freeing up time on M2 that an earlier job may utilize.
Once each string has been consolidated, which involves a small amount of
calculation, it becomes indistinguishable from a single job (we shall call it a
composite job) with processing times A = Σu

i=1ai and B = Σu
i=1bi, and with

a negative lag � = −(A+B−C), as shown in the figure. We assume hereafter
that all strings are consolidated into composite jobs before scheduling, and
denote the composite job for string j by Sj.

If there are w strings to be scheduled, with composite job Sj (j = 1, . . . , w)
having parameters <Aj, Bj ; �j>, then of course the optimal permutation
schedule is given by MJR. We have seen that, in a two-machine flow shop
with lags, a permutation schedule may not be the overall optimum. We know
this is not a problem here, since it was not, in the original formulation. If
further reassurance is needed, we can call upon Theorem 3.4. The lags for a
composite job are defined in such a way that �j ≤ 0 and �j +max(Aj , Bj) > 0
for all j, so the theorem holds and a permutation schedule is optimal over all
schedules. To summarize:

Theorem 3.7 For F2|(perm), strings|Cmax, compute for each composite job
Sj (j = 1, . . . , w) its total processing times Aj and Bj on M1 and M2, its
completion time in isolation Cj, and �j = −(Aj + Bj − Cj). Then:

S� = JR(A + �, B + �) = JR(C − B, C − A)

Fig. 3.7a Schedule with earliest start times on two machines

Fig. 3.7b Schedule with work consolidated to the right on M2

F2|(perm), chains|Cmax

To schedule parallel chains, we shall first combine sequential jobs in chains
into strings. That is, we give conditions under which two jobs ordered by
precedence may be scheduled contiguously in an optimal schedule, and thus
made into a two-job string. Indeed, our results will enable us to tie two
sequential strings together into one long string. Of course, each new string
is immediately consolidated into a composite job. Since one job is already a
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rudimentary string, we shall use the term (composite) job to encompass both
single jobs and composite jobs. Recall that precedence of Jj over Jk is denoted
j → k while preference of Jj over Jk (that is, local preference, meaning, in
the case of the two-machine flow shop with makespan objective, that JR
would schedule Jj before Jk when the two jobs are adjacent) is indicated by
j � k. Generalizing these ideas to composite jobs, Sj has precedence over
Sk, denoted j → k whenever there exists Ju in Sj and Jv in Sk with u → v;
and Sj is preferred over Sk, written j � k whenever MJR puts Sj before
Sk.

Theorem 3.8 For F2|(perm), chains|Cmax, suppose Sj and Sk are consec-
utive (composite) jobs in a chain, with j → k but k � j. Then there is an
optimal schedule in which Sk immediately follows Sj, forming a single string
(Sj, Sk).

Proof: Let S = (s1,Sj , s2,Sk, s3) be any feasible schedule, where sr (r =
1, 2, 3) are sequences of (composite) jobs which together include all other
jobs, and s2 is not empty. Note that, by the assumption of chain precedence,
there is no required precedence between Sj and s2, or between s2 and Sk.
We write the makespan of a schedule S as C(S). We shall show that another
schedule always exists with Sj and Sk adjacent which is at least as good (has
makespan at least as small). Consider s2 as a single (composite) job, S2. If
k � 2, then the schedule with Sk moved ahead of S2 is preferred; that is,
C(s1,Sj ,Sk, s2, s3) ≤ C(s1,Sj, s2,Sk, s3). On the other hand, if 2 � k, then
by the transitivity of the preference relation, 2 � j so we prefer Sj after s2.
One way or the other, we have united Sj and Sk. �

The following algorithm given by Sidney (1979) derives from one in Kurisu
(1976).

Parallel Chains Algorithm (PCA)

1. For each chain, combine (composite) jobs into larger composite jobs
as much as possible, using Theorem 3.8.

2. Schedule the remaining (composite) jobs using MJR, without further
regard for precedence.

Note how two consecutive (composite) jobs in a chain will be combined into
one at Step 1, if preference contradicts precedence. Thus, when we reach Step
2, preference ordering within each chain will be identical with precedence, so
scheduling all the remaining (composite) jobs by preference (using MJR) will
automatically satisfy precedence requirements.

F2|(perm), groups|Cmax

If we are given a collection of groups of jobs to schedule, we must order
the jobs within each group, and simultaneously sequence the groups. The
following simple procedure can be shown to be optimal; proof omitted.
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Parallel Groups Algorithm

1. Order each group independently to achieve minimal makespan, using
JR. Each group is now a string, which can be consolidated into a
composite job.

2. Order the composite jobs using MJR.

More General Precedence Requirements

As discussed in Sidney (1979), the Parallel Chains Algorithm (PCA) may
be used to simplify, and sometimes fully sequence, more complex precedence
networks. We simply look for parallel chain subnetworks and sequence them
(that is, reduce each to a single chain) using PCA. A parallel chain sub-
network is a set of parallel chains within a network such that the initial jobs
of each chain have the same set of predecessors, and the terminal jobs all have
the same set of successors. Thus, the single chain generated by PCA can be
substituted for the parallel chains, connecting the same predecessors to the
same successors. The simplified network thus produced may contain other
parallel chain subnetworks, which can be similarly sequenced. In some cases,
notably for parallel in-tree, out-tree, and more generally series-parallel
networks, such repeated application of PCA will fully sequence the jobs, pro-
ducing a feasible schedule with minimal makespan (for definitions and further
results, see Sidney (1979), Monma (1979), and Monma and Sidney ((1979)).

For completely general precedence structures, Monma (1980) showed that
F2|perm, prec|Cmax is NP-complete. Hariri and Potts (1984) devise three
branch-and-bound algorithms, the best of which can easily handle 50 jobs.

3.2.6 Two-Stage Manufacturing Cells as Flow Shops
with Lags

Modern manufacturing systems may involve automated storage and retrieval
stations, robotic loading and unloading of machines, transportation robots,
etc. Many such steps in the production process introduce significant delays,
interrelated by precedence, into the scheduling of each job. We wish to con-
sider the sequencing of n jobs in such two-machine robotic cells, to minimize
makespan. We first discuss how to model such a facility as a flow shop with
lags, and then illustrate our approach with an application presented in Kogan
and Levner (1998).

It will simplify our presentation to use the task-on-arc representation of
precedence structures in this section. The typical two-machine flow shop with
lags, shown in Fig. 3.8(a) in the task-on-node style we have used up to now, is
given with tasks on arcs in Fig. 3.8(b). The nodes now represent the times at
which the jobs start and end on each machine. Note how the new presentation
enables us to differentiate among the four types of lags. Since �j is a FS (finish-
start) lag, it runs from the end of aj (node 2) to the start of bj (node 3). If
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SSj (a start-start lag for Jj) were specified, it would be a task connecting
node 1 to node 3, etc.

Now in a complex shop where the timing of each task is constrained by a
variety of delays, some forced to follow others, some constant and some job-
related, the precedence structure of each job may constitute a quite elaborate
network, Nj , as we try to illustrate in Fig. 3.8(c). In such a case, proceed as
follows.

Lag Algorithm

0. Let Nj be the network of tasks interconnecting the four nodes denoting
the start and end of Jj on each machine, and set j := 1.
1. Let aj equal the length of the longest path in Nj between Nodes 1 and 2.
2. Let bj equal the length of the longest path in Nj between Nodes 3 and 4.
3. Let SSj , SFj, FSj and FFj equal the length of the longest path in Nj , if
any, between Nodes 1 & 3, 1 & 4, 2 & 3, and 2 & 4, respectively. In each
case, if there are no such paths, set the corresponding lag to −∞.
4. If all four lags are set to −∞, let �j = 0. Otherwise let

�j = max{SSj − aj, FFj − bj , SFj − aj − bj, FSj}.

5. If j < n set j := j + 1 and go to Step 1. Otherwise, continue.
6. The optimal schedule, S� = JR(a + �, b + �).

Fig. 3.8 The two-machine shop, portrayed (a) with tasks on nodes, (b) with tasks
on arcs, and (c) with additional delays complicating the scheduling of each job.

All we have done, of course, is to replace a complex network as in Fig.
3.8(c) with an equivalent simplified network as in Fig. 3.8(b), for which the
solution is known.

We have made an important assumption: Nj and its parameter values,
and hence the values we compute for aj , bj and �j, must be independent of
the job sequence. This will cause minor complications at the start and end
of schedules.

Example 3.3: A manufacturing cell with two Computer Numerically Con-
trolled (CNC) machines served by robots is analyzed by Kogan and Levner
(1998). Robots are also used to serve Automatic Storage/Retrieval Stations
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(AS/RS). Each job requires special fixtures and tooling at each machine, for
which the setup times may be significant. Jobs are transported on pallets by
a circulating conveyor. In a layout shown schematically in Figure 3.9(a), a
typical job advances through the production process as follows, where the
time required for each operation is given in square brackets.

1. A pallet with Jj and any needed fixtures is unloaded from the Input AS/RS
by robot Rin, and conveyed to M1 [tA].
2. Robot R1 loads job and fixture for M1 onto M1 [l1j], and fixture is set up
[f1j], simultaneously with tool setup [s1j].
3. Jj is processed on M1 [p1j]. In parallel, pallet delivers its fixture for M2 to
M2 [tAB].
4. Fixture is set up on M2 [f2j], at the same time as tooling [s2j].
5. R1 unloads Jj from M1 [u1j] (freeing M1 for the next job). Jj is delivered
by conveyor to M2 [tAB].
6. R2 loads Jj onto M2 [l2j], and it is processed [p2j].
7. R2 unloads Jj from M2 [u2j] (freeing M2 for the next job). Jj is delivered
by conveyor to the Output AS/RS where robot Rout stores it [tB].

Fig. 3.9 (a) Schematic layout and (b) precedence diagram
for a two-machine manufacturing cell.

As usual, we seek the sequence of jobs that minimizes makespan. Clearly,
the technological constraints limit us to permutation schedules. Of course, to
shorten the schedule, the tasks of successive jobs should overlap each other
as much as possible. For example, while M1 is processing one job, the pallet
for the next job is being placed on the conveyor. Also, we remark that the
transport times tA and tB could have been divided into two parts: robotic
loading/unloading and conveyor transfer. Since they always occur together,
we have combined them.

The above analysis of job flow can be portrayed in the precedence diagram
given in Fig. 3.9(b), which shows the start of an arbitrary schedule. For
simplicity, in the figure only, whichever job is in position i has been indexed
i; hereafter, we index it [i]. J[2], whose tasks are shown darker, is typical.
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Note how the transport times, tA and tB, of any job affect, not the job itself,
but the two adjacent jobs. Thus, J[2] may be delayed by the transport of the
finished J[1] to the output AS/RS, or the conveying of J[3] to M1. We can
now see that J[1] is not typical; whichever job is scheduled first has different
parameter values, since arc tB is missing. The same is true for the last job,
where tA does not appear. Finally, there is an extra time tA that starts the
schedule (the leftmost arc in Fig. 3.9(b)), and a time tB at the end, which can
be added on to the makespan; they do not affect the sequencing decisions.

Suppose now that two jobs have been singled out for first and last positions.
We can sequence the remaining jobs for positions 2, 3, ..., n− 1 using the Lag
Algorithm. With reference to Fig. 3.9(b), we can see that a job in any of
these positions has parameters

aj = max{tA,max[s1j, f1j + l1j ] + p1j + u1j},
bj = max{tB ,max[s2j, f2j + l2j] + p2j + u2j},
�j = max{SSj − aj, FFj − bj}, where

SSj = max[s1j, f1j + l1j] + tAB,
FFj = tAB + l2j + p2j + u2j.

To solve our problem, we now search over all possible choices for first and
last jobs. Parameter values for J[1] [J[n]] are found from the above formulas
by setting tB = 0 [tA = 0]. For each choice of “end jobs”, order the rest of
the jobs using JR(a + �, b + �).

Recall that, having sequenced a set of jobs by Johnson’s Rule, if some of the
jobs are then removed, the order of the remaining jobs is unchanged. Thus, to
avoid rerunning MJR for every pair of end jobs, we can apply Johnson’s Rule
just once, to all n jobs, and then for each selection maintain this order for the
n− 2 interior jobs. Since JR requires a time O(n logn), the search procedure
dominates, giving an O(n2) algorithm. Finally, it may be mentioned that
Kogan and Levner (1998) view this problem somewhat differently, but arrive
at the same conclusion.

In Levner et al. (1995), a very similar problem is presented, using a dif-
ferent, more complex approach. It too can be simply solved by the above
algorithm.

3.3 The Two-Stage Hybrid Flow Shop with Lags

In this section, based largely on Vairaktarakis (1997), we discuss the prob-
lem of minimizing makespan in a two-stage flow shop with multiple identical
processors in each stage. We use F (k1, k2) to denote the flow shop with ki

identical processors in stage Gi = 1, 2. Hence, in the usual three-field nota-
tion, we consider the problem F (k1, k2)|�j |Cmax. Of course, we will assume
that at least one of the two stages has more than 1 processor, otherwise the
problem has been treated earlier.
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The applications described earlier for a single processor per stage gener-
alize to multiple processors in each stage. For instance, in the consolidator
example, the supplier and/or the delivery department may have multiple
trucks in their respective fleets.

3.3.1 Preliminaries

In the presence of multiple processors per stage we need to be careful about
the definition of permutation and reverse-order schedules.

Definition 3.1 In a two-stage hybrid flow shop, a schedule is a permuta-
tion schedule iff for every pair of jobs Ji and Jj where ai begins before aj ,
bi completes before or at the same time as bj .

Definition 3.2 In a two-stage hybrid flow shop, a schedule is a reverse
order schedule iff for every pair of jobs Ji and Jj such that ai begins
before aj , bi completes after or at the same time as bj .

Consider the above definitions in the context of the consolidator example.
If the trucks of the supplier and delivery fleets are located near each other,
then they follow the same route and the G1 and G2 orders are the same.
If the two fleets are located diametrically opposite to each other, then the
processing of b-tasks is done in the reverse order of a-tasks.

The rest of this section is devoted to the following problems:

• F (k1, k2)|perm, �j|Cmax when the job order cannot change from G1 to G2;
• F (k1, k2)|rvrs, �j |Cmax when the job order on G2 must be the reverse of

that on G1;
• F (k1, k2)|�j|Cmax when the orders of jobs on each stage are unrelated.

We present heuristics that have been proposed for these problems and are
supported by error bound analyses. The heuristics for the multi-processor
problems can be described using a generic heuristic H = H(S1, S2), which
assigns the tasks at stage Gi (i = 1, 2) to processors, once an ordering Si

of tasks has been specified. The same heuristic approach is introduced in
Chap. 5, but will be reviewed here. It uses the first available machine
(FAM) rule at G1. According to FAM, given a sequence S of tasks, the task
to be scheduled next on k parallel identical machines (called a Pk system))
is assigned to the first machine that becomes available, i.e. the machine that
finishes first the tasks (if any) previously assigned to it.

The mirror image of the FAM rule, called the last busy machine (LBM)
rule, is used by heuristic H at G2. Given a large constant T > 0 (we can use
T = Σi(ai + bi)) and an ordering S of tasks (considered as single-operation
jobs, {Jj, j = 1, . . . , n}), to be scheduled on a Pk system, LBM schedules
the jobs backwards from T , as follows.
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LBM rule

1. Set ti := T for i = 1, . . . , k.
2. Let Jj be the last unscheduled task of S, and Mh a processor with

th = maxi ti. Schedule Jj on Mh to finish at time th.
3. Set th := th − pj and S := S − {j}. If S = φ, then go to step 2;

else, stop.

The value of ti is the time that Mi becomes busy. In step 2 we assign Jj to
a processor with largest ti, i.e. the last processor to become busy. Hence this
rule is called the last busy machine rule. Also, note that the value of T is
only a reference point (an upper bound on the makespan) and has no effect
on the allocation of tasks to processors.

We can now describe the generic heuristic H.

Heuristic H

1. Specify sequences S1, S2 of the tasks at each stage.
2. Apply the FAM rule to the a-tasks using S1.
3. Apply the LBM rule to the b-tasks using S2.
4. Rearrange some of the b-tasks of the resulting schedule.

Of course, Steps 1 and 4 remain to be determined. At Step 1, we must find
two task sequences, S1 and S2, which are calculated to produce a good sched-
ule when operated on by Steps 2 and 3 (which assign tasks to processors),
and Step 4 (which makes a final adjustment of task positions). As we will
see, for each of the three variants of the hybrid flow shop with lags, these
sequences are generated using variations of the traditional 2-machine flow
shop, optimally solved by Johnson’s Rule.

3.3.2 F (k1, k2)|perm, �j|Cmax

To determine S1 and S2 for the permutation shop, we simplify the problem
using the concept of “merged machines” (see Sect. 2 of Chap. 8). Consider
the Merged Machines Shop (the subscript denotes permutation):

MMSP : F2|perm, �j|Cmax, with job parameters <aj/k1, bj/k2; �j>

where we replace the machine group at stage i by a single “superserver” that
works at ki times the speed of the original servers, as though each job could
be split up and simultaneously run on all the parallel machines. The heuristic
for the permutation flow shop is the following adaptation of H, with Steps 2
and 3 unchanged:

Heuristic HP

1. Solve MMSP. Let S = JR(a/k1 + �, b/k2 + �) be the resulting
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sequence. Set S1 = S2 := S.
2. – 3. Same as in H.
4. Start all b-tasks earlier by the maximum amount of time t that does

not violate the permutation and flow shop constraints.

Note that at Step 4, all b-tasks are shifted the same amount of time t earlier,
and hence the order of completion times after the shift of Step 4 remains the
same as it was at the end of Step 3. As a result, we retain a permutation
schedule, as characterized in Definition 1.1. Since F2|perm, �j|Cmax requires
O(n logn) time, this is also the computational complexity of HP.

It can be shown that the makespan achieved in MMSP is a lower bound on
C�, the minimal makespan of F (k1, k2)|perm, �j|Cmax. Based on this lower
bound, the performance guarantee for HP is:

Theorem 3.9 (Vairaktarakis, 1997) For F (k1, k2)|perm, �j|Cmax,
let CP be the makespan obtained by HP . Then:

CP /C� ≤ 2− 1/k, where k = max{k1, k2},

and this bound is tight.

Example 3.4: To illustrate HP, consider a 2-stage hybrid permutation flow
shop with lags, having k1 = k2 = 2 and five jobs with processing requirements
J1 = <1, 3; 3>, J2 = <4, 5; 2>, J3 = <2, 4; 5>, J4 = <5, 5; 4> and J5 =
<6, 2; 2>. These jobs are already indexed in the order resulting after step 1
of HP. The Gantt chart of the schedule produced by HP on this 5-job example
is given in Fig. 3.10. Note that all processors at G2 finish at time CP = 17.
After applying step 3 of heuristic H, the b-tasks are moved earlier (slid to the
left as a block) until one of them cannot be further advanced without violating
its lag constraint. In our case, this critical job is J4 (see Fig. 3.10). The other
jobs could start earlier at stage 2 (J1 for example, could start as early as
a1 + �1 = 4, and so has a slack of 4), but this would violate the permutation
constraint of Definition 3.1 and would not shorten the makespan.

Fig. 3.10 An example for F (2, 2)|perm, �j |Cmax.
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3.3.3 F (k1, k2)|rvrs, �j|Cmax

The solution for the reverse flow shop is closely analogous to that of the
permutation flow shop. As before, we merge the machines at each station to
define a Merged Machines Shop:

MMSR :F2|rvrs, �j|Cmax, with job parameters <aj/k1, bj/k2; �j>

recalling that this problem can be solved in O(n logn) time as described in
Sect. 3.2.3. Heuristic H now becomes:

Heuristic HR

1. Solve MMSR, and use the resulting schedule, namely S1 := ↘�j ,
S2 := ↗�j .

2. – 3. Same as in H.
4. Start all b-tasks earlier by the maximum amount of time t that does

not violate the order and flow shop constraints.

Steps 3 and 4 of the heuristic HR clearly maintain the reverse order of com-
pletion times on the two machines. Since F2|rvrs, �j|Cmax requires O(n logn)
time, this is also the computational complexity of HR.

The makespan of MMSR is, again, a lower bound on C�, the optimal
makespan of F (k1, k2)|rvrs, �j |Cmax. Using it, the following theorem estab-
lishes the worst case performance of HR.

Theorem 3.10 (Vairaktarakis, 1997) For F (k1, k2)|rvrs, �j|Cmax,
if CR is the makespan obtained by HR, then:

CR/C� ≤ 2 − 1/k, where k = max{k1, k2},

and this bound is tight.

Example 3.5: To illustrate HR, consider the 5-job instance of F (2, 2) given
in Example 3.4. The job order produced by step 1 of HR is S1 = (3, 4, 1, 2, 5),
with S2 being the reverse. Note that J2 and J5 could be interchanged, since
they have equal values of �j . We have broken the tie arbitrarily ( this is
a heuristic, after all); or we could evaluate all sequences that satisfy ↘�j

and choose the best. In this case, the other schedule gives a slightly longer
makespan.

The Gantt chart of the application of HR on this 5-job example is given in
Fig. 3.11. Again, all tasks scheduled on M2 are moved earlier as a block until
the lag constraint of one or more jobs becomes binding (here, the critical job
is J5), so all stage-2 processors finish at the same time, with makespan of 22.
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Fig. 3.11 An example for F (2, 2)|rvrs, �j |Cmax.

3.3.4 F (k1, k2)|�j|Cmax

In this section, we consider the two-stage hybrid flow shop with lags, assuming
task orders at each stage are unrelated. Heuristic H now becomes:

Heuristic HU

1. Set S1 := JR(a/k1, b/k2) (S2 is not needed).
2. Apply the FAM rule to the a-tasks using S1.
3. Omit this step.
4. Schedule the b-tasks across processors as soon as possible, in order of

availability, where Jj is available �j units after it is completed at G1.

Since JR requires O(n logn) time, this is also the computational complexity
of HU.

For a lower bound on the minimal makespan, we define the following quan-
tities:

• CSF is the minimal makespan of the simple flow shop in step 1 of HU,
where parallel machines at each stage have been combined into one, and
all lags set to zero.

• CHF is the minimal makespan of the hybrid flow shop with all lags set to
zero.

• C� is the minimal makespan of the original problem, F (k1, k2)|�j|Cmax.

Then

CSF ≤ CHF ≤ C�

where the left inequality was shown by Lee and Vairaktarakis (1994). It
follows:

Theorem 3.11 (Vairaktarakis, 1997)
Let CU be the makespan obtained by HU . Then:

CU/C� ≤ 2 , and this bound is tight.
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3.3.5 Summary of Performance Ratio and Complexity
Results

A summary of the results of this section, along with the special case of two
machines (k1 = k2 = 1) discussed earlier, is given in Table 1.1 below. For
polynomially solvable problems we provide the complexity bound while for
NP-complete problems (denoted NPC) we provide the best known perfor-
mance ratio.

Table 3.1 Summary of performance ratios, with k = max{k1, k2}

Complexity Performance
Status Ratio

F2|perm, �j |Cmax O(n logn) 1
F (k1, k2)|perm, �j |Cmax NPC 2 − 1/k
F2|rvrs, �j |Cmax O(n logn) 1
F (k1, k2)|rvrs, �j |Cmax NPC 2 − 1/k
F2|�j |Cmax NPC 2
F (k1, k2)|�j |Cmax NPC 2

3.3.6 Computational Experiments

The heuristics HP, HR, and HU have been tested on randomly generated
problems with n = 30, 40, 50 jobs, k1, k2 ∈ {2, 4}, and various workload
scenarios between the 2 stages and the lag durations. These heuristics are
shown to have average relative gaps from the respective lower bounds (i.e.,
100(CH − CLB)/CLB) of 1.22%, 1.24% and 2.1% respectively (see Vairak-
tarakis, 1997). Moreover, the relative gaps tend to decrease as the lag times
increase. Also, it is found that average relative gaps increase with increases
in the workload at G1.

Average relative gaps also increase with the total number k1 + k2 of pro-
cessors. As for the relationship between problem parameters and heuristic
performance, it is found that the average relative gaps decrease as the ratio
n/k increases. Given that, in flow shops, the number of jobs n is usually much
larger than the number k of processors in either stage, the three heuristics
have a good chance to perform near optimally.

Finally, one might wonder how often the makespan of HP outperformed
the one obtained by HR. The answer is that, for problem sizes of 30 or more
jobs, HR very rarely outperforms HP. One the other hand, when n = 15 the
outcome is much less predictable.

Note that the optimal makespan for problem F (k1, k2)|�j|Cmax is no
worse than the corresponding optimal values for F (k1, k2)|perm, �j|Cmax and
F (k1, k2)|rvrs, �j |Cmax. However, this relationship may not hold for the three
heuristics because none of them guarantees optimality for the respective prob-
lem. In fact, even though rare, for n ≥ 30 it is possible for HP or HR to
outperform HU.
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3.4 The m-Machine Flow Shop with Lags

Up to now, we have considered flow shops with only 2 stages. In the next
chapter we will discuss shops with m > 2 stages, which are significantly
more difficult to analyze. In fact, the problem of minimizing makespan in a
3-machine flow shop with or without lags is strongly NP-complete. Since the
discussion of the problem with lags is very similar to the one without lags,
we will treat the two problems together in Sect. 4.7.

3.5 Related Production Systems

In this section we present problems whose structure is related to problems
considered earlier. More specifically, the following problems possess the lag
structure explicitly, or can be interpreted using time lags.

3.5.1 Master-Slave Systems

A set of n jobs is to be processed by a system of master and slave processors.
Each job consists of 3 tasks. The first is a preprocessing task, the second
is a slave task, and the third is a postprocessing task, and they must be
executed in this order. The corresponding processing time requirements of
job Jj are aj , tj, and bj respectively. The pre- and postprocessing tasks
are to be executed on a single master processor M1, while slave tasks are
processed on n parallel identical processors. Motivated by parallel computing
applications, as well as VLSI CAD problems, Sahni (1995) considered the
problem of finding a schedule of the n jobs that minimizes the makespan on
M1.

Evidently, the number of slave processors equals the number of jobs and
hence the slave stage can be assumed to have infinite capacity. Thus, the slave
tasks act as time lags, and so we will use �j = tj. Moreover, every pre- and
postprocessing pair of tasks can be viewed as two tasks, coupled together by a
time lag, that both require processing on M1. Letting cpld stand for coupled,
we will denote the above described master-slave optimization problem as
1|cpld, �j|Cmax.

For this problem, Sahni developed optimal polynomial time algorithms for
permutation and reverse order schedules. The former are useful when a queue
structure is used to store the successive jobs, while the latter requirement is
imposed when a stack structure is used to store tasks. A simple interchange
argument can verify the following optimality condition.

Property 3.1 For 1|cpld, �j|Cmax, there exists an optimal schedule,
whether permutation, reverse, or unconstrained, where all preprocessing tasks
complete on M1 before any postprocessing task starts.

The following algorithm produces an optimal permutation schedule of this
type. Recall that a sequence denoted ↗xj [↘xj] has the jobs in nondecreasing
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[nonincreasing] order of parameter xj.

Algorithm for 1|cpld, perm, �j |Cmax (Sahni, 1995)

1. Jobs with aj < bj are preprocessed first in order ↗(aj + �j).
2. Jobs with aj = bj are preprocessed next in any order.
3. Jobs with aj > bj are preprocessed last in order ↘(bj + �j).
4. Generate any canonical permutation schedule satisfying steps 1–3.

Clearly, 1|cpld, perm, �j|Cmax is solved in O(n logn) due to the sorting in
steps 1 and 3.

The following algorithm produces an optimal reverse order schedule.

Algorithm for 1|cpld, rvrs|Cmax (Sahni, 1995)

1. Jobs are preprocessed in order ↘ �j.
2. Generate any canonical reverse order schedule satisfying step 1.

For similar reasons, 1|cpld, rvrs|Cmax is solved in O(n logn) time.
Finally, consider the unconstrained master-slave system, where no (order-

ing) constraint is imposed on the jobs other than the fact that the preprocess-
ing, slave, and postprocessing tasks of each job must be executed in this order.
Clearly such a system can outperform the permutation and the reverse order
master-slave systems. Besides having Property 3.1, we can show with another
interchange argument that, given a schedule for the preprocessing tasks, the
first-come-first-served rule can optimally schedule the postprocessing tasks.
Therefore, a complete schedule of the n jobs is determined by an ordering
of the preprocessing tasks. Unfortunately, despite all this, 1|cpld, �j|Cmax is
strongly NP-complete (see Sahni and Vairaktarakis, 1996). A reasonable or-
dering of the preprocessing tasks is obtained by the following heuristic.

Heuristic HUNC for 1|cpld, �j|Cmax (Sahni and Vairaktarakis, 1996)

1. Jobs with aj ≤ bj are preprocessed first in order ↗�j

2. Jobs with aj > bj are preprocessed last in order ↘�j

3. Generate any canonical schedule satisfying steps 1 and 2, where the
postprocessing tasks are scheduled on a first-come-first-served basis.

4. Compute the makespan CUNC of the generated schedule SUNC .

The complexity of HUNC is O(n logn) due to the sorting in steps 1 and 2.
A schedule produced by HUNC is accompanied by the following performance
guarantee.

Theorem 3.12 (Sahni and Vairaktarakis, 1996)
For 1|cpld, �j|Cmax, let C� be the optimal makespan. Then

CUNC/C� ≤ 3/2 , and this bound is tight.
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Example 3.6: Consider the 5-job instance with the following processing
times:

j aj �j bj

1 3 7 4
2 6 5 1
3 7 2 7
4 3 1 6
5 8 8 9

Then, the optimal permutation and reverse order sequences are SP =
(4, 1, 5, 3,2) and SR = (5, 1, 2, 3, 4) respectively, while HUNC yields the se-
quence SU = (4, 3, 1, 5, 2). The makespan values of these schedules are 54,
55, and 54 respectively.

3.5.2 Multiple Master-Slave Processors

The master-slave system has been extended to analyze the case where sev-
eral master machines are available for processing. Sahni and Vairaktarakis
(1996) cite applications of Fm|cpld|Cmax from parallel computer schedul-
ing, VLSI CAD problems, fleet scheduling, and scheduling of semiconduc-
tor testing operations. They develop heuristics with performance ratio 2 for
Fm|cpld, perm, �j|Cmax and Fm|cpld, �j|Cmax, and with performance ratio
(2 − 1/m) for Fm|cpld, rvrs, �j|Cmax.

3.6 Conclusions

In the two-machine case, the extension of Johnson’s Rule to include transfer
lags has considerably extended the range of problems that can be efficiently
solved. Beyond the obvious transportation delays between machines, many
less obvious applications of the lag concept arise. We have mentioned several
in the Examples section, such as setup and teardown times which can be
treated as negative lags, compound jobs that can be advanced from machine
to machine in lots, etc.

For more than two machines, the concept of nonbottleneck machines is
critical. Every sequence of nonbottlenecks is merely a lag between the two
adjacent machines. As we shall see in the next chapter, this is a powerful
tool, especially for calculating lower bounds.
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Chapter 4

THE m-MACHINE FLOW SHOP

Abstract Considered to be a very general case of flow shop systems, the
m-machine flow shop is the most researched system in all of flow shop
theory. Beyond solving the problem under a variety of objectives and
side constraints, the m-machine flow shop serves as a test bed for new
methodological tools. Regarding solutions, the research presented in this
chapter is rich in lower bounding schemes, dominance properties, heuris-
tic algorithms and computational experiments measuring their success.
The models considered not only deal with all the standard regular per-
formance measures, but also application-specific objective functions. A
lot of work is also available on problems with multiple objectives. We
find that the most successful solutions on problems of practical size
are due to metaheuristic implementations including simulated anneal-
ing, tabu search and genetic algorithms. In contrast, branch-and-bound
algorithms are mostly inadequate.

4.1 Examples

The m-stage flow shop with one machine per stage is most typically found
in industry and reflects the simplest case of multi-stage processing. Approxi-
mately 50% of all U.S. manufacturing utilizes a batch processing layout, often
represented by multi-stage flow shop cells (Adam and Ebert, 1992). The fol-
lowing examples highlight the practical importance of the flow shop studied
in this chapter.

• Reid and Stark (1982) report the case of a small alloy shop consisting of
four machines. Along with a shop foreman, the manager estimates the job
processing requirements which become input to a computer program for
scheduling the jobs.

• Kim et al. (1996) studied a 3-stage flow shop producing electronic printed
circuit boards (PCB’s). The 3 stages are surface mounting (SM), automatic
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and Applications, International Series in Operations Research & Management Science 182,  
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insertion of components (AI) and manual insertion (MI). Each stage may
involve more than one station, in all cases arranged in series, resulting in
a multi-stage flow shop.

• Bartholdi and Eisenstein (1996) point to textile shops where workers work
on an item and hand it to the next crew on the line over multiple stations.

4.2 Preliminaries

Simply stated, the m-machine flow shop consists of a single processor, al-
ways available, in each of m stages. A given set J = {J1, J2, . . . , Jn} of n
independent jobs require processing, each made up of m well-ordered tasks
with known requirements. Task i of job j requires processor i for a processing
time pij. Each task of a job requires a different machine, no job visits a work
station more than once, and the machine sequence is M1, M2, . . . , Mm for
all jobs. By Mk we indicate the machine in stage k, k = 1, . . . , m. Unless
specified otherwise, all jobs are available simultaneously at the start (at time
zero), and remain available without interruption until all work on them is fin-
ished. For shops with up to 3 stages, we generally use the simplified notation
aj, bj, cj to indicate the processing times of Jj at M1, M2, M3, respectively.
Vector pj = <p1j, p2j, . . . , pmj> indicates the processing times of Jj on all
machines. Also, recall that throughout this monograph:

Ck(S) [Ckj(S)] = completion time of all tasks [of Jj ] on Mk in schedule S.

4.2.1 Dominance given a Partial Schedule

In this chapter, we will continue to look for properties that allow us to narrow
the search for an optimal schedule to a dominant subset. In this context, we
limit ourselves to permutation schedules. As before, we will continue to seek
certain job orderings that can be ruled out. We will also find that certain par-
tial sequences can sometimes be shown to dominate other partial sequences.
At this point, we make a few preliminary remarks.

Job Dominance

In Chap. 1, we introduced the idea of job dominance in permutation sched-
ules: Ji dominates Jj if there exists at least one optimal schedule in which
Ji precedes Jj. We may be able to establish this property only for sched-
ules where the jobs are adjacent (local dominance), or without this limitation
(global dominance). Such properties are useful for limiting our search for an
optimum to a dominant set: the subset of schedules that meets all dominance
requirements we have been able to establish.

Often, our search procedure is branch-and-bound, where a schedule is be-
ing built, either forwards or backwards, one job at a time. For the moment,
assume a forward algorithm, where at an arbitrary node a partial initial
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schedule σ exists, with a set U of u jobs remaining unscheduled. We wish to
find dominance relations among the jobs in U .

A common feature of all the results published to date is that, given σ,
dominance always concerns the position in the schedule immediately after σ.
This leads to the following definition, where Any denotes any objective or
measure, giving to any schedule S the value A(S).

Definition 4.1. For Fm|perm|Any, with initial partial schedule σ, Ji dom-
inates Jj (written i �σ j) if, for any complete schedule σjπ, there exists a
complete schedule σiπ′ such that A(σiπ′) ≤ A(σjπ).

That is, there is a schedule starting with σi that is better than any schedule
starting with σj, so Jj need not be considered for the next position after σ.

The following obvious consequence of this definition suggests how this
could be shown (where σijπ1π2 is a complete schedule).

Theorem 4.1. For Fm|perm|Any, with initial partial schedule σ,

A(σijπ1π2) ≤ A(σjπ1iπ2) ∀π1, π2 ⇒ i �σ j.

Sequence Dominance

In this class of dominance results, we compare one partial sequence σ1 with
another, σ2, which contains the same jobs. We now limit our attention to the
large class of regular measures (denoted Reg) with objective function R(S).
Roughly (see Chap. 1 for details), regular measures are those that are always
improved by reducing job completion times. All the objectives to be discussed
in this chapter are regular.

Definition 4.2. For Fm|perm|Reg, let σ1 and σ2 be sequences of the same
job subset. Then σ1 strongly dominates σ2 if

Ck(σ1) ≤ Ck(σ2) , k = 1, 2, . . ., m .

Note that the definition is independent of the particular objective. The fol-
lowing definition is measure-dependent.

Definition 4.3. For Fm|perm|Reg, let σ1 and σ2 be sequences of the same
job subset. Then σ1 dominates σ2 with respect to Reg if

R(σ1π) ≤ R(σ2π) for any job sequence π .

Connecting these definitions, we have the following

Theorem 4.2. For Fm|perm|Reg, let σ1 and σ2 be sequences of the same
job subset. Then,

σ1 strongly dominates σ2 ⇒ σ1 dominates σ2 with respect to Reg .
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Proof: Consider any schedule completion π = (i, j, . . . , u) containing the re-
maining unscheduled jobs. Since

Ck(σai) = maxh=1,...,k{Ch(σa) +
∑k

l=h pli} , for a = 1, 2 , k = 1, . . . , m ,

and by hypothesis Ck(σ1) ≤ Ck(σ2), it follows that Ck(σ1i) ≤ Ck(σ2i) for
all k. Adding another job, it follows similarly that Ck(σ1ij) ≤ Ck(σ2ij);
and so on. Thus, for each of the unscheduled jobs Jv, v = i, j, . . . , u,
Cmv(σ1π) ≤ Cmv(σ2π). That is, for any completion π, every job in π has
an earlier completion time following σ1 than following σ2. Hence for any reg-
ular measure, R(σ1π) ≤ R(σ2π). �

Szwarc (1983a) gives this result for the case Reg = Cmax.

4.2.2 Ordered Flow Shops

Flow shops with special structure are sometimes considered in the literature.
One such class of shops that we shall refer to from time to time is the ordered
flow shop. The definitions below may be found in Smith et al. (1975).

Definition 4.4. A flow shop is ordered if the processing times satisfy the
following conditions:

1. There exists a job indexing such that pk1 ≤ pk2 ≤ . . . ≤ pkn, for all Mk.

2. There exists a machine indexing s.t. p1j ≤ p2j ≤ . . . ≤ pmj , for all Jj.

Thus, in an ordered shop, we can speak of sequencing the jobs in SPT
order without ambiguity, since this order is the same on all machines. That
is, SPT on each machine results in a permutation schedule.

4.3 Complexity of F3|(perm)|Cmax

As we saw in Theorems 1.1 and 1.2 there exists an optimal makespan mini-
mization schedule with the same job order on M1 and M2. The same holds
for Mm−1 and Mm, although for m > 3 the two orders are not necessarily
identical. It follows that there exists an optimal permutation schedule for
F3|(perm)|Cmax. Unfortunately, this simplifying result is not enough to clas-
sify F3|(perm)|Cmax as an “easy problem”, as shown in

Theorem 4.1 (Garey et al., 1976)
F3|(perm)|Cmax is NP-complete in the strong sense.

Outline of Proof: We reduce the strongly NP-complete problem

3-PARTITION
INSTANCE: An integer V , and 3k positive integers vi : i ∈ T = {1, 2, . . . , 3k}
such that Σi∈T ni = kV , and V/4 < vi < V/2 ∀ i ∈ T .
QUESTION: Can T be partitioned into mutually disjoint subsets S1,S2, . . . ,Sk,
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with |Sj| = 3, and Σi∈Sj vi = V for j = 1, 2, . . . , k?

to the decision version of our problem:

F3|(perm)|Cmax ≤ B?
INSTANCE: A threshold value B, and n jobs {Jj : j = 1, 2 . . . , n}, each
with processing requirements <aj, bj, cj>, on machines M1, M2, M3 of a
3-machine flow shop.
QUESTION: Does there exist a schedule with Cmax ≤ B?

For any instance of 3-Partition define an instance of F3|(perm)|Cmax≤B?
as follows:

• B := (2k + 1)V ,
• n := 4k + 1 ,
• <a0, b0, c0> := <0, V, 2V > ,
• <aj, bj, cj> := <2V, V, 2V > for j = 1 , . . . , k − 1 ,
• <ak, bk, ck> := <2V, V, 0> ,
• <aj, bj, cj> := <0, vj, 0> for k + 1 ≤ j ≤ 4k.

To see why the two problems will always have the same answer, we note
that we can achieve a makespan of B = (2k + 1)V (the answer “yes”) if
and only if jobs J0, J1, . . . , Jk are scheduled as in Fig. 4.1 with “filler” jobs
Jj : k + 1 ≤ j ≤ 4kM inducing a 3-partition of vj : j ∈ T . �

In a related result, Gonzalez and Sahni (1978) show that F3||Cmax is NP-
complete even when every Jj ∈J has precisely two tasks with positive pro-
cessing time requirements. The reduction is from 2-Partition.

Fig. 4.1 Optimal schedule of NP-complete instance of F3|(perm)|Cmax

4.4 Calculation of Makespan for a Given Sequence

If an arbitrary job sequence S = (1, . . . , n) is given (jobs reindexed to match
number to position), the following equations can be used to calculate recur-
sively the completion time of each task in a permutation flow shop. For those
familiar with the elements of project scheduling, we are simply applying the
Critical Path Method, where completion corresponds to “early finish”.

In a specified schedule, for task Tkj of Jj on Mk with completion time Ckj,
the work cannot start until Jj leaves Mk−1 (that is, Ckj−pkj ≥ Ck−1,j), and
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it must also wait until the preceding job vacates Mk (Ckj − pkj ≥ Ck,j−1).
These are evidently the only constraints on its timing, so the earliest it can
complete is

Ckj = max{Ck−1,j, Ck,j−1} + pkj , j ∈ J , k ∈ M . (4.1)

with boundary conditions Ck0 = C0j = 0. Starting with C11, we can iterate
through increasing values of j and k, eventually determining the makespan,
Cmn.

4.5 An Integer Program for Fm|perm|Cmax

Since our problem is NP-hard, we will be discussing special cases, approxima-
tions, and search techniques. Before we begin, we present an integer program
that can be used to solve small instances and that summarizes in mathemat-
ical form the essential components of the classic m-machine flow shop.

Define the variables:

xij =
{

1 if Jj is in position i ,
0 otherwise ,

cki = completion time on Mk of the job in position i ,

not to be confused with Ckj, the completion time on Mk of Jj . In order to
search over different schedules, the binary variables are used to assign jobs
to positions, letting us write pk[i] as Σn

j=1pkj xij, where [i] indexes the job in
position i. Then the following integer program minimizes the makespan cmn.

minimize cmn

subject to cki ≥ ck−1,i +
∑n

j=1pkjxij , i ∈ J , k ∈ M (4.2)

cki ≥ ck,i−1 +
∑n

j=1pkjxij , i ∈ J , k ∈ M (4.3)∑n
i=1xij = 1 , j ∈ J (4.4)∑n
j=1xij = 1 , i ∈ J (4.5)

xij = 0 or 1 , i, j ∈ J (4.6)

with ck0 = c0i = 0; where (4.2) enforces task order within jobs, (4.3) does the
same on each machine, and (4.4) – (4.6) ensure that each job is assigned to just
one position in the schedule, and each position gets one job. Essentially, with
the aid of the integer variables to search over schedules, we have converted
(4.1) into an optimization. It will not, of course, solve very large problems.
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4.6 Polynomially Solvable Cases of Fm|perm|Cmax

In this section, we present special cases of Fm|perm|Cmax with m > 2 that
are solvable in polynomial time. We start by giving two rather trivial results.
First we suppose that all the task times of a given job are equal.

Theorem 4.3. For Fm|(perm), (pmtn), pij = pj |Cmax, any permutation
schedule is optimal, with

Cmax =
∑n

j=1 pj + (m − 1)pmax , where pmax = maxj∈J pj .

For a proof, see Chapter 11 where we extend this result. A similar theorem
holds when all the task times on any one machine are equal, i.e., when all
jobs have the same processing requirements.

Theorem 4.4. For Fm|(perm), (pmtn), pij = pi|Cmax, any permutation
schedule is optimal, with

Cmax =
∑m

i=1 pi + (n − 1)pmax , where pmax = maxi∈M pi.

this apparently artificial model has application to lot streaming, where a large
number of identical items to be manufactured are divided into equal sublots.
Each sublot then acts as a job.

Most other cases with efficient solutions depend on one or more stages
behaving like nonbottleneck machines. Recall that a nonbottleneck is a con-
ceptual machine that can process any number of jobs simultaneously: it has
infinite capacity, or at least the capacity of n parallel machines. Since each
job passes through such a machine without any waiting, a nonbottleneck acts
like a transfer lag between the adjacent stages.

For another way to visualize this, recall how our problem can be repre-
sented as a directed graph. Fig. 4.2 shows the three-machine case (where
permutation schedules are always optimal). Although this problem is NP-
hard, we saw in Chap. 3 how F2|perm, �j|Cmax, pictured in Fig. 4.2(b), can
be easily solved. The difference, of course, is the absence of the arrows en-
forcing the task sequence on the second machine, call them the M2-arcs. In
each case, the quantity to be minimized, namely the makespan, corresponds
to the critical (i.e., the longest) path through the digraph. Now observe: if the
parameters of the three-machine problem are such that, regardless of the job
sequence, no path involving M2-arcs is ever critical, then we can ignore those
arcs and our problem can be solved as a two-machine problem with lags. For
example, suppose all the task times on M2 are very small, and all the times
on M1 and M3 are very large. Obviously there will never be any congestion
on M2; the makespan is unaffected whether there is one processor at the sec-
ond stage or many. Actually, only one of M1 and M3 need “dominate” M2;
see Theorem 4.2 below.

Similarly for m machines, as presented in Monma and Rinnooy Kan (1983),
any Mk may be considered nonbottleneck if, for every job sequence, the critical
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path (or at least one of them, if not unique) contains just one task processed
on Mk.

Such stages have the properties:

• Consecutive nonbottlenecks M1, M2, . . . , Mu can be replaced by a release
time Σu

k=1 pjk for each Jj.
• Consecutive nonbottlenecks Mu, Mu+1, . . . , Mv can be replaced by one

nonbottleneck machine with processing time Σv
k=u pjk for each Jj.

• Consecutive nonbottlenecks Mv, Mv+1, . . . , Mm can be replaced by a final
delay Σm

k=v pjk for each Jj.

Fig. 4.2 Directed graph representation of schedule (1, . . . , n)
for F3|perm|Cmax, (a) in general, and (b) with M2 dominated

The following result gives conditions for a nonbottleneck.

Theorem 4.2 (Monma and Rinnooy Kan, 1983)
For Fm|perm|Cmax, if:

(a) minj pk−1,j ≥ maxj pkj, or
(b) minj pk+1,j ≥ maxj pkj, or
(c) min{pk−1,j, pk+1,j} ≥ pkj, for j = 1, 2, . . . , n,

then Mk can be considered nonbottleneck.

Under these conditions, it is often said that Mk is dominated by one or both
of the adjacent machines. While conditions (a) and (b) involve all the jobs
collectively, note that for condition (c) we test each job separately.

These and other approaches have been used to find polynomially solvable
cases of Fm|perm|Cmax. Unsurprisingly, most of the “easy” cases deal with
the 3-machine flow shop, for which we saw earlier that permutation schedules
are always optimal. The following subsection lists these cases.

4.6.1 F3|(perm)|Cmax

A number of cases where simple solutions exist can be tied together using
the concept of machine dominance.
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• Machine M2 is dominated
With m = 3, Theorem 4.2 becomes

Theorem 4.3 For F3|(perm)|Cmax, if any of the following conditions holds:

a) minj aj ≥ maxj bj , or
b) minj cj ≥ maxj bj , or
c) min{aj , cj} ≥ bj, for j = 1, 2, . . ., n,

then M2 is dominated, so M2 is nonbottleneck, and S� = JR(a + b, c + b).

Proof outline: As can easily be seen from Fig. 4.2(a), the important
feature that all three conditions of Theorem 4.2 have in common is this: they
imply that the longest or critical path through the network, which defines the
makespan, never traverses any of the M2-arcs. Thus, M2 is nonbottleneck,
so that we need only consider the network shown in Fig. 4.2(b), where, as
discussed in Chap. 3, the critical path is:

Cmax(S) = maxj=1,...,n [
∑j

i=1 ai + bj +
∑n

i=j ci]

= maxj=1,...,n [
∑j

i=1(ai + bi) +
∑n

i=j(ci + bi) −
∑n

i=1 bi]

The final sum is sequence-invariant, and can be omitted when optimizing over
S. We are left with a formula for the critical path through a two-machine
flow shop where Jj has task times <aj + bj, cj + bj>. For this, we know that
the schedule given by Johnson’s Rule, JR(a + b, c + b), is optimal. �

Parts of Theorem 4.3 originally appeared in Johnson (1954), Burns and
Rooker (1976, 1978) and Szwarc (1977).

• Machine M2 is dominant

Definition 4.5. M2 is dominant if either of the following conditions holds:
a) minj bj ≥ maxj aj (i.e., M2 dominates M1), or
b) minj bj ≥ maxj cj (i.e., M2 dominates M3).

When M2 dominates M1, Szwarc (1977) showed that an optimal sequence
can be found as follows: Compute JR(b, c), and let J[1] be the first job in this
sequence. Starting with JR(b, c), create all sequences produced by reschedul-
ing a job with aj ≤ a[1] to position 1, thus obtaining a number of alternative
sequences. The best among JR(b, c) and the newly created sequences is opti-
mal. By symmetry, when M2 dominates M3, the optimal schedule lies among
JR(a, b) and all sequences produced from it by moving a job with cj ≤ c[n]

to position n.

• JR(a, b) = JR(b, c) = JR(a, c)
When these three schedules are identical, Burns and Rooker (1975) showed
that they are optimal for F3|(perm)|Cmax.

• bj = b (j = 1, . . . , n) and ↗aj = ↘cj .
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Under these conditions, S� = ↗aj for F3|(perm)|Cmax (Szwarc, 1977).

• Lower bound condition.
Szwarc (1977) also gave the following result. Let SM = JR(a+b, c+b) be the
modified Johnson sequence, with makespan C′′(SM ), where the primes are
to emphasize that we are scheduling on two machines. Then C′′(SM )− Σjbj

is the minimal makespan of the two-processor shop with times <aj, cj> and
lags bj. Since the complete three-processor network has additional paths,
C′′(SM ) − Σjbj is a lower bound on the minimal makespan of the original
three-machine problem. Now, let C′′′(SM ) be the makespan of the three-
processor problem using the sequence SM . This is a feasible solution to our
problem, so if it achieves the lower bound, it must be optimal. Thus:

Theorem 4.4 For F3|(perm)|Cmax, if C′′′(SM ) = C′′(SM ) − Σjbj , then
S� = SM = JR(a + b, c + b).

• [min(ai, bj) − min(aj , bi)][min(bi, cj) − min(bj, ci)] ≥ 0, ∀i, j.
Under these conditions, F3|(perm)|Cmax is solved in O(n2 logn) time (Szwarc,
1977).

An interesting computational experiment is presented in Smits and Baker
(1981), examining how often a random instance of F3|(perm)|Cmax is opti-
mally solved by one of the above mentioned special cases. It is found that by
far the most successful test is the Lower Bound condition (so called because
C′′(SM )−Σjbj is an obvious lower bound for C′′′(SM )). In their experiment,
Smits and Baker found it to produce an optimum in 341 out of 600 instances
with up to n = 50 jobs. The processing times were either randomly drawn
from a uniform distribution, or correlated (i.e., large aj means that bj, cj tend
to be large), or when aj , bj, cj are positively correlated with M1, M2, M3

respectively; i.e., there is a trend, or when trend and correlated appear si-
multaneously. It was also found that the special cases presented above were
particularly ineffective in solving problems with correlated processing times:
only 7 of 50 instances were solved to optimality for n = 50.

4.6.2 Fm||Cmax

As expected, when m > 3, problem difficulty increases and polynomial special
cases become rare. For the ordered flow shop, the following result significantly
reduces the search space and allows finding an optimal solution using dynamic
programming rather than exhaustive enumeration. The result makes use of
the following class of schedules.

Definition 4.6. In permutation ordered flow shops, a schedule is said to be
pyramidal when there exists position k, 1 ≤ k ≤ n, such that the jobs in
positions 1, 2, . . . , k are in SPT order, with the remaining jobs in LPT order.



4.7 Fm|perm|Cmax 107

Then, for ordered processing times as in Definition 4.4 we have:

Theorem 4.5 (Smith et al., 1976) For Fm|perm, ordered|Cmax, there
exists an optimal schedule which is pyramidal.

A related positive result can be obtained for the proportionate flow shop,
in which machines have different speeds and the time required to process a
job is in proportion to the machine speed. Specifically, letting si be the speed
of Mi, the time that any Jj requires on Mi is given by pij = pj/si. Then:

Theorem 4.6 (Eck and Pinedo, 1988) For Fm|perm, pij = pj/si|Cmax,
if M1 [Mm] is the slowest machine, then S� = LPT [SPT ].

4.7 Fm|perm|Cmax

Given the difficulty and importance of this problem, much effort has gone
into finding effective enumerative schemes using branch-and-bound. Another
approach, rather than insisting on finding the optimum, is to be content with
heuristic solutions. We will briefly discuss aspects of both strategies.

4.7.1 Lower Bounds, with and without Lags

Lower bounds, preferably both tight and easily computed, are useful for two
purposes. First, to evaluate heuristics, in the absence of optimal values to
which the heuristic solution can be compared, a good lower bound on those
values can be useful. Second, when searching for the optimum in a branching
tree, we need at each node a lower bound on all completions of the partial
schedule there.

Our discussion will assume the second case: that a partial schedule σ has
been determined, which occupies each machine Mk up to a time Ck(σ), and
the set U of unscheduled jobs must be appended. In the first case, it is simple
enough to set σ = φ, Ck(σ) = 0, and U = J . In either case, we want a lower
bound on the makespans of all permissible schedules.

In addition, since most of the bounds to be discussed introduce artificial
lags between stages, it adds very little complication to assume that there are
actual transfer lags �ij in the original problem, which we shall do; they can
always be zeroed out.

Lageweg et al. (1978) present a comprehensive classification scheme that
incorporates almost all lower bounds for this problem. The basic idea is to
treat some of the machines, initially bottlenecks (ordinary machines capable
of processing one job at a time), as nonbottlenecks : machines that are able
to process any number of jobs simultaneously, so do not need to be sched-
uled. Obviously, introducing nonbottlenecks shortens the makespan and so
produces lower bounds. A machine Mk that is made nonbottleneck will be de-
noted Nk. Observe that several consecutive nonbottlenecks, say N1, N2, N3,
can be considered a single nonbottleneck on which Jj has task time Σ3

k=1pkj.
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A Simple bound

The simplest bound is found by picking one machine, say Mu, to be the
unique bottleneck. The preceding nonbottlenecks combine to become a single
nonbottleneck we shall call N1u = {N1, N2, ..., Nu−1}. On it, the processing
time of Jj , j ∈ U , incorporating the partial schedule σ already fixed, is:

p1u,j = maxk=1,...,u−1{Ck(σ) +
∑u−1

i=k (pij + �ij)}.

This of course simplifies to p1u,j = Σu−1
i=1 (pij + �ij) if σ is empty. Similarly,

the succeeding nonbottlenecks merge to form Num = {Nu+1, Nu+2, ..., Nm},
on which each Jj requires time

pum,j =
∑m

i=u+1(pij + �i−1,j).

where we include �uj since Jj could be last on Mu, and as always �mj = 0:
there is no lag after the last machine.

Now, how long will it take to process the jobs in U on the three machines
N1u, Mu, Num? Note that the first job to be scheduled on Mu cannot start
until that job has been processed on N1u. Since we do not know which job
that is, all we can say for sure is that it will require at least a time

l1u = min j∈U p1u,j

before Mu can start processing. We might think of l1u as a sort of ma-
chine “setup time”. After that, Mu processes its workload, requiring at least
Σj∈U puj time units. Finally, whichever job is processed last on Mu must
be processed on Num, and the smallest time this will take (which might be
loosely interpreted as a “teardown time” for Mu) is

lum = min j∈U pum,j

The sum of these three quantities is a lower bound for the makespan. Since
this is true for any Mu, we can choose the one that gives the greatest lower
bound, getting finally:

LB1 = maxu=1,..,m{l1u +
∑

j∈U puj + lum}

This lower bound was first presented in Lomnicki (1965) and in Ingall and
Schrage (1965).

Lower bounds of the type l1u and lum (we will call them min-job-sum
bounds) can always be used for a sequence of nonbottlenecks, independently
of all other machines. They are weak bounds, and many researchers have
proposed improvements.

A Tighter Bound

The following bound has already been discussed for the case m = 2 in Sect.
3.2.4. Still with one bottleneck Mu, we improve the bound LB1 as follows.
Since all jobs are processed in parallel on N1u, each Jj is available for pro-
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cessing on Mu at time p1u,j, which can be viewed as an ordinary job release
or ready time, rj. But to minimize makespan on one machine when each Jj

arrives at time rj, we use Jackson’s Rule (Jackson, 1955), sequencing the
jobs on Mu in nondecreasing order of release times (↗rj), as a simple job
interchange argument will verify. Thus, if Cu(S) denotes the makespan on
Mu using schedule S when jobs arrive at times rj , we have:

LB2 = maxu=1,...,m{Cu(↗rj) + lum}, where rj = p1u,j .

Note that we have strengthened the bound at the front of the schedule, but
Num is still represented by the weak min-job-sum bound. Through a time-
reversal argument, the roles of N1u and Num can be interchanged and another
similar bound can be found:

LB′
2 = maxu=1,...,m{l1u + Cu(↗rj)}, where rj = pum,j .

Attempts to strengthen the bound at both ends simultaneously result in an
NP-complete problem.

A Two-Bottleneck Bound

An even tighter lower bound can be calculated by defining two bottleneck
machines, Mu and Mv, 1 ≤ u < v ≤ m, with all the rest nonbottle-
neck. We now base our bound on the simplified system of five machines:
N1u, Mu, Nuv, Mv, Nvm. As before, the first and last add at least the amount
l1u and lvm, respectively, to the makespan. We are left with two ordinary ma-
chines, Mu and Mv, with the nonbottleneck Nuv = {Nu+1, Nu+2, ..., Nv−1}
in between. Of course, Nuv = φ if v = u + 1. Since a nonbottleneck allows
each job to proceed at its own pace, each Jj ∈ U has a delay of

�uv,j = �uj +
∑v−1

i=u+1(pij + �ij),

which is effectively a transfer lag between being processed for a time puj on
Mu and for a time pvj on Mv. As we argued above (see the proof of Theorem
4.3), the optimal schedule for such a two-machine flow shop with lags is:

JR(α, β) , where αj = puj + �uv,j , βj = pvj + �uv,j .

The length of this schedule, call it C(u, v), is a lower bound on the makespan
contribution of the unscheduled jobs on machines Mu, Mu+1, ..., Mv. We
therefore have an overall lower bound of

LB3 = max1≤u<v≤m{l1u + C(u, v) + lvm}
Computing LB3 requires O(m2) applications of Johnson’s O(n logn) algo-
rithm, so it needs a time O(m2n logn), somewhat slow when used repeatedly
in a branch-and-bound algorithm. Note that LB3 reduces to LB1 when u = v.
The computational complexity of LB3 can be reduced by a factor O(n) if we
set u = 1 or v = m. Szwarc (1983b) was the first to include lags in LB3, but
only for the case u = 1, v = m. A comparison of LB1 and LB3 without lags
is provided in Baker (1975), where LB3 is found to be very effective.
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Other Bounds

No bounds have been proposed with more than two bottlenecks, since we can-
not efficiently minimize the makespan in flow shops with over two machines.
As a shorthand to symbolize the types of bounds that have been proposed, we
use b for a bottleneck, and for the nonbottleneck sequences an l denotes the
simple min-job-sum, while L is used for a more sophisticated bound (thus,
big L for a presumably bigger lower bound).

Using this notation, LB1, LB2, LB3 are bounds of type (l, b, l), (L, b, l)
and (l, b, L, b, l), respectively. Lageweg et al. (1978), who introduce this sys-
tematic approach, go through all the different categories, namely (x, b, x)
and (x, b, x, b, x) where each x can be either l or L. They point out that cer-
tain types of bounds are inherently stronger than, or dominate, other types,
meaning that the stronger approach can always produce a tighter bound.
Thus, (L, b, L) dominates (l, b, L) or (L, b, l), all of which dominate (l, b, l).
Generally, for the same number of bottlenecks (b’s), the approach that uses
fewer min-job-sums (l’s) dominates. Also, a procedure that uses two b’s dom-
inates a procedure with one b if it uses at least as many L’s. Hopefully, these
conclusions are easily seen, as they are easily shown. Otherwise, dominance
does not hold. For example, an algorithm of type (L, b, L) can do better or
worse than a (l, b, L, b, l) approach, for different problem instances. For more
details, and additional bounds, see Lageweg et al. (1978).

A New Type of Bound

In all bounds proposed up to now in the literature, as summarized above, all
but one or two machines are replaced by nonbottlenecks. We introduce here a
new approach to lower-bounding the makespan in the m-machine flow shop
with or without lags. We give it more extensive coverage than usual, since
it has not heretofore appeared in publication. One strength of this technique
is that it bounds the m-machine makespan problem even when permutation
schedules are not required.

Without a Predetermined Partial Schedule σ

To keep things simple, we start by proposing a lower bound on the makespan,
with no assumption that an initial partial schedule σ has already fixed.

Theorem 4.7 For every u = 1, 2, . . . , m − 1, the makespan of

Su = JR(
∑u

i=1 pi/u + �u,
∑m

i=u+1 pi/(m − u) + �u),

where pi = (pi1, . . . , pin), �u = (�u1, . . . , �un), is a lower bound for the
optimal makespan of Fm|�ij|Cmax.

That is, replace the first u machines with a single processor on which the
processing time of each Jj is the average of the u separate times: Σu

i=1pij/u;
and similarly group the remaining m − u machines into one machine where
task times are the average over those machines. We now have a two-machine
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problem, with lags between them equal to the lags between Mu and Mu+1.
We assert that its optimal schedule gives a lower bound to our problem.

Proof: We will verify this result by constructing an auxiliary two-machine
problem, as follows. First, replace the first u machines by a single super-
processor, call it the “left” machine ML, that can do any and all the work of
the u machines, and do it u times as fast. That is, ML can process task Tkj

in time pkj/u, for j ∈ J and k = 1, ..., u. Similarly, another super-processor,
the “right” machine MR, will replace the remaining m − u processors, doing
their work m − u times faster.

We first show how, for arbitrary schedule S of an instance of Fm|�ij|Cmax,
we map the first u processors into the first super-processor ML. In Fig. 4.3,
we illustrate with a non-permutation S, using the 5-job 4-machine instance
given in Example 4.1 and assuming u = 2, where for simplicity we set all lags
to zero. Note how lags would stretch out S and only reinforce the conclusion
that the auxiliary system has a smaller makespan. For given S (see Fig.
4.3(a)), order all the tasks on machines M1, M2, . . . , Mu in nondecreasing
order of completion times and process them on ML in that order and without
delay. This is shown in Fig. 4.3(b), where each task is half as long as it
was in S because u = 2. The fact that ML is u times faster than each
of M1, M2, . . . , Mu ensures that the completion time of a task on ML is no
greater than its original completion time. Moreover, the total processing time
of Jj on ML is Σu

k=1pkj/u. One can then eliminate preemption of jobs on ML

simply by concatenating the tasks T1j, . . . , Tuj and ordering jobs j ∈ J on
ML in the order they are processed on Mu (see Fig. 4.3(c)).

Fig. 4.3 Creation of a two-machine problem to give a lower bound
for an instance of Fm||Cmax with n = 5, m = 4 and u = 2
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A mirror image construction can be employed to replace machines Mu+1,
. . . , Mm by a single super-processor MR. On MR, tasks Tkj, k = u+1, . . . , m,
are scheduled backwards from time C(S), in nonincreasing order of their start
times on S, as in Fig. 4.3(d). Each successive task is scheduled as late as
possible so as not to violate precedence and lags. The tasks of a job may then
be grouped, and the jobs scheduled on MR in the order they are scheduled
on Mu+1 (see Fig. 4.3(e)). On both ML and MR, we could have skipped
the intermediate step of scheduling the separate tasks (as in Fig. 4.3(b) and
(d)) and simply scheduled the aggregated tasks, but we went through the
intermediate step to make clear that each job is completed on ML no later
than on Mu, and is started on MR no earlier than on Mu+1, so task precedence
is satisfied.

Let S′ be the resulting schedule on ML, MR. By construction, this schedule
is feasible for F2|�uj|Cmax, and has C(S′) = C(S) (indeed, almost always
the schedule on MR can be left-shifted to make C(S′) even smaller). From
Mitten’s algorithm, we know that C(Su) ≤ C(S′), and hence is a lower bound
for Fm|�ij|Cmax. �

If a Partial Schedule Already Exists

Suppose now that partial schedule σ already exists, occupying each Mk up
to a time Ck(σ), with job set U remaining to be scheduled. We can simply
assume that Mk is initially occupied by a dummy job requiring time Ck(σ)
(and requiring zero processing on every other machine). We can then add
these m jobs to U and repeat the above construction.

Combined Bounds

We can now define a more general class of lower bounds by combining this
new type of bound with the earlier nonbottleneck bounds. Thus, suppose we
partition the set of machines into three groups. Group 1 includes the stations
M1, . . . , Mu, Group 2 includes the intermediate machines Mu+1, . . . , Mv−1,
and Group 3 the machines Mv, . . . , Mm. For any pair of values u, v with
1 ≤ u < v ≤ m, we calculate the sequence

Su,v = JR(
∑u

i=1 pi/u + �uv,
∑m

i=v pi/(m − v + 1) + �uv)

where

�uv,j = �uj +
∑v−1

i=u+1(pij + �ij).

That is, we define a two-machine flow shop with lags, in which the data for
machines in Groups 1 and 3 provide the processing times (in the spirit of
Theorem 4.7), while machines in the middle group are made nonbottleneck
and so generate lags (as in the two-bottleneck bound, LB3). As we know, the
optimal permutation schedule for such a shop is given by Su,v. Note that,
when v = u + 1, Group 2 disappears, and the lags are simply �uj . Also, we
earlier introduced Su,u+1 as Su.
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At this point, the following theorem should be clear. Since it is a combi-
nation of earlier results, the proof combines elements of those arguments and
will be omitted.

Theorem 4.8 For each pair of values (u, v), the makespan of Su,v is a lower
bound on the minimal makespan of Fm|perm, �ij|Cmax.

The work required to calculate Su,v for all u, v is O(m2n logn) because
there are m(m − 1)/2 = O(m2) combinations of (u, v) values, for each of
which the effort to calculate Su,v is O(n logn).

Computational Experiments

As we know, Su,v generalizes two earlier results: S1,m reduces to the se-
quence obtained in LB3, while Su,u+1 duplicates the result in Theorem 4.7.
We can verify that neither of these two bounds dominates the other. Con-
sider the problem instance with m = 4, and n = 10 copies of the job
J = <p1, . . . , p4; �1, �2, �3> = <p, 10, 10, p; 5, 5, 5>. For the case (u, v) =
(1, 4), the corresponding two-machine problem has 10 identical jobs with
p′1 = p′2 = p and �′1 = 35, so the makespan C(S1,4) = 35 + 11p. For
(u, v) = (2, 3), all jobs have p′1 = p′2 = (10 + p)/2 and �′1 = 5, so
C(S2,3) = 5 + 11(10 + p)/2 = 60 + 5.5p. It follows that if p is small (say,
p ≤ 4), S2,3 gives the larger (i.e., tighter) bound, while for p ≥ 5, S1,4 domi-
nates.

We can vary the values of n and �i, and observe what situations favor each
of the 2 lower bounds. It is easily seen that S2,3 is superior (i.e., C(S2,3) >
C(S1,4)) when

• lags are small relative to processing times;
• the number of jobs is large;
• processing times on the intermediate machines are large relative to the

early and late machines.

Since neither Su,u+1 nor S1,m dominates, we may reasonably ask whether
computing Su,v for all values of u and v can produce tighter bounds than
either. Below we provide an example with m = 4 and n = 5 where S1,3 gives
the greatest lower bound.

Example 4.1: Consider the following instance of Fm|perm, �ij|Cmax with 5
jobs and 4 machines.

j p1j �1j p2j �2j p3j �3j p4j

1 6 1 1 0 10 2 1
2 6 1 2 3 11 1 2
3 8 1 2 1 15 2 1
4 7 3 1 2 13 1 2
5 9 2 3 2 17 1 2
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Table 4.1 reports the calculations made to compute the sequences Su,v for 1 ≤
u < v ≤ 4. Note that in this problem instance all time lags are comparable
and the processing times in stages 1 and 3 are larger than in stages 2 and
4. As expected, S1,3 accurately reflects the bottleneck stages and indeed
C(S1,3) = 52 outperforms all other lower bounds.

Table 4.1 Lower bound calculations for a 5-job instance of F4|perm, �ij |Cmax

u v j p′
1

�uv p′
2

p′
1

+ �uv p′
2

+ �uv Su,v

1 2 p
1

�12
1
3 (p

2
+ p

3
+ p

4
)

1 6 1 4 7 5
2 6 1 5 7 6
3 8 1 6 9 7 S1,2 = (5, 4, 3, 2, 1)
4 7 3 5.3 10 8.3 C(S1,2) = 41
5 9 2 7.3 11 9.3

1 3 p
1

�13
1
2 (p

3
+ p

4
)

1 6 2 5.5 8 7.5
2 6 6 6.5 12 12.5
3 8 4 8 12 12 S1,3 = (2, 3, 4, 5, 1)
4 7 6 7.5 13 13.5 C(S1,3) = 52
5 9 7 9.5 16 16.5

1 4 p
1

�14 p
4

1 6 14 1 20 15
2 6 18 2 24 20
3 8 21 1 29 22 S1,4 = (5, 4, 3, 2, 1)
4 7 20 2 27 22 C(S1,4) = 51
5 9 25 2 34 27

2 3 1
2 (p

1
+ p

2
) �23

1
2 (p

3
+ p

4
)

1 3.5 0 5.5 3.5 5.5
2 4 3 6.5 7 9.5
3 5 1 8 6 9 S2,3 = (1, 3, 4, 2, 5)
4 4 2 7.5 6 9.5 C(S2,3) = 41
5 6 2 9.5 8 11.5

2 4 1
2 (p

1
+ p

2
) �24 p

4
1 3.5 12 1 15.5 13
2 4 15 2 19 17
3 5 18 1 23 19 S2,4 = (5, 3, 4, 2, 1)
4 4 16 2 20 18 C(S2,4) = 37
5 6 20 2 26 22

3 4 1
3(p

1
+ p

2
+ p

3
) �34 p

4
1 5.7 2 1 7.7 3
2 6.3 1 2 7.3 3
3 8.3 2 1 10.3 3 S3,4 = (1, 2, 3, 4, 5)
4 7 1 2 8 3 C(S3,4) = 40
5 9.7 1 2 10.7 3
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4.8 Dominance Properties for Fm|perm|Cmax

Continuing with our discussion of the makespan objective, on which the re-
search reported in the literature focuses, we now present properties that aim
to reduce the solution space of a problem by eliminating sequences that result
to suboptimal solutions. Such properties may be characterized as job dom-
inance or sequence dominance. If we specialize Theorem 4.1, recalling that
“Ji dominates Jj following σ” is written j �σ i, we get

Corollary 4.1 For Fm|perm|Cmax with initial partial sequence σ,

C(σijπ1π2) ≤ C(σjπ1iπ2) for all π1, π2 ⇒ i �σ j ,

where σijπ1π2 is a complete schedule.

Szwarc (1971) uses this as his definition of job dominance.
Sequence dominance was introduced earlier in Definitions 4.2 and 4.3,

which we will not repeat here. The work of Gupta (1971) indicates that
sequence dominance is much more demanding than job dominance in terms
of storage space and CPU time, because there are

(
n
r

)
distinct subsets of J of

size r, each of which has r! permutations. Furthermore, sequence dominance
does not contribute much to reducing the time required to identify a set of
undominated solutions. For these reasons, most of the research devoted to
dominance properties for Fm||Cmax focuses on job dominance.

The job dominance properties that have appeared in the literature assume
permutation schedules, i.e., schedules for Fm|perm|Cmax. Szwarc (1971) pre-
sented a comparison of various job dominance properties. The following two
stand out.

Theorem 4.9 (Dudek and Teuton, 1964) For Fm|perm|Cmax with initial
partial sequence σ,

Ck(σij) ≤ Ck(σji), for k = 2, ..., m ⇒ i �σ j

For the following theorem, we define

Δk = Ck(σij) − Ck(σj) for k = 1, 2, . . . , m.

Theorem 4.10 (Szwarc, 1971) For Fm|perm|Cmax with initial partial se-
quence σ,

Δk−1 ≤ Δk ≤ pki for k = 2, ..., m ⇒ i �σ j.

The latter property subsumes several dominance criteria that have ap-
peared in the literature; see Szwarc (1971), Bagga and Chakravarti (1968),
Smith and Dudek (1967) and (1969). Moreover, the following criteria are
shown in Szwarc (1971) to be equivalent to the condition of Theorem 4.10:

• Δk−1 ≤ pki, Δk ≤ pki for k = 2, . . . , m, or
• max{Δ1, . . . , Δm} ≤ pki for k = 2, . . . , m, or
• Δk ≤ min{pki . . . , pmi} for k = 2, . . . , m.
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Using Theorem 4.10, Baker (1975) developed an elimination algorithm
that selects the best among all undominated sequences resulting from The-
orem 4.10 and found that elimination followed by branch-and-bound strate-
gies is computationally inefficient compared to a branch-and-bound algorithm
that uses solely backtracking and no dominance. A slightly different type of
job dominance property is presented next where the focus is on the last job
of an optimal sequence.

Theorem 4.11 (Szwarc, 1973)
If max{Δ1, . . . , Δm} ≤ pmj, then Jj is never last.

In the last two sections we studied lower bounding schemes and dominance
properties as a means of reducing the set of undominated solutions and iden-
tify an optimal one by a branch-and-bound algorithm. Towards this end, we
are in need of heuristic algorithms which can quickly identify a near-optimal
solution for an initial upper bound. Of course, heuristics may also be used
(and usually are) as stand-alone. This is the focus of the next section.

4.9 Heuristic Algorithms

In this subsection we present constructive and iterative heuristics. In con-
structive heuristics, also called one-pass or single-shot heuristics, a single
permutation is proposed, built one job at a time, or by computing an index
for every job and then ordering the jobs by index values. Iterative heuristics,
also called improvement heuristics, improve upon an initial solution by job
exchanges.

As with most flow shop designs, the literature is largely concerned with
permutation sequencing, despite the observation by Potts et al. (1991) that
such practice may produce poor solutions in some cases. We begin with two
attempts to find good nonpermutation schedules. An obvious extension of
Johnson’s algorithm is the following heuristic proposed by Gonzalez and
Sahni (1978) where for simplicity, we assume that m is an even integer, if
necessary adding a dummy stage where each job requires zero time.

Heuristic HCON for Fm||Cmax

1. Compute schedules S2k−1,2k = JR(p
2k−1

, p
2k

), for k = 1, 2, . . . , m/2.
2. Let SCON be the concatenation of partial schedules S12, S34, . . . , Sm−1,m.

Of course, SCON is not generally a permutation schedule because different
permutations will usually be optimal for different pairs of machines. It will
not often produce good schedules, since successive pairs of machines are in no
way coordinated. Simple job interchange, say of adjacent pairs, would clearly
improve SCON for many instances.

Despite its simplicity, the worst case makespan of SCON is the best known
to date. Indeed, if C� is the optimal makespan value for Fm||Cmax, then
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clearly C(S2k−1,2k) ≤ C� for k = 1, 2, . . ., m/2, so that C(SCON ) ≤ mC�/2.
The following result incorporates odd values of m:

Theorem 4.12 (Gonzalez and Sahni, 1978) For Fm||Cmax:

C(SCON )/C� ≤ �m/2�, and this bound is tight for m = 3, 4.

Sevast’janov (1995) presented absolute performance guarantees by apply-
ing to the flow shop makespan problem results from the non-strict vector
summation problem (NVS) which is stated as follows: Given a norm in the
plane, and a finite family of vectors with zero sum and each vector having at
most unit length, does there exist a permutation of the vectors such that for
any two successive partial sums of the vectors specified by the permutation
at least one of them belongs to a given domain G? For the adaptation to
the flow shop makespan problem, the norm used is the Euclidean and upon
scaling of the job processing times G is the unit ball. The finite set of vectors
is formed using the differences Σi

j=1pσ(j),k − Σi−1
j=1pσ(j),k+1 for given permu-

tation σ , i ∈ J , k ∈ M, and the observation that there exists σ such that

C(σ) ≤ maxi Pi +
∑m−1

k=1 maxi(
∑i

j=1 pσ(j),k −
∑i−1

j=1 pσ(j),k+1)

where Pi = Σk pki; see Sevast’janov (1994). Then, Sevast’janov (1995) pre-
sented the absolute performance bound C(σ) ≤ maxi Pi + β(m)pmax, with

m−1 + �(m−1)/2� ≤ β(m) ≤ m2 − 3m + 3 − 1/(m−2)

(note that maxi Pi ≤ C�). In Sevast’janov (1997), the author developed a lin-
ear time heuristic with absolute performance guarantee β(3) = 3 for problem
F3|(pmtn)|Cmax and an O(n logn) heuristic with 4 ≤ β(4) ≤ 6 for prob-
lem F4|pmtn|Cmax. To date, these appear to be the strongest approximation
results available in the literature.

The results considered so far regard permutation schedules. Koulamas’s
(1998) heuristic, referred to as HFC, explicitly accounts for improvements
in makespan by means of nonpermutation schedules. HFC makes use of the
following

(
m
2

)
= O(m2) schedules:

Sk,k′ = JR(pk, pk′), for 1 ≤ k < k′ ≤ m.

Heuristic HFC for Fm||Cmax

1. Set S0 := φ and compute schedules S = {Sk,k′ : 1 ≤ k < k′ ≤ m}.
2. Schedule next in S0 an unscheduled job with greatest total number

of unscheduled followers in all schedules in S.
Repeat until a complete permutation of jobs in J is obtained.

3. For i = 1 to n − 1 do
If for some l, 2 ≤ l < m, Ji precedes Ji+1 in {S0, Sk,k′ : 1 ≤ k < k′ ≤ l},

and Ji+1 precedes Ji on {Sk,k′ : l + 1 ≤ k < k′ ≤ m},
then let Ji pass Ji+1 after Ml on S0.

4. Let SHFC be the resulting schedule.
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Koulamas’s implementation of HFC is shown to take O(m2n2) time. Sur-
prisingly, as we will see shortly, HFC does not compare favorably with the
best known heuristics for Fm|perm|Cmax. This might be due to the fact that
it only allows for a single pass for each job.

The heuristics presented so far resulted in nonpermutation schedules. We
focus next on heuristics for Fm|perm|Cmax. The earliest published heuristic
for this problem appears to be Palmer’s (1965) algorithm. It seeks to give
priority to jobs having the strongest tendency to increase in processing time
as they progress through the stages (and, of course, to schedule jobs with the
opposite tendency later). To accomplish this, Palmer proposes the schedule
↗sj , where the slope, sj , of Jj is defined:

sj =
∑m

i=1(m − 2i + 1)pij.

Since the coefficients decrease as i increases, sj is small if early times are
small and late ones large; and vice versa. When applied to F2|(perm)|Cmax

the slope heuristic, ↗sj , sequences jobs in nondecreasing order of bj − aj

and is not necessarily optimal. It has complexity O(nm + n logn) due to
calculating all sj ’s and subsequently sorting them, and is shown in Nowicki
and Smutnicki (1993) to have worst case relative error bound m/

√
2.

Note that the sj values ignore machine M(m+1)/2 (s(m+1)/2 = 0) when m is
odd. Hundal and Rajgopal (1988) created two more schedules to resolve this
peculiarity (namely, the schedules associated with slopes s′j = Σm

i=1(m−2i)pij

and s′′j = Σm
i=1(m − 2i + 2)pij) and select one with the smallest makespan.

Palmer’s slope algorithm is not the only way to express “slope”. Gupta’s
(1971) version of slope is:

fj = sign(p1j − pmj)/ mink=1,...,m−1(pkj + pk+1,j).

Nowicki and Smutnicki (1994) established the worst case relative error
bound for Hundal and Rajgopal’s heuristic to be m/

√
2+O(1/m). The same

authors showed that Gupta’s slope algorithm has worst case relative error
bound m − 1. Alternative slopes are given in Bonney and Gundry (1976)
using the cumulative processing times of jobs.

One of the best performing polynomial time heuristics is due to Campbell,
Dudek and Smith (1970), often referred to as the CDS heuristic. It solves a
series of pseudoproblems using Johnson’s algorithm, as follows:

Heuristic CDS for Fm|perm|Cmax

1. For r = 1, 2, . . . , m − 1 define

ar
j =

∑r
k=1 pkj, br

j =
∑m

k=m−r+1 pkj, j = 1, . . . , n. (4.7)

2. Compute JR(ar , br), and choose the best of the m − 1 schedules.

In other words, the CDS heuristic solves a series of two-machine pseudoprob-
lems where the processing requirements of Jj on M1 [M2] equals the combined
processing required on the first [last] r stations of the original flow shop. On
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randomly generated problems with up to 8 jobs and 3, 5 or 7 machines the
optimality gap of the CDS heuristic is reported to be 2.54%. Nowicki and
Smutnicki (1989) showed that a worst case relative error bound of the CDS
algorithm is �m/2� but this bound is not necessarily tight.

Page (1961), building on the CDS heuristic, expresses Johnson’s Rule as
a list schedule, using the priority index Ir(j) = sign(ajr − bjr)/min(ajr, bjr)
(see Version 3 of JR in Chap. 2), in terms of which JR(ar , br) becomes
↗Ir(j). Having chosen the best of these over r, the indices are sorted by
various methods (e.g., merging, pairing) as well as by 2-Opt and other job
exchanges so as to develop alternative heuristics. Each one of the proposed
heuristics produce a single permutation.

Like the CDS algorithm and its extensions, a simple variation of JR was
presented in Dannenbring (1977) using linear combinations of the task times
for the values aj, bj and running a single iteration of Johnson’s algorithm.
The heuristic, referred to as rapid access or RA, is as follows:

Heuristic RA for Fm|perm|Cmax

1. Define

Aj =
∑m

i=1(m − i + 1) pij, Bj =
∑m

i=1 i pij , j = 1, . . . , n

2. Compute JR(A, B).

Heuristic RA and is shown in Nowicki and Smutnicki (1991) to have worst
case relative error bound m/

√
2 which becomes tight as m approaches infin-

ity. To further improve the RA heuristic, Dannenbring (1977) experimented
with pairwise job exchanges. His rapid access with close order search (or
RACS) heuristic considers the n − 1 possible swaps of adjacent jobs, while
the rapid access with extended search (or RAES) heuristic allows for unlim-
ited adjacent job swaps as long as they reduce Cmax. It was found that RAES
outperformed all heuristics presented earlier in this section in more than 70%
of the randomly generated instances tested, which were of various sizes with
n, m ≤ 50. Nowicki and Smutnicki (1993) showed, however, that the worst
case relative error bound of RAES is the same as for RA, i.e., m/

√
2.

Another well known heuristic algorithm is due to Nawaz, Enscore and Ham
(1983) and is referred to as the NEH heuristic. It is based on the premise
that a job Jj with larger total processing requirement Σipij would rather
be processed earlier. Using C(σ) to represent the makespan of the partial
schedule σ as it develops, and denoting the total processing time of a job by
Pj = Σipij, the steps of this heuristic are as follows:
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Heuristic NEH for Fm|perm|Cmax

1. Let ↘Pj = (J[1], J[2], . . . , J[n]), and set σ := φ.

2. For i = 1 to n, do
begin

Let σk be σ with J[i] added in position k (k = 1, . . . , i).
Find k� : C(σk�) = mink=1,...,i C(σk). Set σ := σk�

end
3. Let SNEH = σ.

In words, find successively the job requiring the most total processing, and
insert it into the partial schedule in the position that minimizes the makespan.
By careful calculation of the change in the makespan value caused by each
insertion, Taillard (1990) showed that the computational complexity of NEH
is O(mn2). The complexity of CDS is O(mn logn), so NEH is expected to
require slightly more CPU time for large n.

As we will see shortly, NEH is one of the most commonly used algorithms
in flow shops, often used as a seed for other heuristics. This has attracted
interest in refining NEH. Rad et al. (2009) developed improved variations
of NEH with complexity ranging from O(m2n2) to much more expensive
variants that involve local search. One of these variations, we’ll call it NEH1,
involves a different ordering of the jobs in Step 1; specifically:

Heuristic NEH1 for Fm|perm|Cmax

1. List all task times in nondecreasing order: Lp = (p(1), p(2), . . . , p(mn))

2. Let LJ = (J[1], J[2], . . . , J[mn]) be the corresponding job list, where p(l) is
the time of one of the tasks of J[l] = <p1[l], p2[l], . . . , pm[l]>. Evidently, every
Jj ∈ J appears precisely m times in LJ . Set σ := φ.

3. For i = 1 to mn, do
begin

If J[i] is already in σ, remove it.
Let σk be σ with J[i] inserted in position k (k = 1, . . . , i).
Find k� : C(σk�) = mink=1,...,i C(σk). Set σ := σk�.

end

4. Let SNEH1 = σ.

Clearly, Step 3 is repeated m times per job, thus mn times. The complexity
of NEH1 is O(m2n2) because the makespan increase due to an insertion can
be found in O(mn) time.

Another improvement on NEH is proposed in Dong et al. (2008). Here,
jobs are considered for insertion in the order ↗(Pj/m + devj) (rather than
↗Pj), where devj =

√
Σk(pkj − ΣjPj/m)2. While inserting a job in Step 2

of NEH, if multiple sequences produce the same makespan value C(σk�), a
tie-breaking rule is proposed that aims in balancing the utilization among
machines.
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We now consider the relative merits of NEH and CDS. Nawaz et al. (1983)
and Park (1981) performed computational experiments on randomly gener-
ated problems with up to 30 jobs and 25 machines and reported that the
number of times the NEH heuristic produces a solution that is superior to
CDS is significantly greater than when the reverse happens. Turner and Booth
(1987) reached a similar conclusion for NEH against the RAES heuristic of
Dannenbring (1977). Koulamas (1998) showed that NEH and HFC deliver
comparable solution quality, but this depends heavily on the test set.

In an interesting experiment, Framinan et al. (2002) demonstrated that
the ↘Pj ordering of jobs is not crucial to the success of NEH; in fact, a
random initial sequence performs comparably. Instead, the success of NEH
is due to the large number of partial sequences tested.

As with RAES, Suliman (2000) developed an iterative heuristic that starts
with the CDS schedule and employs adjacent pairwise job exchanges within
an ordered search scheme. To limit the number of exchanges, the forward
direction is used (i.e., a job and its successors) only for as long as such
exchanges improve makespan. If a forward exchange does not improve the
makespan, the reverse direction is used for exchanges. The resulting algorithm
is found to have performance comparable to NEH which runs faster. In a
related local search heuristic, Krone and Steiglitz (1974) employed insertions
in the backward direction.

As in NEH1, one may allow jobs already scheduled in σk� (at Step 2 of
NEH1) to further reduce the makespan value by re-inserting jobs to different
positions of the partial sequence. The number of permissible insertions affects
the CPU requirements and the solution quality produced by the resulting
heuristic. Three such local search variations of NEH1 are presented in Rad
et al. (2009). The best of the three involves a full local search; below we refer
to it as NEH1L.

Another constructive heuristic is presented in Widmer and Hertz (1989)
where jobs are thought of as “cities” and the makespan as the length of a
traveling salesman tour. The “distance” between Ji and Jj occupying posi-
tions k − 1 and k of a permutation is captured by

dij = p1i +
∑m

k=2 [(m − k)|pik − pj,k−1|] + pjm,

where the summation approximates the idle times inserted in the schedule
as jobs Ji and Jj progress through machines M2, . . . , Mm, giving a heavier
weight to inefficiencies occurring earlier. Then, the greedy heuristic is used to
minimize the “total distance traveled” by visiting next the “city” that adds
the least amount to the “tour”. Note that the permutations produced by the
above heuristics which do not lead to local optima, can be improved by an
application of RACS or RAES. Even then, Widmer and Hertz (1989) found
that NEH outperforms the local optima produced by Johnson’s, Palmer’s and
Gupta’s heuristics as well as CDS and RAES.

The traveling salesman tour idea has also been used in Ho and Chang
(1991) with a different distance metric, but the resulting algorithm is not
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found to perform very well for the makespan objective and for this reason we
omit the details here.

An entirely different approach was used in Sevast’janov (1995) who re-
duced Fm|perm|Cmax to the Vector Summation Problem in Banach spaces.
This implies the worst case error O([m2 − 3m + 3 + 1

m−2
]maxij pij). How-

ever, in her experiment, Lourenco (1996) showed that NEH outperforms Sev-
ast’janov’s algorithm.

The list of heuristics presented in this subsection is by no means exhaus-
tive, but alternate heuristics appear to be dominated by those presented
here. Contributors include Sarin and Lefoka (1993), Davoud Pour (2001),
Framinan et al. (2003), Gupta (1972), King and Spachis (1980), Stinson and
Smith (1982) to name a few. A survey of these works is included in Ruiz
and Maroto (2005), who present by far the most comprehensive compar-
ison of constructive and iterative heuristics. They cover 15 algorithms in
their study, including most of those presented above and the popular dis-
patching sequences FCFS, SPT and LPT. For their experiment, the authors
used a set of 120 particularly difficult problems presented in Taillard (1990).
This set of test problems includes 10 problems for each of the combinations
(n, m) ∈ (20, 5), (20, 10), (20, 20), (50, 5), (50, 10), (50, 20), (100, 5), (100, 10),
(100, 20), (200, 10), (200, 20), (500, 20) and can be found in the OR Library:
http://mscmga.ms.ic.ac.uk/info.html. Benchmark makespan values are
presented in Taillard (1993) for these problems, and subsequently improved in
the literature. The findings presented below are based on the average relative
percentage error from the best known solution at the date of the experiment
(i.e. year 2004).

• Dispatching rules FCFS, SPT and LPT produce poor schedules.
• NEH produces the best schedules, with Suliman’s improvement heuris-

tic a close second. Palmer’s and Gupta’s heuristics are among the worse
performers.

• RACS solution quality is similar to that of Ho and Chang’s heuristic, while
RAES exhibits smaller average relative error than RAES by 7.42%.

• HFC (which allows for passing) delivers average solution quality.
• The relative error increases with m and is independent of n.

In regards to the last observation, all 20 problems in the test set corresponding
to n = 50, 100 and m = 20 were open (as of 2004) with respect to the optimal
makespan value. Further, Rad et al. (2009) showed that, on average, variation
NEH1 improves by about 1.5% upon the makespan values of the solutions
obtained by NEH on the Taillard suite. Further, the local search employed
in heuristic NEH1L improves upon NEH1 by another 0.5% on the Taillard
suite.

http://mscmga.ms.ic.ac.uk/info.html
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4.10 Metaheuristics

In this section we review metaheuristics developed for Fm|perm|Cmax. Meta-
heuristics make extensive use of neighborhood search, as do iterative heuris-
tics. However, they are also equipped with mechanisms that allow the search
to deviate from local optima – temporarily accepting inferior solutions – so as
to direct the search to other (hopefully more promising) areas of the search
space. Metaheuristic algorithms are mimetic in nature and include simulated
annealing (SA), tabu search (TS), genetic algorithms (GA), ant colony opti-
mization (ACO) and hybrids thereof.

4.10.1 Simulated Annealing

We start our review with metaheuristics based on SA; a methodology that
simulates the annealing process used in physics to cool solids slowly until
they reach a low energy state (see van Laarhoven and Aarts, 1987). The
current benchmark for SA algorithms is the implementation of Osman and
Potts (1989). It utilizes two ways to improve upon an incumbent solution:
interchanging the positions of a pair of jobs in the permutation, or moving one
job in a pair to a position right after the other. Both types of job movements
are examples of descent algorithms that seek to reduce the makespan value.
We refer to the first as a swap and to the second as an insertion. Swaps
and insertions may be done in a predetermined order that captures all

(
n
2

)
possible pair combinations, or randomly. In their experiments on randomly
generated problems with m ≤ 20 and n ≤ 100, Osman and Potts found that
their SA outperforms CDS and NEH when these two do not benefit by a
decent method to improve the starting solution. When CDS and NEH are
so improved, and the pairs of jobs are chosen in a predetermined order, it
is found that the two methods are comparable in solution quality. Moreover,
compared to NEH, the Osman and Pott’s SA algorithm finds the better
solution for 82.5% of the problems while for the remaining 17.5% there is
a tie – thus giving a definite advantage to SA. It is also found that this
SA algorithm performs far better when insertions are used instead of swaps,
and surprisingly, when the insertion pairs are chosen randomly. It was also
found that, the starting solution used in SA makes a statistically significant
difference. Rad et al. (2009) showed that using their NEH1L solution as the
seed, yields on average about 2.3% better makespan performance for the
problems in the Taillard suite compared to using the NEH solution as the
seed.

Ogbu and Smith (1990a) developed a similar SA algorithm where the ini-
tial schedule is produced by Palmer’s slope algorithm, and the RA, RACS
and RAES heuristics of Dannenbring (1977). Ogbu and Smith (1990b) com-
pared the performance of their SA algorithm against the one by Osman and
Potts giving a slight advantage to the latter. Alternative SA implementa-
tions exhibiting robust performance with respect to temperature cooling are
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presented by Ishibuchi et al. (1995) who show that the solution quality is com-
parable to that of Osman and Potts. Zegordi et al. (1995) used a so-called
move desirability index for each job within the SA framework, resulting in
faster convergence. Still, the overall solution quality is inferior to the one of
Osman and Potts for the problems tested.

4.10.2 Tabu Search

Tabu search based algorithms have also attracted significant attention. TS
starts with a carefully selected initial solution. The incumbent solution is
transformed into another solution through appropriate moves like swaps, in-
sertions, etc., chosen from a neighborhood. To avoid cycling through the same
or similar solutions, a tabu list is created that includes solutions that are pro-
hibited for a period of time – also a parameter. The tabu list allows TS to exit
local minima in hopes of reaching alternative, hopefully better, optima. The
algorithm terminates when an iteration or time limit is reached; see Glover
(1989, 1990).

Using the traveling-salesman based heuristic of Widmer and Hertz (1989),
presented above, as the initial solution, the authors developed a TS imple-
mentation referred to as SPIRIT. As we mentioned before, NEH outperforms
the local optima produced by Johnson’s, Palmer’s and Gupta’s heuristics as
well as CDS and RAES. Of the 500 instances with n, m ≤ 20 randomly gen-
erated to compare SPIRIT with NEH, Widmer and Hertz found that SPIRIT
produced a better solution 46.8% of the time, NEH was better in 18.6% of the
cases, and both methods yielded the same makespan value for the remaining
34.6%. Thus SPIRIT was at least as good as NEH 81.4% of the time, and its
superiority grew as the problem sizes increased.

Taillard (1990) developed an algorithm similar to SPIRIT that uses an
improved NEH initial schedule rather than the traveling salesman based so-
lution, and various neighborhood searches. He showed experimentally that
the two implementations have comparable performance. Further enhance-
ments in the initial solution of SPIRIT are made by Reeves (1993) who used
insertions on the NEH schedule. The ensuing TS implementation is shown to
outperform the SA of Osman and Potts for the problems tested. Moccellin
(1995) presented yet another variant of SPIRIT using a different metric for
the related Traveling Salesman Problem, and a different heuristic to solve it.

A different cohort of TS implementations is based on the following obser-
vation. Let S = (1, 2, . . . , n) be the permutation associated with any initial
solution and C(S) be the length of the critical path from the start of T11 to the
end of Tmn in a precedence network, as shown in Fig. 4.4 for m = 4, n = 7.
Assume that u1, ..., um−1 are the indices that maximize the path length:

C(S) =
∑u1

j=1 p1j +
∑u2

j=u1
p2j + . . .+

∑n
j=um−1

pmj (4.8)

for u0 = 1 ≤ u1 ≤ u2 ≤ . . . ≤ um−1 ≤ n = um. Thus, if the heavy ar-
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rows show the critical path in Fig. 4.4, we would have (u0, u1, ..., um) =
(1, 2, 2, 5,7). Let Bk = {uk−1, . . . , uk} be the corresponding block of jobs
(properly, job indices) in S that are processed consecutively on Mk for
k = 1, 2, . . . , m. In Fig. 4.4, for example, B1 = {1, 2},B2 = {2},B3 =
{2, 3, 4, 5}, and B4 = {5, 6, 7}. We will refer to uk−1 and uk as the “end”
jobs of the block, the rest of Bk being “interior” jobs. Clearly, C(S) does
not decrease by swapping two interior jobs (jobs in Bk − {uk−1, uk}), or by
moving an interior job to a different interior position in Bk. Therefore (as
observed by Grabowski, 1982), noting that end jobs are also members of ad-
jacent blocks, the only way to decrease C(S) with a single swap or insertion
is to move a job from one block to another.

Fig. 4.4 Directed graph representation of schedule S = (1, . . . , 7) for F4|perm|Cmax

The above result was used by Nowicki and Smutnicki (1996) within the
TS framework so as to avoid unpromising swaps and/or insertions. They
experimented only with insertions (since the neighborhood size when using
swaps is prohibitive) and even then, they only allowed insertions of jobs of
one block to a limited number of positions in the adjacent blocks. Specifically,
either

• move an interior job in Bk (k = 1, ..., m) to a position in either
Lk = {uk−2+nl, . . . , uk−1} ⊆ Bk−1 , or Rk = {uk, . . . , uk+1−nr} ⊆ Bk+1;

or

• move uk (k = 1, ..., m− 1) to a position in either Lk or Rk+1;

where L1 = Rm = φ, and nl and nr are nonnegative integers which control
the size of the neighborhood. In their TS implementation, the authors used
a tracking mechanism for recording and recovering high quality solutions,
referred to as Back Jump Tracking. The initial solution used is obtained by
NEH and the resulting implementation is abbreviated as TS Algorithm with
Back jump tracking, or TSAB. In the ensuing experiment TSAB improved
upon the majority of the benchmark makespan values in Taillard (1993), and
the improved values were found much faster than in Taillard (1990).
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A related TS implementation referred to as GP, is due to Grabowski and
Pempera (2001). Here, insertions are of the form:

• move an interior job in Bl to the interior of Bk, (k, l = 1, . . . , m; k = l).

and are made only when they improve the value of the makespan. As a result,
the size of the neighborhood in GP is smaller than in TSAB. Again, the NEH
heuristic is used for the initial solution. It is shown that GP outperforms
TSAB with respect to CPU times and provides comparable solution quality.

Much reduced is the neighborhood used in Grabowski and Wodecki (2004).
For k = 1, . . . , m, they limit insertions to

• move a head job in Hk ≡ Bk − {uk} to the position just after uk,

or

• move a tail job, j ∈ Tk ≡ Bk − {uk−1} to the position just before uk−1,

In the resulting implementation, referred to as GW, further CPU savings are
attained by estimating the makespan of S′. Defining

δl(i, j) = plj − pli, for l = 1, ..., m, i, j ∈ J with δ0(i, j) = δm+1(i, j) = 0,

then, if we get S′ from S by inserting head job Jj , j ∈ Hk after uk:

C(S′) ≈ C(S) + ΔkR,

where

ΔkR =
{

δk+1(uk, j) if j ∈ Hk − {uk−1},
δk+1(uk, j) + δk−1(j, uk−1 + 1) if j = uk−1.

To see the rationale for this formula, consider block B3 of the critical path
(heavy arrows) in Fig. 4.4, with H3 = {2, 3, 4}, and suppose (the first case
of ΔkR) we move Jj, j ∈ H3 − {u2} = {3, 4}, say j = 3. We move it to just
after J5 (since u3 = 5), so it takes position 5, while J4 and J5 move left one
place. Being an end job, Ju3 contributes two task times to the critical path,
on M3 and M4, while the interior job in position 3 or 4 contributes only
one. It should now be clear that the path gains p43 and loses p45, which is
precisely δ4(5, 3) = δk+1(uk, j). The same logic applies to the second case of
ΔkR, where a trade-off occurs at both ends of B3.

Why is this only an approximation to the new critical path length? First,
the same path that was critical for S may no longer be critical for S′, in which
case the new length of that path underestimates C(S′). More importantly
(and this is not reflected in the original paper), look again at Fig. 4.4. At
the left end of B3, J2 contributes three tasks: T12, T22, T32, to the critical
path. If we move J2 to after u3 (the case j = uk−1 of ΔkR), J3 moves left to
take its place, producing a trade-off on M1 as well as M2. In general, besides
δk−1(j, uk−1+1), we may need to add (as here) δk−2(j, uk−1+1), and perhaps
δk−3(j, uk−1 + 1), etc., depending on how many vertical arrows lead to the
start of Bk. The same is true at the right end of Bk where, if the right end job
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contributes t > 2 tasks to the critical path, δk+1(uk, j) should be replaced by
Σt−1

x=1δk+x(uk, j) in the formulas for ΔkR.
This modification would improve the accuracy of the estimate, and would

be quite feasible to implement. Without it, since each δl(i, j) may be either
positive or negative, we cannot know that we have a lower bound, as the
authors assert.

Everything we have said about moving head jobs, above, can be equiva-
lently said of tail jobs. Thus, by inserting any job Jj , j ∈ Tk, before uk−1, we
get another set of approximations

C(S′) ≈ C(S) + ΔkL,

where, as given in Grabowski and Wodecki (2004):

ΔkL =
{

δk−1(uk−1, j) if j ∈ Tk − {uk},
δk−1(uk−1, j) + δk+1(j, uk − 1) if j = uk,

and where each δ term can be elaborated by adding additional such terms as
indicated. Finally, given S, we can test all the different moves and choose the
neighbor with the best, i.e., smallest estimate (the one most likely to lead to
a small makespan), as measured by ΔkL or ΔkR.

In experiments with the Taillard (1990) problem set, the authors show
that GW delivers the same solution quality as TSAB in 15% to 20% of the
iterations. Moreover, GW produces makespan values comparable to the best
known benchmark values within 5 minutes of CPU time. The algorithm GW,
of course, uses the original formulas without the elaborations given above.

Our presentation of TS implementations is not exhaustive, but the ones
presented here dominate the competition. Alternative implementations are
given in Ben-Daya and Al-Fawzan (1998) and Moccellin and dos Santos
(2000). The latter also present an SA implementation and a hybrid of their
SA and TS metaheuristics. The hybrid was found to outperform its SA and
TS counterparts, suggesting hybrid metaheuristics as a viable direction.

One very successful hybrid is Stützle’s Iterative Local Search (or ILS) algo-
rithm (Stützle, 1998b). It starts with an initial solution further improved by
local search. The incumbent solution is then modified and further improved
by local search. The revised solution becomes the new incumbent only if an
acceptance criterion is satisfied, carefully chosen to allow for diversification
in the search space and avoid converging to the same local optima. A list of
promising solutions is maintained and exploited as in tabu search. It is shown
that ILS significantly outperforms Taillard’s (1990) TS implementation and
(on average) produces better solutions than TSAB.

The critical path concept in Grabowski (1982), was also used in Werner
(1993) within an iterative search. Based on the critical path, a limited number
of alternate paths is developed, a search neighborhood is defined around them,
and then searched to identify a good schedule.
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4.10.3 Genetic Algorithms

Genetic algorithms (GA) offer yet another alternative for metaheuristics; see
Holland (1992). Genetic algorithms belong to the larger class of evolutionary
algorithms (EA), which generate solutions to optimization problems using
techniques (such as mutation and crossover) inspired by natural evolution.

A genetic algorithm is a search heuristic that mimics the process of natural
evolution. This heuristic is routinely used to generate useful solutions to op-
timization and search problems. After generating a few (preferably) feasible
solutions to an optimization problem over permutations, a second generation
of heuristic solutions can be produced from those already selected through
genetic operators as described below. For each new solution to be produced, a
pair of “parent” solutions is selected for breeding from the pool selected pre-
viously. They produce a “child” solution which typically shares many of the
characteristics of its “parents”. New parents are selected for each new child,
and the process continues until a new population of solutions of appropriate
size is generated.

Two popular types of genetic operators that are used to produce a child
in terms of its parents’ characteristics are: crossover operators and muta-
tion operators. There are many types of crossover operators. For instance, a
single crossover point operator in a scheduling problem may select a single
location in the permutation (i.e., the organism). All jobs beyond that point
are swapped between the two parent permutations to produce two children
permutations.

Similarly, there is a variety of mutation operators. The classic example of
a mutation operator involves a probability that an arbitrary position in a
permutation will be changed from its original state. A common method of
implementing the mutation operator involes generating a random variable for
each position in the permutation. These random variables tell whether or not
each position is modified through swaps or insertions. Thus, several changes
would be made sequentially.

These processes ultimately result in the next generation population of
chromosomes (e.g. job permutations) that is different from the previous gen-
eration. Generally the average fitness will have increased by this procedure
for the population, since only the best organisms are selected for breeding
using a “fitness function”. In addition, a small proportion of less fit solutions
are included, for reasons of diversity so as to avoid getting trapped in local
optima.

A GA thus uses crossover and/or mutation operators to produce a sequence
of generations evolving towards an optimal solution. An acceptance criterion
is used to avoid local minima and search different areas of the search space.
Intensification techniques are often used to improve upon new permutations,
using neighborhood search.

A nice survey of genetic metaheuristics for Fm||Cmax is presented in Ruiz
and Maroto (2005) who reviewed the implementations of Chen et al. (2005),



4.10 Metaheuristics 129

Murata et al. (1996), Ponnambalam et al. (2001), Reeves (1995), Reeves and
Yamada (1998), and the hybrid GA/SA algorithm of Wang and Zheng (2003).
In their computational experiment – again using Taillards’s (1990) set – they
included metaheuristics ILS, SPIRIT, Reeve’s GA and Osman and Pott’s SA
implementations. The stopping criterion used was a fixed CPU time limit. It
was found that ILS outperforms the other three metaheuristics with Reeve’s
GA a close second and average % relative errors 1.65% and 1.84% respec-
tively. Again, problem difficulty is found to increase with m and be indepen-
dent of n. Alternative GA implementations are presented in Colin (1995),
Aldowaisan and Allahverdi (2003), Etiler (2004) and Ruiz et al. (2006); the
latter referred to as RMA. A hybrid GA where local minima are intensified
using variable neighborhood search, or VNS, (see Hansen and Mladenovic,
2001) is presented in Zobolas et al. (2009). Their GA/VNS hybrid performs
near optimally across all instances of the Taillard suite and produces solu-
tions comparable to RMA. On average, both RMA and GA/NVS produce
better solutions than the SA of Osman and Potts, SPIRIT and ILS.

4.10.4 Other Metaheuristics

Yet another class of metaheuristics involves Iterated Greedy (IG) search and
has been applied successfully on the set covering problem; see Jacobs and Br-
usco (1995), and Marchiori and Steenbeek (2000). IG algorithms start with
an initial permutation, and proceed in two phases: The destruction phase
where a subset D ⊂ J of jobs is removed from the initial schedule S, and the
construction phase where the resulting permutation of J − D is extended in
a greedy fashion so as to reconstruct a complete schedule. The IG implemen-
tation of Ruiz and Stützle (2007), referred to as RS, reconstructs S one job
j ∈ D at a time, using the insertion phase of NEH. Being a metaheuristic, an
acceptance criterion is used to produce solutions that deviate from local min-
ima. Local search improvements may be used after every insertion to obtain
algorithm RSL which, obviously, take more time.

Nearly the entire gamut of GA implementations, RS and RSL, are tested
in Ruiz and Stützle (2007). In all, 14 algorithms are compared including ILS
and two ant colony optimization metaheuristics referred to as M-MMAS and
PACO in Rajendran and Ziegler (2004). The former is a modified version of
a Max-Min Ant System (MMAS) first introduced by Stützle (1998a), while
PACO incorporates relative distances between 2 scheduling positions for the
same job. Briefly, in MMAS, we first initialize the pheromone matrix {τij} and
other parameters, where τij is the desirability of assigning job i to position j
of a permutation schedule. Then steps 1 and 2 below are repeated for a fixed
number of iterations or fixed amount of CPU time:

1. Construct a solution, improve it with local search, and update the matrix
{τij},

2. Store the best solution found so far.
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The Max-Min Ant System stipulates upper and lower bounds τmin ≤ τij ≤
τmax for the range of values for τij .

All 14 algorithms considered in Ruiz and Stützle (2007) are tested on the
Taillard set, with fixed CPU time limit as the stopping criterion. It is found
that RSL outperforms all other metaheuristics, with RMA a close second,
with average (over the 120 problems in the set) relative errors 0.44% and
0.57% respectively. Algorithms M-MMAS, PACO and RS exhibit comparable
performance at 0.88%, 0.75% and 0.78% respectively. Even more interesting
is the finding that RSL solutions deteriorate as n increases with n = 50, 100
and m = 20 being its “sweet spot”. Recall that this subset of problems from
the Taillard set has been the most difficult to solve optimally. In contrast,
TSAB and GW exhibit robust performance for n = 50, 100, 200 and GW
outperforms other metaheuristics when n = 200.

Another ant colony optimization algorithm is presented in Ying and Liao
(2004). In the ensuing experiments the authors showed that their implemen-
tation outperforms the GA of Collin (1995) on the Tailard set but did not
test against the best of the algorithms presented above.

In the quest for simpler, faster, better metaheuristics, the latest class in-
troduced for Fm|perm|Cmax is the Particle Swarm Optimization method
(PSO) first used to optimize continuous nonlinear functions; see Eberhard
and Kennedy (1995) and Kennedy and Eberhard (1995). In PSO, the mem-
bers of a solution space are called particles. Each particle moves around the
search space of all permutations (via neighborhood search techniques) with a
specific velocity, and is maintained throughout the search so that it directs it
towards an optimal solution. When using a global neighborhood search, the
best solution in the swarm is sought. Otherwise local search leads incumbent
solutions to the best particle in a restricted neighborhood. Two such imple-
mentations are presented in Liu et al. (2007) and in Tasgetiren et al. (2007).
In the latter article, two PSO implementations were proposed using different
neighborhood searches. Testing on the Taillard suite, the authors found that
their algorithms produce better solutions than a generic GA algorithm, but
take longer time. Zobolas et al. (2009) showed that the best of the two PSO
implementations produces solutions comparable to RMA, GA/VMS which
in turn produce slightly better solutions than PACO, M-MMAS and ILS on
the Taillard suite. Further, Rad et al. (2009) showed that using their NEH1L

solution as the seed, the improvement in the makespan performance of PACO
and ILS for problems in the Taillard suite is statistically significant compared
to using the NEH solution as the seed.

Tasgetiren et al. (2007) conducted further tests on a more recent bench-
mark suite presented in Watson et al. (2002) and found that TS imple-
mentations outperform their PSO implementation. The benchmark suite of
Watson et al. (2002) consists of 14,000 problems with n = 20, 50, 100, and
200 jobs, and m = 20. The problems are divided into two groups: the ran-
dom group with processing times pkj drawn uniformly from [1, 99], and the
narrow random group with pkj drawn from [45, 55]. A correlation parame-
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ter α ∈ {0, 0.1, 0.2, . . ., 1} is used across jobs, or across machines, or both
– thus resulting to 33 correlation combinations – and 100 instances were
generated for each problem size and parameter combination, resulting to
4 × 33 × 100 = 13, 200 test problems in the random group. The narrow
random group includes the remaining 800 problems. They can be found at
http://www.cs.colostate.edu/sched/generator/.

4.11 Exact Algorithms

As expected, the sheer number of permutations and the lack of significant
structural properties for Fm|perm|Cmax conspire against exact algorithms for
problem instances of more than a few jobs. For this reason, we cite without
details the branch-and-bound implementations of Ignall and Schrage (1965),
Bansal (1977) and Stafford (1988).

4.12 Lot Streaming

We will give only a brief introduction to the subject of lot streaming over m
machines, referring the reader to Sarin and Jaiprakash (2007) for complete
details. Recall, as introduced in Sect. 2.2.6, that lot streaming involves the
production of many identical copies of a product, by dividing the entire job
lot into several sublots for convenience and efficiency.

In our earlier discussion of the two-machine case, we assumed the job lot
was made up of n identical items. Instead, to simplify notation, we will now
consider the job lot to be a single job, made up of so many identical parts
that it is effectively infinitely divisible. This entire production lot requires a
processing time pk on Mk, k = 1, . . . , m. As before, we wish to partition the
job into v sublots to minimize makespan, but now xi is the fraction of the
work assigned to sublot i, i = 1, . . . , v, with 0 < xi < 1, Σv

i=1xi = 1. This
modification changes nothing, except that we get rid of the multiplier n.

We shall again assume consistent sublots. Actually, consistent sublots are
always optimal for up to 3 machines, as the following corollary to Theorem
2.1 establishes.

Theorem 4.5. For Fm|lots|Cmax , if xik is the lot size of sublot i on Mk,
then there exists an optimal schedule in which xi1 = xi2 and xi,m−1 =
xim, i = 1, . . . , v.

Proof: The proof of Theorem 2.1 carries over for the last two machines, and
a time reversal argument extends the same proof to M1 and M2. �

Note that , without consistent sublots (as in Theorem 4.5), the identity of
a “job” (i.e., a sublot) is lost as the work advances through the shop, so
the concept of a permutation schedule becomes meaningless. With consis-
tency (as assumed hereafter), sublots retain their integrity and schedules are
automatically permutation.

http://www.cs.colostate.edu/sched/generator/
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4.12.1 Two Sublots

For the case v = 2, we give here a simpler algorithm than the similar one
presented in Williams et al. (1997), which builds on Baker and Pyke (1990).
It will be convenient to let (x1, x2) = (x, 1−x). The two sublots are effectively
two jobs whose processing times on each machine can be varied by shortening
one and simultaneously lengthening the other proportionately. For arbitrary
x, 0 < x < 1, the makespan Cmax(x) can be expressed as usual as the critical
path through the precedence network, as shown for m = 4 in Figure 4.5(a)
where each task is labeled by its processing time. We have:

Cmax(x) = maxk=1,...,m{xP (1, k) + (1 − x)P (k, m)}
= maxk=1,...,m{x[P (1, k − 1) − P (k + 1, m)]+ P (k, m)} ,

where P (u, v) = Σv
i=u pi , 1 ≤ u ≤ v ≤ m. Let us define

βk = P (1, k− 1) − P (k + 1, m), αk = P (k, m) ,

so that

Cmax(x) = maxk=1,...,m fk(x) , where fk(x) = αk + βkx. (4.9)

Fig. 4.5 Three ways to visualize the two-sublot problem,
illustrated for the case m = 4, p̄ = <3, 2, 7, 6>

Another way to look at our problem is as a linear program, since (4.9)
amounts to minimizing Cmax(x) subject to Cmax(x) ≥ αk+βkx, k = 1, . . . , m
and 0<x<1. In Figure 4.5(b), which shows instance m = 4, p̄ = <3, 2, 7, 6>,
the makespan (as a function of x) is given by the upper envelope (in heavy
lines) of the route lengths {fk(x), k = 1, . . . , m}. Note that some of the
constraints fk(x) form a part of this envelope, and some do not; we will call
them active and inactive, respectively. Note also that at optimality, two of the
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constraints are binding: two of the machines are simultaneously critical. This
of course is true at all the corner points, or extreme points, of the envelope.

Our strategy will be, starting at the left (x = 0), to move from one extreme
point to the next until the optimum is reached. As we advance through the
active constraints, we check the slope of each. Since f1(x) is always the left-
most active constraint and always has β1 < 0, we start there. Since the slopes
are increasing in k, we stop when we reach the first βk ≥ 0. In the sample
instance, we go from f1 to f3 to f4 and stop when β4 > 0.

It remains only to specify how to find each successive active function.
Thus, in the example, how do we know that f1 is followed by f3, and not f2

or f4? For very small x, M1 is always critical. As x increases, we eventually
reach the point, circled in Figure 4.5(b), where a second machine becomes
simultaneously critical. At this point, the schedule looks like Figure 4.5(c).
Since the first sublot ends at the same time the second sublot starts on both
critical machines, M1 and M3, and there is no slack time on any intervening
machines, we must have p2x + p3x = p1(1 − x) + p2(1 − x), or xP (2, 3) =
(1−x)P (1, 2). In general, if Mc is critical, the next machine to become critical
as x increases does so at the smallest value of x for which

xP (c + 1, k) = (1 − x)P (c, k − 1),

for some Mk, from which

x = P (c, k − 1)/[P (c, k − 1) + P (c + 1, k)] .

The above observations lead to the following algorithm, where Mc will denote
the trial critical machine, and Mc′ its successor.

Two-Sublot Algorithm for Fm|(perm), lots|Cmax

1. Set c := 1.
2. Let

x = mink=c+1,...,m {P (c, k − 1)/[P (c, k − 1) + P (c + 1, k)]} ,

and let c ′ be the minimizing value of k (the largest such k, if more than one).
3. If βc ′ < 0, set c := c ′ and go to Step 2. Otherwise, continue.
4. Mc and Mc′ are critical at optimality, with x� = x and C�

max = αc + βcx.

We note that the discrete problem, where n items make up the job lot, is
quickly solved using the above continuous algorithm. The discrete assumption
implies that the only acceptable fractions of the lot in the first sublot, instead
of any x, 0 < x < 1, are x = 1/n, 2/n, . . ., (n−1)/n. Since the upper envelope
is convex, the optimum is one of the two feasible sublot sizes on either side
of the continuous x�. If i/n ≤ x� < (i + 1)/n, the first sublot should contain
either i or i + 1 items, whichever gives smaller makespan.

The case of three sublots can also be solved optimally in polynomial time,
as shown in Williams et al. (1997).
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4.12.2 Heuristics

We present two of the simpler heuristics that have been proposed for the
m-machine v-sublot lot streaming problem. Both, with refinements, are from
Baker and Pyke (1990).

The Two-Machine Heuristic

The following heuristic combines two earlier results, namely:

• The CDS heuristic due to Campbell et al. (1970) presented in Sect. 4.9.
This is a simple but effective procedure that approximates the m-machine
makespan problem by m−1 2-machine pseudoproblems.

• The solution to the 2-machine lot streaming problem given in Sect. 2.2.6.
This is applied to each of the pseudoproblems, from which the best sched-
ule can then be chosen.

Specifically, the algorithm is as follows.

1. For r = 1, 2, . . . , m − 1, define

a(r) =
∑r

k=1 pk , b(r) =
∑m

k=m−r+1 pk (as in (4.7)) .
2. For the rth pseudoproblem, the 2-machine solution gives sublot sizes

xi(r) = nqi−1(r)(1 − q(r))/(1 − qv(r)) , i = 1, . . . , v ,

where q(r) = b(r)/a(r) (as in (2.2)). The sublots, processed in numerical
order on m machines, can now be considered jobs with task times

pki(r) = pkxi(r) , i = 1, . . . , v , k = 1, . . . , m .

They generate a schedule S(r), for which the makespan C(r) can be found
using the recursion (4.1) given in Sect. 4.4.
3. Choose S(r�) with C(r�) = min r=1,...,m−1 C(r) .

The Two-Sublot Heuristic

The solution to the two-sublot problem (the continuous case) finds the op-
timal fraction, x�, of the job lot to allocate to the first sublot. This gives a
ratio r = (1 − x�)/x� for the work allocated to the first and second sublots.
When v sublots are called for, the heuristic simply maintains this ratio for
each successive pair of sublots. Thus, x2 = rx1, x3 = rx2 = r2x1, etc., so that∑v

i=1 xi = x1

∑v−1
i=0 ri = x1(1 − rv)/(1 − r) = 1 ,

which gives

x1 = (1 − r)/(1 − rv) , and xi = (1 − r)ri−1/(1 − rv) , i = 2, . . . , v .

Thus, for the sample instance illustrated in Figure 4.5(b), we have x� =
7/13, giving r = 6/7 = 0.857 . With v = 4, we get (x1, x2, x3, x4) =
(0.310, 0.266, 0.228, 0.195).

Baker and Pyke (1990) find that the two-sublot heuristic does better than
the two-machine one, and performs well. Additional computational results on
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the two-sublot heuristic as well as other improved heuristics are provided in
Williams et al. (1997).

4.13 Fm||ΣCj

The m-machine flow shop has received significant attention even for objective
functions other than the makespan. The sum of completion times (or flow
time) objective is the most popular, but only for permutation schedules. As
seen in Chap. 2, F2|perm|ΣCj is NP-complete in the strong sense and hence
Fm|perm|ΣCj is at least as difficult.

A formulation for Fm|perm|ΣCj can be obtained using expression (4.8),
except than now, the completion time of every job, not just the last, is needed.
Let S = (1, 2, ..., n) be an arbitrary sequence, reindexing for simplicity so that
the job in position j is Jj ; and let

Ckj(S) = the time until Jj is completed on Mk, k = 1, ..., m, j = 1, ..., n,

That is, Ckj(S) is the length of the critical path from T11 to Tkj in the network
representation (see Fig. 4.4). Assume that 1 ≤ uj

1 ≤ uj
2 ≤ ... ≤ uj

k−1 ≤ j are
the indices maximizing the path length, so that:

Ckj(S) =
∑uj

1
i=1 p1i +

∑uj
2

i=uj
1
p2i + . . .+

∑j

i=uj
k−1

pki. (4.10)

Now, the total flow time cost associated with S is

F (S) =
∑n

j=1 Cmj(S).

Problem Fm|perm|ΣCj does not seem to possess significant structural
properties, which hinders the development of efficient solution procedures.
The following sufficient condition may prove useful for small m.

Theorem 4.13 (Szwarc, 1983a)
Permutation S0 is optimal for Fm|perm|ΣCj if for some k, 1 ≤ k < m:

(a) S0 minimizes Fk|perm|ΣCj,
(b) Cmj(S0) = Ckj(S0) + Σm

i=k+1pij for j = 1, 2, . . . , n,

where Fk refers to the first k of the m machines in the problem instance.

Proof: By definition of F (S), using (b):

F (S0) =
∑n

j=1 Ckj(S0) +
∑n

j=1

∑m
i=k+1 pij

By (a), the first summation is the minimal total flow time over the first k
machines. The second summation is clearly the least we can add for each job
over the remaining machines. Thus, S0 = S�. �

As an application, for k = 1 and m = 2, conditions (a) and (b) are trivially
satisfied when aj ≥ bj for all j and S0 is the SPT order of a-tasks. Hence,
S0 = ↗aj optimally solves F2|aj ≥ bj|ΣCi.
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For special problem data, of course, simple results may be possible:

Theorem 4.14 (Panwalkar and Khan, 1976)
For Fm|perm, ordered|ΣCj, S� = SPT = ↗p.j .

Recall that, for ordered flow shops the SPT order of processing times is
well defined because of condition 1 in Definition 4.4. Without such special
structure, one might still consider sequencing in order of total processing
times: ↗Pj, where Pj = Σipij . We could call this schedule total SPT, or just
SPT. The following result helps evaluate this schedule.

Theorem 4.15 (Gonzalez and Sahni, 1978) For Fm||ΣCj,
if schedule ↗Pj yields a total flow time FP , then

FP /F � ≤ m, and this bound is tight.

Proof: Let Cmj(S) be the completion time of the job in position j of sched-
ule S. Indexing jobs in ↗Pj order, we have

Cmj(↗Pj) ≤
∑j

i=1 Pi , j = 1, ..., n

On the other hand, the SPT indexing ensures that, in any schedule, hence in
any optimal schedule S�,

Cmj(S�) ≥
∑j

i=1 Pi/m , j = 1, ..., n.

The RHS of the last inequality is a lower bound even if the flow shop
constraints are removed and Fm is replaced by Pm; namely, m parallel
identical processors. The last two inequalities combine to give Cmj(S�) ≥
Cmj(↗Pj)/m, which, adding over all j = 1, ..., n, yields the desired worst
case error bound. �

For m = 2, an improvement is almost always possible for this bound,
depending on the data. Specifically,

Theorem 4.16 (Hoogeveen and Kawaguchi, 1999) For F2|(perm)|ΣCj,
if Fa+b is the total flow time using schedule ↗Pj = ↗(aj + bj), then

Fa+b/F � ≤ 2β/(α + β) , where

α = minj{min(aj , bj)}, β = maxj{max(aj , bj)}, and this bound is tight.

Heuristics for the general Fm|perm|ΣCj are developed by Miyazaki et al.
(1978), Ahmadi and Bagchi (1990) and Karabati and Kouvelis (1993) who
also developed a branch-and-bound algorithm. Bansal (1977) extended the
lower bound procedure of Ignall and Schrage (1965) for F2|perm|ΣCj to the
case m > 2 and used it within a branch-and-bound algorithm as well.

In obtaining tight lower bounds, Karabati and Kouvelis (1993) observed
that, in the precedence network for a given schedule, if the time to a job’s
completion is computed along an arbitrary path, it can only be less than
the true time to completion computed along the critical, or longest, path. To
put this mathematically, let τj be any path from T11 to Tmj , and let Tj be
the set of all such paths. The path is defined independently of the particular
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tasks that occupy the positions along the path; that is, independently of the
schedule S. It represents one sequence of tasks that constrain the completion
of the job in position i, which we call J[i].

Earlier, we defined Cmj(S) as the length of the critical path defining the
completion time of J[j]. Now, let Cmj(S, τj) be the length of path τj in S, so
that Cmj(S) = maxτj∈Tj Cmj(S, τj). We can now express the observation of
Karabati and Kouvelis (1993):

minS

∑n
j=1 Cmj(S, τj) ≤ minS

∑n
j=1 Cmj(S) = minS F (S)

indicating that, for any choice of paths {τj , j = 1, ..., n}, the LHS in the above
expression is a lower bound on the optimal flow time value F � = minS F (S).
Since the inequality holds for any choice of path vector τ = (τ1, τ2, ..., τn) ∈
T = (T1 × T2 × . . .× Tn), it holds for the maximizing τ , so

maxτ minS

∑n
j=1 Cmj(S, τj) ≤ F � = minS maxτ

∑n
j=1 Cmj(S, τj)

Therefore, one can develop lower bounds by minimizing Σn
j=1Cmj(S, τj) over

permutations S while maximizing over T , the set of all paths (i.e., all task
sequences) from the start of processing to the completion times of all jobs.

The following zero-one integer program yields just such a lower bound on
F �. Let an arbitrary path τj to the completion of the job in position j, J[j],
be determined by the indices 1 = vj

0 ≤ vj
1 ≤ ... ≤ vj

m−1 ≤ vj
m = j (we write

τj = (vj
1, ..., v

j
m−1)), so that, for S = ([1], [2], ..., [n]):

Cmj(S, τj) =
vj
1∑

i=1

p1[i] +
vj
2∑

i=vj
1

p2[i] + ... +
j∑

i=vj
m−1

pm[i] =
m∑

k=1

vj
k∑

i=vj
k−1

pk[i] .

In order to search over different schedules, we use the following binary vari-
ables to assign jobs to positions:

xij =
{

1 if Jj is in position i ,
0 otherwise .

Now, instead of specifying S, we can write pk[i] as Σn
h=1pkh xih. The following

formulation yields our lower bound on F �:

LB minimize M

subject to
∑n

j=1Cmj(τj) ≤ M, τ ∈ T , (4.11)∑n
i=1xij = 1, j∈J , (4.12)∑n
j=1xij = 1, i∈J , (4.13)

xij = 0 or 1, i,j∈J , (4.14)

where

Cmj(τj) =
∑m

k=1

∑vj
k

i=vj
k−1

∑n
h=1 pkh xih .



138 4 THE m -MACHINE FLOW SHOP

The difficulty with this formulation is that the path vectors τ ∈ T are facto-
rially many. By restricting the set to just a few vectors T ′ ⊂ T , and replacing
the LHS of inequalities (4.11) by a convex combination, Karabati and Kou-
velis (1993) proposed approximating LB by an assignment problem

minimize
∑n

j=1

∑
τ∈T ′ λτCmj(τ )

subject to
∑

τ∈T ′ λτ = 1, and (4.12), (4.13), and (4.14),

where {λτ : τ ∈ T ′ } are appropriately selected surrogate multipliers. The
added benefit of this formulation is that it yields a permutation and hence an
assignment-based heuristic. In the ensuing experiments on problems with 12
jobs and 6 machines, it is shown that the assignment-based heuristic performs
favorably against the heuristic of Ahmadi and Bagchi (1990), while its relative
error from the lower bound is about 16.5% less than the corresponding error
exhibited by the heuristic of Miyazaki et al. (1978). For randomly generated
problems of size up to n = 30 jobs, the heuristic in Karabati and Kouvelis
(1993) produced near optimal schedules for problem instances where process-
ing times exhibited correlation, trend, or both. The authors also incorporated
the above lower bounding scheme within a branch-and-bound algorithm and
were able to solve problems of size up to n = 10.

Various heuristics have been developed for Fm|perm|ΣCj, often imitating
heuristics for Fm|perm|Cmax. Ho (1995), for example, presented a “slope”
heuristic where jobs j ∈ J are initially ordered in nondecreasing order of the
indices

sj =
∑m

k=1(m − k + 1)pkj,

then improved by pairwise interchanges and insertions. For Fm|perm|ΣCj,
similarly, Rajendran and Ziegler (1997) examined schedules based on the
nondecreasing order of

sl
j =

∑m
k=l(m − k + 1)pkj,

and generated alternative sequences using l = 1, 2, . . . , m. Also, they experi-
mented with sequential insertion heuristics. Liu and Reeves (2001) developed
heuristics using an index function for unscheduled jobs, whose value depends
on the incumbent partial schedule. Pairwise forward (backward) interchanges
are used to improve upon the current best solution where a job exchanges po-
sitions with its successors (predecessors). Wang et al. (1997) presented heuris-
tics where the next job scheduled is chosen so as to minimize the number of
machines where idle time is inserted, or to minimize a “distance” between
the partial schedule and unscheduled jobs. Liu and Reeves (2001) tested their
heuristics against those of Ho (1995), Rajendran and Ziegler (1997), Wang et
al. (1997) and Woo and Yim (1998) on the Taillard suite with the flow time
objective – recall that the Taillard set was developed for Fm|perm|Cmax,
not Fm|perm|ΣCj. It is found that the heuristics of Woo and Yim (1998)
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and Liu and Reeves (2001) compare favorably against the heuristics in this
experiment.

Interestingly, Framinan et al. (2002) showed that the NEH heuristic with
the ↗Pj order of jobs replaced by ↘Pj performs very well, comparably to
the heuristic of Woo and Yim (1998). This means that NEH can be adapted
to solve not just for the Cmax objective but also for ΣCj.

With minor changes, metaheuristics for Fm|perm|Cmax can be adapted
for Fm|perm|ΣCj. Rajendran and Ziegler (2004) evaluated their ant colony
optimization implementations M-MMAS and PACO mentioned in Sect. 4.10
against the best value obtained by the algorithms tested in Liu and Reeves
(2001), on the Taillard set with n = 20, 50, 100 and m = 5, 10, 20 (i.e., 90
of the 120 problem instances). Let “L&R Best” denote the best values. The
starting solution used for M-MMAS and PACO is Rajendran’s (1993) heuris-
tic, improved by local search. It is found that both implementations outper-
form L&R Best, with PACO outperforming M-MMAS for n = 50, 100 and
m = 10, 20 (i.e., large problems) and the other way around for n = 20 or
m = 5 (i.e., small problems). Moreover, for the 90 problems considered from
the Taillard set, the authors established 83 improved benchmark total flow
time values using M-MMAS and PACO.

Similarly, Tasgetiren et al. (2007) adapted for Fm|perm|ΣCj the better
of their two PSO implementations introduced in Sect. 4.10, and tested them
against M-MMAS, PACO and the L&R Best values, on the Taillard suite.
PSO produced improved benchmark values for 57 of the 90 problems in the
Taillard set (excluding problems with n = 200 and m = 5, 10, 20), on average
outperformed M-MMAS and PACO in 7 of the 9 problem sets tested, with an
overall average of only 0.34% off the best value amongst L&R Best, M-MMAS
and PACO.

4.13.1 Fm|perm|Σ(Ci − C̄)2

A nonlinear objective function involving flow times is the completion time
variance of jobs, or

CTV =
∑n

i=1(Ci − C̄)2 , where C̄ =
∑

i Ci/n ,

first introduced by Gowrishankar et al. (2001). They note that CTV aims
at schedules that minimize variations in resource consumption and machine
utilization. Further, if C̄ is a common due-date for all jobs, then CTV leads
to min-sum-square deviations from it.

A branch-and-bound algorithm is developed for Fm|perm|Σ(Ci− C̄)2 and
the following GRS (the authors’ initials) heuristic. It uses the same set of
auxiliary two-machine problems as were introduced by Campbell et al. (1970)
for the makespan objective in the CDS heuristic (see (4.7) in Sect. 4.9).
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Heuristic GRS

1. For r = 1, 2, ..., m− 1, do :
(a) Define an auxiliary 2-machine problem with

ajr =
∑r

k=1 pkj, bjr =
∑m

k=m−r+1 pkj, j = 1, ..., n
(b) Reindex the jobs in ↘ tjr order, where tjr = ajr + bjr.
(c) Define the V-shaped sequence S r = (1, 3, 5, ...,6,4, 2).

2. Evaluate each S r , r = 1, ..., m − 1 with respect to the CTV objective
applied to the original m-machine instance, and pick the best.

3. Improve the winning sequence by an insertion scheme followed by pairwise
interchanges.

A new ACO implementation, referred to as NACO, is presented by Gaj-
pal and Rajendran (2006), as well as adaptations of MMAS and PACO for
Fm|perm|Σ(Ci − C̄)2. The ensuing computational experiments on the Tail-
lard suite with n = 20, 50, 100 (i.e., 90 of the 120 problems in total) indi-
cate that all 3 ACO implementations outperform GRS, MMAS outperforms
PACO and NACO for n = 20, and NACO outperforms PACO in 4 of the
6 remaining (n, m) combinations. Benchmark values are provided for all 90
problem instances.

4.14 Fm||Lmax

In the next few sections we present results relating to lateness criteria: Lmax,
ΣUj, and ΣwjTj . We will start with the criterion of maximal lateness. In
a note by Grabowski et al. (1983) it is shown that Fm|rj, perm|Lmax is
equivalent to a makespan minimization problem. To verify this, consider
a flow shop with m + 2 processors: M0, M1, . . . , Mm+1. Further, assume
M0 and Mm+1 have infinite capacity. For every job we have p0j = rj,
and task T0j starts processing at time 0 without interruption. Finally, as-
sume that pm+1,j = maxi di − dj . By construction, if S is a permutation
schedule on M1, . . . , Mm where the lateness of Jj is Lmj(S), then the com-
pletion time of Jj in the same schedule evaluated on M0, M1, . . . , Mm+1

is C+
m+1,j(S) = Cmj(S) + pm+1,j = Lmj(S) + maxi di, where C+ de-

notes completion times in the system with extra machines. It follows that
C+

max(S) ≡ maxj C+
m+1,j(S) = Lmax(S)+max i di. Thus, minimizing Lmax on

M1, . . . , Mm is equivalent to minimizing the makespan on M0, M1, . . . , Mm+1,
and hence Fm|rj, perm|Lmax is equivalent to the above makespan optimiza-
tion problem.

Using the block structure B1, . . . ,Bm based on (4.8), Grabowski et al.
(1983) adapted to Fm|perm|Cmax the algorithm first developed in Grabowski
(1980) for problem F2|perm|Cmax. The resulting branch-and-bound algo-
rithm uses lower bounds amongst those derived in Lageweg et al. (1978).
Computational results are presented for up to 50 jobs, and up to 5 machines.
The stopping criterion for the branch-and-bound algorithm is 1 minute of
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CPU time. It is found that problem difficulty does not increase dramatically
with n, but it does so with m. This is to be expected, because the number of
blocks Bk = {uk−1, . . . , uk} induced by (4.8) increases with m. Subsequently,
the authors highlight how to use their procedure so as to solve Fm|rj|Lmax;
namely, by allowing for different job permutations in each block Bk.

4.15 Fm||ΣUj

Very little has been done with respect to objective ΣUj . As we saw in Chap. 2
problem F2|(perm), (pmtn)|ΣUj is ordinary NP-complete. It is not difficult to
observe that Fm||ΣUj is no easier than Fm||Cmax. Simply, for any instance
I of Fm||Cmax and given value K > 0, construct instance I′ of Fm||ΣUj

obtained from I with dj = K for all j. Then, there exists a solution for I′

with ΣUj = 0 if and only if there exists a solution for I with Cmax ≤ K.
Therefore, Theorem 7.2 implies that F3||ΣUj is strongly NP-complete.

The above results indicate that, for the ΣUj objective, the best hope for
the development of efficient lower bounds and heuristics is to make use of
results for problem 1||ΣUj where a single machine M is available and ev-
ery job is specified by its processing time pj and due-date dj. This problem
is solved in O(n logn) time by Moore’s Algorithm (first presented in Sect.
2.11.3, repeated here for convenience). At any time, σ is the partial schedule
of early jobs (by “early” we mean non-tardy, i.e., early or precisely on time),
always maintained in EDD = ↗dj order, which starts empty and evolves by
adding the next Jj to the end (σ := σj) and then, when necessary, removing
the largest Jk from anywhere in σ (σ := σ−k). The removed jobs accumulate
in L, the set of late (that is, tardy) jobs, which can be appended to the end
of the schedule.

Moore’s Algorithm (MA) (Moore, 1968) for 1||ΣUj

0. Index all jobs in J in ↗dj order. Set σ = L = φ.
1. For j = 1 to n do:

(a) Set σ := σj, and let Cj be the completion time of Jj.
(b) If dj < Cj, then let Jk be a job with pk = maxi∈σ pi, and

set σ := σ − k and L := L + k;
else continue.

2. S� = (σ, σL), where σL is any sequence of the jobs in L.

Hariri and Potts (1989) adapted MA to heuristically solve Fm||ΣUj. With
Pj = Σk pkj, they replace Step 1(b) by:

(b) If dj < Cj, then let Jk be a job with Pk = maxi∈σ Pi, and
if σ − k has no tardy jobs, set σ := σ − k and L := L + k;
else set σ := σ − j and L := L + j.

else continue.
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Of course, in Step 2 we can no longer claim an optimal schedule. Instead, call-
ing the heuristic HHP, we get SHP = (σ, σL). This adaptation takes O(mn2)
required to compute the Ckj values for k = 1, . . . , m and j ∈ J .

Similarly, MA can be adapted to obtain lower bounds for Fm||ΣUj in
polynomial time, as described next. Let SMk denote the single machine sub-
problem on machine Mk, k = 1, 2, . . ., m where job due dates are revised as

dk
j = dj −

∑k−1
r=1 prj −

∑m
r=k+1 prj = dj − Pj + pkj.

Thus, we subtract the total processing required for Jj on machines other than
Mk. This is a somewhat smaller due date, giving a tighter bound than the
one in Hariri and Potts (1989). Let us define

nk(S) = the number of tardy jobs in SMk, using any schedule S.
n0(S) = the number tardy in the original problem, Fm||ΣUj, using S.

Note that, for any schedule, every job that is tardy in SMk is also tardy in the
original problem, i.e., nk(S) ≤ n0(S), because, in going from one machine to
m machines, every due date is increased by Pj − pkj while every completion
time increases by at least this much. Since the schedule SMA produced by
MA is optimal for SMk, nk(SMA) ≤ nk(S). It follows that nk(SMA), and so

LB = maxk=1,...,m nk(SMA),

is a lower bound for Fm||ΣUj and is computed in O(mn logn) time.
Hariri and Potts (1989) go on, using the concept of consistent early and late

sets (jobs that must be early or late in every SMk), to potentially improve this
bound by at most one. Their procedure requires O(mn2 logn) time. They also
develop an alternative but related bounding scheme that takes O(mn3) time.
However, both are shown to be inefficient for use within a branch-and-bound
framework. Not surprisingly, their implementation provides a satisfactory
solution method for problems with up to n = 15 jobs and m = 5 machines,
and problems with n = 20 and m = 2 or 3.

4.16 Fm||ΣwjTj

Du and Leung (1990) have shown that Fm||ΣTj is strongly NP-complete
even when m = 2, and hence so is the more general problem Fm||ΣwjTj .
Interestingly, there is a significant body of literature for Fm|perm|ΣTj and
Fm|perm|ΣwjTj which involves lower bounding schemes, exact algorithms,
evaluation of dispatching rules, constructive and improvement heuristics, and
metaheuristics.

4.16.1 Lower Bounds for Fm|perm|ΣTj

As usual, we present the bounds in the context of a branch-and-bound algo-
rithm, where a partial schedule σ already occupies each Mk up to time Ck(σ).
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Let u denote the number of jobs remaining to be scheduled, and hereafter,
when we refer to jobs or tasks, we mean unscheduled ones, and the lower
bounds we compute are for those jobs only. For bounds on the total schedule,
the tardiness sum of the jobs in σ are a sunk cost that should be added. Of
course, if there is no σ, let all Ck(σ) = 0.

A Simple bound

Simple lower bounds are presented in Kim (1995). In a permutation schedule,
the task Tk,[i] processed in position i of Mk (let us call this position ki) is
preceded on Mk by i−1 tasks, and they in turn must be preceded by at least
one task on each of M1, . . . , Mk−1, machines which are already occupied by
the jobs in σ. Similarly, Tk,[i] is followed by at least one task on each of
Mk+1, . . . , Mm. It will be convenient to define:

qki = the ith smallest task time on Mk, with Qki =
∑i

j=1 qkj, 1 = 1, ..., u .

Then, accounting for all possible k’s, the completion time Cm,[i] of task Tm,[i]

is at least

t[i] = maxk=1,...,m {maxj=1,...,k [Cj(σ)+
∑k−1

h=j qh1]+Qki+
∑m

h=k+1 qh1} .

We note that σ is omitted in Kim (1995), so the first term is simpler. Also,
the last summation can be strengthened (increased) by noting that one job,
whichever occupies position ki, must be processed consecutively through the
remaining machines, so we can replace Σm

h=k+1qh1 by minj Σm
h=k+1phj. A

similar argument can be made to strengthen the first summation.
Reindex jobs in ↗dj order. Then, for any permutation schedule,∑u

i=1 Ti =
∑u

i=1(Cm,[i] − d[i])+ ≥
∑u

i=1(t[i] − di)+ . (4.15)

The final di in place of d[i] needs explanation. Note that t[i] is the completion
time (or rather a lower bound on it; lets call it the early completion time) of
the job in position i; we do not know which job that will be. Which due date
should be paired with each t[i]? Given two sets of n numbers, in this case
t[i] and di, to minimize Σu

i=1(t[i] − dπ(i))+ for some permutation π, a simple
interchange argument shows that the two sets should be paired off smaller-
to-smaller. Thus, t[1] should be paired with mini di, etc., to make sure the
resulting sum is a lower bound.

A Tighter Bound

Extending the above ideas, a more efficient lower bound is presented in Chung
et al. (2006). They start by computing recursively

ski = a lower bound on the start time of the job in position ki ,

for i = 1, . . . , u and k = 1, . . . , m. The basic idea is to schedule the tasks on
each machine in SPT order, regardless of their job affiliations. In doing this,
we present slightly tighter bounds than they give. Recall, we defined
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qki = the ith smallest task time on Mk, with Qki = Σi
j=1qkj.

First, for M1:

s1i = C1(σ) + Q1,i−1 , with s11 = C1(σ) .

Second, computing iteratively for k = 2, . . . , m :

sk1 = max{Ck(σ) ,max r=1,...,k−1{sr1 + min j

∑k−1
h=r phj}} .

Then, iteratively for k = 2, . . . , m, and for each k, iteratively for i = 2, . . . , u:

ski = max{sk,i−1 + qk,i−1 ,max r=1,...,k−1{sri + min j

∑k−1
h=r phj}}. (4.16)

We can now develop, for each Mk, a lower bound on the total tardiness.
Given the start time ski for position ki, a lower bound on the tardiness
of any job Jj scheduled in that position is (ski + Σm

h=k phj − dj)+. Define
δkj ≡ dj − Σm

h=k phj , a sort of modified due date. Then, in the spirit of
(4.15), we must index jobs in increasing order of δkj (k fixed) to be sure that
Σn

i=1(ski − δki)+ is a valid lower bound. Finally, to summarize our result:

Theorem 4.17 (Chung et al., 2006) For Fm|perm|ΣTj,

maxk=1,...,m

∑u
i=1(ski − δki)+

is a lower bound on ΣiTi, where
• ski is a lower bound on the start time of the job in position ki; see (4.16);
• δki = di − Σm

h=k phi, indexed for each k in ↗δ·j order.

4.16.2 Dominance Property

Chung et al. (2006) also developed the following sequence dominance prop-
erty. Let TT (σ) denote the total tardiness of jobs in a partial schedule σ.
Recall Definition 4.3, which becomes in this case:

Definition 4.7. Given two partial schedules σ1 and σ2 of the same set of
jobs, with the set U unscheduled, σ1 dominates σ2 with respect to total
tardiness if TT (σ1π) ≤ TT (σ2π), for every permutation π of U .

Theorem 4.18 (Chung et al., 2006) For Fm|perm|ΣTj ,
let σ1 and σ2 be two partial schedules of the same subset S of jobs, leaving u
jobs in U = J − S to be scheduled. If

TT (σ2) − TT (σ1) ≥ umaxk{Ck(σ1) − Ck(σ2)}+, (4.17)

then σ1 dominates σ2. The dominance is strict if (4.17) is a strict inequality.

The above result is due to the observation that, if π is any sequence of jobs,
then

Cm(σ1π) − Cm(σ2π) ≤ maxk{Ck(σ1) − Ck(σ2)}.
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4.16.3 Branch-and-Bound Algorithms

Using the simple lower bound on ΣTi given above, Kim (1995) developed a
branch-and-bound algorithm that uses depth-first search and is able to solve
problems of size up to (n, m) = (20, 4) or (12, 10) within 1 hour of CPU time.

Chung et al. (2006) also used their bound (Theorem 4.17) and dominance
criterion (Theorem 4.18) in a branch-and-bound procedure. The algorithm
used depth-first search and is shown to solve problems with up to (n, m) =
(20, 8) when the stopping criterion is a limit of 4 million nodes on the search
tree. In comparisons with Kim’s algorithm, it is found that the one of Chung
et al. solved the same problems 14 times faster.

4.16.4 Heuristics

The above results indicate that we are unlikely to be able to optimally solve
large problems in short time. Hence, a significant body of literature has been
devoted to heuristics. Surprisingly, some research is available on absolute
performance guarantees of heuristics. These are bounds on the difference
CH − C�. A heuristic is said to provide the absolute performance guarantee
β if for any problem instance,

CH − C� ≤ β. (4.18)

It makes sense to find bounds where β is not a multiple of C�; rather, a
quantity that hopefully is much smaller than C�. Hence, in most cases β is
a quantity which is data dependent, such as pmax = maxi{ai, bi}.

Sevast’janov (1997) observed a relationship between the non-strict vec-
tor summation (NVS) problem on a plane to problem Fm||Cmax. Problem
NVS involves finding a permutation of n given vectors (in our case the vec-
tors (p1j, . . . , pmj) for j = 1, . . . , n) so that any two successive partial sums
(Σi

j=1p1j, . . . ,Σi
j=1pmj) of vectors in this permutation belong to a given do-

main G (e.g. a unit-circle in the plane). The solution constructed in Sev-
ast’janov (1997) for NVS yields a permutation πS for F3||Cmax found in
O(n) time for which

C(πS) ≤ C� + 3pmax,

and a permutation π′
S for F4||Cmax found in O(n logn) time for which

C(π′
S) ≤ C� + 6pmax.

Except for the above elegant results, a host of priority rules have been
tested for Fm|perm|ΣwjTj including the following (as usual, Pj = Σkpkj):

EDD: ↗ dj,
EWDD: ↗wj/dj,
EDDP: ↗dj/Pj,
SPT: ↗Pj ,
LPT: ↘Pj,
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Slack (LS): ↗ (dj − C(σj)),
Slack per Remaining Work (S/RW): ↗ (dj − C(σj))/Pj ,

where C(σj) denotes the completion time of unscheduled Jj when appended
at the end of a partial schedule σ. Unfortunately, all such rules considered to
date exhibit poor performance as shown in Vallada et al. (2008). In the same
article, the authors test all algorithms given in the literature for problem
Fm|perm|ΣwjTj . Their experiment is quite exhaustive and encompasses all
the above dispatching rules, 10 constructive and 8 improvement heuristics,
and 17 metaheuristic implementations involving tabu search, simulated an-
nealing, genetic algorithms, differential evolution, and hybrids thereof. Test
are performed on problems with n = 50, 150, 250, 350 and m = 10, 30, 50 and
random integer processing times drawn uniformly from [1, 99]. Due dates are
random integers generated as in Potts and Van Wassenhove (1982) for prob-
lem 1||ΣwjTj , drawn uniformly from [P (1−T −R/2), P (1−T +R/2)] where
T = 0.2, 0.4, or 0.6 is a tardiness factor, R = 0.2, 0.6, or 1 is a due date range
parameter, and P is the lower bound proposed by Taillard (1993) for problem
Fm|perm|Cmax. For every (n, m, T, R) combination, 5 problem instances are
generated, thus resulting to a total of 540 test problems and can be found
at http://soa.iti.es under Problem instances – Benchmark for flow shops
and due dates.

The quality of the solutions produced by the various algorithms is evalu-
ated by

Relative Deviation Index (RDI) =
Methodsol − Bestsol

Worstsol − Bestsol
100%

where Bestsol and Worstsol are the best and worse objective values obtained
by the methods tested (whose values are denoted by Methodsol).

In terms of dispatching rules and improvement heuristics, the following is
due to Kim et al. (1996) and outperforms all others.

Extensive Neighborhood Search (ENS) Heuristic

1. Apply NEH where jobs are considered in EDD order.
2. Perform improving insertions as long as possible.

Recall that in NEH jobs are ordered according to ↘ Pj; different from the
EDD order in step 1 of ENS. In the experiment of Vallada et al. (2008),
algorithm ENS exhibits RDI = 1.02%.

In terms of metaheuristics, the SA implementations referred to as SAH
and SRH in Parthasarathy and Rajendran (1997) and Hasija and Rajendran
(2004) respectively, exhibit the RDI values 5.27% and 2.55%; lowest amongst
the 17 metaheuristics tested. SAH starts with the sequence produced by the
EWDD rule, improved by local search, while SRH starts with a custom rule
improved by a perturbation scheme.

http://soa.iti.es
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4.17 Multiple Objectives: Heuristic Approaches

As discussed in Chap. 2, when we wish to advance more than one objective
(this always means two objectives), we can formulate a single criterion (i.e.,
mathematical function) that combines them, as with hierarchical objectives
(e.g., minimize ΣCj subject to maintaining the smallest possible makespan,
written ΣCj|minCmax) or compound objectives (like αΣCj + βCmax); or we
can consider the two objectives as a pair of outcomes, the bicriteria approach,
and seek solutions that do well for both. Ultimately, we would like to find the
set of efficient or undominated solutions: those for which no other solution is
better on both counts. For more details on bicriteria analysis, see Sect. 2.11.

No optimization algorithms have been proposed for this class of problems.
We discuss in this section some of the heuristics that have been published.

4.17.1 Cmax and ΣCj

Intuitively, the objectives Cmax and ΣCj are not in conflict: they both benefit
by minimizing the makespan of all initial partial schedules. Rajendran (1995)
developed an improvement heuristic (referred to as R95) intended to produce
good bicriteria schedules for Cmax and ΣCj . Heuristic R95 starts with the
CDS schedule, strengthened by adjacent pairwise interchanges. He tested it
against the heuristic of Ho and Chang (1991) originally developed for the
makespan objective on randomly generated problems with n ≤ 50 jobs and
m ≤ 30 machines, with mixed results. The same heuristic with the starting
schedule replaced by NEH is presented in Rajendran (1994) (referred to as
R94).

Explicitly accounting for both objectives, Sridhar and Rajendran (1996)
developed a genetic algorithm (GA) that uses equal weights for makespan,
flowtime and machine idle time, and initial sequences NEH and RC.

As we saw earlier, Framinan et al. (2002) demonstrated that NEH with
respect to the initial sequence ↘Pj [↗Pj] performs well for Fm|perm|Cmax

[Fm|perm|ΣCj]. It is also shown that NEH with initial ↘Pj offers good per-
formance with respect to either objective. Motivated by this observation, two
heuristics are developed for Fm|perm|(Cmax,ΣCj) by Framinan et al. (2002),
referred to as a priori (call it Prior) and a posteriori or Post heuristics. They
both use NEH with starting sequence ↘Pj or ↗Pj. Various weight values α
are used to evaluate the objective α(n/2)Cmax+(1−α)ΣCj (the factor n/2 is
added to equalize the magnitudes of the two criteria). Undominated heuristic
solutions are stored to form the efficient frontier. Post requires about 20%
more CPU time than Prior because it examines a lot more subsequences.
Prior is found to perform better than R94 and R95 and slightly worse than
the GA of Sridhar and Rajendran (1996). Post generally outperforms this
GA and is much faster.
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4.17.2 Cmax and Tmax

Several publications have considered the joint objectives Cmax and Tmax.
Daniels and Chambers (1990) propose the following heuristic for the bicri-
teria problem Fm|perm|(Cmax, Tmax), already discussed for the case m = 2
in Chap. 2. We seek to minimize Cmax subject to Tmax ≤ B, as B is varied
over an appropriate range of values. For each B, we make Cmax as small as
possible using a heuristic (we’ll call it the DC heuristic) that builds a per-
mutation schedule backwards, from position n to position 1. Let U be the
set of unscheduled jobs (note, they will make up the start of the schedule) in
iteration n − i + 1 of the algorithm, when we choose the job J[i] to place in
position i. To limit its tardiness, this job is chosen from the eligible set

Ei = {j∈U :
∑

h∈U p1h +
∑m

k=2 pkj − dj ≤ B},

where the two summations reflect the least amount of time required to com-
plete all jobs in U when job j is scheduled last amongst them. For given
B, a feasible schedule is produced when a job is assigned to every position
according to the following steps:

Heuristic DC for Fm|perm|(Cmax|Tmax ≤ B)

0. Set U :=J ;
1. For i = n down to 1 do

(a)Calculate Ei ;
(b) Apply NEH heuristic to U and let Si be the resulting schedule ;
(c) Let J[i] attain maxj∈Ei Cmj(Si) and set U := U − {[i]}.

Evidently, the range of Tmax values considered in the DC heuristic is the max-
imal tardiness incurred by the NEH schedule or less. The above loop fails to
produce a complete solution when Ei = φ. When this happens, heuristic DC
backtracks to use an untried job in Ei+1, . . . , En in this order, as long as one
such job exists. Otherwise a larger value B is tried. It is also possible that
the above steps produce a permutation which, upon evaluation of Tmax, turns
out to be infeasible. Then, the DC heuristic backtracks to the last scheduled
position for which the tardiness limit is exceeded. We start by finding JR
unconstrained, and letting the resulting maximal job tardiness be our initial
value for B. By decrementing B iteratively over a suitable range, all efficient
schedules can be generated.

In a computational experiment with n = 10 jobs and m = 2, 5 or 10
machines, Daniels and Chambers (1990) observed that the number of efficient
schedules for Fm|perm|(Cmax|Tmax) is small, increases with m, and their
heuristic produces about 50% of them. Moreover, feasible efficient solutions
are found to be within 3% from the optimal, on average.

A variation of the DC heuristic is developed by Framinan and Leistein
(2006). Their heuristic (referred to as FL) starts with the least slack order
LS : ↗(dj − Pj), or its inverse ↘(dj − Pj), and Tmax is computed. Suppose
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Tmax is attained at position i. For all preceding jobs, the DC heuristic steps
are employed, augmented by job exchanges used to reduce the makespan
without increasing the value Tmax. The FL implementation is tested on a
problem suite by Demirkol et al. (1998) originally designed for the lateness
objective. This suite includes 160 flow shop problems with n ≤ 50 and m ≤
25. It is shown that the FL implementation significantly outperforms the DC
heuristic for Fm|perm|(Cmax|Tmax ≤ B).

Another objective considered in the literature that involves Cmax and Tmax

is the convex combination of the two objectives as in Fm|perm|(λCmax+(1−
λ)Tmax|Tmax ≤ B) with λ ∈ [0, 1]. A simulated annealing metaheuristic is
developed in Chakravarthy and Rajendran (1999) for this problem, which
reduces to Fm|perm|(Cmax|Tmax ≤ B) when λ = 1. The starting solution for
this metaheuristic (referred to as CR) is the best amongst the LS and EDD
sequences, and the sequence produced by the NEH heuristic. Trial Tmax values
are no greater than

maxj(
∑m

k=1 pkj + n−1
n

∑n
l=1 pml) − minj dj

which might be tight for some instances. Even though CR outperforms the
DC and FL heuristics for problems with less than 12 jobs, it is shown that it
may fail to produce feasible solutions (see Framinan and Leistein, 2006).

Allahverdi (2004) proposed a neighborhood search heuristic (referred to
as AH) that starts with the best of the LS, EDD and NEH sequences and
employs insertions of job pairs in a framework similar to that of the NEH
heuristic. As with FL and CR, heuristic AH is found to outperform all of
DC, FL and CR for Fm|perm|(λCmax + (1 − λ)Tmax|Tmax ≤ B), and takes
very little CPU time on problems with n ≤ 150 and m ≤ 20. Moreover, AH
performs well across different values of m and λ. The performance of AH is
also evaluated on Fm|perm|(λCmax + (1 − λ)Tmax) and compared against
the corresponding solutions obtained by DC, FL and CR. The findings are
similar to those for the constrained objective.

Finally, a genetic algorithm is developed by Ruiz and Allahverdi (2009)
that is strengthened by local search. On randomly generated problems with
n ≤ 350 and m ≤ 50, this genetic algorithm (referred to as RA) produces
better solutions than AH and FL and exhibits robust performance across
different values of λ.

4.17.3 ΣwjCj and ΣujTj

For problem Fm|perm|Σ(wjCj + ujTj) Gelders and Sambandam (1978) de-
veloped four heuristics by appending jobs to a partial schedule on the basis
of machine idle times, makespan lower bound, and the dj, wj, uj values of
each job. The resulting schedules are then improved by adjacent pairwise
interchanges.

For the same objective, Rajendran and Ziegler (1999) developed a con-
structive heuristic that selects the best amongst the following 2m job permu-
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tations. Defining:

f(j, r) =
∑m

k=r(m − k + 1)pkj

wj + uj
, and g(j, r) =

dj

∑r
k=1 pkj

(wj + uj)
∑m

k=1 pkj
,

they consider, for each r (r = 1, 2, . . . , m), the sequences ↗f(j, ·) and
↗g(j, ·). Even though the best amongst these permutations does not per-
form well, improvements based on job insertions yield significantly improved
solutions shown to outperform those obtained in Gelders and Sambandam
(1978). Using these heuristic solutions as seeds within the simulated anneal-
ing framework developed in Ishibuchi et al.(1995) (originally developed for
Fm|perm|Cmax), is shown to yield further improvements within reasonable
CPU time.

4.18 Setups and Teardowns: Fm|perm, sij , tij|Any

Often, before a machine is ready to process a certain job, it must be pre-
pared in some way: it may need to be tested, adjusted, tooled, supplied with
materials, etc. The time needed for such preparation is called setup time.
Similarly, after a job is completed, the machine may be tied up an additional
teardown time (sometimes referred to as removal time) for taking the job
off the machine, cleaning up, putting away tools and materials, etc.

We say that the setup and teardown of Jj are sequence-independent if they
depend only on Jj , not on the jobs that precede or follow it. We call them
separable or anticipatory if the job does not have to be physically present:
the setup for a job on Mi+1 and its teardown on Mi−1 can proceed at the
same time that it is being processed on Mi. Under these two assumptions, let
us define sij , pij, and tij as the nonnegative setup, processing, and teardown
times of Jj on Mi.

As noted among our introductory examples (see Sect. 3.1.1), setups (and
the same is true of teardowns) that are separable and sequence-independent
can be treated as negative lags. In fact, even sequence-dependent setup times
can be so handled provided they are additive. In general, the setup time on
a machine is sequence-dependent if it depends on the job that was just
completed as well as the job to be done next. Thus, if Jk follows Jj on Mi,
the setup time for Jk is sijk, which may be an arbitrary function of j and k.
An additive function has the form sijk = uij + vik. Now, of course, we can
interpret this as the time to tear down Jj and then set up Jk.

Observe that, although the three parts of a job are separable, it can never
help to insert idle time between them: if such idle time exists, we are free to
move the setup later and/or the teardown earlier to remove it. We therefore
define p′ij = sij + pij + tij as the effective processing time. However,
this effective processing of Jj can begin on Mi+1 a time tij + si+1,j before it
effectively completes on Mi, because the true processing ends tij earlier on
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Mi, and starts si+1,j later on Mi+1, than the effective processing (see Fig. 3.5
for the case with setups but no teardowns). We conclude:

Theorem 4.19 Fm|perm, sij, tij|Any is equivalent to Fm|perm, �ij|Any
with parameters

p′ij = sij + pij + tij , i = 1, ..., m, j = 1, .., n, and
�ij = −(tij + si+1,j) , i = 1, ..., m− 1, j = 1, .., n.

For example, in the two-machine case (now each job has only one lag,
�1j = �j) with makespan objective, as Yoshida and Hitomi (1979) showed for
setups only, and Sule (1982) extended to include teardowns, we have:

Corollary 4.1. For F2|perm, sij, tij|Cmax,

S� = JR(P1 + �, P2 + �) = JR(p1 + s1 − s2, p2 + t2 − t1).

Note that this is effectively a two-machine flow shop with lags, and as we
have seen, even for the makespan objective, the best solution is not always
a permutation schedule. Thus, only by limiting our search to permutation
schedules can we solve the problem efficiently. Also, observe that the calcula-
tion of the job parameters, P1j + �j and P2j + �j , may well produce negative
values for these “processing times”. This may seem bizarre, but does not in-
validate Johnson’s Rule, which finds the optimal schedule. Of course, to find
the length of that schedule, original data must be used.

4.19 Cyclic Scheduling

No efficient algorithm is likely to minimize the cycle time in a repeti-
tive manufacturing setting, as McCormick et al. (1987) have shown that
Fm|perm, cyclic|CT is strongly NP-complete. The extension of the mixed
integer program given in Sect. 4.5 for Fm|perm|Cmax to the cyclic case is a
straightforward application of the ideas introduced in Sect. 1.7.1. With xij a
0–1 variable indicating that Jj is in position i, and cki the completion time
on Mk of the job in position i, the following mixed integer program finds the
minimal cycle time Z.

minimize Z

subject to Z ≥ ckn − ck1 +
∑n

j=1pkjx1j, k ∈ M (4.19)

cki ≥ ck−1,i +
∑n

j=1pkjxij, i ∈ J , k ∈ M (4.20)

cki ≥ ck,i−1 +
∑n

j=1pkjxij, i ∈ J , k ∈ M (4.21)∑n
i=1xij = 1, j ∈ J (4.22)∑n
j=1xij = 1, i ∈ J (4.23)

xij = 0 or 1, i, j ∈ J (4.24)

with ck0 = c0i = 0; where (4.19) ensures that cycle time Z = maxk{ckn −
sk1} = maxk{ckn− (ck1−pk[1])}. As before, (4.20) enforces task order within
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jobs, (4.21) does the same on each machine, and (4.22) – (4.24) ensure that
each job is assigned to just one position in the schedule, and each position
gets one job.

4.19.1 The Minimal Cycle Time for a Given Sequence

A straightforward procedure can be given to find the minimal cycle time,
CT �(S), for a given sequence S; apparently it has not previously been noted.
As usual, reindex jobs so that S = (1, . . . , n). We first find the completion
(or early finish) times, Ckj, of all tasks, using (4.1). With makespan fixed,
we then perform a backward pass to find the latest (or late finish) time, C′

kj,
each task can be completed without increasing the makespan. Any task Tkj

that is on a critical path (there may be more than one such path) will have
Ckj = C′

kj. Now, to make the work as compact as possible on each Mk,
schedule all tasks that precede the earliest critical task as late as possible,
and schedule tasks that follow the last critical task as early as possible. A
more formal statement of this concept follows.

Shortest Cycle Time (SCT(S)) Algorithm for Fm|perm, cyclic|CT (S)

0. Specify the job sequence, S := (1, . . . , n), reindexing jobs as needed.
1. Compute the early finish times of all tasks, using:

Ckj = max{Ck−1,j, Ck,j−1} + pkj , (4.1)

with C0j = Ck0 = 0 ; for k = 1, . . . , m, and for each k, for j = 1, . . . , n.
2. Compute the late finish times of all tasks:

C′
kj = min{C′

k+1,j − pk+1,j, C
′
k,j+1 − pk,j+1} ,

with C′
mn = Cmn and Cm+1,j = Ck,n+1 = pm+1,j = pk,n+1 = 0. Iterate

backwards, for k = m, . . . , 1, and for each k, for j = n, . . . , 1.
3. Now,

CT �(S) = maxk=1,...,m{Ckn − C′
k1 + pk1}.

In Fig. 4.6, we show how the steps progress for an instance with m = n = 4,

Fig. 4.6 Steps in determining the shortest cycle time for a schedule

where the processing times are p̄1 = <4, 4, 11, 7>, p̄2 = <8, 9, 9, 5>, p̄3 =
<11, 5, 8, 11>, and p̄4 = <10, 7, 5, 3>. Given S = (1, 2, 3, 4), Fig. 4.6(a)
shows the usual early start schedule found in Step 1, giving makespan of 52.
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With makespan fixed, Step 2 places each task as late as possible, as shown in
Fig. 4.6(b). Critical tasks (dark shading) are unmoved. The compact schedule
shown in Fig. 4.6(c) has pre-critical tasks scheduled late, and post-critical
tasks early, giving minimal machine occupancies of 33, 34, 35, and 26, so
that CT � = 35.

4.20 Concluding Remarks

The m-machine permutation flow shop with m > 2 is found to be one of the
most extensively researched productions systems. A rich literature exists for
all the popular scheduling objectives as well as bicriteria. In contrast, non-
permutation scheduled are mostly neglected. Results on exact algorithms
have been disappointing and the problems we can optimally solve to date are
not of realistic size. A notable exception is the F3|perm|Cmax problem for
which adaptations of Johnson’s rule often provide optimal solutions.

The most celebrated results for the m-machine flow shop are the NEH
and CDS heuristics. The NEH heuristic is a creative insertion-type heuristic,
while Jonson’s rule is in the core of the CDS as well as in nearly every lower
bounding scheme for the makespan objective.

There is a plethora of metaheuristics that have been implemented on the
m-machine flow shop. In many cases, results have been impressive and near-
optimal solutions are produced for fairly large problems. This is done by
creating and evaluating a large number of promising sequences even though
substantive structural properties of the m-machine flow shop are still lacking.
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Chapter 5

THE HYBRID FLOW SHOP

Abstract In this chapter we organize the literature on the hybrid flow
shop scheduling problem that has appeared since the late 1950’s. We
see a number of interesting and diverse industrial applications of this
system, and find that the majority of research focuses on the makespan
objective. Our coverage of results is exhaustive and categorized along
concepts such as complexity, error-bound analyses, computational ex-
periments and choice of objective. Several new results are included that
have not appeared in the literature before. Surprisingly, existing re-
search does not focus on the deterministic version of the problem alone,
but also on the case of stochastic processing times.

5.1 Preliminaries

The flow shops we have considered up to now have consisted of a single
processor per stage. In this chapter, we introduce production systems where
at least one stage consists of more than 1 processor, and where every task
can be executed on any one of the processors in the corresponding stage. The
existence of multiple parallel machines in a stage offers significant processing
flexibility but at the same time forces the decision maker to make wise use
of the additional resources. The case where all processors at a stage are
parallel identical machines has received significant attention in the literature.
The system with m stages and ki machines at stage Gi (1 = 1, 2, ...,m) is
denoted F (k1, k2, . . . , km) and referred to as the hybrid, compound, flexible, or
multiprocessor flow shop by various authors. We will adopt the term hybrid
flow shop which reflects the fact that F (k1, k2, . . . , km) is a hybrid of two
production systems: a single station with multiple parallel identical machines,
and the simple flow shop Fm. If the number of stage is not specified by
a subscript, we may add it in front, as in Fm(2, 2, ...,2). When there are
only two or three stages, we will simplify the notation as usual by writing
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and Applications, International Series in Operations Research & Management Science 182,  
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p1j := aj , p2j := bj , p3j := cj and referring to these tasks as a-tasks, b-tasks
and c-tasks, respectively. All job parameters are assumed to be integers.

Most of the research on hybrid flow shops has focused on minimizing the
makespan, so this chapter emphasizes that objective. In Section 5.7, several
other objectives are briefly discussed.

5.1.1 Applications

Hybrid flow shops are almost always present when the production system
consists of a fixed sequence of stages. If each stage of production is viewed as
a single work center, then the entire system is approximated by a flow shop
with a single processor per stage. Finer analysis of the production system can
be achieved by explicitly considering all of the resources in each stage. The
resulting system is a hybrid flow shop. Alternatively, traditional flow shops
evolve to become hybrid by adding processors to alleviate the demands placed
on bottleneck stages. Below we describe some specific real-world applications.

• We have come across a related manufacturing process of a major label
manufacturer located in Painesville, Ohio. This company is a global man-
ufacturer of labels that decorate and provide appropriate information on
bottles and packages, stickers for medical products, etc. This manufac-
turing process consists of two major steps, coating and slitting. Coating
ensures that the raw label sheets are single, double, or triple coated as
appropriate to ensure the right sticking strength, the number of times
that the label can be stuck/unstuck (i.e., in film processing envelopes),
and good performance under various conditions of humidity, electrostatic
fields, etc. Slitting is done by a number of slitters each equipped with sev-
eral knives that can be adjusted to cut a roll into several smaller rolls of
required lengths. The particular facility considered here is equipped with
4 coaters and 5 slitters, thus resulting to an F (4, 5) system.

• A 5-stage hybrid flow shop is described in Paul (1979) for an application
from the glass-container industry. Here, a furnace feeds molten glass into
a number of glass-forming machines that shape the finished product. The
formed product is then passed on to the annealing stage which consists
of multiple parallel identical kilns that cool and harden each product over
the necessary amount of time. The annealed containers proceed to the
inspection stage and then on to packing and storage. In this application
the production process consists of five distinct stages: molting, forming,
annealing, inspection, and packaging.

• The loading/unloading operations in cargo ships have been modeled by
Bish et al. (2005) and Li and Vairaktarakis (2004). For every ship, a quay
crane is available to unload containers from inside the ship to trucks avail-
able to transport each container to the appropriate position of the berth
yard. The crane requires time ai to unload container i from the ship and
load it onto a truck. Since ai is usually small, the truck has to be available
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throughout the ai units of time required to unload container i. Then, the
truck takes the container to the appropriate berth location and returns to
the quay; this takes time bi. Upon unloading all containers from inside the
ship, other containers are transported by trucks from the yard to the ship.
Let bj be the time required by a truck to transport container j for loading
into the ship. Each truck is considered to be busy during time cj: the time
required by the quay crane to load container j from the truck onto the
ship.
This application can be modeled as a 3 stage flow shop F (1, k, 1) with
multiprocessor tasks. Specifically, stages 1 and 3 have a single processor;
the quay crane. Stage 2 consists of k trucks. Unloading job i has the
form (ai, bi, 0) while loading job j has the form (0, bj, cj). The a- and
c-tasks are multiprocessor because both the quay crane and the corre-
sponding truck have to be available when loading/unloading a container.
The makespan minimization objective is considered in Bish et al. (2005)
and Li and Vairaktarakis (2004) who present heuristic algorithms for the
general problem supported by worst-case analyses, and optimal algorithms
for special cases of the problem.

• In all previous applications, the multiple processors of each stage are phys-
ically located in the same facility. Salvador (1973) described applications
from the polymer, chemical, and petrochemical industries where jobs can
practically be processed at any one of multiple plants at each stage of
processing.

5.2 F (k1, k2, . . . , km)||Cmax: Basic Results

We first present such results as are known for the general makespan problem:
a mathematical program, and some special properties that can be used in
search algorithms. In the following section, we look at some special cases.

5.2.1 A Mixed-Integer Programming Formulation

Several mathematical programs have been proposed for the hybrid flow shop
with makespan objective. We present one due to Guinet et al. (1996). Recall-
ing that, for i, j = 1, . . . , n, h = 1, . . . , kr, and r = 1, . . . , m:

• Crj : the completion time of Jj at Gr,
• Mhr : machine h at Gr,

we define the following variables:

xijhr =
{

1 if Ji immediately precedes Jj on Mhr

0 otherwise,

x0jhr =
{

1 if Jj is the first job processed on Mhr

0 otherwise,
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xi0hr =
{1 if Ji is the last job processed on Mhr

0 otherwise.
Using these variables, the following mixed-integer program minimizes the
makespan, Z:

HFS minimize Z

subject to
∑n

i=1

∑kr

h=1xijhr = 1 ∀ j, r (5.1)∑n
j=0xijhr ≤ 1 ∀ i, h, r (5.2)∑n

i=0,i �=jxijhr −
∑n

j=0,i �=jxijhr = 0 ∀ i, h, r (5.3)

Cri +
∑kr

h=1xijhrprj + (
∑kr

h=1xijhr − 1)M ≤ Crj ∀ i, j, r (5.4)
Crj ≥ Cr−1,j + prj ∀ j, r (5.5)

0 < Crj ≤ Z ∀ j, r (5.6)
xijhr ∈ {0, 1} ∀ i, j, h, r (5.7)

Constraints (5.1) ensure that, in each stage, every job is processed by only
one processor. The fact that no machine can process more than one job at
a time is captured in (5.2). Constraints (5.3) ensure that, in each stage and
each machine within a stage, every job has a single predecessor (which is
a dummy job for the first job of each machine). Job completion times are
computed via (5.4), where M is an arbitrary large number. Constraints (5.5)
enforce the precedence constraints. The makespan value is captured via (5.6).

5.2.2 Some Useful Observations

Several preliminary observations will be helpful in the following development.

Property 5.1 : Reversibility
Consider the “reverse” production problem to the one just formulated. That
is, suppose that the jobs require processing in stages m, m − 1, . . . , 2, 1 in
that order. The processing requirement of each job in each stage remains the
same. For the makespan minimization objective the hybrid flow shop and its
reverse counterpart have a mirror image relationship. Specifically, if S is a
schedule for the hybrid flow shop that has makespan CS , and the completion
time of Jj at Gr is Crj, then one can create an equivalent schedule SR for
the reverse problem, as follows: Assign all tasks to be processed on the same
machines as in S, but now the completion time of Jj at Gr is changed to
C′

rj = CS −Crj +prj . By symmetry, the flow shop constraints for the reverse
problem are satisfied in SR. Moreover, the makespan CR of SR is CR = CS .
This reversibility property is helpful in analyses because it allows one to
work with the reverse system and draw conclusions for the original hybrid
flow shop.

Property 5.2 : FCFS Scheduling for the Last Stage
A simple interchange argument shows that, for a given assignment of tasks
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in stages G1, G2, . . . , Gm−1, it is optimal for problem F (k1, k2, . . . , km)||Cmax

to schedule the Gm-tasks in nondecreasing order of completion times of the
corresponding Gm−1-tasks, or equivalently, in first-come-first-served(FCFS)
order.

One can apply Property 5.2 to the reverse instance of a problem. That
is, given a partial schedule for stages m, m − 1, . . . , 2, the G1-tasks can be
scheduled optimally (for F (k1, k2, . . . , km)||Cmax) by ordering them in non-
increasing order of C2j values, and subsequently scheduling them (in this
order) on a machine at G1 that allows the latest (or, in reverse time, earliest)
possible start.

Approximation using Merged Machines

The technique of merging machines, also introduced in Sect. 2 of Chap. 8,
is used to approximate the more complex hybrid by a simple m-machine
flow shop. Suppose that at each stage Gr we replace the machines Mir(i =
1, 2, ..., kr) by a single dummy machine Mr , that will do the work kr times
faster. To reflect this, we replace the processing time requirement of prj for
Jj at Gr, by the requirement of prj/kr time units on Mr (j = 1, 2, ..., n, r =
1, 2, ...,m). Its as though, with the original machine group, each job can
be divided into kr equal parts which are simultaneously processed on all
machines. As we will see later, this simple flow shop has proven instrumental
in identifying lower bounds for the makespan minimization objective in the
hybrid shop whose capacity it closely approximates.

5.3 The Simplest Hybrid Systems

In most of this section we study the 2-stage hybrid flow shop with a single
processor in one of the two stages. According to our notation such a system is
denoted as either F (k, 1) or F (1, k). By the reversibility property, these two
systems are equivalent when minimizing makespan; we will speak of either
interchangeably.

We begin with some elementary results that arise when the second of two
stages has unlimited servers. If, on the other hand, the number of servers is
finite, the following subsection establishes the NP-completeness of even the
simplest hybrid flow shop. After that, some approximation results are given.
Dominance properties and lower bounds are presented in the next subsection.
Then, we present some key error bound results that have appeared in the
literature followed by comments on computational experiments. At the end
of the section we consider the system with m − 1 single-processor stages.

5.3.1 Some Results for F (k, n)

We first mention some very simple results that arise when the second stage is
nonbottleneck. A nonbottleneck station has such abundant facilities that
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no job ever has to wait. There may be an unlimited number (n or more) of
machines, or one large machine that can simultaneously process any number
of jobs (e.g., an oven for heat treatment), or G2 may simply be a place where
the jobs can be left for paint to dry, or some other chemical process to take
place. We denote any of these possibilities as an n-machine stage.

Nonbottleneck stages can simplify analysis. We give here, without proof,
the most elementary results.

• For F (1, n)||Cmax , ↘ bj is optimal (Gupta and Tunc, 1991).
• For F (1, n)||Lmax, or Tmax , ↘ (bj − dj) is optimal.
• For F (1, n)||ΣwjCj , ↗ aj/wj is optimal.
• For F (k, n)||ΣCj , ↗ aj is optimal,

where ↗ aj (that is, SPT) on parallel processors, means: assign jobs in
SPT order to the first available machine at G1.

5.3.2 Complexity of F (2, 1)|(pmtn)|Cmax

Without preemption, this problem is clearly NP-complete; the single-stage
problem of minimizing makespan on two parallel identical machines is al-
ready NP-complete. With preemption, its complexity status remained open
for some time, until it was finally established in the following result.

Theorem 5.1 (Hoogeveen, Lenstra and Veltman, 1996)

F (2, 1)|pmtn|Cmax is strongly NP-complete.

Proof Outline: Here, we present only the authors’ proof that the problem
is ordinary NP-complete. They also give a reduction from the 3-Partition
problem to prove strong NP-completeness, which we omit.

The reduction is from the NP-complete problem:

PARTITION
INSTANCE: An integer V , and k positive integers vi : i ∈ T = {1, 2, ..., k}
such that Σi∈T vi = 2V .
QUESTION: Can T be partitioned into disjoint subsets S1 and S2 such that
Σi∈S1vi = Σi∈S2vi = V ?

Given an instance of Partition, construct an instance of the decision prob-
lem F (2, 1)|pmtn|Cmax≤B? as follows:

• n := k + 4;
• <aj, bj> := <αvj , vj>, α > 1, j = 1, 2, ..., k;
• <ak+1, bk+1> := <0, αV >
• <ak+2, bk+2> := <αV + V, αV >
• <ak+3, bk+3> := <αV + 2V, 0>
• <ak+4, bk+4> := <V, 0>
• B := 2V (α + 1).
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Now, suppose a partition of T exists, and let S1 be a set of jobs (technically,
the set of indices of those jobs) with Σj∈S1bj = Σi∈S1vi = V. In this case, the
schedule in Fig. 5.1 has length 2(αV + V ), which is the minimum possible
since there is no idle time on any machine. Note that, in the figure, we
denote by Si, i = 1, 2 the jobs in Si sequenced in any order. Also, observe
that this schedule is achieved without preemption, but obviously could not
be improved with preemption.

To prove the reverse implication, suppose that a schedule of length
2V (α+1) exists. Property 2 allows us to apply the FCFS rule on M2 without
preemption. As we have seen, a schedule of this length must have all machines
fully occupied over the scheduled interval. It follows that Jk+1 must be first
on M2, since only it, requiring no processing on stage G1, can start on M2

at time zero. Similarly, Jk+3 and Jk+4 must be last on M11 and M21 since,
requiring no time on M2, they can occupy G1 to the end. Jk+2 will not fit on
M11. To see that it must be scheduled first on M21, assume that it starts at
time Δ for Δ ≥ 0. Then M2 will have to process the jobs that were completed
on G1 before the start of ak+2 and ak+3, and do it before bk+2 starts, that is,
in the interval [αV, αV +V +Δ], of length V +Δ. The total time available in
G1 prior to ak+1 and ak+2 is αV +Δ. Even if the a-tasks processed there are
all complete, the corresponding b-tasks will require V + Δ/α time (because
bj = aj/α for j = 1, . . . , k), which will underfill the available time V + Δ
and leave idle time on M2, unless Δ = 0. If any a-task is incomplete, i.e.
preempted, the corresponding b-task cannot be processed until later, again
leaving idle time on M2.

Fig. 5.1 Optimal schedule of constructed instance of F (2, 1)|pmtn|Cmax

We conclude that S� must be as in Fig. 5.1 and the subsets S1, S2 define
a partition. This completes the demonstration that a partition exists if and
only if a schedule of length 2V (α + 1) exists. �

Since F (2, 1) and F (1, 2) (equivalent, by reversibility) are the simplest
possible 2-stage flow shops with a multiprocessor stage, Theorem 5.1 implies
that any flow shop system with more than one machine in a stage is strongly
NP-complete as well. Therefore, all the scheduling problems with the objec-
tive of minimizing makespan that are presented in the rest of this chapter
are strongly NP-complete.
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5.3.3 Approximation Results

Approximation algorithms for F (k, 1) use dispatching rules to schedule tasks
on the multiprocessor stage. Prior to making these assignments, it is necessary
to sequence the tasks in the order they will be scheduled. For now, we defer
consideration of how this sequence S is specified; just assume we have it.

The most popular dispatching rule for F (k, 1) is the First Available Ma-
chine (FAM) rule, where the next task in the given sequence S is scheduled to
the machine that first completes all the tasks previously assigned to it. The
symmetry between F (k, 1) and F (1, k) suggests that for the latter system we
might use the mirror image of FAM, which is referred to as the Last Busy
Machine (LBM) rule. The LBM rule schedules the tasks in reverse order of
S to the second stage of F (1, k), as follows.

LBM rule

1. Set ti := T where T = Σj(aj + bj) for i = 1, . . . , k.
2. Let Jj be the last job in S that has not been scheduled yet on G2, and

Mh a machine with th = maxi ti. Schedule Jj on Mh to finish at time th.
3. Set th := th − bj and S := S − {j}. If S = φ then go to Step 2; else, stop.

Evidently, LBM is the mirror image of FAM where the start time 0 is replaced
by the common finish time T for all identical processors.

We can now state approximation results for F (1, k)||Cmax. We begin with
a simple heuristic that does not use the LBM rule.

Heuristic HS for F (1, k)||Cmax

1. Specify sequence S of the n jobs.
2. Schedule a-tasks according to S.
3. Apply the FCFS rule to the b-tasks of S.
4. Compute the makespan CS of the resulting schedule SS .

Theorem 5.2 (Sriskandarajah and Sethi, 1989)
For F (1, k)||Cmax, if C� is the minimal makespan:

CS/C� ≤ 3 − 1/k, and this bound is tight.

In this bound, (2 − 1/k)C� is contributed by the FCFS rule for b-tasks,
and C� is contributed by the a-tasks scheduled in Step 2, since Σjaj ≤ C�.
Related results are presented by Chen (1995) that use an arbitrary sequence
in Step 2 of HS. For instance, if Step 3 uses the LBM rule for b-tasks, the
worst case error bound remains tight at 3−1/k. In fact, Chen (1995) considers
the set of heuristics that replace Step 3 of HS by dispatching rules where

i) all machines at G2 finish at the same time,
ii) no idle time exists between b-tasks, and
iii) the completion time of task b′ with smallest start time is less than or

equal to the start time of all G2-machines (other than the one that executes
b′).
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Chen (1995) shows that any such heuristic has tight worst case error bound
equal to 3− 1/k. For ease of presentation, this observation is translated here
in light of the reversibility property; in his paper Chen (1995) states the result
for the system F (k, 1).

Heuristic class HC for F (1, k)||Cmax

1. Specify sequence S of the n jobs.
2. Schedule b-tasks using any list scheduling rule of ordered list S that

satisfies conditions i) – iii).
3. Schedule a-tasks in nondecreasing order of start times of the corresponding

b-tasks.
4. Compute the makespan CC of the resulting schedule SC .

Note that every heuristic HC ∈ HC uses the sequence S to schedule tasks in
the multiprocessor stage, unlike HS that uses S for the single processor stage.
According to Property 5.2 (the reversibility property), the single processor
schedule is the best possible for the given assignment of b-tasks, for HC ∈ HC.
Therefore, class HC and heuristic HS are conceptually very different. The
following result is known for the class HC of heuristics.

Theorem 5.3 (Chen, 1995)
For F (1, k)||Cmax, and for every heuristic HC ∈ HC we have:

CC/C� ≤ 2, and this bound is tight.

One might think that the error bound of 2 can be further improved by
appropriately selecting sequence S. Chen (1995) showed that if S = JR(a, b)
the bound of 2 remains tight. This means that sequence JR(a, b) can perform
as badly as any arbitrary sequence. Theorem 5.3 was first established in
Sriskandarajah and Sethi (1989) for the special case k = 2; a looser bound
was obtained for k ≥ 3.

5.3.4 Dominance Properties, Lower Bounds and
Computational Experiments for F (k, 1)||Cmax

The literature indicates that researchers have tried hard to discover some type
of Johnson order as the building block of optimal or near optimal solutions.
This is indicated by the fact that the sequence S used to dispatch tasks
to machines often has features similar to the Johnson sequence. However,
Johnson-type dominance properties are not possible. Still, the following has
the flavor of JR, since it puts earlier the job that is smaller at G1 and longer
at G2:

Property 5.3 (Gupta, Hariri and Potts, 1997)
If the a-tasks of Ji and Jj are scheduled on the same G1-processor, and
if ai ≤ aj and bi ≥ bj, then there is an optimal schedule for F (k, 1)||Cmax

where ai precedes aj.
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Properties 5.2 and 5.3 are often used in branch-and-bound implementa-
tions to solve F (k, 1)||Cmax. The lower bounds used determine to a large
extent the efficiency of these algorithms. Such bounds are included in Gupta
(1988), Gupta et al. (1997), Lee and Vairaktarakis (1994) and Haouari and
M’Hallah (1997). The next two lower bounds are drawn from Gupta et al.
(1997).

To obtain the first lower bound LB1 for F (k, 1)||Cmax, observe that for
a given schedule, the completion times of a-tasks act as release dates for b
-tasks. Since the completion time of aj is C1j ≥ aj, a lower bound can be
obtained by scheduling b-tasks on a single processor subject to release dates
rj = aj for j = 1, . . . , n. This problem is optimally solved if we schedule the
b-tasks in ↗rj order. Let π be the resulting order. Then,

LB1 = maxj=1,...,n{aπ(j) +
∑n

i=j bπ(i)}.

A better lower bound is obtained if we know a subset of jobs, whose indices
make up the set N0 ⊂ N = {1, 2, ..., n}, containing at least one job assigned to
every first-stage machine in an optimal schedule S�. Let (1), (2), . . . , (k) ∈ N0

index jobs that are assigned to machines M11, M21, . . . , Mk1 respectively. We
assume that these jobs have the additional property that (h) is the last job
index in N0 assigned to Mh1 and that the completion times, C(h), of a(h) in
S� are such that C(1) ≤ C(2) ≤ . . . ≤ C(k). Furthermore, let N ′

0 be the set of
indices of the jobs preceding J(1), J(2), . . . , J(k) on the G1-machines that are
not in N0, and N̄0 = N −N0 − N ′

0. Then, in S� we have

C� ≥ C(1) +
∑k

r=1 b(r) +
∑

i∈N̄0
bi

and

C� ≥ C(h) +
∑k

r=h b(r) for h = 2, . . . , k

because without loss of generality b-tasks are assigned in G2-machines ac-
cording to the FCFS rule (according to Property 5.2). Averaging these k
inequalities, we get

C� ≥
∑k

h=1 C(h)/k +
∑k

h=1

∑k
r=h b(r)/k +

∑
i∈N̄0

bi/k

which yields

C� ≥
∑

i∈N0
ai/k +

∑
i∈N ′

0
ai/k +

∑k
r=1 rb(r)/k +

∑
i∈N̄0

bi/k.

If J[1], . . . , J[n0] is an ordering of jobs in N0 such that b[1] ≤ . . . ≤ b[n0] we
get that C� ≥ LB2(N0), where

LB2(N0) = �∑
i∈N0

ai/k +
∑

i∈N−N0

min{ai, bi}/k +
k∑

r=1

(k − r + 1)b[r]/k�

where we round up because when the processing times are integer, C� is
also an integer. A trivial implementation of LB2 is to assume that N0 =
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{1, . . . , n}. A tighter implementation exploits the observation that, in S�, all
G1-machines are processing a-tasks at least until time

T =
∑n

j=1 aj/k − (1 − 1/k) · maxj=1,...,n aj

since otherwise the FAM rule could be used to start some a-tasks earlier.
Then, one can initialize N0 = {1, . . . , n} (so N − N0 := φ) and iteratively
select a job, Jv, v ∈ N0, with bv = minj∈N0 bj. If av + Σi∈N−N0ai < T , then
let N − N0 := N − N0 + {v} and N0 := N0 − {v}, and repeat; otherwise
terminate. The resulting set N0 yields the improved lower bound LB2(N0).

Gupta et al. (1977) perform a computational experiment that shows that,
in most cases, the trivial lower bound

LB = max{min1≤j≤n aj +
∑n

j=1 bj , �
∑n

j=1 aj/k� + min1≤j≤n bj}

outperforms the more sophisticated bounds presented above. They also ex-
periment with a number of heuristics where

i) a sequence S is chosen,
ii) a-tasks are scheduled according to the FAM rule, and
iii) b-tasks are scheduled by the FCFS rule (see Property 5.2).

For Step i), they found that S = JR(a/k, b) consistently outperformed
JR(a, b) in their experiments. They also demonstrated that solving the equiv-
alent reverse problem (described in Property 5.1) often yields a better sched-
ule than the one obtained for the original problem. Further, they tested a
number of improvements for Step ii), and one of their algorithms (which is
based on pairwise interchanges) was found to be optimal for most problem
instances and near optimal for the rest, compiling an average relative gap of
about 0.1%. This indicates that problem F (k, 1)||Cmax is well solved for all
practical purposes. A limited experiment for the same problem is provided
in Chen (1995).

5.3.5 Fm(1, 1, . . . , 1, k)||Cmax

For this problem Sriskandarajah and Sethi (1989) extend the heuristic HS

presented in Sect. 5.3.3 to the Fm(1, 1, . . . , 1, k) system. Specifically, in Step
2 of HS the next task in S is scheduled to all single-processor stages, not just
the first. It is shown that the error bound is tight and equals

CS/C� ≤ m + 1 − 1
k .

5.4 F (k1, k2)||Cmax

Before considering the general two-stage hybrid flow shop, we look at the
case where k1 = k2.



172 5 THE HYBRID FLOW SHOP

5.4.1 F (k, k)||Cmax

When each of a flow shop’s two stages has the same number of processors,
we can view the system as k parallel flow lines. Error analyses that view
Fm(k, . . . , k) as such are presented in Sriskandarajah and Sethi (1989). Since
simple flow shops in parallel are treated in Chap. 4, we relegate these results to
that chapter. Here, we consider results that do not treat F (k, k) as a system
of 2-machine flow lines. Consider the following heuristic due to Langston
(1987).

Heuristic HL for F (k, k)||Cmax

1. S := ↘bj.
2. Apply the FAM rule to the a-tasks in the sequence S.
3. Apply the FCFS rule to the b-tasks.
4. Compute the makespan CL of the resulting schedule SL.

Theorem 5.4 (Langston, 1987)
For F (k, k)||Cmax, if C� is the optimal makespan:

CL/C� ≤ 2, and this bound is tight.

Langston (1987) also investigates a heuristic HL′ that only differs from HL

in that S = ↗aj. One might assume that, due to the reversibility property,
HL′ should exhibit the same worst-case performance ratio. To see that this is
not the case, consider an instance of F (k, k)||Cmax that consists of n = k0k+1
(for k0 > 1, integer) jobs with the following parameters: (a1, b1) = (x, k0x)
for x > 0, (a2, b2) = . . . = (ak+1, bk+1) = (x, 1

2k0x), and (aj, bj) = (x, 0) for
j = k + 2, . . . , n. Note that every permutation of these jobs qualifies as the
sequence S in HL′ . If we choose S = (1, 2, ..., n),we obtain an optimal schedule
with C� = (k0 + 1)x. However, for S = (n, n − 1, ..., 1), CL′ = 2.5k0x and
hence the ratio CL′/C� approaches the value 2.5 asymptotically. Note that
the LPT order of the b-tasks in the original problem corresponds to the SPT
order of a-tasks in the reverse problem. The above observation indicates that,
for the purpose of worst-case analysis, the original problem is not completely
symmetric to its reverse counterpart. Moreover, the analysis of heuristics
HL, HL′ indicates that a Johnson-type sequence of the jobs might yield a
better heuristic.

5.4.2 F (k1, k2)||Cmax

We now consider the general two-stage hybrid flow shop.

Lower Bounds on Cmax

The next lemma provides an intuitive lower bound for F (k1, k2)||Cmax often
used in algorithmic analysis. This lower bound uses the “merged machines”
shop MMS (where multiple machines at a station are replaced by a single
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faster one, as described in Sect. 1) and was first presented in Buten and Shen
(1973). Simpler proofs are provided in Lee and Vairaktarakis (1994) and Chen
(1995). The proof given below is from Lee and Vairaktarakis (1994).

Lemma 5.1 (Buten and Shen, 1973) If CM is the makespan of the optimal
schedule SM = JR(a/k1, b/k2) for the MMS problem, and if C� is the optimal
makespan value for F (k1, k2)||Cmax, then, CM ≤ C�.

Proof: Consider an optimal solution S� for F (k1, k2)||Cmax. Let S =
(J1, J2, . . . , Jn) be the sequence of jobs reindexed in nondecreasing order of
completion times of the a-tasks in S�. Consider the partial schedule of S�

consisting of the first i a-tasks of S and the last n− i +1 b-tasks of S. Since
in S� the last n− i+1 b-tasks of S start no earlier than the completion time
of the first i a-tasks of S (due to the flow shop constraints), we have that

C� ≥
∑i

j=1 aj/k1 +
∑n

j=i bj/k2 for every i = 1, . . . , n.

For the MMS problem (where the processing time requirements for Jj are
<aj/k1, bj/k2>), schedule the jobs according to sequence S. Let CS be the
resulting makespan. Then it is clear that

CS =
∑i0

j=1 aj/k1 +
∑n

j=i0
bj/k2,

where Ji0 is the last job whose b-task starts immediately after the comple-
tion of the corresponding a-task (note that such a task always exists, since
J1 satisfies this property).

Combining the last two expressions we get that CS ≤ C�. However, the se-
quence S is not necessarily optimal for the MMS system and hence CM ≤ CS .
The last two relations establish that CM ≤ C�. �

In the optimal solution S� for F (k1, k2)||Cmax, G2-machines incur idle
time due to the flow shop constraints for the first job of each G1-machine.
The lower bound in Lemma 5.1 can be improved by carefully calculating the
inserted idle time due to these jobs. We distinguish the following two cases:

Case i: k1 ≥ k2

Suppose that S = ↗aj. Using S, it is clear that because of the flow shop
constraints there will be in G2 a machine with initial idle time no less than
a1, a machine with idle time no less than a2, . . . , a machine with idle time
no less than ak2 . As a result, C� cannot be less than the average workload of
the machines at G2 plus the necessary initial idle time there, i.e.

C� ≥ [
∑k2

k=1 ak +
∑n

j=1 bj]/k2.

Case ii: k1 < k2

Similarly, in this case there must be at G2 a machine with idle time no less
than a1, . . . , and a machine with idle time no less than ak1 . The remaining
k2 − k1 G2-machines cannot begin operating until at least two tasks have
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been processed at G1. Since the shortest k1 a-tasks are already considered,
there must exist at G2 a machine with idle time no less than ak1+1 + a1, . . .
, a machine with idle time no less than ak2 + a1. Therefore,

C� ≥ [
∑k1

k=1 ak + (k2 − k1)a1 +
∑n

j=1 bj]/k2.

To simplify, we define Ak [Bk] as the sum of the k shortest a-tasks [b-tasks].
Then we have the following lower bounds on C�:

LB1 = max{[Ak2 + Bn]/k2, A1 + maxj bj}, if k1 ≥ k2,

LB2 = max{[Ak1 + (k2 − k1)A1 + Bn]/k2, A1 + maxj bj}, if k1 < k2.

The reversibility property can be employed to obtain the symmetric lower
bounds

LB3 = max{[Bk1 + (k1 − k2)B1 + An]/k1, B1 + maxj aj}, if k1 ≥ k2,

LB4 = max{[Bk2 + An]/k1, B1 + maxj aj}, if k1 < k2.

It is not difficult to see that none of CLB, LB1, LB2, LB3, LB4 dominates
the others.

Heuristics and Worst-Case Error Bound Analyses

In what follows we present heuristic algorithms for the 2 stage hybrid flowshop
with an arbitrary number of processors per stage. Error bound analyses of
heuristics for F (k1, k2)||Cmax has attracted significant attention since the
seminal article of Buten and Shen (1973). Many of these results are organized
and presented here followed by a literature survey of heuristics that exhibit
excellent performance. Most heuristics that have appeared in the literature
follow the following four generic steps.

Heuristic H for F (k1, k2)||Cmax

1. Specify a sequence S for the n jobs.
2. Apply the FAM rule to the a-tasks in the sequence S.
3. Apply the FCFS rule to the b-tasks.
4. Compute the makespan CH of the resulting schedule SH .

Note that, according to Property 5.2, Step 3 results in an optimal allocation
of b-tasks. Hence, the important decision differentiating the various heuristics
is made in Step 1. The complexity of Steps 2 through 4 of H is O(n). If S
is chosen arbitrarily, then O(n) is also the complexity of H. In this case, we
have the following result.

Theorem 5.5 (Buten and Shen, 1973)
For F (k1, k2)||Cmax, using an arbitrary sequence S:

CH/C� ≤ 3 − 1/max{k1, k2} and this bound is tight.
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Except for the actual value of the error, the importance of Theorem 5.5
lies in the fact that the heuristic error is bounded for any sequence S, as
opposed to the possibility of the error being arbitrarily large for large values
of k1 or k2. Knowing this fact, one would like to carefully choose the sequence
S so as to achieve improved worst-case performance guarantee. The following
result provides such improvement.

Theorem 5.6 (Lee and Vairaktarakis, 1994 and Chen, 1995)
For F (k1, k2)||Cmax, using S = JR(a/k1, b/k2):

CH/C� ≤ 2 − 1/max{k1, k2}, and this bound is tight.

When aj + bj ≤ CM for all Jj, the above result was proved in Buten and
Shen (1973). Recall that CM is the makespan of the merged 2-machine flow
shop corresponding to F (k1, k2). Therefore, the results of Buten and Shen
hold for problem instances where no individual job requires more processing
time than CM . It turns out that, as Theorem 5.6 says, the 2−1/max{k1, k2}
bound holds even when the loading constraint aj + bj ≤ CM is violated. The
difficulty in proving the 2 − 1/max{k1, k2} bound without a loading con-
straint is due to the fact that Step 3 of H, although optimal for stage 2 tasks,
significantly complicates mathematical analysis. The following variation of H
simplifies analysis, and guarantees the 2 − 1/max{k1, k2} bound. We call it
HU since, once the b-tasks have been assigned to machines in Step 3, they
are unrestricted; i.e., they are scheduled FCFS.

Heuristic HU for F (k1, k2)||Cmax

1. Let S = JR(a/k1, b/k2).
2. Apply the FAM rule to the a-tasks of S.
3. Apply the LBM rule to the b-tasks of S.
4. On each G2-machine, resequence the b-tasks assigned to it in the order

they become available from G1, and start each as early as possible.
5. Compute the makespan CU of the resulting schedule SU .

Note that, according to Property 5.2, step 3 of HU is suboptimal compared
to step 3 of H. However, as we will prove shortly, both heuristics achieve the
same worst case error bound. Also observe that, due to Step 1, unnecessary
idle time is inserted in G2-machines, which is then eliminated in Step 4 of
HU. We can now prove Theorem 5.6.

Proof of Theorem 5.6: Reindexing the jobs, let S = (1, 2, . . . , n) be the
order obtained at Step 1 of HU. After the scheduling of a-tasks at Step 2, the
completion time of the a-task of any Jj , say Cj, is

Cj ≤
∑j−1

i=1 ai/k1 + aj =
∑j

i=1 ai/k1 + (k1 − 1)aj/k1, j = 1, ..., n

because the FAM rule is used for a-tasks.
At Step 3 of HU, suppose that the LBM rule is applied on the b-tasks,

scheduling backwards from T = Σi(ai + bi), and that Sj is the start time of
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bj in G2, upon completion of Step 3. Then, since FAM and LBM are mirror
images of one another, we have

T − Sj ≤
∑n

i=j bi/k2 + (k2 − 1)bj/k2, j = 1, ..., n

After eliminating the unnecessary idle time in Step 4, there must be a job,
say Ji0 , whose b-task starts at the same time that ai0 completes (if no such
task existed we would be able to left-shift the b-tasks indefinitely). Then, the
makespan CU ≤ Ci0 + (T − Si0). Therefore,

CU ≤ 1
k1

i0∑
i=1

ai + (1 − 1
k1

)ai0 +
1
k2

n∑
i=i0

bi + (1 − 1
k2

)bi0 . (5.8)

Note that∑j
i=1 ai/k1 +

∑n
i=j bi/k2 ≤ CA ≤ C�, j = 1, . . . , n

according to Lemma 5.1. Also,

(1 − 1
k1

)ai0 + (1 − 1
k2

)bi0 ≤ (1 − 1
kmax

)(ai0 + bi0) ≤ (1 − 1
kmax

)C�,

where kmax = max{k1, k2}. Observe that both H and HU share Steps 1 and
2, and that Step 3 of HU is suboptimal compared to Step 3 of H (according
to Property 5.2). Hence the performance ratio of both H and HU is bounded
by (2 − 1/kmax)C�.

To see that the bound of 2−1/kmax is tight for H (and hence HU), consider
the case where bj = 0 for all jobs. Then the heuristic H reduces to the list
scheduling heuristic, RDM, for a single stage of parallel identical machines
studied by Graham (1966), where the FAM rule is used in conjunction with
an arbitrary permutation of jobs to minimize makespan. The algorithm has
a tight worst case error bound of 2− 1/k1. In a problem where bj = 0 for all
jobs and k1 ≥ k2 the error bound of 2 − 1/kmax is tight for the heuristic H.
This completes the proof of the theorem. �

Absolute Performance Guarantees

So far we have presented results where the measure of performance is a bound
α on the ratio CH/C�, i.e.,

CH ≤ αC�. (5.9)

Alternatively, heuristics can be evaluated by computing an upper bound β for
the difference CH−C�. A heuristic is said to provide the absolute performance
guarantee β if for any problem instance,

CH − C� ≤ β. (5.10)

Such performance guarantees sometimes (but not always) are a by-product
of error bound analyses for the ratio CH/C�. Conversely, if CH − C� ≤ β,
then CH/C� ≤ 1 + β. By comparing (5.9) and (5.10), it makes sense to find
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bounds where β is not a multiple of C�; rather, a quantity that hopefully is
much smaller than C�. Hence, in most cases β is a quantity which is data
dependent, such as pmax = maxi{ai, bi}.

Chen (1994) presented a O(n logn) heuristic for F (k1, k2)||Cmax whose
performance guarantee β = (2 − 2/kmax)pmax. The following heuristic pro-
vides a potentially better absolute error bound and is presented in Koulamas
and Kyparisis (2000).

Heuristic HK for F (k1, k2)||Cmax

1. Let S = (S1, S2) where S1 is an arbitrary permutation of the subset
F = {j : aj/k1 ≤ bj/k2}, and S2 is an arbitrary permutation of
L = {j : aj/k1 > bj/k2} = {1, 2, . . . , n} − F .

2. – 3. Same as in HU.
4. Compute the makespan CK and the resulting schedule SK .

Note that Step 1 requires O(n) time and hence the complexity of HK is also
O(n).

Theorem 5.7 (Koulamas and Kyparisis, 2000)
For F (k1, k2)||Cmax, if C� is the optimal makespan:

CK − C� ≤ (2 − 1/min{k1, k2}) pmax, where pmax = maxj{aj, bj}

Proof: If we repeat the analysis in Theorem 5.6 using the sequence S =
(S1, S2) rather than S = JR(a/k1, b/k2), we obtain an inequality analogous
to (5.8):

CK ≤
j0∑

j=1

a′
j

k1
+

n∑
j=j0

b′j
k2

+ (1 − 1
k1

)a′
j0

+ (1 − 1
k2

)b′j0 , (5.11)

where a′
j , b′j are the processing time requirements of the jth job in sequence

S = (S1, S2), and j0 is the critical job in the schedule obtained by HK. Note
that jobs in F (the “first” jobs) are indexed before jobs in L (the “last”). By
rearranging terms in (5.11) we get

CK ≤
j0∑

j=1

(
a′

j

k1
−

b′j
k2

) +
n∑

j=1

b′j
k2

+ (1 − 1
k1

)a′
j0 + b′j0 (5.12)

=
j0−1∑
j=1

(
a′

j

k1
−

b′j
k2

) +
n∑

j=1

b′j
k2

+ a′
j0

+ (1 − 1
k2

)b′j0 . (5.13)

Now consider two cases.

1.
∑n

j=1(a
′
j/k1 − b′

j/k2) ≤ 0

Note that, by definition, F contains all jobs with a′
j/k1 − b′j/k2 ≤ 0, and

these are the first-indexed jobs. Hence, if Σn
j=1(a

′
j/k1 − b′j/k2) ≤ 0, it must

be true that Σr
j=1(a

′
j/k1 − b′j/k2) ≤ 0 for every r = 1, . . . , n. In this case, the
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first summations in (5.12) and (5.13) can be discarded, and, if we replace a′
j0

and b′j0 by pmax = maxj{aj, bj}, we get:

CK ≤
n∑

j=1

b′j
k2

+ min{2 − 1
k1

, 2− 1
k2
}pmax ≤ C� + (2 − 1

min{k1, k2}
)pmax.

2.
∑n

j=1(a
′
j/k1 − b′

j/k2) ≥ 0

Now, the same absolute bound can be obtained by applying the above analy-
sis to the reverse problem and employing the reversibility property. In either
case the theorem holds. �

The absolute bound βK = (2−1/min{k1, k2})pmax for HK is the best known
for F (k1, k2)||Cmax obtained for a linear time heuristic. For another bound,
observe that, based on (5.8),

CU ≤ C� + (1 − 1
k1

)ai0 + (1 − 1
k2

)bi0

≤ C� + (2 − 1
k1

− 1
k2

)pmax

which is the best known absolute bound for F (k1, k2)||Cmax for any heuristic
with O(n logn) complexity.

Computational Experiments

Lee and Vairaktarakis (1994) report the average relative gap (CU −LB)/LB
(where LB = min{LB1, LB2, LB3, LB4}) for hybrid shops F (k1, k2) with
(k1, k2) = (2, 4), (4, 4), (4,2), and n = 30, 40 or 50 jobs. The processing time
ratios Σjaj/Σjbj reported are 2 : 4, 4 : 4 and 4 : 2. A ratio 2 : 4 means that
the processing time of aj is chosen randomly from a uniform distribution
on [1, 20] and the processing time of bj is chosen randomly from a uniform
distribution on [1, 40]. This experiment considers 27 ratio/size combinations.
For each combination the average relative gap over 50 randomly selected
problems is reported. It is found that the average relative gap for F (2, 4) is
1.2%. For F (4, 2), heuristic HU compiles an average relative gap of 2.2% for
the workload ratio 4 : 2 where G2 is underloaded, while the corresponding gap
for the ratios 2 : 4 and 4 : 4 is negligible. For F (4, 4), the value of the average
relative gap is 2.4%. The average relative gap over all 27 combinations is
1.6%. These gaps suggest that the performance of HU deteriorates as the
total number of machines increases. When the workload of G1 is at least as
big as that of G2, it is found that the average relative gaps assume greater
values which reflects suboptimal G1 scheduling. This can be explained from
the fact that significant suboptimality due to G1 scheduling can be magnified
by suboptimality of the scheduling of G2 tasks. Also, the average relative gap
exhibited by HU decreases as the number of jobs increase.
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Guinet et al. (1996) test a number of heuristics based on shortest process-
ing time (SPT) sequences and longest processing time (LPT) sequences. The
major difference between these heuristics and the ones we have presented up
to now, is that they do not apply the steps 2 and 3 of H. Specifically, the
generic form of a heuristic presented in Guinet et al. (1996) is as follows.

Heuristic HG for F (k1, k2)||Cmax

1. Specify sequence S of the n jobs.
2. Select the first unscheduled job in S, say Jj. Assign aj, bj so that the

resulting makespan is the smallest possible. In case there is more
than one such assignment, assign aj (bj) to a machine that becomes
free last. Remove Jj from S and repeat this step until S is empty.

3. Compute the makespan CG of the resulting schedule SG.

Based on Property 2, the assignment of b-tasks is suboptimal. As for the
a-tasks, the tiebreaking rule used in Step 2 of HG allows subsequent long a-
tasks to start earlier than they would if the FAM rule was used. The following
sequences are tested in Step 1 of HG: S1 = ↗aj , S2 = ↗bj , S3 = ↗(aj + bj),
S4 = ↘aj , S5 = ↘bj, S6 = ↘(aj + bj), and S7 = JR(a, b).

The performance of the seven heuristics is measured based on the relative
percentage deviations from the lower bound

LB = max{A1 + max{Bn/k2,maxjbj}, B1 + max{An/k1,maxjaj}}

which is slightly weaker than max{LB1, LB4}. A very extensive computa-
tional experiment is performed with n = 50, 100, 150, 200, 250, and 300
jobs, ki = 2, 3, and 4 machines per stage (in all combinations), and two pro-
cessing time scenarios; namely, where both aj and bj are drawn uniformly
from [10, 30] or both from [10, 100]. For each combination of parameters 32
problem instances are generated. It is found that using S7 in Step 1 gives the
best results, with overall average percentage deviation of 0.67%. The next
best performance was exhibited using sequence S5 with overall average per-
centage deviation 1.55%. S2 and S4 are the worse performers with deviations
in excess of 6%. All heuristics tend to perform better for larger values of n
given fixed (k1, k2).

5.5 F (k1, k2, k3)||Cmax

Sevast’janov (1997), developed a heuristic SEV for this problem with abso-
lute performance

CSEV ≤ max{
∑

jaj/k1,
∑

jbj/k2,
∑

jcj/k3} + (m2 − 1)pmax.

Koulamas and Kyparisis (2000) proposed a heuristic for the same prob-
lem based on the merged machines flow shop (MMS) approximation (see Sect.
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5.2). To obtain their performance bound the authors also make use of another
developed in Sevast’janov (1997) for F3||Cmax with absolute performance

CSEV 1 ≤ max{
∑

jaj,
∑

jbj,
∑

jcj} + 3pmax.

This bound has been presented in more detail in Chap. 4. With this back-
ground, we have:

Heuristic HKK for F (k1, k2, k3)||Cmax

1. Let SSEV be Sevast’janov’s sequence for the instance of F3||Cmax with
p̄j = <aj/k1, bj/k2, cj/k3>, j = 1, ..., n.

2. Apply the FAM rule to the a-tasks of S.
3. Apply the FAM rule to the b-tasks of S, starting at time t = Σjaj.
4. Apply the LBM rule to the c-tasks of S, starting at time

t = Σj(aj + bj + cj).
5. Shift b-tasks early as much as possible, and subsequently, shift c-tasks

as early as possible.
6. Compute the makespan CKK of the resulting schedule SKK .

Theorem 5.8 (Koulamas and Kyparisis, 2000)
For F (k1, k2, k3)||Cmax:

CKK − C� ≤ (4 + 3/min{k1, k2} − 1/k1 − 2/k2 − 1/k3)pmax,

where pmax = maxj{aj, bj, cj}.

5.5.1 F (k, 1, k)||Cmax

Langston (1987) considered the problem F (k, 1, k)||Cmax where the middle
stage consists of a single transport that ferries work from G1 to G3. The
following heuristic algorithm, referred to as a compound heuristic, addresses
this application.

Heuristic HLA

1. Let S be a fixed arbitrary sequence of jobs.
2. For every h = 1, 2, . . . , k, repeat Steps 3– 6.
3. Apply the FAM rule to h parallel identical machines M1, ..., Mh, with

respect to pj = aj + cj , j = 1, ..., n.
4. Let Jl be the subset of jobs allocated to Ml, l = 1, ..., h, where the

machines are indexed in nondecreasing order of Σj∈Jlaj.
5. Assign all a-tasks [c-tasks] of jobs in Jl to the lth machine of G1 [G3],

l = 1, ..., h.
6. Direct the transport to execute all jobs in J1,J2, . . . ,Jh in this order.
7. Let SLA be the shortest among the k schedules produced in

Steps 1 - 6, and CLA be the associated makespan.
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Heuristic HLA starts with an arbitrary sequence and generates k different
schedules each utilizing precisely h machines in G1 and G3, h = 1, ..., k. In
iteration h of Steps 3– 6, the set {1, 2, . . ., n} is partitioned into h subsets. All
jobs in a subset are executed on the same pair of G1 and G3 machines as in
Step 4. Finally, the transport is directed to execute all jobs of subset Sl before
proceeding to jobs in Sl+1. The winning schedule is the shortest amongst the k
generated by the heuristic; this is the compound nature of the heuristic. Steps
3, 5, and 6 of HLA require O(n) time. Step 4 takes O(k log k) time. Hence, each
iteration requires O(max{n, k logk}) which results to O(k max{n, k log k})
complexity for HLA. The performance of HLA is described next.

Theorem 5.9 (Langston, 1987)
For F (k, 1, k)||Cmax, if C� is the optimal makespan:

CLA − C� ≤ 3 − 1/k, and this bound is tight.

This error bound highlights the apparent inefficiencies in HLA. In particu-
lar, transporting jobs as in Step 6 of HLA forces many jobs in S2, . . . , Sh that
are finished early in G1 to wait until all jobs in S1 have been transported.
However, no studies have appeared in the literature that improve upon this
transport dispatching rule.

5.6 F (k1, k2, . . . , km)||Cmax

Results for this problem in full generality are sparse. A worst case analysis
of the only published heuristic, and a discussion of a stochastic version of
the problem, are presented. We also briefly mention a branch-and-bound
formulation.

5.6.1 Heuristic and Worst Case Error Bound Analysis

We give next a heuristic algorithm HLV for F (k1, k2, . . . , km)||Cmax, due to
Lee and Vairaktarakis (1994). It utilizes HU (discussed in Sect. 5.4.2), which
is designed for a two-station shop. HLV assumes that the number m of stages
is even; if not, we can introduce a dummy stage with zero machines.

Heuristic HLV for F (k1, k2, . . . , km)||Cmax

1. Apply HU on stages 2r − 1, 2r and let Sr be the resulting schedule, for
r = 1, 2, . . ., m/2.

2. Concatenate the schedules Sr, for r = 1, 2, . . . , m/2. Eliminate all idle time
between a-tasks. Eliminate unnecessary idle time between b-tasks.

3. Compute the makespan CLV of the resulting schedule SLV .

The complexity of HLV is O(mn logn). The next result provides a worst
case performance ratio for HLV.
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Theorem 5.10 (Lee and Vairaktarakis, 1994)
For F (k1, k2, . . . , km)||Cmax:

CLV /C� ≤ m −
∑m/2

r=1 [1/max{k2r−1, k2r}] .

Step 2 of heuristic HLV is highly inefficient as it forces significant idle
time between stages. Its merit is that it facilitates the analysis of the above
theorem. If k1 = k2 = . . . = km = 1 then the hybrid flow shop reduces to the
traditional m-machine flow shop. In this case, CLV /C� ≤ �m/2� coincides
with the bound of Gonzalez and Sahni (1978), which is the best known error
bound for Fm(1, 1, . . ., 1)||Cmax. Several cases where the error bound of HLV

is tight are known. Tight instances of F (1, 1, 1)||Cmax and F (1, 1, 1, 1)||Cmax

are given in Gonzalez and Sahni (1978). In case the hybrid flow shop consists
of only two stages, tight examples were given earlier for F (k1, k2)||Cmax.

5.6.2 Stochastic Processing Times

Koulamas and Kyparisis (2000) presented asymptotic results based on abso-
lute performance guarantees. Suppose that task processing times are stochas-
tic. Let us use Pij (i = 1, ..., m, j = 1, ..., n), rather than pij, to denote the
time to process task i of Jj, to emphasize its random nature. Let Pij be in-
dependent, identically distributed uniform random variables drawn from the
interval [A, B], 0 ≤ A < B. Then:

Theorem 5.11 (Koulamas and Kyparisis, 2000)
For every heuristic H with

CH ≤ C� + f(m)Pmax ,
where Pmax = maxi,j Pij and f(m) is bounded, the following hold:

i) E(CH/C�) ≤ 1 + 2mf(m)kmax/(mn − 2), where kmax = maxr kr,
ii) Pr(CH/C� − 1 > 2mf(m)kmax/[x(mn − 1)]) ≤ (xe1−x)mn−1,

for every 0 < x < 1.

Proof: By hypothesis, we have CH/C� ≤ 1 + f(m)Pmax/C�. Observe that
C� ≥ Σi,jPij/mkmax since the right hand side corresponds to the average
workload of mkmax (which is no less than k1+k2+ . . .+km) parallel identical
machines with preemption allowed and no precedence constraints amongst
tasks. Therefore,

CH/C� ≤ 1 + mf(m)kmaxPmax/
∑

i,j Pij (5.14)

Coffman and Gilbert (1985) give the following result: Let X(n) be the nth

order statistic of n i.i.d. uniform random variables Xj , j = 1, 2, . . . , n. Then,

E
(
X(n)/

∑n
j=1 Xj

)
≤ 2/(n − 2), n > 2.

Since Pmax is the mnth order statistic of the mn random variables Pij, this
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implies that E(Pmax/Σi,jPij) ≤ 2/(mn − 2), mn > 2. By taking the ex-
pectation on both sides of (5.14) and using the latter inequality, we obtain
i).

To prove ii), note that

P

(
CH

C�
− 1 >

2mf(m)kmax

x(mn − 1)

)
≤ P

(
mf(m)kmaxPmax∑

i,j Pij
>

2mf(m)kmax

x(mn − 1)

)

= P

(
Pmax∑
i,j Pij

>
2

x(mn − 1)

)

due to 5.14. Coffman and Gilbert (1985) showed that

P
(
X(n)/

∑n
j=1 Xj > 2/x(n− 1)

)
≤ (xe1−x)n−1 , ∀ 0 < x < 1

which implies

P
(
Pmax/

∑
i,j Pij > 2/x(mn − 1)

)
≤ (xe1−x)mn−1 , ∀ 0 < x < 1.

This completes the proof of ii). �

Inequality i) shows that, as n approaches infinity, the expected performance
of every heuristic that satisfies CH ≤ C� + f(m)Pmax is asymptotically opti-
mal. Moreover, inequality ii) shows that the probability of the performance
ratio exceeding 1 by more than ε = 2mf(m)kmax/x(mn − 1) approaches
0 exponentially fast as n approaches infinity. The existence of at least one
heuristic H for which CH ≤ C� + f(m)pmax is demonstrated in Sevast’janov
(1995) where f(m) = m2 − 1 for any number m of stages. For two or three
stages, all of the heuristics HK, HLV , HS, and HKK satisfy the absolute
performance condition.

Approximability results for F (k1, k2, . . . , km)||Cmax are tabulated next,
together with the corresponding references. PTAS indicates that the corre-
sponding variant accepts a polynomial-time approximation scheme.

Number of machines/stage: kr (r = 1, 2, . . . , m)
# of stages kr = 1 kr fixed kr arbitrary
m = 2 O(n logn) PTAS, [16] PTAS, [27]
m ≥ 3 (fixed) PTAS, [16] PTAS, [16] Open
m arbitrary PTAS, [32] PTAS, [32] PTAS, [32]

As we see, when m ≥ 3 is constant and k1, k2, . . . , km is part of the input, the
approximability of F (k1, k2, . . . , km)||Cmax remains open. When the number
m of stages is part of the input, Williamson et al. (1997) show that no PTAS
with worst case performance ratio less than 5/4 exists unless P = NP.
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5.6.3 Branch-and-Bound Implementations

Brah and Hunsucker (1991) present a branch-and-bound algorithm for
F (k1, k2, . . . , km)||Cmax and report computational experiments with up to
8 jobs and up to 5 stages. The number of visited nodes in the search tree
indicates high exponential growth of the search space. A more efficent branch-
and-bound algorithm for F (k1, k2, . . . , km)|perm|Cmax is presented in Rajen-
dran and Chaudhuri (1992). Here, a schedule is assumed to be a permutation
schedule if, whenever Ji precedes Jj on any machine, Ji precedes Jj on every
machine that executes both jobs. Regrettably, this algorithm does not greatly
enlarge the set of solvable problems; experiments are reported for n ≤ 8 and
m ≤ 10.

5.7 Other Objectives

All of the above developments focus on the makespan objective. Beyond
makespan, the literature is very sparse.

5.7.1 F (k1, . . . , km)|dj |Tmax
Algorithms for F (k1, . . . , km)|dj|Tmax have been developed by Guinet and
Solomon (1996). The mixed integer program HFS from Subsect. 5.2.1 can
be adapted to this problem by replacing the set of constraints (5.6) by the
following:

Crj − dj ≤ Z, r = 1, . . . , m, j = 1, . . . , n.

Since the tardiness of Jj is given by Tj = max{Crj − dj, 0}, the optimal
objective value of the program for F (k1, . . . , km)|dj|Tmax is T � = Z if Z > 0;
T � = 0 otherwise.

The heuristics presented in Guinet and Solomon (1996) follow the same
generic steps as the heuristic HG in Subsect. 5.4.2. In Step 1 of HG, a number
of sequences are identified for the m-stage auxiliary flow shop based on the
algorithms of Campbell et al. (1970), Nawaz et al. (1983), and Townsend
(1977) for Fm||Cmax. In addition, priority sequences are tested based on
the SPT, EDD, and MST (minimal slack time) rules. In Step 2 of HG, two
different rules are tested both of which try to minimize the completion time
of a newly inserted job while minimizing the idle time that has to be inserted
as a result; an idea similar in spirit to the 2-stage version of HG.

The lower bound used by Guinet and Solomon is LBV = minm
r=1 Vr, where

Vr = min
j

r−1∑
i=1

pij + max{max
j

prj ,
∑

j

prj/kr} + min
j

m∑
i=r+1

pij − max
j

dj .

The first term of Vr is a lower bound on the start time of the Gr-task that
starts the earliest. The second term is a lower bound on the additional pro-
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cessing time on Gr (note that Gr is replaced here by an equivalent merged
machine). The third term is a lower bound on the additional time required
to complete any Jj beyond Crj. Hence, the first 3 terms provide a lower
bound on Cmj . Subtracting maxj dj therefore provides a lower bound on the
maximum tardiness.

Extensive computational experiments with up to 30 jobs, up to 5 flow
shop stages, and up to 5 machines per stage on randomly generated prob-
lems where processing times are uniformly drawn from [4,20] indicate that
the schedules produced using the sequence of Nawaz et al. often outperform
schedules that use popular dispatching rules. Even so, the resulting schedules
have an average deviation from LBV of 20.9%, leaving a lot of room for im-
provement. Similar experiments are performed for the makespan objective;
an overall average gap of 8.5% is recorded in this case.

5.7.2 Total Cost

Chang and Liao (1994) considered a hybrid flow shop problem where the
production system is F (k1, . . . , km), finite buffers are available to store jobs
between stages, and limited overtime capacity is available in each production
stage at a cost. Jobs are batches of part types in known volumes. The ob-
jective function is the minimization of the combined cost of work-in-process,
finished good inventory, total earliness/tardiness, plus the cost of overtime
capacity. Let us denote this problem by F (k1, . . . , km)|dj, Br , Or|f(Crj , Or),
where Br is the capacity of the buffer in front of stage r, Or is the over-
time capacity available for stage r over the entire production horizon, and
f(Crj , Or) is a cost function of the task completion times and the overtime
capacity allowances. This problem is found in a make-to-order hybrid flow
shop that manufactures a medium variety of discrete parts having their own
due date and demanded quantity, at medium volume.

For this problem, the authors developed a mixed integer program for de-
ciding the number of parts of each type that are processed in each stage
during each period of the production horizon, as well as the overtime ca-
pacity required to process these parts. The difference between this model
and the ones presented so far, is in the level of detail involved in managing
the machines within each stage. Here, the total capacity of all the machines
in a stage is used as a proxy for stage capacity. Instead, the earlier models
consider explicitly the scheduling problem in each and every stage machine.
Evidently, the total stage capacity is an approximation of the actual capacity
of each stage due to the idle time that has to be inserted to satisfy the flow
shop and limited buffer constraints. Using a Langrangean relaxation based
heuristic for solving F (k1, . . . , km)|dj|Tmax, Chang and Liao present limited
computational experiments on real and randomly generated data with up
to 14 stages and up to 20 part types. They find that the deviation of their
heuristic from the Lagrangean lower bound is less than 1.5%.
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5.7.3 Conclusions

We saw in this chapter that the overwhelming majority of research activity is
concentrated on the 2-stage system and the makespan objective. Within this
space, there is a large body of literature concentrating on error bound analy-
sis. The approaches that have appeared, seem to emulate techniques first de-
veloped for Pm||Cmax. Excellent lower bounds based on the merged-machines
construct demonstrate that quick heuristic solutions for F (k1, k2)||Cmax are
near optimal. In contrast, branch-and-bound algorithms seem to be hopeless
due to lack of structure in the problem and hence lack of major optimality
and dominance properties. Despite the achievements, a lot more is desired.
For 3 or more stages results are lacking, and solutions (heuristic or other-
wise) are unavailable even for the makespan objective. Moreover, the gamut
of objectives considered in the literature is quite narrow.
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Chapter 6

THE NO-WAIT FLOW SHOP

Abstract After describing some real-world examples of flow shops with
no waiting, we demonstrate the equivalence of no-wait and blocking in
the shop with m = 2. For the no-wait shop, some research is available
on the flow time objective while the majority of research focuses on the
makespan objective. Hence, we start with a detailed discussion of an
O(n logn) algorithm for F2|nwt|Cmax. For the makespan objective and
m > 2 machines, we present a plethora of polynomially solvable special
cases of the problem. Most interesting is the case with semi-ordered
processing time matrices. In this case, a so called pyramidal schedule
provides an optimal solution in O(n2) time. Heuristic algorithms for
m > 2 and the makespan objective show that the problem is intimately
related to the traveling salesman problem. We survey the state of the
art on metaheuristics. The problem is analyzed in the presence of lot
streaming, with separable setup and teardown times, and in assembly-
type and hybrid flow shops.

6.1 Introduction

In the flow shop systems studied so far, the default assumption has been
that there is unlimited buffer storage available between stages, so that jobs
completing at one stage can wait for their turn at the next stage without
causing congestion. Another possibility, to be considered in Chap. 7, is that
there is finite waiting capacity between stages (it may be none at all), leading
to blocking: a job finishing at a stage Gk and finding the ensuing stage (pro-
cessors and buffer capacity) fully occupied remains on that stage-k machine,
forcing it to remain idle until space becomes available.

In this chapter we study systems where, for technological or other extrane-
ous reasons, a job, once started, must flow through every stage to completion
without any delay. Such systems are commonly referred to as nondelay or
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no-wait flow shops. Note that such systems are bufferless, since no job is
permitted to utilize a buffer.

Clearly, preemption is never allowed in a no -wait shop, since it would break
up the uninterrupted flow we require. Also, in the simple flow shop, one might
think that jobs cannot overtake other jobs: only permutation schedules are
possible. However, this will not be true if (a) tasks of zero duration may oc-
cur; and (b) whenever pij = 0 for some i, j, Jj can skip over Mi, regardless of
its occupancy, and start immediately on Mi+1. The alternative assumption
would be that every job has m tasks, even if some of them have zero length,
and so it must visit every stage and find an idle processor to occupy before
moving on, even if that occupancy is only instantaneous. The latter assump-
tion is rather artificial, but is sometimes made for analytic convenience. If
it is, or if all processing times are strictly positive, then only permutation
schedules are feasible in the simple flow shop, and this is shown by adding
(perm) in the problem specification.

This chapter will deal almost exclusively with the makespan objective; few
results exist for other criteria. In broadest generality, the system to be consid-
ered is denoted F (k1, k2, . . . , km)|nwt|Cmax in the standard 3-field notation,
where nwt stands for no-wait. Evidently, this system differs from the hybrid
flow shop considered in Chap. 5 only in the no-wait requirement.

The outline of the rest of the chapter is as follows. In Sect. 6.2, we note
some real-world applications of the model. In Sect. 6.3, we study problem
F2|nwt|Cmax and provide a polynomial algorithm. Sect. 6.4 discusses the m-
machine no-wait shop, still with makespan objective. Some systems similar
to the no-wait flow shop are covered in Sect. 6.5, while some other objectives
are briefly mentioned in Sect. 6.6. Concluding remarks are made in Sect. 6.7.

6.2 Applications

Obvious applications of no-wait flow shops are found when the storage space
available between stages is null. Less obvious are applications where the no -
wait constraint is a result of a process requirement or is due to unavailability
of resources. Various such examples are given below. See also the survey paper
by Hall and Sriskandarajah (1996) for more discussion of no-wait scheduling
and its uses.

• In steel manufacturing, the alloy undergoes heating and forming. The
molten steel is left in position until the temperature drops to meet spec-
ifications. Only when conditions are just right can finishing operations
commence. Thus, heating, forming and finishing form a 3-stage no-wait
flow shop imposed by temperature requirements. Besides the steel indus-
try, operations like melting into ingots, unmolding, reheating, soaking, and
preliminary rolling are common in plastic molding and silverware indus-
tries.
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• In an application of F2|nwt|Cmax arising in steel slitting, sheets of steel
are sliced into different widths using a slitting machine. Before the slitting
of a job (or order) can be done, the cutting head of the machine must be
adjusted according to the widths required by the job. The cutting head
is detachable and hence width adjustments can be made off-line. Two
such cutting heads are available. While a job is processed using the first
head, the second is set up off-line for the next job. Thus, the first stage
of processing a job is the cutting head setup, and the second is the actual
slitting. Given a set of n jobs with specified setup and processing time
requirements si and pi respectively, i = 1, 2, . . . , n, the objective is to
minimize the makespan of the slitting operations. Note that the setup of
Jj+1 (jobs indexed in order of processing) cannot begin until the setup of
Jj is completed (there is only one setup operator) and until the slitting
of Jj−1 is done (freeing up the slitting head). Thus, although there is no
technological requirement that there be no wait between setup and slitting
of a job, setups can always be delayed as necessary to effect this without
affecting the makespan.

• Many no-wait flow shop applications are found in chemical processes when
reactants take a given amount of time to complete a chemical reaction (e.g.,
corrosion, catalysis, etc.) following the completion of the upstream oper-
ation. The mathematical formulation of such applications is considered
in Reddi and Ramamoorthy (1972). Ball and Magazine (1988) consider a
related application that arises in the context of optimal insertion of chips
on a printed circuit board.

• In food processing, canning operations must immediately follow cooking
to ensure freshness.

• In-line robotic cells used in automobile assembly or spot-molding, together
with the supporting transportation systems that remove parts from the
robot arms often form no-wait flow shops. Such applications are described
in Logendran and Sriskandarajah (1996), Kise et al. (1991) and Sethi et
al. (1992).

• Another typical application of no-wait flow shops is found in workforce
planning of synchronous assembly lines. A synchronous or paced assembly
line consists of m stations arranged in series. A set of jobs is to be pro-
cessed so that each job visits every station in the same order, say 1 to m.
Every station has the same production cycle of c units of time, referred
to as a period. Hence, in a paced assembly line, jobs move in unison one
station downstream at the end of every period. At that time, a new job
enters the first station and a completed job exits the last station. Given
that the labor requirements of each job in each station are different, the
production manager must assign the necessary number of workers to each
workstation in each period (assuming complete worker flexibility) so that
each operation is completed within that period. Let (W1j, W2j, . . . , Wmj)
be the work requirements associated with job Jj, j = 1, . . . , n, where Wij

is the number of workers necessary to complete task i of Jj within one pe-
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riod, i = 1, . . . , m. The problem is to determine a permutation of the jobs
so that the resulting workforce schedule satisfies some overall objective
relating to the number of workers necessary to process all jobs. Here, the
no-wait requirement is imposed by the common production cycle among
all stations, which in turn is the result of labor agreements. Such paced
assembly lines found in fire-engine manufacturing are studied by Lee and
Vairaktarakis (1997), Vairaktarakis and Winch (1999), and Vairaktarakis
and Cai (2002). Abadi et al. (2000) considered the problem of minimizing
the length of the cycle time of a minimal part set on the m-machine flow
shop with blocking, which as we see below bears some similarity with the
no-wait system.

6.3 F2|nwt, (perm)|Cmax and F2|block, (perm)|Cmax

We start with the simplest case of the no -wait flow shop, having two stages
with one machine each. Sahni and Cho (1979) showed that F2|nwt|Cmax is
strongly NP-complete when the job set includes jobs that consist of just one
task. The reduction used is from 3-Partition. Since it is almost identical
to the reduction given in Sect. 2.4 of Chap. 3, we omit details here. Unless
otherwise stated, we assume hereafter that all jobs have two distinct opera-
tions, each of which must be scheduled even if it requires zero time. We call
this requirement that no job can skip a machine the no-skip provision. In the
no-wait shop, this clearly implies that only permutation schedules are feasi-
ble, so we write (perm). Keep in mind that this is only true because we are
assuming no-skip behavior; otherwise, non-permutation schedules exist and
may be optimal. With the no-skip provision, as we shall see, the problem is
not NP-complete.

An arbitrary schedule for a typical five-job instance is shown in Fig. 6.1.

Fig. 6.1 An example of a no-wait schedule

Note how the two operations of each job are locked together by the no-wait
requirement. It is easy to see that, given an arbitrary schedule S = (1, . . . , n),
the completion time of any Jj is

C2j(S) = a1 +
∑j

i=2 max(ai, bi−1) + bj , j = 1, . . . , n.

Consider now how J1 and J2 overlap. Because a2 > b1, there is idle time
of a2 − b1 on M2. On the other hand, between J2 and J3 the idle time is
b2 − a3 since b2 > a3, and it occurs on M1. It is now easy to see that each
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adjacent pair of jobs, say Jj and Jj+1, introduces idle time of |aj+1 − bj| on
one machine or the other.

Now note that, if we define

Ii = total idle time on Mi (i = 1, 2),

we can write the makespan as

Cmax =
∑n

j=1 aj + I1 =
∑n

j=1 bj + I2

so that minimizing makespan is equivalent to minimizing I1, or I2, or I1 +I2.
With reference to Fig. 6.1, we are ready to say: to minimize Cmax, find the

schedule S = (1, 2, ..., n) that minimizes Σn
j=0|aj+1 − bj |, provided we define

b0 = an+1 = 0. What we need is a dummy job J0 with <a0, b0> = <0, 0>,
appended at both ends. Thus, in the following discussion, it should be under-
stood that an+1 = a0. You can picture a cyclic schedule indefinitely repeated,
each iteration starting with J0, or a schedule that cycles back on itself so
Jn+1 = J0. The advantage of the latter viewpoint is that each schedule of
n jobs can be represented by a tour that visits each of n locations, making
makespan minimization into a Traveling Salesman problem. We define this
formulation below, and show how it leads to a polynomial solution to our
problem.

First, however, we introduce another scheduling problem, and show that,
for m = 2 and no-skip, it is equivalent to the no-wait problem.

6.3.1 Equivalence of No-Wait and Blocking when m=2

We say a flow shop has blocking when no intermediate storage is provided for
the jobs to wait between stages. As a result, at the completion of any task, if
the downstream machine is busy, a job must wait at the upstream machine,
occupying it and blocking the next job until the downstream processor clears
and allows flow to resume. Clearly, this production protocol is related to the
no-wait flow shop where the waiting time, rather than the waiting space,
is required to be zero. In the abbreviated job description, the presence of
blocking will be denoted block.

There is a separate literature on the flow shop with blocking, which we
cover in Chap. 7. However, with two machines, F2|block, (perm)|Any is equiv-
alent to F2|nwt, (perm)|Any. This is because, with blocking, any job Jj on
M1 that is blocked stays on M1 until it can start on M2, so aj can always be
delayed so as to complete just as bj begins, without affecting any job com-
pletion time. Similarly, in no-wait schedules, blocking never arises, and if the
no-wait requirement is relaxed, blocking will not permit tasks on M2 to be
processed earlier. In Fig. 6.1, the same schedule with blocking rather than no
-wait would have a3 and a5 shifted left, but no other task would move.

The rest of our discussion of F2|nwt, (perm)|Any will therefore ap-
ply equally to F2|block, (perm)|Any. Since there are two separate bod-
ies of literature for the problems with m ≥ 2, results for m = 2 may
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appear in either one. We bring them together here, calling the problem
F2|nwt or block, (perm)|Any, and always remembering that we are making
the no-skip assumption.

6.3.2 Simple Cases

The following observations are made in Dutta and Cunningham (1975) for
some special cases of the makespan problem.

Theorem 6.1 If the sequence S = (1, 2, . . . , n) is such that ai = bi−1

for 2 ≤ i ≤ n and a1 = mini ai, bn = mini bi, then S is optimal for
F2|nwtor block, (perm)|Cmax.

Theorem 6.2 Let t = minj [min(aj, bj)]. There exists an optimal sequence
for F2|nwtor block, (perm)|Cmax where if aj = t [bj = t], Jj is scheduled first
[last].

Theorem 6.3 If aj = bj for j = 1, . . . , n, then optimal sequences for
F2|nwtor block, (perm)|Cmax include ↗aj and ↘aj .

6.3.3 The Traveling Salesman Problem

Consider n cities C1, C2, . . . , Cn. The geographic location of each city Ci is
specified by the coordinates (ai, bi) for i = 1, 2, . . ., n, and let cij be the
distance between Ci and Cj. The problem of finding a tour that visits each
city exactly once, starting and ending at the same location, and minimizes
the total distance traveled, is known as the Traveling Salesman Problem
(TSP). Note that the inter-city distances need not be defined by the usual
straight-line geographical (commonly referred to as Euclidean) measure: cij =√

(ai − aj)2 + (bi − bj)2; any other definition of cij can be used as the need
arises, provided it depends only on the parameters of Ci and Cj , and not
on the other cities’ locations nor on the order in which they are visited. The
TSP is one of the most studied problems in combinatorial optimization. Some
of the most important results for TSP are found in the well-known book by
Lawler et al. (1985). The problem is strongly NP-complete for a variety of
distance measures including Euclidean, rectilinear, L∞, etc. (see Garey and
Johnson, 1979).

6.3.4 F2|nwtor block, (perm)|Cmax as a TSP

We have shown that, for F2|nwtor block, (perm)|Cmax, finding the optimal
sequence is equivalent to finding the optimal tour in a TSP with n+1 locations
representing the jobs J0, J1, ..., Jn, with distance metric cij = |aj − bi|. This
distance measure is a special case of the Gilmore-Gomory metric
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c′ij =

{ ∫ aj

bi
f(x)dx if aj ≥ bi∫ bi

aj
g(x)dx if aj < bi

(6.1)

where the functions f(·) and g(·) are required to be integrable, with f(x) +
g(x) ≥ 0. The latter condition implies that there is no gain to be obtained
by cycling between cities. The metric cij is the special case of c′ij where
f(x) = g(x) = 1. Gilmore and Gomory (1964) found that, with the metric
c′ij, TSP is polynomially solvable, and they presented an optimal algorithm
with complexity O(n logn). A variation of the Gilmore-Gomory algorithm is
presented in Lawler et al. (1985), together with other solvable cases of the
traveling salesman problem.

Vairaktarakis (2003) gives another algorithm for TSP with c′ij metric, of
the same complexity O(n logn), which is easier to implement and describe.
We now present it, specialized to the simpler metric cij of our scheduling
problem, and from now on we speak of jobs, task times and sequences, rather
than cities, locations and tours.

6.3.5 F2|nwtor block, (perm)|Cmax as Bipartite Graph

It will be convenient to perform a monotone reindexing of the task times,
separately on each machine, so that a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤
bn. The dummy job may appropriately retain its zero index, since its task
times are the smallest of all. Note that now the two times of a given job may
have different indices. Let the jobs be indexed according to their a-tasks, and
let π be the permutation of the jobs ordered in nondecreasing order of bj , so
that the task times of Jj are <aj , bπ(j)> for j = 0, 1, 2, . . ., n.

We now formulate the 2-machine no -wait flow shop as an (n +1)× (n+1)
complete bipartite graph, B. That is, B has two sets of n+ 1 nodes, one
set corresponding to the a-tasks and the other set to the b-tasks, with arcs
connecting a-tasks to b-tasks. Since each job Jj is represented by the pair
<aj, bπ(j)>, we introduce the set of arcs MJ = {(aj , bπ(j)) : j = 0, 1, 2, . . ., n}
as the job matching. Clearly MJ is a matching of B because no two arcs have
a vertex in common. It will help visualization to consider these arcs directed
from a-tasks to b-tasks, and to call this an a-to-b matching.

Example 6.1: Consider the instance of F2|nwtor block, (perm)|Cmax with
six jobs, as follows:

j 1 2 3 4 5 6
aj 3 4 5 9 12 13
bj 2 12 6 5 10 12

After monotone reindexing and adding a dummy job J0, the tasks ai, bi,
i = 0, 1, 2, . . ., 6, form the node set of the bipartite graph B as shown in
Fig. 6.2(a) or (b), where the processing times have been added beside each
node. The job matching MJ is depicted by the solid arcs (the dashed arcs will
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be discussed shortly). Throughout our description we will use this example
to illustrate an algorithm for F2|nwt orblock, (perm)|Cmax.

(a) A Hamiltonian cycle MJ ∪ M(S) (b) The starting solution MJ ∪ M0

Fig. 6.2 Bipartite graph for a sample instance of F2|nwt or block, (perm)|Cmax

Now note that a solution, i.e., a sequence of jobs, can be interpreted as
a matching of the b-tasks to the a-tasks, each job’s b-task being matched
to the a-task of the job immediately following it. To accommodate any job
sequence, arcs may be defined from each b-task to every a-task. For instance,
the schedule S# = (0, 1, 2, ..., n) requires an arc from bπ(j) to aj+1, j =
0, 1, ..., n, where an+1 = a0. This matching is shown as dashed arcs in Fig.
6.2(a). In general, let the b-to-a matching corresponding to any job sequence
S be the sequence matching, M(S). Thus, M(S#) = {(bπ(j), aj+1), j =
0, 1, ..., n}. If we associate a cost |aj − bi| with any arc (bi, aj) in M(S), our
problem becomes: find the least-cost sequence matching.

6.3.6 Finding the Least-Cost Cycle in B
Combining the two arc sets MJ and M(S) for any S, we see that they make
up a Hamiltonian cycle: a tour of the graph that visits every node once.
Thus for S# , the cycle is (a0, bπ(0), a1, bπ(1), a2, ..., an, bπ(n), a0), as shown
in Fig. 6.2a. If we give the arcs in MJ zero cost, we can now define our
problem as seeking the least-cost cycle in B. We leave it to the reader to
trace the cycle in the figure, and to verify that the cost of this schedule is
Σn

j=0|aj+1 − bπ(j)| = 37.
Of course, not every b-to-a matching, Mba, is a valid sequence matching,

only those for which MJ∪Mba form a Hamiltonian cycle. That is, a matching
Mba does not correspond to a sequence if MJ ∪Mba contains subcycles. Our
strategy will be to start with the lowest-cost matching, and then modify it if
and as necessary to eliminate subcycles and make it a sequence matching. So,
if subcycles were of no concern, what would the least-cost b-to-a matching
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be? It turns out to be the identity matching, M0, that matches b0 to a0, b1

to a1, etc. Stated more formally:

Theorem 6.4 If Π(n) denotes the set of permutations of {1, 2, . . . , n}:
minσ∈Π(n)

∑n
i=1 ci,σ(i) =

∑n
i=1 cii =

∑n
i=1 |ai − bi|

The proof of the above theorem follows from an interchange argument that
shows that cii + cjj is no greater than cij + cji for any 1 ≤ i = j ≤ n.

We start, then, with arcs MJ ∪M0, as shown for Example 6.1 in Fig. 6.2b,
where the matching M0 is depicted by dotted arcs. MJ ∪M0 will form the
union of subcycles C1, C2, . . . , Cm, where 2 ≤ m ≤ n + 1. One of them will
always be the trivial subcycle (a0, b0, a0), while the other n jobs could all
make up one subcycle, or at the other extreme could each be a separate
subcycle (aj , bj, aj), j = 1, ..., n. For our example, there are five subcycles,
also indicated in Fig. 6.2b.

Our goal is to replace M0 by a modified mapping, adding and deleting
arcs so as to interconnect the subcycles at minimal cost. To determine how
best to do this, it will be useful to construct a graph G with vertex set
{C1, C2, . . . , Cm}. (To help distinguish the two graphs, we refer to “vertices”
and “edges” here, rather than the “nodes” and “arcs” of B.) The edge set of
G is constructed as follows. If the nodes bi and ai+1, i = 0, 1, 2, . . ., n−1, lie
in different subcycles of MJ ∪M0, say C and C′, then add an (undirected)
edge labeled ei,i+1 between C and C′ in G.

Evidently, G is connected, so that a spanning tree exists with m −1 edges.
In Fig. 6.3 we depict G for our example. Each edge is labeled by the ap-
propriate ei,i+1. In addition, we associate with each edge the cost wi,i+1 of
merging the corresponding 2 subcycles. Consider for example the subcycles
(a0, b0, a0) and (a1, b1, a1) in Fig. 6.2b. To merge them, we must remove the
arcs (b0, a0) and (b1, a1), replacing them with (b0, a1) and (b1, a0). It follows
that the cost of merging adjacent subcycles is

wi,i+1 = −(cii + ci+1,i+1) + ci,i+1 + ci+1,i .

where cij = |bi − aj|. The numerical value of wi,i+1 is given below each arc
in Fig. 6.3.

Fig. 6.3 The graph G for the sample instance of F2|nwt or block, (perm)|Cmax,
with the minimal spanning tree T shown in heavy lines
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Let T be a minimal spanning tree of G, as shown for our example by
heavy lines. Edges in T reflect the lowest-cost set of changes that must be
made in M0 in order to merge all subcycles of MJ ∪M0. For this reason,
for every ei,i+1 ∈ T , we drop from the identity matching M0 the arcs (bi, ai)
and (bi+1, ai+1). However, we cannot simply replace them with (bi, ai+1) and
(bi+1, ai), as we did in defining wi,i+1. Consider, for instance, three con-
secutive trivial subcycles, say Ci = (ai, bi, ai), i = 1, 2, 3. Having made the
substitutions to merge C1 and C2, it will not be possible to do the same thing
for C2 and C3. Nevertheless, it is shown (see Vairaktarakis 2003) that the
edges of T always point to the set, R, of arcs in M0 that must be discarded.
Thus, in Fig. 6.3, T = {e01, e12, e23, e56}, and hence we drop from M0 the
arcs R = {(b0, a0), (b1, a1), (b2, a2), (b3, a3), (b5, a5), (b6, a6)}. It remains to be
decided which new arcs to add, to produce the minimal cost tour.

To do this, we first partition the set R into subsets of consecutive arcs.
Let B1,B2, . . . ,Bk be the blocks of consecutive (bi, ai) arcs in R. All dropped
arcs must be replaced by new ones, and to do this our algorithm is applied
separately and independently to each block. Since the arcs are gone, we will
refer to (bi, ai) as a node pair henceforth. Fig. 6.4a shows MJ ∪ (M0 \R)
for the sample instance, with the two blocks of node pairs with missing arcs
indicated. Block B1 consists of 4 pairs: (b0, a0), (b1, a1), (b2, a2) and (b3, a3),
while block B2 consists of (b5, a5) and (b6, a6).

Fig. 6.4 (a) The block structure and (b) the consequent solution
for the sample instance of F2|nwt or block, (perm)|Cmax

Now, how to choose replacement arcs for an arbitrary block Bl, 1 ≤ l ≤ k?
To start with, if Bl consists of precisely two pairs, say (bi, ai) and (bi+1, ai+1),
then the 2 subcycles traversed by these pairs are merged optimally by intro-
ducing the arcs (bi, ai+1) and (bi+1, ai). In Example 6.1, block B2 consists of
precisely 2 pairs and hence the corresponding subcycles are merged by using
the edges (b5, a6) and (b6, a5) (see Fig. 6.4b).

It remains to describe the algorithm for the case where Bl consists of three
or more pairs (bi, ai). Suppose (without loss of generality) that Bl consists
of the pairs (b1, a1), (b2, a2), . . . , (br , ar), where r ≥ 3. The first step will
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be to label each pair as an A-pair or B-pair depending on whether ai ≥ bi or
ai < bi, respectively. It is then convenient to change, if necessary, the labels
of the first and last pairs, to make them the opposite of their immediate
neighbor’s. Interestingly, having labeled the pairs, the actual processing times
of each node will no longer be needed. Perhaps even more surprisingly, the
job matching is also irrelevant.

In Example 6.1, the string of labels associated with block B1 has the form
B,A,B,A because the pair (b2, a2) = (2, 3) is of type A, (b3, a3) = (5, 4) is of
type B, and the first and last labels are chosen to differ from their neighbors.
This too is shown in Fig. 6.4b, where we have distinguished A-pairs from
B-pairs by using circles and squares, respectively.

To provide a more challenging block of node pairs with which to illustrate
the algorithm, we introduce

Example 6.2: Let Bl have 14 pairs, and suppose the values of (bj , aj), j =
1, . . . , 14 generate the string of labels: A,B,B,B,B,A,A,A,B,A,B,B,B,A. This
block is shown in Fig. 6.5, with the nodes of the A-pairs shown as circles and
the B-pair nodes as squares.

The arcs shown are those produced by the following algorithm:

Arc Generation Algorithm

1. Link the first (smallest) unmatched b-node of a B-pair to the first un-
matched a-node of a larger (i.e., to the right) B-pair. Repeat until all but
one b-nodes of B-pairs are linked. Link the last b-node of a B-pair to the
a-node of the last A-pair.

2. Now link the A-pairs, similarly but in reverse; to wit:
Link the last unmatched b-node of an A-pair to the last unmatched a-node
of a smaller (i.e., to the left) A-pair. Repeat until all but one b-nodes of
A-pairs are linked. Link the last b-node of an A-pair to the only remaining
a-node (which is of a B-pair).

Applying this to B1 of Example 6.1, Step 1 produces the two heavy dashed
arrows, and Step 2 fills in the dot-dashed arcs in Fig. 6.4b. We can now read
the optimal schedule from this graph, starting from a0 and following the
sequence of arrows. Recall that the solid arrows give the job matching, with
Jj associated with (aj, bπ(j)). Thus, (a0, b0) followed by (a2, b5), then (a6, b6),
etc., means J0 followed by J2, then J6, etc., so that the optimal schedule for
Example 1 can be seen to be

S� = (2, 6, 5, 4, 3, 1).

To gain a little more insight into the algorithm, consider the solution to
Example 6.2, as shown in Fig. 6.5. Note how Step 1, which dealt with the
B-pairs, produces the dashed “forward-leaning” arrows (from b2 to a3, b3 to
a4, etc.). To help explain why this is desirable, we observe:
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• We prefer to link pairs to adjacent pairs (either bi to ai+1 or bi+1 to ai),
or at least to nearby pairs, because, having arranged the ai’s and bi’s in
numerical order, nearer pairs will give lower cost, |ai − bj|.

• For two adjacent B-pairs, say (ai, bi) and (ai+1, bi+1), we have

ai ≤ ai+1, bi ≤ bi+1, ai < bi, ai+1 < bi+1.

It follows that

|ai+1 − bi| < |ai − bi+1|,
and this is why, when connecting adjacent or nearby B-pairs, forward-
leaning arcs (connecting bi to ai+1) are preferred.

Fig. 6.5 Arc generation for a block with labels ABBBBAAABABBBA

By the same token, we prefer to link sequences of A-pairs by backward-
leaning arcs, as we see in the figure. It only remains then to tie up the loose
ends with one more arc at each end of the block, to connect the A-pairs
and B-pairs together, completing the cycle. Of course, none of this discussion
constitutes a formal proof of the algorithm’s optimality, which will not be
given here and can be found in Vairaktarakis (2003).

6.3.7 Summary of the Algorithm

We now summarize the procedure for solving F2|nwt orblock, (perm)|Cmax.
It is not hard to check that this variation by Vairaktarakis (2003) produces
the same solution as the original algorithm of Gilmore and Gomory (1964).
Thus, we will call it

The GGV Algorithm

Input : a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn, viewed as the nodes of a
bipartite graph B, and an a-to-b matching MJ = {(ai, bπ(i)) : i = 1, . . . , n}.
Output : A b-to-a matching M� that, along with MJ , gives a minimal cost
tour of the bipartite graph, assuming arcs in MJ have zero cost, and arcs
from bi to aj have cost cij satisfying the Gilmore-Gomory metric.

1. Given B with arc set MJ ∪M0, where M0 = {(bi, ai) : i = 1, ..., n}, find
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cycles and construct graph G.
2. Assign to each edge ei,i+1 ∈ G a cost

wi,i+1 = ci,i+1 + ci+1,i − cii − ci+1,i+1,

and find the minimal spanning tree T .
3. Let R = {(bi, ai) : ei,i+1 or ei−1,i ∈ T }, and let M = M0\R.
4. Let B1, B2, . . . , Bk be the subsets of consecutive (bi, ai) pairs in R.
5. For l = 1 to k do

If Bl consists of precisely 2 pairs, say (bi, ai) and (bi+1, ai+1)
then M := M∪ {(bi, ai+1), (bi+1, ai)} else
begin

• Assign to each pair (bi, ai) in Bl the label A [B] if ai ≥ bi [ai < bi].
• Adjust, if necessary, the first and last labels, to make them

different from their immediate neighbors.
• Apply the Arc Generation Algorithm, adding the new arcs to M.

end
6. Let M� be the resulting matching.

The optimality of GGV is established in the following theorem.

Theorem 6.5 (Vairaktarakis, 2003)
(a) The GGV Algorithm solves the TSP optimally.
(b) If Ji = <ai, bπ(i)> and cij = |bi−aj | for i, j = 1, . . . , n, then the GGV Al-
gorithm solves F2|nwtor block, (perm)|Cmax optimally, where (bi, aj) ∈ M�

indicates that Jj immediately follows Ji in S�.

The working space required to find an optimal tour for TSP is pre-
cisely n elements which is the minimum possible if we consider that a
tour is a permutation of n cities. Steps 1 and 2 of the GGV algorithm
can be executed using a vector whose ith element indicates the subcy-
cle of MJ ∪M0 traversing the pair (bi, ai), i = 0, 1, ..., n. In our exam-
ple, this vector is (C1, C2, C3, C4, C3, C3, C5) (see Fig. 6.2(b)). By looking
at this vector we know that G consists of the edges e01, e12, e23, e34 and
e56 because the pairs (bi, ai) associated with these edges are traversed by
different subcycles. The minimal spanning tree T consists of the edges
e01, e12, e23 and e56 and hence (b4, a4) is the only pair not involved with
T . Thus, we initialize M = (·, ·, ·, ·, (b4, a4), ·, ·) in Step 3. This vector shows
that there are two blocks to be considered; B1 consisting of 4 pairs, and
B2 consisting of 2 pairs of nodes. Applying Step 5 to each block, we get
M� = ((b0, a2), (b1, ao), (b2, a3), (b3, a2), (b4, a4), (b5, a6), (b6, a5)).

6.3.8 Generalizations of F2|nwtor block, (perm)|Cmax

Strusevich (1990) generalized F2|nwtor block, (perm)|Cmax to include job
setup and teardown (or removal) times that are detached: either can be done
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on one machine at the same time the job is in process on the other. The
resulting problem is solvable by the GGV Algorithm.

Röck (1984) considered F2|nwtor block, (perm), pjk = 1, res|Cmax when
there is an additional single resource res available (e.g., an operator) and
each task may or may not require this resource for processing.

Espinouse et al. (1999) considered the problem with a single interval of
unavailability for M1 and showed that the problem becomes NP-complete.
They also developed a heuristic, based on GGV, that yields a worst case error
bound of 2.

6.3.9 Other Objectives

Few other objectives (including non-traditional ones) have been investigated
for the 2-machine no -wait flow shop. As might be expected, the flow time
objective is amongst them. The special case when all processing times are
either zero or one, F2|nwtor block, (perm), pij ∈ {0, 1}|ΣCj, has been con-
sidered by Sriskandarajah and Ladet (1986). Their result can easily be gen-
eralized to allow processing times to be either of two arbitrary values, say x
and y, 0 ≤ x < y. We partition the jobs into four sets: Jxx, Jxy, Jyx, and
Jyy, where of course Jxy denotes the set of all jobs with task times <x, y>,
etc. Then S� = (Jxx,Jxy and Jyx alternating as far as possible, Jyy). By
“alternating as far as possible” we mean: (1) Schedule a job from Jxy (if
any); (2) Schedule alternate jobs from Jyx and Jxy until one set is empty;
(3) Schedule the rest of the other set. Of course, if x = 0, Jxx is empty. S�

minimizes both ΣCj and Cmax.
Both F2|nwtor block, (perm)|Lmax and F2|nwtor block, (perm)|ΣCj are

strongly NP-complete, as was shown by Röck (1984).
Strusevich (1995) considered the 2-machine no -wait flow shop with con-

trollable processing speeds v1, v2 on M1, M2 respectively. Let C(v1, v2) be the
minimal makespan for given speeds v1, v2. For given constants c0, c1, c2 ≥ 0
and given positive integers c3, c4, the author considered the problem of min-
imizing objective Z(v1, v2) = c0C(v1, v2)c3 + c1v

c4
i + c2v

c4
2 . It is shown that

there exists an optimal solution where speeds v�
1, v

�
2 may take on one of O(n2)

candidate values for v�
1/v�

2 . For each such pair, algorithm GGV is adapted to
solve F2|nwtor block, (perm)|Z(v1, v2) in O(n3) time.

6.4 Fm|nwt, (perm)|Cmax

We shall now consider problems with more than two machines. Thus, com-
bining blocking with no-wait is no longer possible, and we speak only of the
no-wait flow shop. In this section we review results for the m-stage flow shop
with a single machine in each stage. As in the previous section, we assume
that zero-length tasks, if any, must be scheduled (the no-skip assumption), so
that only permutation schedules are possible. The special case where m = 2,
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studied earlier, had a polynomial solution, but Lenstra et al. (1977) showed
that the problem is strongly NP-complete for arbitrary m, while Röck (1984a)
showed strong NP-completeness for fixed m ≥ 3. As usual, prj is the process-
ing time requirement of Jj on Mr where r = 1, . . . , m and j = 1, . . . , n. A
TSP formulation for problem Fm|nwt, (perm)|Cmax was originally conceived
by Piehler (1960) for m = 3, generalized by Wismer (1972), then modified by
Emmons and Mathur (1995) as follows. Consider a complete graph with n+1
nodes numbered 0, 1, . . . , n where node 0 corresponds to the beginning and
the end, and nodes 1, . . . , n to the n jobs. We define the distances between
nodes as

dij = the additional time required to schedule Jj immediately
after Ji.

They are given by

d0j =
∑m

r=1 prj for j = 1, 2, . . . , n
di0 = dii = 0 for i = 1, 2, . . . , n
dij = maxk=1,2,...,m{pki +

∑m
r=k(prj − pri)}, i, j = 1, . . . , n, i = j.

To understand the formula for dij, see Fig. 6.6, where the maximum is
achieved at k = 2, giving dij = Σ4

r=2prj −Σ4
r=3pri. Since the no -wait feature

locks the tasks of Ji together, presenting to the next job a “profile” inde-
pendent of the earlier jobs, dij depends only on the characteristics of Ji and
Jj. Note that formulating Fm|nwt|Cmax as a TSP is not possible if jobs may
require processing on only a subset of processors; this case was shown to be
strongly NP-complete by Sahni and Cho (1979).

Fig. 6.6 The increase in makespan when Jj follows Ji

6.4.1 Polynomially Solvable Cases

Sriskandarajah and Ladet (1986) presented an O(n logn) algorithm for
F3|nwt, (perm), pjk ∈ {0, 1}|Cmax, i.e., when all task times are either null
or 1. However, when the number m of machines is variable, Gonzalez (1982)
proved that F |nwt, (perm), pjk∈{0, 1}|Cmax is strongly NP-complete. Solv-
able cases with general processing times are provided next.
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Smith et al. (1975) report no -wait applications in case processing times
are semi-ordered, as defined next:

Definition 6.1 A processing time matrix P = (pij) is said to be semi-
ordered iff there exists an indexing of the jobs such that

pk1 ≤ pk2 ≤ . . . ≤ pkn , for k = 1, . . . , m.

The permutation in Definition 6.1 induces an SPT order on every processor,
and hence we may refer to it as an SPT permutation of the jobs. Henceforth
assume jobs are so indexed. We have the following result:

Theorem 6.6 (Panwalkar and Woolam, 1979) For Fm|nwt,(perm)|Cmax

having a semi-ordered processing time matrix with the largest processing times
on Mm, i.e., pkj ≤ pmj for all j = 1, ..., n, k = 1, ..., m, S� = SPT .

Arora and Rana (1980) proved that, when jobs correspond to cities, the
TSP formulation for semi-ordered matrices has a distance matrix that satis-
fies the property

dij + di′j′ ≤ dij′ + di′j for all i < i′ and j < j′.

Such distance matrices are known as distribution matrices. The TSP on dis-
tribution distance matrices is solvable in O(n2) time (see Gilmore et al.,
1985).

Closely related to semi-ordered processing time matrices is the concept of
pyramidal schedules:

Definition 6.2 For a semi-ordered processing time matrix P = (pij), a
schedule is said to be pyramidal when all jobs prior to Jn (the job with
largest task times) are ordered in nondecreasing order of processing times,
while the remaining jobs follow Jn in nonincreasing order of processing times.

We have the following major result:

Theorem 6.7 (Arora and Rana, 1980) For Fm|nwt,(perm)|Cmax with a
semi-ordered processing time matrix, there exists an optimal schedule which
is pyramidal.

Arora and Rana (1980) presented an O(n3) algorithm that finds an op-
timal pyramidal schedule, which was later improved in Axsater (1982) who
developed the following O(n2) dynamic program. Observe that a pyramidal
schedule can be obtained by building out from the middle, adding jobs in LPT
order. Given SPT indexing, for any partial schedule of jobs {Jj+1, . . . , Jn},
consider adding Jj either to the beginning or to the end of the partial sched-
ule. As we have argued, the resulting increase in makespan only depends on
the parameters of Jj and the job, say Ji, adjacent to it. If Jj is added at the
end, following Ji, we again have:

dij = maxk=1,2,...,m{pki +
∑m

r=k(prj − pri)}.
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By symmetry, if Jj is added at the start, immediately before Ji, then the
increase in makespan is:

d′
ji = maxk=1,2,...,m{pkj +

∑k
r=1(pri − prj)}.

Define the following state space variables:

f1
j (k) = minimal makespan for Jj , Jj+1, . . . , Jn when Jj is scheduled first
and Jk (k > j) is last, and

f2
j (k) = minimal makespan for Jj, Jj+1, . . . , Jn when Jj is scheduled last
and Jk (k > j) is first.

Then, the following implicit enumeration, adding jobs of decreasing size
to either end of the schedule, yields an optimal pyramidal schedule:

f1
j (k) =

{
mini>j+1 {f2

j+1(i) + d′
ji} , if k = j + 1

f1
j+1(k) + d′

j,j+1 , if k > j + 1

f2
j (k) =

{
mini>j+1 {f1

j+1(i) + dij} , if k = j + 1
f2

j+1(k) + dj,j+1 , if k > j + 1

where the initial conditions are:

f1
n−1(n) = d′

n−1,n +
∑m

k=1 pkn ,

f2
n−1(n) = dn,n−1 +

∑m
k=1 pkn .

The optimal solution is then C� = mink=2,...,n{f1
1 (k), f2

1 (k)}. Evidently, the
above dynamic program has O(n2) states, each computed in O(1) time.

Theorem 6.8 (van der Veen and van Dal, 1991) When the processing times
are fixed on all but two machines, Ml and Mu, l <u (i.e., pkj = ck for
j = 1, 2, . . . , n and k = 1, 2, . . . , m, k = l, u) , and one of the following holds:

(i) u = l + 1, or (ii) l = 1, or (iii) u = m,
then Fm|nwt, (perm)|Cmax is polynomially solvable.

The missing case where 1 < l < u − 1 < m − 1 remains open; however, the
authors conjecture that the resulting version of the problem is NP-complete.

6.4.2 Heuristic Algorithms

The majority of heuristics that have appeared in the literature for problem
Fm|nwt, perm|Cmax employ local search using simulated annealing, genetic
algorithms, tabu search, etc. Rajendran (1994) developed a heuristic (re-
ferred to as RAJ) based on the NEH heuristic of Nawaz et al. (1983) for
Fm|perm|Cmax. It is found that RAJ outperforms the heuristics presented
earlier in Gangadharan and Rajendran (1993) and hence RAJ is used as
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benchmark to measure the performance of local search algorithms that ap-
peared in the literature after 1994.

Aldowaisan and Allahverdi (2003) developed genetic and simulated anneal-
ing algorithms for Fm|nwt, perm|Cmax while Schuster and Framinan (2003)
presented a hybrid of the two, referred to as GASA. They also presented a
variable neighborhood search algorithm VNS. The authors showed that VNS
outperforms GASA while both outperform RAJ in solution quality.

Grabowski and Pempera (2005) introduced the idea of multimoves. Given
a permutation π of jobs, consider all insertions (x, y) where J[y] is placed
immediately after J[x] when x < y. If x > y, then J[y] is placed immedi-
ately before J[x]. Among all such insertions, consider the set that improve
makespan. This collection of moves, say A(π), is said to be a multimove.
Grabowski and Pempera developed a tabu search algorithm TS and 2 varia-
tions of it that utilize mutimoves. Algorithm TS+M applies a multimove in
every iteration, and TS+MP applies a multimove periodically and a simple
insertion in all other iterations. Also, the authors implemented a greedy al-
gorithm based on simple insertions (referred to as Descent Search algorithm,
DS), and its variation DS+M where a multimove instead of a simple insertion
is used in each iteration.

The above algorithms are tested on the 30 test problems presented in
Heller (1960) for problem Fm|perm|Cmax and later used in Reeves (1995).
Through their experiments, Grabowski and Pempera (2005) showed that 1000
iterations of their TS heuristic and its variations significantly outperform the
GASA heuristic (especially as n increases) of Schuster and Framinan (2003),
and less so heuristic VNS. For the 30 instances tested, the average percentage
improvement obtained by TS, TS+M, TS+MP over the RAJ heuristic is
6.50%, 6.59% and 6.56% respectively while the CPU effort is less than 4
seconds for a computer running at 1GHz, m = 10 machines and n = 100 jobs.
Heuristics DS and DS+M are inferior to their tabu counterparts, significantly
outperform RAJ and GASA, but on average are inferior to VNS. Moreover,
multimoves do not seem to make a notable difference in DS+M compared to
DS.

6.4.3 Fm|nwt, (perm)|Cmax with Setup and
Teardown Times

We have seen how Fm|nwt, (perm)|Cmax can be formulated as a TSP, due
to the no -wait feature which locks the parts of a job rigidly together so
that the profile a job presents to the adjacent jobs, both before and after
it in a schedule, are predetermined and fixed. This property carries over to
Fm|nwt, (perm), skj, tkj|Cmax, by which we mean the no-wait flow shop with
separable setup times, skj, and teardown times, tkj, for each Jj on each Mk.
We illustrate such a system in Fig. 6.7, where two adjacent jobs are shown
in a three-machine system.
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Fig. 6.7 Two jobs in an F3|nwt, skj , tkj |Cmax system

In the TSP, as before, the distance dij from Ji to Jj is the extra time
required to process Jj if it immediately follows Ji. Incidentally, we assume a
job is completed only when its final teardown is finished. It is convenient to
define the dummy job J0, with all its parameters set to zero, as the start and
end point of the tour (and the schedule). We also introduce the variables (as
shown in Fig. 6.7):

Bk = the start time of the setup of Jk on M1 (which may not be the
earliest this job occupies a machine, as illustrated by Ji) ;

Ck = the completion time of Jk, i.e. of its final teardown (which may
not be on Mm, as shown for Jj in the figure) .

Then, the distances are:

di0 = dii = 0 , for i = 1, 2, . . ., n ,
dij = Cj − Ci = (Cj − Bj) + (Bj − Bi) − (Ci − Bi) ,

i = 0, 1, . . . , n, j = 1, . . . , n, i = j.

where:

Cj − Bj = s1j + maxk=1...m{
∑k

r=1 prj + tkj} ,
Bj − Bi = s1i−s1j +maxk=1...m{

∑k
r=1(pri−prj)+tki+skj +pkj} .

For example, in Fig. 6.7,

Ci − Bi = s1i +
∑3

r=1 pri + t3i ,

Cj − Bj = s1j +
∑2

r=1 prj + t2j ,

Bj − Bi = s1i +
∑2

r=1 prj + t2i + s2j − p1j − s1j ,

so that

dij = −(p3i + t3i) + t2i + s2j + p2j + t2j .

This sequence of intervals can be easily traced in the figure.

6.4.4 Identical Jobs in Fm|nwt, (perm)|Cmax

Since the principal tool for scheduling nondelay flow shops is the TSP al-
gorithm, we have difficulty handling very large numbers of jobs. Frequently



208 6 THE NO -WAIT FLOW SHOP

in such cases the jobs fall into a relatively small number of classes or types,
each type having the same time requirements at every stage. They may be
identical copies of the same product, or similar jobs with the same process-
ing requirements. If the n jobs to be scheduled can be classified into u types
(u � n), each type having identical time requirements, they can often be
grouped into batches for simplified scheduling.

It should be noted that, with no -wait scheduling, the kind of batching we
are now concerned with is not the same as lot streaming, to be considered
later. The latter involves batches or sublots that are transferred together
from one machine to the next. Thus, the first job in a sublot must await the
completion of all the other jobs in the group before starting its next operation,
hence it is delayed, although the entire sublot may require no -wait service.
For now, we continue to assume that each separate job must be scheduled
without delay. Since all jobs of a type are indistinguishable, dij is now the
additional time of sequencing a job of type j immediately after a type-i job.

Scheduling Identical Jobs in Large Batches

We first present some conditions under which large numbers of identical jobs
should be scheduled consecutively.

Theorem 6.9 (Rothkopf, 1966) If for some type k, dkk ≤ dik+dkj −dij

for all types i and j, i, j = 1, . . . , u and i, j = k, then there exists an optimal
schedule where all jobs of type k are processed consecutively.

Intuitively, Theorem 6.9 states that, if the makespan increase of scheduling
2 jobs of type k next to each other is smaller than scheduling k between i
and j, then there is an optimal schedule where all jobs of type k are batched
together.

If we define a k-batch to be two or more jobs of type k scheduled consec-
utively, we have:

Theorem 6.10 (Emmons and Mathur, 1995) Let S� be an optimal sched-
ule for the instance I = (n1, n2, . . . , nu), where nk = the number of jobs of
type k to be scheduled. Then,

(a) if S� includes a k-batch , then an optimal schedule for I− = (n1, . . . ,
nk −1, . . . , nu) can be constructed from S� by eliminating one job from the
k-batch.

(b) If nk ≥ u and S� includes a batch of every job type, then an optimal
schedule for I+ = (n1, . . . , nk + 1, . . . , nu) can be constructed from S� by
adding one more job to a k-batch.

Suppose, for example, a company that manufactures four types of jobs (say
a, b, c, and d) has an order for (na, nb, nc, nd) = (10, 8, 12, 5). Using the pro-
cessing times to compute the matrix [dj], suppose we find that type a and
type c each satisfy Theorem 6.9. Thus, the two types can each be grouped
as a single long job, and the TSP to be solved has only 16 instead of 36
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nodes, resulting in an optimal sequence of (c12, b7, d4, a10, b, d), where b7 de-
notes seven consecutive jobs of type b. Suppose now a much larger order
arrives, for (110, 208, 312,405). Since the solution for the smaller order sat-
isfies Theorem 6.10b, we immediately know the schedule for the large order:
(c312, b207, d404, a110, b, d).

A Heuristic for F m|nwt, (perm)|Cmax with Multiple Products

When scheduling a large number of jobs of a few types or products, it will
not always happen that, as the number of jobs of each type grows, a batch
of each type develops. Instead, we may find that repeated cycles of a subset
of products appear, such as (. . . , a, b, c, a, b, c, a, b, c, . . .), which we may write
(. . . , (abc)3, . . .). Agnetis (1997) presents a heuristic algorithm to find such
schedules. Of course, Theorems 6.9 and 6.10 can be used as a preliminary step
to simplify the problem. We present here a modified version of the Agnetis
algorithm, that is slightly simpler and builds on the earlier development of
this chapter.

Our problem, then, is to manufacture, in a no-wait m-machine flow shop,
nj jobs of type j, j = 1, . . . , u in the shortest time, when pij is the time
required by a job of type j on Mi. We start with the TSP formulation given
at the start of Sect. 6.4 We add a single dummy job J0 with all zero times
to mark the start of the schedule. The distances between cities (or jobs),
dij, are now defined as the additional time required to schedule a type-j job
immediately after a type-i job:

dij = maxk=1,2,...,m{pki +
∑m

r=k(prj − pri)}, i, j = 0, 1, . . . , u (6.2)

as shown in Fig. 6.6. Note that we no longer define djj = 0: while a single
job Jj could not follow itself, two or more jobs of type j may well follow
each other, at a cost that simplifies to djj = maxk pkj. We omit the special
formulas for d0j and di0 given in Sect. 6.4; they were never necessary, as the
general formula (6.2) works for them, too.

Agnetis (1997) starts by solving the following closely related transporta-
tion problem T, portrayed as a bipartite graph B with supply nodes L =
{0, 1, 2, . . ., u}, demand nodes L′ = {0, 1, 2, . . ., u}, and edge set {(i, j) : i ∈
L, j ∈ L′} with unit costs dij. The supply at node j ∈ L, and the demand
at j ∈ L′, are both nj . Note how each unit shipped from i ∈ L to j ∈ L′

corresponds to a job of type i preceding a job of type j, contributing cost
(or additional time) dij. The total cost of a solution to T therefore equals
the makespan of the corresponding schedule, provided that the solution to T
corresponds to a schedule at all. Instead of giving us a tour of the cities that
solves the TSP and the flow shop problem, the transportation shipments may
translate into several disconnected subtours that are not a feasible solution
to our problem. This will be clarified by the following example.

Example 3: Quantities of four products (call them a, b, c, and d) are to be
manufactured in a three-machine no -wait flow shop. Processing times pkj for
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an item of product j on Mk, and the required quantity nj of each product
j, are given in Table 6.1a. We first use (6.2) to calculate the costs, dij, (i.e.,
the increments in schedule length when a type-j job follows a type-i job) and
these are presented in Table 6.1b.

Note the addition of a single job of type o, the dummy job with all zero
costs that will indicate the start of the schedule. All the entries in Table
6.1b come from (6.2) except doo, which is set to an arbitrary large value
(denoted by K) to block shipment over this route; at least this subtour can
be eliminated from the start.

The solution to the transportation problem is presented in Fig. 6.8, in two
ways. On the left, a bipartite graph shows the optimal shipments from supply
nodes to demand nodes. On the right, the directed graph G is essentially the
same graph, with the two nodes for each product superimposed. Interpreting

j M1 M2 M3 nj j o a b c d
o 0 0 0 1 o K 17 35 29 32
a 4 6 7 20 a 0 7 22 16 20
b 8 12 15 20 b 0 7 15 9 17
c 13 7 9 15 c 0 7 19 13 18
d 5 10 17 25 d 0 7 15 9 17

(a) (b)

Table 6.1 (a) processing times and quantities, and (b) costs dij , for sample products

G from the scheduling perspective, an arc labeled x directed from node i to
node j represents x occurrences of a type-j job following a type-i job. We may
think of it as representing x separate arcs, each of which must be traversed
once. Thus, both graphs are multigraphs, having multiple arcs connecting
node pairs.

Fig. 6.8 Two graphs showing the optimum for the transportation problem

For the sample instance, either graph clearly shows a multigraph with two
components, call them σoa and σbcd. The total cost of this optimal solution to
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T is T � = 1025. Note that this will always be a lower bound on the makespan,
because the solution set of the TSP (hence the scheduling problem which is
equivalent) is a subset of T’s solution set. Focusing on G, observe that each
component is Eulerian: since supply equals demand for each product, the
number of incoming and outgoing arcs are equal at each node. Therefore,
Eulerian walks traversing the two components yield partial tours: (o, a20, o)
for σoa, and (b5, c, d11, b, (cdb)14) for σbcd. Observe how the second does not
translate into a partial schedule, since it lacks a starting point o (we started
arbitrarily at b).

Merging the two partial job schedules into a feasible solution for Fm|no-
wait, (perm)|Cmax is equivalent to patching components σoa and σbcd into a
single Eulerian walk; preferably, at minimal cost. Agnetis (1997) developed
such a heuristic patching procedure with cost

CH ≤ C� (1 + (m + 1)T �
1 /2T �) ,

where T �
1 is the optimal cost for problem T with unit lot sizes, i.e., nj = 1, j =

1, . . . , u. For the example, the patched Eulerian tour is given in Fig. 6.9. We
can now trace the complete tour, starting and ending at o, generating the
heuristic schedule SH = (a20, d11, b6, (cdb)14, c), with cost CH = 1027 (which
happens to be optimal).

Fig. 6.9 Solution to T patched to connect the subtours

6.5 Related No-Wait Systems

In this section we consider other systems related to the no -wait flow shop.

6.5.1 The No-Wait Assembly Shop

Consider the 2-stage assembly shop with m machines in stage G1 and a single
assembly machine in G2. Job Jj consists of operations T1j, T2j, . . . , Tm+1,j

where Tkj must be performed on machine Mk (k = 1, 2, . . . , m + 1) for pkj

units of time. The m processors in G1 are all different and work independently
in parallel, each producing a separate component of the job. Upon completion
of the m G1-operations, the final assembly operation Tm+1,j is performed by



212 6 THE NO -WAIT FLOW SHOP

the single machine Mm+1 at G2. The no -wait requirement means that all the
m tasks of a job at G1 must complete simultaneously, and assembly must
then start without delay. Rather than Fm, we will use Am to denote this
system.

For each job, we will assume that the assembly task, and at least one
of the m G1-tasks, require positive processing time, or if not, that the zero
-time stage does not have to be scheduled, so that all no -wait schedules
are necessarily permutation. Thus, the optimum is always a permutation
schedule, whether we require it or not; which as usual we denote (perm).

The problem of minimizing makespan in an assembly shop subject to setup
and removal times has been considered in Gupta et al. (1997). Associated with
each task Tkj are a prespecified setup time skj and a teardown or removal
time tkj, both separable. The start of a typical schedule, S = (i, j, . . .), for
an instance with m = 3, is illustrated in Fig. 6.10 .

Fig. 6.10 Start of schedule S = (i, j, . . .) for an assembly shop with m = 3

After proving that Am|nwt, (perm), skj, tkj|Cmax is strongly NP-complete,
the authors show that this problem, like most no -wait flow shops, has a TSP
formulation with cities J0, J1, . . . , Jn where the dummy job J0 that indicates
the start and end of the schedule has sk0 = pk,0 = tk0 = 0 for k = 1, . . . , m+1.
The distance added when Jj follows Ji, dij, is measured between assembly
start times, as shown in Fig. 6.10. Clearly, for i = j:

dij = max{maxk=1,...,m{tki + skj + pkj}, pm+1,i + tm+1,i + sm+1,j}.

To simplify notation, let uijk = tki + ski + pkj and vij = pm+1,i + tm+1,i +
sm+1,j . We now have:

dij = max{maxk=1,...,m uijk, vij}
= vij + max{maxk=1,...,m{uijk − vij}, 0}
= vij + maxk=1,...,m{uijk − vij}+

where x+ ≡ max{x, 0}. Since our objective is to minimize the total distance
over all tours, the first term always sums to the same constant and can be
omitted. Finally, regrouping terms, we can use as our distance metric
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dij = maxk=1,...,m{akj − bki}+ for i = j

where akj = skj + pkj − sm+1,j , bkj = pm+1,j + tm+1,j − tkj.
The authors also identify two polynomially solvable special cases as follows.

Theorem 6.11 (Gupta et al., 1997)
(a) If tkj = tj for all j,k, so that bkj = bj = pm+1,j + tm+1,j − tj, then

Am|no-wait, (perm), sjk, tjk|Cmax is equivalent to F2|no-wait, (perm)|Cmax

with job processing times <aj, bj> = <maxk=1,...,m akj, bj>.
(b) If skj + pkj = sj + pj for all j,k, so akj = aj = sj + pj − sm+1,j then

Am|no-wait, (perm), skj , tkj|Cmax is equivalent to F2|no-wait, (perm)|Cmax

with job processing times <aj, bj> = <aj ,mink=1,...,m bki>.

When both conditions in the above two theorems hold, then the resulting
TSP is equivalent to the two-machine no -wait flow shop with job processing
times <aj, bj> = <sj + pj − sm+1,j , pm+1,j + tm+1,j − tj>.

6.5.2 The No-Wait Hybrid Flow Shop

Ramudhin and Ratliff (1992) considered the problem of selecting the jobs that
should complete within an 8-hour shift in a hybrid 2-stage no -wait flow shop
so as to maximize the weighted sum of selected orders. Setting the due date of
all jobs to d = 8 hours, the problem is equivalent to F (k1, k2)|no-wait, dj =
d|ΣjwjUj . The authors formulate the problem using a mathematical program
the Lagrangean relaxation of which results in subproblems solved by the
longest path algorithm. The resulting paths are then converted to a feasible
schedule by appropriate user-driven changes.

Heuristic algorithms supported by worst case error bound analysis have
appeared in the literature for the 2-stage hybrid no-wait flow shop. These
algorithms apply the FCFS policy on a given permutation (or list) of jobs,
i.e., the a-task of the next unscheduled job in the list is scheduled on the
first available machine at stage G1, followed by the corresponding b-task on
the first available G2 machine. This is a logical extension of permutation
scheduling in simple job shops, and we denote it perm. Generically, the re-
sulting algorithm is referred to as list heuristic. We have the following results
for the completion time CL of the schedule produced by the list heuristic
using list L.

Theorem 6.12 (Sriskandarajah, 1993) For F (1, k)|no-wait, perm|Cmax,

CL/C� ≤
{

3 − 1/k if L = arbitrary,
2 if L = ↘bj,

and these bounds are tight.

Clearly, the case (k1, k2) = (k, 1) is symmetric; simply interchange the role
of a- and b-tasks, and assume that jobs enter stage 2 and proceed on stage
1. For the case where k1 = k2 = k, we have
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Theorem 6.13 (Sriskandarajah and Sethi, 1989)
For F (k, k)|no-wait, perm|Cmax,

CL/C� ≤
{

3 − 1/k if L is obtained by GGV,
r if L = ↘(aj + bj).

The first bound is tight, while 7
3
− 2

3k
≤ r ≤ 3 − 1

k
.

That is, for the second case, 3− 1/k is a proven bound but not known to be
tight, while an example exists that has CL/C� = (7k − 2)/3k.

6.5.3 No-Wait Lot Streaming

Frequently, in nondelay flow shops, many copies of the same or similar prod-
ucts must be produced repetitively. For instance, automobile bumpers of
many shapes and sizes may require the same immersion times in a series
of tanks for chemical treatments (clean, deoxidize, electroplate, rinse, etc.)
for chrome plating. The process is no-wait because the chemical processes,
once started, cannot be interrupted. When processing times are the same for
all items at each stage, the items can be treated as identical for scheduling
purposes, and we will consider them a single product.

The total number of copies of the product to be scheduled is the job lot
or process batch, usually predetermined by a planning process based on
customer orders and stocking requirements. Now it may happen that each
copy need not be separately scheduled, as is usual with no -wait jobs, but
can be batched and sent through the shop as a group. In the manufacturing
example above, a number of items may be attached to a rack and simul-
taneously dipped in the successive baths. The time to chemically treat a
rack, or sublot, or transfer batch, depends on the surface area, hence is
proportional to the number of items in the sublot.

We are now ready to introduce the concept of no-wait lot streaming. A
small number of products (we’ll start by considering just one) is to be pro-
duced, each in quantity. Lot streaming is the splitting of the total job
lot of a product into several sublots, each of which is transferred from one
machine to the next only when all the items of the sublot are completed.
Smaller sublots result in better machine utilization, more overlap on consec-
utive machines, less work-in-process inventory, and shorter makespan. Indeed,
the complete subdivision of the lot into one-unit sublots minimizes makespan.
However, practical considerations of material handling, tracking and control-
ling generally limit the number of sublots. In this context, as we have said,
the no -wait feature applies to the entire sublot, rather than each item. Our
code for this will be nwt lots.

No-Wait Lot Streaming for a Single Product

Consider Fm|nwt lots, (perm)|Cmax where n copies of a single product are to
be manufactured. Each item requires a time pi on Mi, i = 1, ..., m. This sim-



6.5 Related No-Wait Systems 215

plest case has received significant attention. An instance taken from Hall
et al. (2003) is shown in Fig. 6.11, where 12 units of a product, having
<p1, p2, p3> = <1, 3, 2>, must be partitioned into at most three sublots
for processing on 3 machines. If the 12 jobs are processed in a single lot, the
makespan is 12(1 + 3 + 2) = 72. If the jobs are split into 3 sublots with 2, 6,
and 4 jobs respectively, then the makespan is only 46 as shown in the figure,
and this is optimal.

Fig. 6.11 A simple instance of F3|nwt lots, (perm)|Cmax
wti

Our goal, then, is to find the partition (x1, x2, ..., xv) of the job lot of n
items into v sublots, each with xi items (so Σv

i=1xi = n), that minimizes
makespan. In reality, the xi are integers. Since this discrete version of the
problem may be difficult to solve, Sriskandrajah and Wagneur (1999) consid-
ered the version of Fm|nwt lots, (perm), sk|Cmax where the number of jobs
in each lot is allowed to be fractional. Note that they have added setup times
sk on each Mk at the start of the production run, which does not make the
problem more difficult. This relaxation of the integer restriction may give an
integer solution anyway, or we can round the values up or down for a good
solution, especially if the sublots are large.

With reference to the last machine, Mm, the makespan can be written:

Cmax = sm +
∑v

i=1 xipm +
∑v

i=1 Δi = sm + npm +
∑v

i=1 Δi

where sm + npm is the total busy time on Mm (a constant that can be
ignored), and Δi is the idle time on Mm prior to the start of sublot i, as
illustrated in Fig. 6.12 for m = 3.

Fig. 6.12 The general case of F3|nwt lots, (perm), sk|Cmax

We can now formulate the problem as a linear program to minimize
Σv

i=1Δi. We relate the new variables Δi to the original xi with the same
logic we have used several times now. Thus, with m = 3:
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Δ1 = max{s1 + x1(p1 + p2) − s3, s2 + x1p2 − s3, 0} ,

Δi = max{xi(p1 + p2) − xi−1(p2 + p3), xip2 − xi−1p3, 0}, i = 2, . . . , v.

You can trace the sequence of tasks in Fig. 6.12 to check that Δ1 = s2 +
x1p2 − s3, Δ2 = x2(p1 + p2) − x1(p2 + p3), and Δv = xvp2 − xv−1p3.

In the same way, for general m, the expressions are:

Δ1 = maxk=1,...,m−1{sk + x1

∑m−1
r=k pr − sm}+ ,

Δi = maxk=1,...,m−1{xi

∑m−1
r=k pr − xi−1

∑m
r=k+1 pr}+, i = 2, . . . , v.

Converting equations of the type Δ = max{a, b, c} into constraints Δ ≥
a, Δ ≥ b, Δ ≥ c, we get the following linear program (Sriskandrajah and
Wagneur, 1999), finding an optimal partition of the jobs into fractional lots:

SW minimize
∑v

i=1 Δi

subject to
∑v

i=1 xi = n

Δ1 ≥ sk + x1

∑m−1
r=k pr − sm , k = 1, . . . , m−1

Δi ≥ xi

∑m−1
r=k pr − xi−1

∑m
r=k+1 pr , i = 2, . . . , v,

k = 1, . . . , m−1
xi, Δi ≥ 0 i = 1, . . . , v

where the cases with k = m are omitted because they amount to nonnega-
tivity constraints.

This formulation is utilized in Kumar et al. (2000) to produce optimal
integral lots by assigning to each lot the smallest integer number of units,
say yi that exceeds the fractional allocation found in SW. In this fashion, the
total number of units Σiyi may exceed n. The excess Σiyi − n is eliminated
as necessary by finding the lots with the largest yi − xi values and replacing
the corresponding yi values by yi − 1.

Multiproduct No-Wait Lot Streaming

Hall et al. (2003) considered the multiproduct problem where all the sublots
of a product are produced consecutively, with setups required between prod-
ucts on each machine. We must determine simultaneously the sequence of
products and, for each product, the breakdown into sublots. The integer
sublot vectors for a product are generated by the technique in Kumar et al.
(2000), which then represent cities in a Generalized Traveling Salesman prob-
lem, defined as follows: a number of countries are to be toured, by visiting
precisely one of many cities available in each country, so as to minimize the
total travel distance. Here, cities correspond to sublot partitions, and coun-
tries correspond to products. The resulting problem is solvable by existing
algorithms for the generalized TSP.

For the special case where m = 2, if the n jobs can be partitioned into
s lots each consisting of identical jobs, then Agnetis (1989) developed an
optimal algorithm that runs in time O(s log s + min{s2, n}).
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6.6 Other Objectives

Scheduling objectives other than makespan have not received nearly as much
attention. For the flow time objective, Fm|nwt, perm|ΣCj is NP-complete for
variable m (see Lenstra et al., 1977) and for fixed m ≥ 2 (see Röck, 1984).
The corresponding TSP formulation has objective

Min π Z =
∑n−1

j=0 (n − j)dπ(j),π(j+1)

where π is a permutation of cities J0, J1, . . . , Jn. The equivalence of this
objective to the total flow times is easily seen:

Z = nCπ(1) + (n − 1)(Cπ(2) − Cπ(1)) + . . . + (Cπ(n) − Cπ(n−1)) =
∑

j Cπ(j).

The resulting TSP is known as the minimal latency problem (see Afrati et
al., 1986). For variable m and processing times zero or one, Gonzalez (1982)
showed that F |nwt, perm, pij ∈ {0, 1}|ΣCj is NP-complete.

One special case where total flow times are easily minimized is when pro-
cessing times are semi-ordered; that is (see Definition 6.1):

pkj ≤ pk,j+1 , for j = 1, . . . , n − 1 , k = 1, . . . , m.

Theorem 6.14 (van der Veen and van Dal, 1991) For Fm|nwt, perm|ΣjCj

with semi-ordered processing times, the SPT schedule is optimal.

6.7 Conclusions

Our review of the research on the no-wait flow shop has highlighted some
of the most celebrated results in all of flow shop research, as well as gap-
ing holes on the subject. The elegant GGV algorithm is a special type of
the TSP and forms a building block in other more complicated scheduling
problems with TSP structure. Also surprising is to see that a simple ad-
justment on the lot streaming problem with a single product and fractional
lots provides a solution to the case when lots are integral. The optimality
gaps of the heuristics and metaheuristics that have appeared in the litera-
ture for Fm|nwt, perm|Cmax are acceptable, but not of the levels we saw for
Fm|perm|Cmax. Moreover, the non-permutation version of the problem has
not been considered at all. With respect to objectives other than makespan,
the literature is surprisingly thin with only minor consideration of the flow
time objective. Systems other than the traditional m-machine flow shop have
been considered – like the 2-stage hybrid flow shop and the assembly flow
shop – but not to the extent one would desire, considering the large number
of industry applications of the no-wait paradigm.
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Chapter 7

BLOCKING OR LIMITED BUFFERS
IN FLOW SHOPS

Abstract We begin by reviewing many manufacturing and other ap-
plications of the flow shop with limited or no interstage storage. For
two machines, we show the equivalence of no storage (blocking) and
no waiting, which have a polynomial solution; for m > 2, we establish
that the flow shop with blocking is NP-complete. An integer program
is given to find the minimum makespan. A variety of bounds are pre-
sented. Branch-and-bound algorithms using these bounds are given and
evaluated. Various heuristics and metaheuristics are presented and com-
pared. Two different precedence graphs are introduced and used in the
above developments. The total tardiness objective is also discussed.

7.1 Introduction

We say a flow shop has blocking when no intermediate storage is provided for
the jobs to wait between stages. As a result, at the completion of any task, if
the downstream machine is busy, a job must wait at the upstream machine,
occupying it and blocking the next job until the downstream processor clears
and allows flow to resume. Clearly, this production protocol is related to the
no-wait flow shop where the waiting time, rather than the waiting space,
is required to be zero. In the abbreviated job description, the presence of
blocking will be denoted block, while the no-wait requirement is abbreviated
nwt.

Of course, since there is never any blocking in a no-wait schedule, the op-
timal schedule with blocking is either the optimal no-wait schedule or some-
thing better. This is true for any number of machines and for any objective.
Thus, if A�

block and A�
nwt are the optimal objective function values for the

two cases under any measure A(S) of a schedule S, then A�
block ≤ A�

nwt.
At first glance, it may seem that, under both assumptions, by their very na-

ture, only permutation schedules are possible. Technically, this is only true if
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each job must visit each machine; call this the no-skip requirement. Of course,
if all task times are strictly positive, this follows automatically. However, if a
job finishes processing on Mk−1 and need not visit Mk, it can skip straight
to Mk+1 thereby passing an earlier job in process on Mk. Thus, without the
no-skip requirement, non-permutation schedules are possible, and may be
optimal.

Throughout this chapter, our search for the optimum will be limited to
permutation schedules. We now see that with the no-skip assumption there
is no loss of optimality. Also, with m = 2, the optimal schedule is always per-
mutation, unconditionally. As we know, when the permutation requirement
is no real restriction we write (perm); otherwise, perm.

In our usual notation, we wish to schedule a given set J = {J1, J2, . . . , Jn}
of n independent jobs in an m-machine flow shop, with Jj requiring time pij

on Mi. For simplicity, when defining a job, we will write Jj = <p1j, . . . , pmj>.
Also recall:

Ck(S) [Ckj(S)] = completion time of all tasks [of Jj ] on Mk in schedule S.

Now, with blocking, when a job completes processing on a machine, it may
have to remain there, occupying that machine for additional time. We will
find it more convenient to use the variables:

Dkj(S) = departure time of Jj from Mk in schedule S.

Of course, on the last machine, Dmj(S) = Cmj(S). Also note that, by the
nature of blocking,

Dkj(S) = start time of Jj on Mk+1 in schedule S.

7.2 Flow Shops with Limited Interstage Storage

Initially, one might think that a flow shop with limited (rather than null)
buffer storage between stages is a more complicated generalization of the
shop with blocking. On the contrary, at least for permutation schedules, it
can be subsumed as a special case, as follows. Suppose limited storage space
for βk ≥ 0 jobs is available between Mk−1 and Mk, k = 2, . . . , m, with at
least one βk > 0; and let β = mink βk. That is, a queue of maximal length
βk can form in front of Mk. If β ≥ n− 2, then of course we have effectively a
simple (unlimited-storage) shop, since, if a job requires such a long time on,
say, Mk that all n−1 other jobs queue up behind it, then at worst the final
job is on Mk−1 and there can be no upstream job to be blocked.

Now suppose β < n− 2. Let us introduce βk new machines in front of
Mk, k = 2, . . . , m. Each new machine will act as a storage device for a single
job. Jobs require zero processing times on the new “storage machines”, hence
occupy them only as long as they are blocked. In this way, one may convert
any limited-storage system to a flow shop with no storage, i.e. with blocking,
where the number of machines is no more than m + Σkβk.
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As we observed earlier, in a blocking flow shop with the no-skip require-
ment, every feasible solution is a permutation schedule. This is not necessar-
ily the case with limited storage, because when βk > 0 passing is possible
among operations waiting for Mk. However, to date published results have
been limited to finding the best no-skip permutation schedule, in which even
the “storage machines” cannot be skipped, so that each buffer behaves as a
well-disciplined FCFS queue. Our short-hand notation for the limited-buffer
shop will be ltd, with the buffer size(s) added in parentheses if needed.

Although, with these assumptions, limited buffering is a special case of
blocking, authors often deal with the buffered shop, partly because adding
storage machines makes the problem unwieldy, and also because they often
wish to assume that all pij > 0. We end this section with one insightful formula
for the limited-buffer shop: a recursion for computing departure times, and
ultimately the makespan value, for an arbitrary job sequence S = (1, 2, . . . , n)
in an instance of Fm|ltd,perm|Cmax. For simplicity, we will write Dkj(S) as
Dkj. This can be computed using

Dkj = max{max[Dk,j−1, Dk−1,j] + pkj, Dk+1,j−βk+1−1} (7.1)

for j = 1, . . . , n, and for each j, for k = 1, . . . , m, where Dk0 = D0j =
Dm+1,j = 0. To understand this, note that the first term, max[Dk,j−1, Dk−1,j]
+pkj, is the time Jj completes on Mk. Either this is its departure time, or it is
blocked, which means that all βk+1 buffer positions plus Mk+1 are occupied.
In this case, Jj will depart from Mk when the job βk+1+1 positions ahead, i.e.,
Jj−βk+1−1, vacates Mk+1, allowing all waiting jobs to advance one position.
This recursion is easily adapted to Fm|block,(perm)|Cmax, where βk+1 = 0.

7.3 Applications

Considerations of cost and storage space limitations lead to the design of flow
shops with little or no buffer storage between stages. Without such incentive,
in-process inventory tends to accumulate due to poor shop floor management
which can be expensive (Dobson and Yano, 1994), and may lead to quality
deterioration. The popularity of just-in-time systems has rendered limited-
buffer and blocking flow shops of great importance. Indeed, Kanban systems
stipulate limited storage space for work in process. There is research evidence
that limited storage is advantageous to timely production; see Schonberger
(1982), Zangwill (1987) and Matsuo (1990).

The following examples highlight the practical importance of the flow shop
studied in this chapter.

• In steel manufacturing, molten steel undergoes molding, reheating, soaking
and rolling. The cost of storing and maintaining the temperature at the
appropriate levels for each operation render storage either infeasible or
uneconomical. Here, the production technology causes blocking in the flow
shop.
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• Rippin (1981) presents applications of blocking flow shops due to the in-
stability of intermediate chemical products.

• Dekhici and Belkadi (2010) present a hospital application of a 2-stage hy-
brid flow shop (see Chapter 5) with blocking, with three operating rooms
in stage 1 and eleven beds for post-anesthesia care in stage 2. With 10 sur-
gical interventions daily, the blocking constraint reflects situations where
no bed is available in stage 2. In this case, the patient remains in the
operating room until a bed becomes available.

• Other application areas mentioned in the survey paper of Hall and Sriskan-
darajh (1996) include plastics, pharmaceuticals, silverware production,
food canning, and anodizing aluminum products.

7.3.1 The Two-Machine Case

Schedules with blocking are distinct from those with no waiting; we have
devoted a separate chapter to each. However, this is not true when m = 2.

Theorem 7.1 F2|block, (perm)|Any is equivalent to F2|nwt, (perm)|Any.

Proof: With blocking, any job Jj on M1 that is blocked stays on M1 until
it can start on M2, so aj can always be delayed so as to complete just as bj

begins, without affecting any job completion time.
Similarly, in no-wait schedules, there is no possibility of blocking, and if

the no-wait requirement is relaxed, blocking will only permit tasks on M1 to
be processed earlier. �

For an example, see the no-wait schedule in Figure 6.1. If instead the jobs
were scheduled with blocking, the only change would be that a3 and a5 (not
a4) would move earlier.

However, the two scheduling protocols give different results when m > 2.
To see this, consider the following example.

Example 7.1: We wish to schedule jobs J1 = <4, 6, 5>, J2 = <4, 8, 12>,
J3 = <10, 5, 6>, J4 = <7, 5, 7>, J5 = <7, 10, 5> and J6 = <4, 2, 3> on
three machines, so as to minimize the makespan. With blocking, schedule
(1,2,. . . ,7) is shown in Figure 7.1, where brick walls show where machines are
blocked. The makespan is 55. With no waiting, the makespan of the same
schedule becomes 57. With enough waiting room (β2 = β3 = 1 is sufficient),
the unrestricted schedule has a makespan of 51.

Since the two-machine problem with blocking duplicates the one with no
waiting, we have combined all results on either type of shop in the no-wait
chapter. Thus, for full coverage of our problem when m = 2, see Chapter 6.
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Fig. 7.1 A schedule for the sample instance of F3|block, (perm)|Cmax

7.4 Complexity of F3|block, perm|Cmax

As noted above, F2|block, (perm)|Cmax is equivalent to F2|nwt, (perm)|Cmax

and hence solvable in O(n logn) time (see Chapter 6). When β = 1, prob-
lem F2|ltd, perm|Cmax is converted to the equivalent F3|block, perm|Cmax

by introducing a single storage processor. We have the following result:

Theorem 7.2 (Papadimitriou and Kanellakis, 1980)
F2|ltd(1), perm|Cmax is NP -complete in the strong sense.

Outline of proof: We reduce the strongly NP-complete problem

3-WAY MATCHING OF INTEGERS, OR 3MI
INSTANCE: Two sets U = {u1, u2, ..., uk} and V = {v1, v2, ..., v2k} of posi-
tive integers.
QUESTION: Can V be partitioned into pairs Pi = {vi1 , vi2} such that
ui + vi1 + vi2 = c, where c = (Σjuj + Σjvj)/k, for i = 1, 2, . . . , k?

to the decision version of our problem:

F2|ltd(1), perm|Cmax ≤ B?
INSTANCE: A threshold value B, n jobs {Jj : j = 1, 2 . . . , n}, each with
processing requirements <aj, bj> in a 2-machine flow shop with interstage
storage buffer of size β = 1.
QUESTION: Does there exist a feasible schedule with Cmax ≤ B?

Although we have no direct reference to the complexity status of 3MI, letting
xi = c − ui renders 3MI equivalent to the following problem which is known
to be strongly NP-hard (Garey and Johnson, 1979, p. 224).

NUMERICAL MATCHING WITH TARGET SUMS

INSTANCE: Two sets X = {x1, x2, ..., xk} and V = {v1, v2, ..., v2k} of posi-
tive integers.
QUESTION: Can V be partitioned into pairs Pi = {vi1 , vi2} such that
vi1 + vi2 = xi, for i = 1, 2, . . . , k?

We now proceed with the reduction from 3MI. For any instance of 3MI,
the following parameters define an instance of F2|ltd(1), perm|Cmax ≤ B?
having 4k + 1 jobs of which k involve a ui, 2k involve a vi, and k + 1 are
“filler” jobs.
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• B := 2k(c + 1) ;
• n := 4k + 1 ;
• Job Uj := <c/2, uj + c>, j = 1, . . . , k ;
• Job Vj := <1, vj>, j = 1, . . . , 2k ;
• Job F0 := <0, 2> ;
• Job Fj := <3c/2, 2>, j = 1, . . . , k − 1 ;
• Job Fk := <3c/2, 0> .

To see why the two problems will always have the same answer, note that
the total processing time of all 4k+1 jobs on each machine is B. Hence, a
schedule with Cmax = B exists if and only if there is no idle time on either
M1 or M2. This observation together with the buffer requirement β = 1 imply
the following: F0 must be scheduled first, and Fk last. After F0 must come
the following four-job block: two jobs of type Vj to fill the first two units on
M1 (it can be assumed without loss of generality that all ui and vi are larger
than 2), then a job of type Uj , and then an Fj, as in Figure 7.2.

It should be clear that, given the choice of Uj , the two preceding jobs
should be Vj1 and Vj2 so that the four jobs present a profile with a stagger of
two, just right for another similar four-job block to fit into. Let the ith block
(i = 1, . . . , k) be Bi = (Vi1, Vi2, Ui, Fi). Then the schedule (F0, B1, . . . , Bk),
as illustrated, achieves the desired makespan, and can do so only if 3MI has
the answer “yes”. It only remains to verify that no more than one job waits
for M2 at any point in the schedule. �

Fig. 7.2 A schedule for the sample instance of F3|block, (perm)|Cmax

7.5 Fm|block, (perm)|Cmax

First, as we know, with the no-skip assumption, blocking implies no passing so
only permutation schedules are feasible. Let S = (1, 2, . . . , n) be an arbitrary
permutation of the jobs, and Cm(S) the associated makespan evaluated for
problem Fm|block, (perm)|Cmax. It is not hard to observe that Cm(S) equals
the length of the critical path from the start of T11 to the end of Tmn in the
precedence graph G shown in Figure 7.3, for an instance with m = 3, n = 6.
In fact, the path shown with heavy arrows is the critical one for the schedule
shown in Figure 7.1. Note that, contrary to our usual practice of representing
tasks as nodes (the “activity-on-node” diagram), here it is more convenient
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to represent tasks by arrows (“activity-on-arc”), with each node representing
the instant that the last of the preceding tasks (arrows entering the node) is
completed, and so the following tasks (arrows leaving) can start.

Vertex kj corresponds to the start time of Tkj for every j = 1, . . . , n and
k = 1, . . . , m. Each task is represented by a vertical arrow, labeled with its
processing time. The dashed arrows are dummy tasks with task times of zero,
to enforce the task ordering imposed by blocking. For example, none of the
tasks T33, T24, and T15 can start until T32 has finished, due to the dummy
arcs rising diagonally from node 42 in the figure. This triple blockage can be
seen in Figure 7.1, where c2 determines when c3, b4, and a5 can start.

Fig. 7.3 Precedence graph G representing S = (1, . . . , 6) for F3|block, (perm)|Cmax

Let τ be a path from node T11 to node Tmn on graph G. If v1, ..., vn−1 are
the indices associated with directed path τ , then the length of τ is:

L(τ ) =
∑v1

k=1 pk1 +
∑v2

k=v1
pk2 + . . . +

∑m
k=vn−1

pkn, (7.2)

for 1 ≤ v1 ≤ m, and max{1, vj−1−1} ≤ vj ≤ m for j = 2, 3, . . . , n−1. For ex-
ample, the heavy arrows in Figure 7.3 define the path τ with (v0, v1, . . . , v6) =
(1, 2, 3, 2,1, 3, 3).Unlike similar formulae in other chapters, where we summed
the tasks on each machine, here each summation totals one job’s contribution
to the path.

Let T be the set of all directed paths from node T11 to node Tmn on G.
Then, maximizing over all τ ∈ T we get

Cm(S) = maxτ∈T L(τ ).

To find the optimal makespan for Fm|block, (perm)|Cmax, one minimizes over
all permutation schedules S, i.e.,

C� = minS maxτ∈T L(τ ). (7.3)

7.5.1 Formulation as an Integer Program

Under the blocking restriction and a given schedule S = (1, 2, . . . , n), the
departure time Dkj(S) of Jj from Mk, which we write simply Dkj, can be
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computed recursively as follows:

Dkj = max{Dk−1,j + pkj, Dk+1,j−1}, (7.4)

with Dk0 = Dm+1,j = 0 and D0j = D1,j−1, for j = 1, . . . , n and for
each j, for k = 1, . . . , m . This comes from (7.1) by setting βk+1 =
0, and then noting that the first term can be simplified since, with no
buffers, max{Dk,j−1, Dk−1,j} is always Dk−1,j (note how (7.4) implies Dkj ≥
Dk+1,j−1 which is the same thing), except for k = 0, where the boundary
value D0j = D1,j−1 is needed.

We can convert this expression into an integer program, after noting that
it assigns Dkj the smallest value that simultaneously satisfies Dkj ≥ Dk−1,j+
pkj, and Dkj ≥ Dk+1,j−1.

Define the variables:

xij =
{

1 if Jj is in position i,
0 otherwise,

dki = departure time from Mk of the job in position i.

In order to search over different schedules, the binary variables are used to
assign jobs to positions. Instead of specifying S, we write pk[i] as Σn

j=1pkj xij,
where [i] indexes the job in position i. Then the following integer program
minimizes the makespan dmn.

B minimize dmn

subject to dki ≥ dk−1,i +
∑n

j=1pkjxij, i∈J , k∈M (7.5)
dki ≥ dk+1,i−1, i∈J , k∈M (7.6)∑n

i=1xij = 1, j∈J (7.7)∑n
j=1xij = 1, i∈J (7.8)

xij = 0 or 1, i, j∈J (7.9)
dk0 = dm+1,j = 0, d0i = d1,i−1, i, j∈J , k∈M (7.10)

7.5.2 Lower Bounds

A variety of lower bounds on the makespan have been proposed for the flow
shop with blocking. We now present a selection of them.

Bounds based on Lagrangean Relaxation

In the online supplement accompanying Abadi et al. (2000) one can find de-
tails of two Lagrangean decomposition schemes that yield good lower bounds.
Both schemes are based on program B provided earlier, when the variables
xij are replaced by xkij to indicate that Jj is the ith job scheduled on Mk.
As a result, the revised formulation would allow for passing. Constraints
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xkij = xk+1,i,j (7.11)

for i = 1, . . . , n, k = 1, . . . , m − 1 are used to restrict search to permutation
schedules . By relaxing constraints (7.5), (7.6), (7.7) and (7.11), the result-
ing problem is decomposed into m separable problems, one for each machine
Mk. Each of these m subproblems is equivalent to a cost minimization as-
signment subproblem solved by a simple dynamic program. Summing over
all k = 1, . . . , m and with appropriate subgradient Lagrangean multiplier up-
dates we obtain good lower bounds. Alternatively, the original Lagrangean
relaxation may be decomposed into pairs of consecutive processors (since
F2|block, (perm)|Cmax is polynomially solvable) and the partial makespans
of these subproblems are summed up. These decomposition schemes have
been used to evaluate a heuristic algorithm developed by Abadi et al. (2000)
and presented later in this chapter.

Bound when Partial Schedule is Given

The following lower bound is presented in the context of a branch-and-
bound algorithm, where a partial schedule σ already occupies each Mk up
to Dk(σ), the departure time of the last job in σ. Of course, if there is no
σ, let all Dk(σ) = 0. Let s = |σ|, and without loss of generality suppose
σ = (1, 2, . . . , s). When blocking is involved, each Jj departs from processor
Mk at time Dkj ≥ Ckj, and for the given partial schedule σ these times can
be computed using (7.4) for j = 1, . . . , s and k = 1, . . . , m, giving finally
Dk(σ) = Dks.

Consider now a given permutation, say σ′ = (s + 1, s + 2, . . . , n), of the
unscheduled jobs U = J − σ. Ronconi (2005) observes that, for any Mk:

LB1(k, σ′) = max{Dk(σ) + pk,s+1, Dk+1(σ)}
+

∑n
r=s+2 max{pkr, pk+1,r−1} +

∑m
i=k+1 pin

is a lower bound on the makespan associated with Mk. Specifically, the first
term in LB1(k, σ′) bounds the departure time Dk,s+1 of Js+1 from Mk; the
second term bounds the additional time required on Mk by Js+2, . . . , Jn (each
job occupies Mk either for its own processing time or until the next machine
clears); and the third term gives the time for Jn to be completed on the
remaining machines.

Since the sequence of the unscheduled jobs is not yet specified, we want a
bound independent of σ′. Towards this end, we define the following values:

tgi := the gth smallest task time on Mi among the unscheduled jobs,
i = 1, . . . , m. For Mk+1 only, replace t1k+1 by Dk+1(σ) − Dk(σ).

Then,

Theorem 7.3 (Ronconi, 2005) For Fm|block, perm|Cmax with given partial
schedule σ, L1 = maxk L1(k) is a lower bound on the makespan, where

L1(k) = Dk(σ) +
∑n−s

g=1 max{tgk, tgk+1} +
∑m

i=k+1 t1i .
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Brief explanation : Dk(σ) is the departure time of Js from Mk; the second
term bounds max{Dk+1(σ) − Dk(σ), pk,s+1} +

∑n−1
r=s+1 max{pk,r+1, pk+1,r};

and the last term bounds
∑m

i=k+1 pin. Accounting for all values k = 1, . . . , m
yields bound L1. �

Bound based on Assignment Problem

An alternate lower bound is developed in Karabati et al. (1992) based on
(7.3) and the observation that the minimal makespan C∗ satisfies

C∗ = minS maxτ∈T L(τ ) ≥ maxτ∈T minS L(τ ).

In other words, if for each path τ ∈ T in (7.4) we minimize its length L(τ )
over all permutations of n jobs, then maximizing over all τ ∈ T yields a
lower bound for C�. Two observations are in order. First, solving minS L(τ )
for given τ ∈ T is equivalent to a linear assignment problem (LAP) with
coefficient aτ

ij for Jj scheduled in position i of a permutation, 1 ≤ i, j ≤ n,
where

aτ
ij =

∑vi

k=vi−1
pkj

and 1 = v0, v1, ..., vn−1, vn = m are the indices associated with τ (see (7.2)).
Second, rather than executing LAP for all τ ∈ T , lower bounds may be
obtained for a subset of directed paths in T .

Karabati et al. (1992) present a computational experiment for randomly
generated instances with n = 12, m = 6 and a total of 4 buffers (recall that
such a problem is equivalent to F10|block, (perm)|Cmax). For each instance,
a total of 1200 paths in T are tested and the best lower bound is found to
be within an average of 2.33% from the best known heuristic solution found
for the corresponding instance.

7.5.3 Branch-and-Bound Algorithms

A branch-and-bound algorithm was developed in Ronconi (2005) using depth-
first search and the L1 bound given in Theorem 7.3 to fathom branches in the
search tree. Though capable of eventually finding the optimum, the program
was actually used as a heuristic, with computation terminating after one
hour of CPU time, or when the gap (that is, the difference between the
lower bound (the least value of L1 at any node) and the upper bound (the
best-yet solution)) dropped below 0.5%. It was tested on the Taillard suite
of problems originally developed for Fm||Cmax, where problem sizes ranged
from (20,5) (i.e., 20 jobs on 5 machines) to (500,20) – see the OR library at
http://mscmga.ms.ic.ac.uk/info.html for more details. The effectiveness
of the resulting heuristic is questionable. Results were rather insensitive to
job number, with gaps from 0.5% (rare) to about 20% for instances with 5
machines and about 30% to 50% with 20 machines.

http://mscmga.ms.ic.ac.uk/info.html
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7.5.4 Heuristic Algorithms

A number of approximation results are available for Fm|block, perm|Cmax.
We present a selection. Some are for the special case F2|ltd(β), perm|Cmax;
recall that this is equivalent to F (2 + β)|block, perm|Cmax. As usual when
building a schedule job by job, σ will denote a partial schedule of s < n jobs
and U the set of remaining unscheduled jobs (or, as convenient, job indices).

Buffering Approximated by Blocking, for m = 2

A result that stands out expresses the makespan for F2|ltd(β), perm|Cmax as
a fraction of the makespan for F2|nwt or block, (perm)|Cmax (which is poly-
nomially solvable; see Chapter 6). Let S�

β, S�
0 be the corresponding optimal

schedules, producing makespans C�
β, C�

0 . If the optimal blocking schedule is
used in the buffered flow shop as an approximation, we write the makespan
Cβ(S�

0 ). We have the following result.

Theorem 7.4 (Papadimitriou and Kanellakis, 1980)

C�
0

C�
β

≤ 2β + 1
β + 1

and this bound is asymptotically tight for β = 1.

The above result indicates that the use of intermediate storage of size
β can save up to β/(2β + 1) of the time needed to execute all jobs in
F2|nwt or block, (perm)|Cmax. For β=1, the theorem says that C�

0 ≤ (3/2)C�
1 :

giving up the buffer may increase the makespan by up to 50%.
To assess the value of S�

0 as a heuristic solution for F2|β, perm|Cmax, we
note that the makespan it achieves satisfies Cβ(S�

0 ) ≤ C�
0 , so

Cβ(S�
0 ) ≤ 2β+1

β+1 C�
β.

Successive Approximations (SA)

Another heuristic developed for F2|ltd, perm|Cmax is presented in Dutta and
Cunningham (1975). First, based on (7.1), they develop and test a forward
dynamic program referred to as DP, unfortunately without success for large
problems due to exponential computational and state space. Their idea then
is to sequentially apply DP to p-job subproblems, where p is small enough
to be tractable (indeed, if p ≤ β + 2, we effectively have infinite storage
and can use Johnson’s Rule). They compute an optimal schedule for the
first p (randomly chosen) jobs, fix the first job in position 1, add another
job to the remaining set, and repeat. A formal statement of this successive
approximations heuristic, referred to as SA, follows.

Heuristic SA for F2|ltd, perm|Cmax

1. Set k := 1, and choose an integer p : 1 < p < n, and
a schedule S = (S(1), S(2), . . . , S(n)) with makespan Cm(S) = C.
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2. Using DP or JR, solve the subproblem F2|ltd, perm|Cmax

for the job subset {S(k), . . . , S(k′)} where k′ = min{k + p − 1, n};
let (σ(k), . . . , σ(k′)) be the resulting subsequence.

3. Set S(j) := σ(j) for j = k, . . . , k′.
4. Set k := k + 1. If k < n then go to Step 2.
5. If Cm(S) < C then set C := Cm(S), k := 1, and go to Step 2.
6. The heuristic has generated schedule SSA = S.

As expected, the CPU requirements of heuristic SA increase with p. Dutta
and Cunningham (1975) carried out experiments for instances with known
optimal makespan, n = 20 jobs, and p = 3 or 5 and reported that the
performance of SA is satisfactory.

A Simple Greedy Heuristic

Several heuristics of the “greedy” type, that build a schedule one job at a time
according to a criterion that minimizes an immediate cost without regard
for future consequences, have been proposed for Fm|block, (perm)|Cmax . In
Suhami and Mah (1981), σ is extended by the j ∈ U that minimizes the
makespan of σj, iterating until all jobs are scheduled. This sequence is used
as an initial upper bound in a branch-and-bound algorithm. Unfortunately,
the search tree quickly explodes in size and cannot deal with problems with
more than a few jobs.

Profile Fitting (PF)

The following greedy heuristic developed by McCormick et al. (1989) con-
structs a permutation schedule one job at a time. At each iteration, the
partial schedule σ presents to the remaining jobs a profile determined by
the departure time from each machine of the last job scheduled. We seek to
schedule next a job that best fits this profile; that is, a Jj, j ∈ U , whose time
pkj on each Mk is as close as possible to the time, Dk+1(σ)−Dk(σ), until the
next machine becomes available, thus minimizing blocking and idle times.

Heuristic PF for Fm|block, perm|Cmax

1. Initialize σ := φ, U := {1, . . . , n}.
2. Let Dk(σ) be the departure time of the last job in σ on Mk, k = 1, . . . , m,

updated each iteration using (7.4).
3. For every Jj, j ∈ U compute Fj =

∑m−1
k=1 |pkj − Dk+1(σ) + Dk(σ)|.

4. Find Jj∗ with Fj∗ = min j∈UFj . Update σ := σj∗, U := U − {j∗}.
5. If U = φ, go to Step 2. If U = φ, stop: SPF = σ.

To explain the penalty function Fj, it should be enough to note that if Jj is
scheduled next, then on Mk:

• If pjk < Dk+1(σ) − Dk(σ), Mk is blocked for the difference;
• If pjk > Dk+1(σ) − Dk(σ), Mk+1 is idled for the difference.
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Note that the initial job chosen will be Jj with smallest Σm−1
k=1 pkj; as good

a choice as any. Or we could run the algorithm several times with different
randomly chosen jobs put first, and choose the best. McCormick et al. (1989)
tested their PF heuristic on the cyclic version of the problem. For small
problems with m = 9 and n = 8, exhaustive enumeration was employed to
identify an optimal schedule and it was found that the heuristic provides
near optimal solutions. Less convincing performance is exhibited for larger
problems with m = 10 and n = 80.

Modified Profile Fitting (MM)

Ronconi (2004) developed a heuristic referred to as MinMax or MM and is
similar to PF with the following exceptions:

• A job with minj p1j is scheduled first;
• A job with minj pmj is scheduled last;
• Lines 1-4 of PF remain the same except that Fj is replaced with

α
∑m−1

k=1 |pkj − pk+1,i| + (1 − α)Pj

where i is the last job in σ and α is a given parameter used to negotiate
the contributions of Pj versus an estimate of the total additional blocking
and idle time between σ and σj.

Leisten’s Greedy Algorithm (LGE) for Two Machines

An alternative notion of “greediness” is presented by Leisten (1990) for
F2|ltd, perm|Cmax. The idea is to minimize blocking on M1 for the next
job to be scheduled by testing whether the job β + 1 positions earlier has
completed on M2. Thus, if [i] indexes the job in position i, then with s jobs
already scheduled J[s+1] is chosen from U to minimize |C2,[s−β] − C1,[s+1]|,
where C2,[s−β] = 0 if s − β ≤ 0. The completion times can be found using
(7.1) with C2j = D2j and C1j = D1,j−1+p1j ; they are easily updated as each
job is positioned. We will refer to this as Leisten’s greedy, or LG, heuristic.

Exploiting the reversibility property presented in Chapter 5, LG can be
extended to report the best of two sequences: i) jobs scheduled in the order
1, 2, . . ., n from their start on M1 to their finish on M2, and ii) with time
reversed, jobs scheduled in inverse sequence n, n−1, . . . , 1 from their start on
M2 to their finish on M1 (note that, in the reverse schedule, the completion
time of a task Ckj is really its start time in the final schedule). A final exten-
sion of LG, referred to as LGE, constructs a sequence by performing steps
i) and ii) simultaneously in the spirit of Johnson’s Algorithm. Thus, at any
point, with partial schedules σ at the start and σ′ at the end, we schedule
next Jj , j ∈ U , that has minimal cost either following σ or preceding σ′. More
specifically, with s = |σ| and s′ = |σ′|:

Heuristic LGE for F2|ltd, perm|Cmax

1. Initialize σ := σ′ := φ, s := s′ := 0, U := {1, . . . , n}.
2. For all Jj, j ∈ U ,
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with j = [s + 1], compute v(j) = |C2,[s−β] − C1,[s+1]| , and
with j = [n− s′], compute v′(j) = |C1,[n−s′+β+1] − C2,[n−s′]| .

3. Let δ = min j∈U{v(j), v′(j)}.
4. If δ = v(j∗) for some j∗, set σ := σj∗, s := s + 1.
5. If δ = v′(j∗) for some j∗, set σ′ := j∗σ′, s′ := s′ + 1.
6. Set U := U − {j∗}. If U = φ, go to Step 2. If U = φ, stop: SLGE = (σ, σ′).

It was found that LGE performed better when the buffer capacity was mul-
tiplied by the factors 0.5 or 10 (i.e., β is replaced in LGE by 0.5β or 10β).

Augmented Task Times

The idea of augmenting task times is introduced in Abadi et al. (1997, 2000)
for cyclic schedules. Given a blocking schedule, each processing time is length-
ened to fill in the blocking delay, thus converting the blocking schedule to
a no-wait schedule, for which good heuristics exist. This approach is fully
discussed in Sect. 7.8.2. We mention it here simply to point out that the
same concept could be applied to static scheduling. A simple linear program
NF(S) is given there to compute the augmentations for each task that will
fill the blocking time, a calculation that is as pertinent to static as to cyclic
scheduling.

Computational Experiments

We have already mentioned some limited experimental results for the SA,
PF, and PA heuristics. We now present some more extensive computational
comparisons of proposed heuristic algorithms. Leisten (1990) tested a variety
of heuristics developed for Fm|perm|Cmax, including LPT, NEH, CDS, Dan-
nenbring’s (1977) RA heuristic, and Palmer’s slope heuristic. LPT simply or-
ders jobs in nonincreasing order of Pj = Σkpkj. NEH, CDS, RA and Palmer’s
heuristics are described in detail in Chapter 4 for problem Fm|perm|Cmax.
He also included his two-machine LGE heuristic and the schedule S�

0 (see
discussion following Theorem 7.4), both designed for two machines. He ex-
tended them to problems with m > 2 machines by solving m−1 two-machine
problems in which the first k and the last m − k machine processing times
are added for each job, as described for the CDS heuristic.

Experiments were conducted on the comparative performance of heuristics
on randomly generated instances of Fm|ltd, perm|Cmax with up to n = 50
jobs, m = 2 or 3, and a variety of values for buffer capacities β1, β2. For m = 2,
it was found that NEH, LGE, CDS, and S�

0 produce the best solution amongst
the heuristics tested 87, 83, 74 and 73% of the time respectively. When the
metric becomes obtaining a solution within 1% of the best makespan value,
the corresponding percentages become 93, 92, 76 and 95%. These figures point
to the superiority of NEH, LGE, and S�

0 for F2|ltd, perm|Cmax problems.
When m = 3, NEH significantly outperforms other heuristics producing the
best makespan value in 91% of the instances tested (98% within 1%). This
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result is surprising as well as impressive because NEH is not specifically
designed for Fm|block, perm|Cmax . It was also found that LGE adaptations
to allow for job passing yielded inferior results to the permutation version
of the heuristic. This indicates that makespan benefits due to passing are
negligible.

As we discuss shortly, heuristics PF and MM exhibit superior performance
to LPT and NEH. Heuristic NEH, however, is based on an initial sequence:
the LPT sequence. Alternatively, NEH may be executed using initial se-
quences PF, or MM. Let PFE and MME be the resulting heuristics. Through
experimentation, Ronconi (2004) proposed the value α = 0.6 as best for MM
and value α = 0.75 as best for MME. The following heuristics were examined
in the experiment of Ronconi (2004) on the problems in the Taillard (1993)
suite: LPT, NEH, PF, MM, PFE and MME. It was found that PFE out-
performs all other heuristics especially when n ≥ 200. Also, the performance
of PFE improves as n/m increases. Recall that PFE aims to minimize the
sum of blocking plus idle times. The superiority of PFE indicates that these
times have a stronger impact on the makespan when the number of jobs per
machine increases.

Recall the LAP-based lower bounding scheme presented in Section 7.5.2.
Each application of the linear assignment problem yields a permutation; i.e.,
a heuristic solution for Fm|block, (perm)|Cmax. In the computational exper-
iment presented in Karabati et al. (1992) for randomly generated instances
with n = 12 and the equivalent of m = 10 machines, a total of 1200 per-
mutations are produced and the best amongst them is evaluated against the
LAP-based lower bound. The average relative deviation from this bound is
found to be about 4%, and in most instances the resulting heuristic solution
is better than the one obtained by PF.

7.5.5 Metaheuristics

One cohort of heuristics for Fm|ltd , perm|Cmax is based on Tabu Search, TS
for short. Details on TS are provided in Chapter 4. In brief, we start with
an initial job sequence, perform a neighborhood search to find a better per-
mutation, move to the improved schedule, and repeat. A tabu list of recently
visited solutions is kept, to avoid cycling and to broaden the search region.

TS implementations that have appeared in the literature are based on
the characteristics of the critical path from the start of T11 to the end of
Tmn in a precedence network associated with a permutation sequence S =
(1, 2, . . ., n). It turns out to be nontrivial to construct such a network for the
flow shop with buffers. Nowicki (1999) argues that to extend the network
shown in Figure 7.3, which assumes blocking (βk = 0 ∀k), to the case with
buffers (βk ≥ 0) is impractical. Rather than replacing each unit of buffer
capacity with a storage machine, he proposes a new precedence graph, as
shown in Figure 7.4 for a nine-job four-machine instance with interstage
storage capacities (β2, β3, β4) = (2, 0, 1). Here, each task is represented by a
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node labeled with its processing time, and horizontal and vertical arcs impose
the usual precedence ordering between jobs in a permutation schedule and
between tasks in a job. However, the precedence arcs which reflect the buffer
constraints, shown by the dashed arrows slanting up, add a negative time to
the path length, as shown on the figure. Thus, if a path leaves a node via a
diagonal arc, the contribution of that node to the path length is cancelled
out. To see how this works, consider the selected path (in dark) in Figure
7.4. Between nodes (3, 4) and (1, 9), the path visits (3, 5) and (2, 6), but the
contributions of those two nodes are negated. Thus on this path, T34 has
immediate precedence over T19. This reflects the possibility that, if p34 is
very long, M2 and its buffer may fill up with waiting jobs, so J8 cannot
advance from M1 (allowing J9 to start) until J4 vacates M3.

Fig. 7.4 Precedence graph of S = (1, . . . , 9) for F4|ltd, perm|Cmax with β=(2,0,1)

This figure will be useful in illustrating the TS procedure to be described.
We shall be chiefly interested in the way a neighborhood of a given sequence
is defined. The neighbors are generated by moving a job to a new position.
Since there are far too many such moves at each step, we must narrow down
to a few moves most likely to produce improvement.

As usual, we shall need to specify the times at which tasks are processed.
In the past, we have spoken of completion times Ckj(S), or more recently
of departure times Dkj(S). It will now be convenient to define the third
possibility

Bkj(S) = the start time of the task in position j on Mk in schedule S.

As before, we shall generally suppress the dependence on S. Also, let (k, j)
denote Tkj for short.

Beginning with an arbitrary job sequence S = (1, 2, . . . , n), Nowicki (1999)
and other subsequent papers restrict the search to a relatively few neighbors
with a procedure outlined in the following steps:
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1. Compute start times. Iteratively, for j = 1, . . . , n, and for each j for
k = 1, . . . , m, find

Bkj = maxi=1,2,3 fi(k, j) , where
f1(k, j) = Bk−1,j + pk−1,j ,
f2(k, j) = Bk,j−1 + pk,j−1 ,
f3(k, j) = Bk+1,j−βk+1−1 ,

with Bk0 = B0j = Bm+1,j = 0 and pi0 = p0j = 0. This of course comes
from the requirement that Bkj ≥ fi(k, j), i = 1, 2, 3 ; see the discussion of
(7.1), which is the equivalent recursion in terms of departure times. We can
also think of a task beginning when the last of its immediate predecessors
completes.

For future reference, as we compute the start time Bkj of each task (k, j),
it will be useful to keep track of its type, where (k, j) is of type i if Bkj =
fi(k, j).

2. Find the critical path. Step 1 has found us the early start times of all
tasks, and in particular the makespan Cm(S) = Bmn + pmn. As usual with
dynamic programming, after the forward recursion comes backtracking. We
move task by task back along the critical path, starting at (m, n). At any
point, if the current task (k, j) is of type 1, then its immediate predecessor is
(k−1, j); if of type 2, then (k, j−1); if of type 3, then (k+1, j−βk+1−1). Ties
are broken arbitrarily. Of course, we then move to the new task and iterate
until we reach (1, 1). This procedure should be clear from the way Bkj is
calculated. In Figure 7.4, assuming the selected path is critical, the type -1
critical tasks are (2,4), (3,4), (2,9), (3,9) and (4,9); type -2 tasks are (1,2),
(1,3), (1,4) and (3,5); type -3 tasks are (2,6) and (1,9). Task (1,1), lacking
predecessors, has no type.

3. Define blocks of jobs. To introduce the idea of blocks, consider first
a maximal set of consecutive critical tasks all on the same machine, say
{(k, a), (k, a + 1), . . . , (k, b)}; i.e., a set of jobs {Ja, Ja+1, . . . , Jb} processed
consecutively on Mk without delay. In the figure, such a set is {J1, J2, J3, J4}
on M1. Let Ja and Jb be the end jobs and the rest the interior jobs. Note
that any rearrangement of the interior jobs will not affect the length of the
current critical path. Possibly another path will become critical, but if so the
makespan will be longer. Thus, no such rearrangement can produce a better
schedule. We call such a set of jobs a block, B = {a, a + 1, . . . , b}. It can be
identified as the jobs associated with a maximal set of consecutive tasks on
the critical path all of type 2, plus the job that immediately precedes them
(which is also on the same machine).

Sets of type -1 tasks (e.g., (1, 4), (2, 4) and (3, 4) in the figure) are all from
the same job, so do not form blocks. Sequential critical type -3 tasks, plus the
jobs between them, plus one more at the start, do form blocks. For example,
the maximal set of type -3 tasks {(k, a), (k−1, a+βk+1), (k−2, a+βk+βk−1+
2), . . . , (k − r, b)}, for some r ≥ 0, that are consecutive on the critical path,
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plus the task preceding (k, a) on the critical path, namely (k+1, a−βk+1−1),
produce the block of jobs B = {a − βk+1 − 1, a − βk+1, . . . , b}. In Fig-
ure 7.4, the consecutive type-3 tasks (2,6) and (1,9) give rise to the block
B = {5, 6, 7, 8, 9}.
4. The use of blocks. We have now defined blocks of two types; henceforth
we will not differentiate between type -2 and type -3 blocks. All jobs are in-
cluded in at least one block; end jobs are in both adjacent blocks. Assuming
there are h blocks, let Bk = {uk−1, . . . , uk}, where 1 = u0 <u1 <. . .<uh = n.
The three blocks in Figure 7.4 are shown above the graph.

The important characteristic of blocks is that any job movement inside
a block will not lower the makespan, so need not be considered. On the
other hand, the number of possible insertions across blocks is O(n2) for a
given sequence S, thus making it computationally expensive. Nowicki (1999)
experimented with the following insertions, each for k = 1, ..., h:

• move jobs in positions uk−1, . . . , uk − 1 to position uk;
or
• move interior jobs in Bk to position uk−1 [uk−1− 1] if the final machine of

Bk−1 is different from [the same as] the starting machine in Bk;
or
• move the job in position uk to position uk−1.

Nowicki’s (1999) TS implementation used a tabu list of size 8, limit of 1,000
iterations without improving the incumbent solution and starts with the per-
mutation obtained by the adaptation of NEH to Fm|ltd, perm|Cmax. This
implementation was found to outperform the NEH on problems in the Tail-
lard (1993) suite by 3.5%. No significant dependence is found between algo-
rithmic performance and the number of machines or the size of the buffers.
Recall that, according to the experiment in Leisten (1990), NEH outperforms
all other constructive heuristics. The caveat is that the TS implementation
just described takes significantly more CPU time than NEH.

Using his tabu search metaheuristic, Nowicki (1999) examined the de-
crease in makespan as the buffer size increases for the problem instances
in the Taillard (1993) suite. For instances with n = 20 and m = 5, it is
found that buffers with β = 1 improve makespan by only 0.5% compared
to blocking, i.e., β = 0. For β > 1 the marginal makespan improvement is
0.04%. For larger instances, e.g. n = 100 and m = 20, the size of buffers is
of greater significance: a 5.5% improvement going from β = 0 to β = 1. In
all instances, β = 4 provided nearly the same makespan performance as the
case of unlimited capacity buffers.

A different neighborhood search was used in the TS implementation pre-
sented in Grabowski and Pempera (2007) which we will call the GP imple-
mentation. It focuses on the problem without buffers, Fm|block, perm|Cmax.
For a given block Bk = {uk−1, . . . , uk}, for k = 1, . . . , h, the following inser-
tion moves are considered:
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• move jobs in positions uk−1, . . . , uk − 1 to position uk;
or
• move jobs in positions uk−1 + 1, . . . , uk to position uk−1.

The best amongst the above moves, say v�, is selected to produce a new
heuristic sequence, and replaces the oldest move in the tabu list.

To improve the CPU performance of GP, the authors developed a variant
referred to as GP-M, which periodically applies a multimove. A multimove is
comprised of simultaneous insertions in every block. For each Bk:

1. consider moving each interior job to position uk and select the move with
the greatest improvement on the incumbent makespan value (if any);

2. building on Step 1, consider moving each interior job to position uk−1,
again selecting the move giving greatest improvement (if any).

Evidently, there are at most 2h such insertions; two per block. In a multimove,
all these insertions are implemented simultaneously, in hopes that this will
result to a significant improvement in makespan and a drastically different
permutation. Indeed, GP-M is found to converge to better solutions than GP,
faster. After 3,000 iterations, GP-M exhibits similar performance to 30,000
iterations of GP. When both variants are run for 30,000 iterations and the
initial permutation is obtained by NEH, GP-M delivers on average 0.9%
better schedules (with respect to makespan) than GP for the instances in the
Taillard (1993) suite.

Alternate metaheuristic implementations include the genetic algorithm
GA of Caraffa et al. (2001). Here, the starting sequence is chosen randomly
and the mutation and crossover operations are standard. The algorithm is
tested on problems with up to m = 20 and n = 150. Grabowski and Pempera
(2007) tested algorithm GP on problems in the Taillard (1993) suite against
the above GA. When GP is run for 10,000 iterations while GA is run for 100,
algorithm GP provides solutions with 7.9% lower makespan on average. How-
ever, in most cases the CPU time spent by GP is 20 or more times greater
than GA. Algorithm GP-M on the other hand is much faster and produces
schedules with an average of 6.75% better makespan than GA when both run
for 100 iterations.

7.6 Extensions

We present two applications that extend the concept of a flow shop with
blocking, where the objective remains makespan minimization.

7.6.1 Operating Room Scheduling

The application presented in Dekhici and Belkadi (2010) reflects a hospi-
tal operating theater consisting of k1 operating rooms (ORs), from which a
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patient must be transferred without delay to one of k2 revival beds (RBs)
in a post-anesthesia care unit. We thus have a two-stage hybrid flow shop
F (k1, k2)|block|Cmax. There are additionally a number of constraints to be
satisfied: (1) patients with higher priority must be scheduled earlier, (2) two
patients should, or should not, be scheduled consecutively, (3) a patient may
require surgery before or after a certain date and time, and (4) a patient may
have to be assigned a particular OR, or OR-RB pair.

A tabu search algorithm is developed for this problem. During a pre-
processing stage of the algorithm, a penalty function is used to identify sched-
ules that minimize constraint violations, using local search. Then the problem
is solved with a tabu list of size 7, a candidate list of size 500, and 1000 it-
erations. Throughout the algorithm, restricted neighborhood search like the
one in Belkadi et al. (2006) ensures that the solutions in the candidate list
satisfy all constraints as in the pre-processing stage.

7.6.2 Flow Shops with Pallets

In another related application, Wang et al. (1997) studied the complexity of
problems where each job is loaded on a pallet upon entering the production
system, and remains on it until it exits. Hence, at any time, the number of
pallets, p, dictates the maximumnumber of jobs in process or waiting between
stages. This problem, denoted by Fm|pal(p)|Cmax for m ≥ 2, is related to
Fm|ltd|Cmax with

∑m
k=2 βk = p−m. They are not certainly equivalent prob-

lems, except for the special case m = p = 2 when F2|pal(2)|Cmax is equivalent
to F2|nwtor block|Cmax and is, of course, solvable in O(n logn) time using
the GGV algorithm presented in Chapter 6. Theorem 7.2 establishes that
F2|pal(3)|Cmax is strongly NP-hard because in this case one pallet resides on
each machine, and a third pallet is located at the storage area between M1

and M2. Wang et al. (1997) also show that F3|pal(2)|Cmax is strongly NP-
hard; however, when the no-passing constraint is imposed on the jobs, the
reduction is from 2-Partition thus leaving open the exact complexity status
of this variant of the problem.

7.7 Fm|block, perm|ΣTj

An adaptation of the lower bound presented in Kim (1995) for Fm|perm|ΣTj,
is used in Ronconi and Armentano (2001) to develop a lower bound for
Fm|block, perm|ΣTj which is then used to develop a branch-and-bound algo-
rithm. As usual, we present the bounds in the context of such an algorithm,
where a partial schedule σ already occupies each Mk up to time Ck(σ). Let
U denote the set of u jobs (actually, job indices) remaining to be scheduled,
and hereafter, when we refer to jobs or tasks, we mean unscheduled ones,
and the lower bounds we compute are for those jobs only. For bounds on the
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total schedule, the tardiness of the jobs in σ are a sunk cost that should be
added. Of course, if there is no σ, let all Ck(σ) = 0.

Following the logic of Sect. 4.16.1, in a permutation schedule, the task Tk[i]

processed in position i of Mk (let us call this position ki) is preceded on Mk

by i − 1 tasks, and they in turn must be preceded by at least one task on
each of M1, . . . , Mk−1, machines which are already occupied by the jobs in
σ. Similarly, Tk[i] is followed by at least one task on each of Mk+1, . . . , Mm.
The i−1 tasks preceding Tk[i] on Mk are processed with or without blocking
caused by the previous job on Mk−1. Hence, Tk[i] and the preceding i − 1
tasks, occupy Mk for at least

∑i
r=2 max{pk[r], pk−1,[r−1]} units of time. It

will be convenient to define, for i ∈ U :

qki = the ith smallest task time on Mk, and
Qki =

∑i
r=2 max{qkr, qk−1,r−1} .

Then, Qki ≤
∑i

r=2 max{pk[r], pk−1,[r−1]} for any permutation of the unsched-
uled jobs. Accounting for all possible k’s, the completion time Cm[i] of task
Tm[i] is at least

t[i] = maxk=1,...,m {maxj=1,...,k [Cj(σ) +
∑m

h=j qh1 + Qki]} .

Reindex jobs in ↗dj order. Then, as in Sect. 4.16.1, for any permutation
schedule,∑u

i=1 Ti =
∑u

i=1(Cm[i] − d[i])+ ≥
∑u

i=1(t[i] − di)+

providing the desired lower bound. Using minor adaptations of this lower
bound, Ronconi and Armentano (2001) implemented a branch-and-bound
algorithm which was tested against the permutation obtained by the NEH
heuristic. On randomly generated problems with up to n = 18 and m = 10, it
was found that the algorithm can solve problem Fm|block, perm|ΣTj within
1 hour of CPU time when the stopping criterion is the optimality gap to be
within 0.5%. For larger values of n, the algorithm often fails to find near-
optimal solutions.

7.8 Cyclic Flow Shops with Blocking

We now consider the cyclic scheduling problem, as introduced in Sect. 1.7.1,
in which the n given jobs (in the cyclic literature, this is a minimal part set
or MPS) are to be manufactured repeatedly so as to minimize the cycle time
(or equivalently to maximize the output rate or throughput). This we de-
note Fm|block, cyclic|CT . As earlier noted, the static schedule with minimal
makespan C, repeated every C periods, yields a feasible but generally sub-
optimal solution to the cyclic problem. Hence, solving the integer program
B given in Sect. 7.5.1 provides an upper bound on the cycle time.

To solve the cyclic problem directly, we can modify B to replace the
makespan objective with the cycle time Z, which is the largest machine
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occupancy as we discussed in connection with Fig. 1.6, getting:

minimize Z

subject to Z ≥ dkn − dk1 +
∑n

j=1pkjx1j , k∈M (7.12)
and (7.5) , (7.6) , (7.7) , (7.8) , (7.9) , (7.10) .

where (7.12) enforces Z = maxk{dkn − sk1}.

Graphical Portrayal of F m|block, cyclic|Cmax

As with static flow shops with blocking, cyclic flow shops with blocking accept
an elegant pictorial representation. Recall that the makespan associated with
a job permutation for Fm|block|Cmax was the length of the longest path from
T11 to Tmn as in Fig. 7.3 . For problem Fm|block, cyclic|Cmax, the value of
Z∗ may be attained by any one of the inequalities in (7.11), that is, by the
longest occupancy of any machine. We show in Figure 7.5 one cycle (with
parts of the adjacent cycles) in the repetitive manufacture of the same set
of jobs (n = 6, m = 3) as in the earlier figure, and how the adjacent cycles
connect to it. The heavy arrows mark a hypothetical critical path associated
with M2, running from the start of T21 in one cycle to the start of the same
task in the next cycle (bold nodes). The cycle time is the maximum over all
machines of these path lengths.

Fig. 7.5 Precedence graph of one cycle for F3|block, cyclic|CT

7.8.1 Profile Fitting

Among the algorithms for makespan minimization surveyed in Sect. 7.5.4 was
the Profile Fitting (PF) heuristic of McCormick et al. (1989). The authors
found that PF also performs quite well for Fm|block, cyclic|CT . Furthermore,
even better performance was achieved with the following refinement. Recall,
each job’s suitability to go next is calculated as the sum of the idle plus
blocking times it produces on all machines. The new idea is to give greater
weight to time wasted on more heavily loaded machines, where the work
load on Mk is measured by Σj pkj. The precise value of the weights was not
discussed.
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7.8.2 Augmented Task Times

A different way to generate schedules for Fm|block, perm, cyclic|Cmax was ex-
ploited in Abadi et al. (1997, 2000). Their idea is, given any blocking schedule
S, to lengthen each task time as needed to fill in the additional time a task
remains on a machine after completion due to blocking. This task augmenta-
tion converts a blocking schedule into a no-wait schedule. The advantage of
this approach is the use of a vast literature for Fm|nwt, perm|Cmax to pro-
duce schedules that are then adapted for Fm|block, perm|Cmax. For a given
blocking permutation schedule S = (1, 2, . . . , n), the augmentation is calcu-
lated by the following linear program NF(S) (modified from the original in
Abadi et al. (1997)), which is shown to be equivalent to a mincost Network
Flow. Defining the variables

qij = the amount of increase in pij ,

we have:

NF(S) minimize
∑n

j=1q1j

subject to
∑k−1

i=1 (pij + qij) ≥
∑k

i=2(pi,j−1 + qi,j−1) , (7.13)
qij ≥ 0 ,

where qi1 = qmj = 0 (the tasks of J1, and the tasks on Mm, are never
blocked), and where (7.13) holds for k = 2, . . . , m, j = 2, . . . , n.

Abadi et al. (2000) used GENIUS – a package developed by Gendreau,
Hertz and Laporte (1992) – to produce near optimal no-wait schedules. Ev-
ery permutation S of jobs produced in GENIUS is augmented using NF (S)
and the resulting schedule is evaluated for Fm|block, perm|Cmax. The best
makespan value and permutation are then reported.

We refer to the above heuristic as PA because it involves a number of Par-
allel Augmentations. Indeed, GENIUS uses two subroutines to create new
permutations: i) GENI which starts with 3 arbitrary jobs and then inserts
unscheduled jobs in the best position of the current subsequence, and ii) US
which starts with a complete permutation and reinserts jobs one by one to
the best position of the current subsequence. For each job, the best sequence
is saved, thus US produces n permutations for every start sequence. Both
GENI and US use 4 alternative ways to insert or remove jobs for reinsertion,
respectively. Evidently, the number of candidate permutations produced by
GENIUS is very large. Evaluating all these permutations within heuristic
PA delivers great performance. On randomly generated instances with up
to n = 250 jobs and m = 20 machines, the percentage deviations from the
Lagrangean decomposition bounds reported by Abadi et al. (2000) are on av-
erage less than 2%. Moreover, these percentage deviations decrease as m and
n increase. The study of Abadi et al. appears to be the only one where heuris-
tic performance is measured against a lower bound. In earlier experiments,
heuristic performance has been reported in comparative terms.
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7.9 Conclusions

The body of literature on blocking and limited buffers allows us to draw some
key conclusions. First, it is apparent that blocking and limited buffers appear
in many production settings. Second, it is surprising to see that the NEH
heuristic is simple yet powerful even compared to sophisticated metaheuristics
that take a lot more CPU time to output their best solution. Finally, of
interest is the observation that a very small number of interstage storage
buffers provides the same benefits as unlimited storage does. On the negative
side, we found that the literature is sparse for objectives other than makespan.
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Chapter 8

FLEXIBLE FLOW SHOPS

Abstract We introduce four types of flexibility encountered in a flow
shop: job routing through a hybrid shop, machine assignment, allocation
of a scarce resource over the tasks to speed up processing, and the
composition of daily production batches to satisfy requirements for a
finite set of parts over a finite horizon. Two forms of machine flexibility
are considered: multitasking where a machine can do more than one
task of a job, and multiprocessing where several machines may combine
to process a task. In each case, we present some or all of the following:
complexity results, solution algorithms or heuristics with worst case
performance, and assessments on the benefits of flexibility.

8.1 Preliminaries

Flexibility is an important aspect of manufacturing and operations. Unfor-
tunately, though most managers will agree that flexibility is a desirable trait
in manufacturing systems, few are clear as to the nature of the flexibility
desired or the value of the flexibility to the system’s performance. In this
chapter, we survey the flow shop scheduling literature that deals with var-
ious kinds of flexibility, including ways of measuring the value of flexibility
and of exploiting flexibility to improve system performance. Note that the
system sometimes referred to as a “flexible flow shop”, where each stage has
several parallel processors, is not included in our definition of the term “flexi-
ble”. We refer to that configuration as a “hybrid flow shop”, and it is covered
in Chap. 5. We also consider hybrid shops in this chapter, but as a setting
for flexibility considerations, not because the hybrid system has any intrinsic
flexibility.

In this section, we first describe aspects of flexibility and classification
schemes. We then describe the basic flow shop problem with which we are
concerned. The rest of the chapter includes one section dedicated to each
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major type of flexibility encountered in the flow shop literature and a final
section with concluding remarks.

8.1.1 Types of Flexibility

Several schemes for classifying flexibility have been suggested in the litera-
ture, as summarized by Upton (1994). He first distinguishes between external
and internal flexibility. External flexibility is concerned with the output of
the system that the consumer observes. A firm that can customize its prod-
ucts to meet diverse customer needs is demonstrating external flexibility.
Internal flexibility is concerned with the ability of a firm to manufacture
a product in a variety of ways. A machine that can perform different tasks
when equipped with different tool magazines is a source of internal flexibility.
We will be exclusively concerned with internal flexibility.

Upton (1994) further classifies internal flexibility by the dimension of
change (the aspect of the system which requires flexibility), the time horizon
of change (how often change is required) and the element of change. Three
elements of change are identified: range, mobility and uniformity. For any
dimension of change, range is the capacity to produce products with diverse
values on that dimension; mobility is the ability to change position on the di-
mension without incurring significant penalties; and uniformity is the ability
to maintain system performance as the manufacturing environment changes.

A common approach, which we shall use to organize this chapter, is to
categorize manufacturing flexibility simply by type, which combines the cat-
egories of dimension and time horizon, above. Upton lists many types of flex-
ibility. We can have short-term or long-term flexibility, flexibility in product
or process, in volume, expansion or design change, and many more.

The four types of manufacturing flexibility encountered in the flow shop
literature are: Routing Flexibility, Machine Flexibility, Labor Flexibility and
Mix Flexibility. Routing Flexibility is available when jobs may be pro-
cessed on one of several machines in each stage of a hybrid flow shop. Then a
choice of one machine per stage corresponds to a route for a job. When jobs
can be processed in the flow shop using different routes, routing flexibility
is experienced. Machine Flexibility occurs when the manager has alterna-
tive processing choices for tasks. For instance, the choice of tool magazines
can render more than one machine capable of processing a particular task.
Labor or more generally Resource Flexibility arises when one or more
resources can or must be scheduled concurrently with the jobs to be done.
The resource may be required by a machine to perform part or all of a task (a
worker with a specific skill is needed) or the level of the resource may influ-
ence the processing time of a job (assigning more labor to a machine allows
it to complete jobs faster). In the first case we say the resource is flexible be-
cause it can move between different machines and stages in the flow shop. In
the second case we say the resource is flexible because we can allocate differ-
ent levels during the processing of each job. Finally, Mix Flexibility occurs
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when jobs are released to the system in batches. The jobs in each batch are
not distinct, rather each job belongs to one of a small number of job types.
A job type uniquely determines the processing characteristics of a job; e.g.,
its processing time. If the manager can control the ratio of job types in a
batch then the system exhibits Mix Flexibility. In the rest of this chapter, we
consider each of these four main types of manufacturing flexibility in turn.

8.2 Routing Flexibility

As previously mentioned, routing flexibility is encountered in the hybrid flow
shop setting when a job can be processed on any one of several machines at
a stage. Specifically, the F (k1, k2, . . . , km) environment without further re-
strictions has complete routing flexibility, as each job can be routed through
any machine at each stage. In other environments, there may be restrictions
on which machine(s) each job may visit in each stage. Such additional rout-
ing constraints on the pure F (k1, k2, . . . , km) shop will be indicated in the β
section of the system’s notation. Two versions of F (k1, k2, . . . , km)|β|γ have
appeared in the research literature. The first is the static problem of schedul-
ing n given unrelated jobs through the F (k1, k2, . . . , km)|β|γ system. The
second, dynamic version is concerned with the performance of the system
when n different types of jobs arrive randomly and continuously over time.
Each job corresponds to processing a fixed number of a certain part type and
all jobs are processed on a first-come-first-served basis.

Clearly, the more flexible a particular instance of F (k1, k2, . . . , km)|β|γ is,
the better the performance of the system can be, since all feasible routings for
the less flexible instance should be available for the more flexible instance. The
literature focuses on measuring the degree of improvement due to increased
routing flexibility, as well as on algorithms for better managing this flexibility.

8.2.1 Approximating Performance using Merged
Machines

We shall be interested in assessing the performance of hybrid flow shops
with various degrees of flexibility. These are complex systems and hard to
analyze; it will be necessary to find simplifying approximations. An analytical
technique that has proven successful is to replace the k parallel identical
machines at any stage by a single superserver that works k times as fast. Of
course, such a substitution is not actually possible; it is a mathematical device
to simplify analysis. To understand the analogy between the two systems, it
may be helpful to visualize each job in the original system broken into k equal
pieces, which are then processed simultaneously on all k machines. Thus,
every job starts and stops synchronously on all machines, which appear to
act as one superserver. We will refer to this act of combining several servers
into one superserver as merging machines. Due to its higher processing speed,
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the superserver does the same work per unit time as the original k machines.
The imaginary superserver is a fairly close equivalent to the real system
for most objectives under most conditions, and one server is a lot easier to
analyze than k.

To see how the two systems compare, consider a single stage of k parallel
machines. It is not hard to see that the makespan on the superserver is a
lower bound, often tight, on the parallel machine makespan. For example,
on 2 machines, 3 jobs taking 5, 6, and 7 hours require 11 hours to process
without preemption. A single machine doing the jobs sequentially at twice
the speed needs only 5+6+7

2
= 9 hours. In general, the two makespans will be

equal if a perfect packing is possible in the parallel system, or if preemption
is allowed. Similar conclusions can be drawn for the total completion time
objective. Again, the superserver gives a lower bound. For both objectives,
the relative error increases as the number of jobs increases, and as the number
of machines increases.

8.2.2 Routing Flexibility in F (k1, k2)|β|Cmax

In Vairaktarakis and Elhafsi (2000) the value of routing flexibility is investi-
gated via two related F (k1, k2)|β|Cmax problems. The first and more flexible
environment is the standard F (k1, k2)||Cmax. This is compared to a less flex-
ible but related design referred to as the parallel hybrid flow shop or
F (k1, k2)|par|Cmax, in which routing is restricted so that each machine at
stage G1 routes jobs to only k2/k1 G2-machines. It is assumed that k2 is an
integer multiple of k1. Thus, F (k1, k2)|par|Cmax comprises k1 independent
parallel systems or virtual cells, each being an F (1, k2/k1) hybrid flow shop.
Note that the number of routes available for a job in the first environment is
k1k2 (the largest possible number), while in the parallel system the number
of routes is just k2 (the smallest possible, since any number smaller than k2

would result in unused machines). The unconstrained system is maximally
flexible, while the parallel system is minimally flexible.

Hoogeveen et al. (1996) have shown that F (1, 2)||Cmax is strongly NP-
complete (see Chap. 5 for a brief description of the proof), and hence both
F (k1, k2)|par|Cmax and F (k1, k2)||Cmax are NP-complete. Thus, in order to
compare the makespan performance of the two designs, the authors use the
best known heuristic for F (k1, k2)||Cmax, and develop similar heuristics for
F (k1, k2)|par|Cmax. For F (k1, k2)||Cmax, the best theoretical perfomance is
exhibited by the heuristic developed in Lee and Vairaktarakis (1994) and
Chen (1995), as discussed in Chapt. 5. Since it applies to the unconstrained
hybrid flow shop, we call it HU. We repeat it here for convenience.

Heuristic HU for F (k1, k2)||Cmax

1. Let S = JR(a/k1, b/k2).
2. Apply the FAM rule to assign the a-tasks to G1 using S.
3. Apply the LBM rule to assign the b-tasks to G2 using S.
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4. On each G2-machine, resequence the b-tasks assigned to it in the order
they become available from G1, and start each as early as possible.

5. Compute the makespan CU of the resulting schedule SU .

In Theorem 5.6, we established the worst case performance of HU, showing
that CU/C� ≤ 2 − 1/max{k1, k2} was a tight bound.

For F (k1, k2)|par|Cmax, Vairaktarakis and Elhafsi (2000) developed a
heuristic of comparable performance; we refer to this heuristic for the par-
allel hybrid as HP. The algorithm requires that k1 be a power of two, and
as before that k2 be a multiple of k1. The authors first develop a dynamic
programming algorithm to solve F (2, 2)|par|Cmax (i.e., two 2-machine flow
shops in parallel) to optimality. To apply it here, we merge the machines at
each stage i (i = 1, 2) into two superservers, each replacing half the machines
in the stage, hence working ki/2 times as fast. By applying the DP algorithm
with respect to the processing times {<2pi1/k1, 2pi2/k2> : i = 1, 2, . . ., n}
the jobs can be partitioned into two sets, each to be done on half the stage -1
machines and an associated half of the stage-2 machines.

We now repeat the process, applying the algorithm to each of the two
subsets of jobs, and the result is four subsets of jobs, each to be processed
on one quarter of the machines at each stage. We continue iterating until
we have k1 subsets of jobs, each assigned to a single G1-machine and k2/k1

G2-machines. The authors show that this assignment can be achieved even
when k1 is not a power of two, and when k2 is not a multiple of k1. This is
achieved by introducing dummy work centers and fictitious jobs. Given such
an assignment the jobs are then scheduled in the corresponding F (1, k2/k1)
environment using HU.

Computational Results

Both HU and HP are shown in the corresponding papers to achieve near-
optimal makespans, CU and CP . For randomly generated problems with uni-
formly distributed processing times between 1 and 20, HU [HP] is used to
solve F (k1, k2)||Cmax [F (k1, k2)|par|Cmax]. The value of routing flexibility
is evaluated using (CP − CU)/CU × 100%, which measures the (makespan)
performance gains of F (k1, k2)||Cmax over F (k1, k2)|par|Cmax. For each com-
bination of n = 20, 30, 40 or 50 jobs, k1 = 2 or 4 machines and k2 = 2, 4, 8
or 16 machines, 50 instances were randomly generated.

It was found that, in general, the percentage increase in makespan per-
formance due to increased routing flexibility in F (k1, k2)||Cmax is negligible.
Particularly when n is large (n=50), the percent increase was at most 2.2%
and averaged 1.3% over all combinations considered. For small n (n=20), the
percent increase was somewhat higher, averaging 4.1% over all combinations.
In general the percentage gap was seen to decrease with the size of n and
increase with the size of k1 + k2. Overall the results suggest that unless the
system handles jobs in small batch sizes, the benefits of the added flexibil-
ity of F (k1, k2)||Cmax are not likely to outweigh the additional investment
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and management costs associated with its complex routing structure. Thus
when designing plant layouts it will be more cost effective to sacrifice the
flexibility of F (k1, k2)||Cmax for the less complex F (k1, k2)|par|Cmax where
independent parallel cells are used. This should result in a negligible loss of
throughput.

8.2.3 Evaluating Fm(k, k, . . . , k)|β|ΣCj as a Queueing
Network

In Vakharia et al. (1999) the value of Routing Flexibility is studied when
job orders arrive at an m-stage F (k, k, . . ., k) shop as a Poisson process, and
receive service in order of arrival. There are k types of jobs (we might call
them products or part types). Each arriving order is for one unit of one
product, and an order is equally likely to be of any type. The processing
times are all equal to p, for every job at every stage and of every type. A
delay (a setup or switch-over time) s is incurred if a machine is to process a
type-t2 job after a type-t1 job, t1 = t2. When multiple machines in a stage are
available to process a job, preference is given to machines which are properly
tooled for the job type (i.e., where the delay s can be avoided). Otherwise
the machine is selected randomly.

For this system the authors investigate the impact on average flow time
of dedicating a single machine in every stage to one job type (thus, each
product has its own dedicated m-machine flow shop and we have k paral-
lel cells, giving minimal flexibility) versus allowing jobs of all types to be
routed through every machine within a stage (the unconstrained system with
maximal flexibility). To compute system performance, the GI|G|m queuing
approximations from Whitt (1983, 1993) were used, after verifying through
simulation that errors were less than 10%. In order to use the approximation,
a number of parameter values must be designated (mean arrival rate, mean
processing time, coefficient of variation of processing times and coefficient of
variation of interarrival times); details will be omitted here.

The corresponding average flow times were computed for problems with
m = 2, 3 or 4 stages, and k = 2, 4 or 6 machines per stage (and hence job
types). The arrival rate for each type of job was fixed at 1/6. The processing
times for all tasks took values p = 3, 4, or 5, while the setup times s were
set at .5, 1.5 and 3. Thus, the ratios of setup time to processing time ranged
from 10 to 100%.

It was this ratio of setup times to run times that proved to be the most
important factor affecting routing flexibility. Not surprisingly, when the ratio
is low (between 10 and 16.67%) the unconstrained system outperformed the
parallel system by 15 to 22%. In contrast, when the ratio is high (between
70 and 100%) the parallel system outperformed the unconstrained one by
25 to 43%. When the ratio is at a medium level it was found that as the
total number of machines in the shop and the processing time increased, the
performance of the unconstrained shop improved over the parallel shop. For
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p = 3 or m = 2 stages, the parallel shop dominated. But when p = 4 and
k = 4 or 6, the higher level of routing flexibility (provided by the number of
machines in each stage) favors the unconstrained shop. It was also seen that
an increase in the number of stages m can alleviate the performance loss due
to routing inflexibility in the parallel shop. For example, when p = 4 and
m = 4, the parallel system again performs better.

The above system is, of course, extremely simplified, to provide a tractable
model with which to investigate flexibility. For one thing, the number of
machines at each stage is the same as the number of job types, so that the
minimal flexibility of k parallel cells is attainable. The authors discuss the
situation when this is not true. They suggest that, to approximate k parallel
cells, machines should be assigned to job types at each stage in proportion to
the average processing requirements. However, when the number of machines
in a stage is small, it may not be possible to approximate well the desired
proportions. To handle this, the authors propose a hybrid system where the
problematic stages receive full flexibility as in the unconstrained flow shop
and other stages are treated as virtual cells.

8.3 Machine Flexibility

Machine or processor flexibility can result from assigning different tool maga-
zines to machines or it may be due to the multiple and/or differing capabilities
of machines. The first source is referred to as tooling or equipping. We may
be free to retool a machine before each task, in which case the time and cost
of such setups necessitate careful job sequencing. If instead we must equip all
machines at the beginning of the schedule without the option to change be-
tween jobs, efficient scheduling requires appropriate tooling of each machine,
followed by a proper assignment of jobs to machines. The second kind of flex-
ibility arises with multipurpose machines, which have fixed capabilities
with no equipping possible, but have the versatility to do a variety of task
types. A machine may be capable of doing several types of tasks at a stage,
or it may be used to process tasks at more than one stage.

In studying this kind of flexibility, our model will be a two-stage hybrid
flow shop in which, due either to tooling flexibility or multipurpose equip-
ment, each job can be processed in more than one mode. We consider two
possibilities. Briefly, in one case a processor may be capable of doing more
than one task of a job (say, a G2-machine, M.2, can do both tasks Tj1 and
Tj2 of Jj in combination), while in the other it may be possible to use more
than one processor to do a task. The first we shall call multitask flexibil-
ity, and we denote it mtflx in the β field of the problem encoding. With
multitask flexibility, each job can either be split between the two stages as
usual, or completely processed at either stage (so that the machine at that
stage does multiple tasks). We start by considering a simple flow shop (only
one machine at each stage), and extend the model to the hybrid flow shop.
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The second kind of resource flexibility we shall refer to as multiprocessor
flexibility, mpflx for short. Here, we deal only with the simple flow shop.
Each task may be processed at the appropriate stage by one machine as
usual, or both machines may combine their capacities and work on a task
simultaneously.

8.3.1 F (k1, k2)|mtflx|Cmax

We assume now that each Jj can be processed in the two-stage shop in any of
three ways: it can flow through each stage as usual, with time requirements
aj and bj, or it can be entirely processed at stage G1 [G2] for a time pj [qj].
Thus, we wish to partition the jobs into three sets:

• V1 = {j : Jj is entirely processed at G1}
• V2 = {j : Jj is entirely processed at G2}
• V3 = {j : Jj is processed first at G1, then at G2}

where, for simplicity, we represent each job in Vi by its index. We shall
make the obvious assumption that pj > aj and qj > bj; otherwise, any
job with pj ≤ aj [qj ≤ bj ] can be automatically placed in V1 [V2]. We start
by considering the case with k1 = k2 = 1, and write F(1,1) as F2.

F2|mtflx|Cmax

With single machines at each stage, for any given partition, the optimal
schedule follows easily, as shown by Jackson (1956): the jobs in V3 should
be scheduled first on M1, in Johnson’s sequence, JR(a, b), followed by the
jobs in V1 in any order. On M2, start with V2 in any order, then schedule V3

in JR(a, b) order (actually, the work on M2 can be sequenced in any order
that does not insert idle time). Such a schedule is shown in Fig. 8.1; the
extra notation will be introduced shortly. Note that it can be viewed as a
permutation schedule:

S� = (V2,V3 :JR(a, b),V1)

with the jobs following the same sequence on both processors.

Fig. 8.1 An optimal schedule with I2 = 0

However, the partitioning problem remaining is still difficult. Indeed, the
special case with bj = 0 and pj > aj = qj (note how this cost structure forces
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the second tasks of each job to be done on M2 where they can be neglected)
reduces to makespan minimization on two identical parallel machines: the
Partition problem known to be ordinary NP-complete (see Garey and John-
son, 1979).

Using the above property for scheduling a given partition, a pseudopolyno-
mial dynamic program is developed by Kouvelis and Vairaktarakis (1998) to
generate optimal schedules for F2|mtflx|Cmax. We present the simpler iter-
ation that solves the special case pj = qj = aj + bj . We will schedule the jobs
sequentially in the order indicated by JR(a, b); let them be so indexed. At
stage j, we consider adding Jj to schedules involving only {J1, J2, ..., Jj−1}.
Define:

fj(t, I1, I2) = the makespan of an optimal schedule for {J1, ..., Jj}
whose total processing time on M1 of jobs in V3 is t,
and whose idle time at the end of job processing on
M1 [M2] is I1 [I2] (see Fig. 8.1).

At each stage j, the function fj must be evaluated for all possible states
(t, I1, I2), by reaching from all states attained at stage j−1. Any state that
cannot be achieved gets value infinity. To estimate the number of possible
states, note that each component is bounded above by Pn, where

Pj =
∑j

i=1(ai + bi)

is the total processing time of the first j jobs. However, since Ii is the time
from ending processing on Mi to the makespan, only one of I1 and I2 can
be positive. These observations indicate that the state space of the dynamic
program is O(nP 2

n).
Since each job must be in precisely one of the sets V1,V2,V3, and (at least)

one of I1, I2 is zero, there are six cases. Let

Cvm = the case where Jj goes into Vv (v = 1, 2, 3),
and the makespan is achieved on Mm (m = 1, 2).

This motivates the following recurrence relation, which we shall call DP,
developed in detail in Kouvelis and Vairaktarakis (1998), where I′1, I

′
2 denote

the values of I1, I2 at stage j − 1:

fj(t,0, I2) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C11:fj−1(t, (pj − I2)+, (I2 − pj)+) + min{pj , I2}

C21:

{
fj−1(t, 0, I2) , if 2fj−1(t,0, I2) ≥ Pj + I2 (i.e., y ≥ pi)
min0≤y≤pj

fj−1(t,0, I2 + pj − y) , otherwise

C31 :min

⎧⎨
⎩

fj−1((t−aj , (aj− bj−I2)+,(bj−aj+I2)+)+min(bj+I2 , aj)
min0≤I′

1<aj−bj−I2
{fj−1(t − aj , I′

1, 0) − I′
1} + aj

minI′
2>bj+I2−aj

fj−1(t− aj , 0, I′
2) + aj .
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fj(t, I1 , 0) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C12: fj−1(t, pj + I1, 0)

C22:

{
(Pj+I1)/2, if ∃ I′

2∈ [0, Pj+I1 ] : 2fj−1(t, 0, I′
2)=Pj−I1

min0≤I′
1≤I1

(fj−1(t, I′
1, 0) + [Pj − 2fj−1(t, I′

1, 0) + I′
1]+), o/w

C32:min

⎧⎨
⎩

fj−1((t−aj , (aj+ I1−bj)+, (bj−aj−I1)+)+ bj

min0≤I′
1<aj+I1−bj

{fj−1(t − aj , I′
1, 0) − I′

1} + aj + I1
minI′

2>bj−aj−I1 fj−1(t − aj , 0, I′
2) + aj + I1.

with the initial conditions:

f1(0, 0, p1) = f1(0, p1, 0) = f1(a1, b1, 0) = p1;
f1(t, I1, I2) = ∞, otherwise.

and with the optimal solution given by

f�
n = mint,I1,I2 fn(t, I1, I2).

Since the computation at each stage is O(Pn) for each of the O(nP 2
n) states,

the complexity of DP is O(nP 3
n).

As an example, we show how the formula for case C11 is derived. Recall,
case C11 has Jj scheduled entirely on M1 and the makespan of the resulting
schedule is attained on M1. There are two possible schedule configurations
at stage j−1 that could produce this result, as shown in Fig. 8.2. In Fig.
8.2a [8.2b], the makespan at stage j−1 is attained on M2 [M1]; note how this
corresponds to having pj > I2 [pj < I2]. From Fig. 8.2a, we see that, to reach
the state (j, t, 0, I2) (that is, state (t, 0, I2) at stage j), we must have come
from state (j−1, t, I′1, 0), with pj = I′1+I2. Thus we go from (j−1, t, pj−I2, 0)
to (j, t, 0, I2), with resulting makespan

fj−1(t, pj − I2, 0) + I2 , when pj > I2.

Similarly, Fig. 8.2b illustrates that, to get to (j, t, 0, I2), we must come from

Fig. 8.2 Adding Jj to a partial schedule in case C11

when (a) I′
2 = 0, and (b) I′

1=0

(j − 1, t, 0, I2 − pj), producing a makespan

fj−1(t, 0, I2 − pj) + pj , when pj < I2.

These two results give us the formula for C11 in the above recursion.
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We have assumed above that the total processing time for a job remains
the same for all modes: pj = qj = aj + bj. In the general case, where pj and
qj can have any values satisfying pj > aj and qj > bj, a similar but more
elaborate recursion, DP′, is presented in the same paper, having state space
O(nP ′3

n ) and running time O(nP ′4
n ), where P ′

n = Σn
j=1 max(aj + bj , pj, qj).

Heuristic for the Hybrid Flow Shop

With more than one processor at each stage, we approximate the perfor-
mance of parallel processors by merging machines (see Sect. 2.1), which then
permits us to use DP or DP′ to partition the tasks into the sets V1,V2,V3.
The following heuristic for F (k1, k2)|mtflx|Cmax also uses the first available
machine ( FAM) and last busy machine ( LBM) rules to schedule the jobs
in the first and second stages, respectively (see Sect. 2.2). Since the heuristic
handles resource flexibility, we call it HRF.

Heuristic HRF for F (k1, k2)|mtflx|Cmax

1. Let pL = maxj min{aj + bj , pj, qj}, pH = maxj max{aj + bj, pj, qj}.
2. For every integer p ∈ [pL, pH ], do

a) Apply DP or DP′ to F (1, 1)|rflx|Cmax with processing times
(a/k1, b/k2, p/k1, q/k2); where Jj may be assigned to set V1, V2 or V3

in the recursion only if pj < p, qj < p or aj + bj < p, respectively. Let
Sp1 and Sp2 be the resulting sequences of tasks on merged machines M1

and M2, respectively.
b) Apply the FAM rule to the a-tasks in sequence Sp1.
c) Apply the LBM rule to the b-tasks in sequence Sp2.
d) On each stage -2 machine, schedule the jobs in V2 to start as soon as

possible, and the tasks in V3 in FIFO (first come, first served) order. Let
S(p) and C(p) be the resulting schedule and makespan, respectively.

3. Let CRF = minp{C(p)}, with SRF the associated schedule.

Since DP′ requires running time O(nP ′4
n ), HRF runs in O(nP ′4

n pH ) time.
The for-loop in HRF is taken over all possible values of p, the maximal pro-
cessing time that any job is allowed to take. For each value of p, a schedule
is generated. The output of the algorithm, SRF , is the best of these.

The for-loop, besides producing a number of schedules from which to
choose, also makes possible the worst case performance result below.

Theorem 8.1 For F (k1, k2)|mtflx|Cmax:

CRF /C� ≤ 2 − 1/k, where k = max{k1, k2},

and this bound is tight.
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Computational Results

We mention briefly the outcome of experiments run by the authors. They
compared F (k1, k2)|mtflx|Cmax (in the simpler case where pj = qj = aj +bj)
with two special cases: P (k1 + k2)||Cmax and F (k1, k2)||Cmax. In the parallel
processor environment, jobs can only be done in the “combined” mode (both
tasks together on a single machine), while in the hybrid flow shop only the
“separate” mode (each task of a job on a separate machine) is available.

They considered instances with 20 to 40 jobs and 5 or 6 total machines.
They found that resource flexibility added little to parallel machines: as an
overall average, the makespans were only 1% to 2% greater when only the
combined mode was available. On the other hand, the hybrid with resource
flexibility significantly outperformed the simple hybrid: makespans were over
10% greater when only the separate mode could be used. Both performance
gaps increased with the total number of machines, and decreased with the
number of jobs.

We conclude that, while the parallel machine environment would not be
significantly helped by adding a “job splitting” facility, the efficiency of a flow
shop would be much enhanced by adding the capability to combine the tasks
of a job, when possible.

8.3.2 Fm|mtflx|Cmax

In this subsection we present results on a design similar to the one presented
for F2|mtflx|Cmax in Subsect. 8.3.1, this time for the m-machine flow shop.
Specifically, let

Ak = the subset of processors after Mk able to process k-tasks,
Bk = the subset of processors before Mk able to process k-tasks,

for k = 1, 2, . . . , m, where k-tasks are the tasks initially assigned to Mk. It is
assumed that, if Ml ∈ Ak ∪ Bk, then the processing time requirement of Tkj

on Ml is plj . For the makespan objective, Liao et al. (1995) presented a mixed
integer programming formulation. Due to a large number of constraints, the
LINDO solver could only handle randomly generated problems with m = 4
and n ≤ 7 with integer processing times drawn uniformly from [1, 10]. For
larger problems they experimented with the following heuristic.

Heuristic for Fm|mtflx|Cmax

1. Apply heuristic NEH for Fm|perm|Cmax; reindex jobs so that (1, 2, . . . , n)
is the resulting sequence.

2. Define list L = (T11, . . . , Tm1, T12, . . . , Tm2, . . . , T1n, . . . , Tmn), and let
(a) L′ be the sublist of L that includes all tasks Tkj on every Mk : Bk = φ,
(b) L′′ = L − L′ be the sublist of tasks on machines with Bk = φ.

3. Apply the FAM rule to the concatenation LH = (L′, L′′).
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Heuristic NEH is presented in Sect. 4.9 and is shown to be one of the best
performing polynomial time heuristics for problem Fm|perm|Cmax. In Step
2 of the above heuristic, tasks Tkj that can be processed by a higher index
machine Ml with l > k, are listed later in LH in hopes of utilizing the idle
time inserted in Ml by tasks in L′. In step 3, the FAM rule schedules the next
task Tkj in LH at the earliest possible time, taking into account all machines
in Ak.

Example 8.1: With m = n = 4, suppose that B4 = {M2} and A1 =
{M3}, and all other Ak, Bk subsets are null. Suppose that NEH yields the
permutation (3, 4, 2, 1). Then, L′ = {T13, T23, T33, T14, T24, T34, T12, T22, T32,
T11,T21, T31} and L′′ = {T43, T44, T42, T41}.

Liao et al. (1995) tested this heuristic on randomly generated problems with
m = 2, 3, 4, 5 and n = 3, 5, 7, 9 and found that the average relative devia-
tion from optimality is 0.843% while in the majority of instances it provides
an optimal solution. While these findings are quite promising, they do not
address instances of large size.

8.3.3 F2|mpflx|Cmax

A set of jobs {Jj = <aj, bj>, j = 1, . . . , n} is to be scheduled in a two-
machine flow shop. It is possible to process the a-task of Jj in time pj ≤ aj

using both processors simultaneously. Similarly, the second task of any job
can be done in time qj ≤ bj using the combined capacities of both processors.
All processing times are assumed to be integers. While multiprocessing a task,
the two machines are not available for other work. This problem is addressed
in Vairaktarakis and Lee (2004), where all the results of this section are
presented with additional details.

Industrial applications of such multiprocessor flexibility (we abbreviate
this mpflx), such as the production of electronic circuits, often involve flex-
ible machines that can switch quickly between tasks, with detachable tool
magazines allowing for off-line setups. In such environments, a task may oc-
cupy two processors simultaneously. In another application, if the critical
resource is workforce rather than machine capacity, each of the two work
stations may be manned by its own group of workers, who can join forces to
expedite a task when needed.

As in the previous section, we first need to partition the jobs into sets
according to their processing modes:

• V1 = {j : Tj1 is done entirely by M1, Tj2 entirely by M2}
• V2 = {j : Tj1 is done jointly by M1 and M2, Tj2 entirely by M2}
• V3 = {j : Tj1 is done entirely by M1, Tj2 jointly by M1 and M2}
• V4 = {j : both tasks are done jointly by M1 and M2}

By job interchange arguments, and by noting that JR minimizes makespan
for V1, we can show that there always exists an optimal permutation schedule
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S� = (V2,V1:JR(a, b),V3,V4)

where the job order within each of V2,V3, and V4 is arbitrary. We show
such a schedule in Fig. 8.3, where each set is given a superscript to show its
processing mode. Note that there may be idle time (denoted I1 and I2 in the
figure) on either or both processors. We have consolidated the idle time on
each machine by giving each task on M1 its earliest start time, and starting
all work on M2 as late as possible (subject to minimizing makespan).

Fig. 8.3 Form of the optimal schedule for F2|mpflex|Cmax

The Complexity of F2|mpflx|Cmax

While the schedule is easy to find once the jobs have been partitioned, the
hard part, again, is partitioning the jobs into the four sets. This is indeed
NP-complete, as we now show.

Theorem 8.2 F2|mpflx|Cmax is ordinary NP-complete

Proof Outline: The reduction is from the NP-complete problem:

PARTITION
INSTANCE: An integer V , and k positive integers vi : i ∈ T = {1, 2, ..., k}
such that Σi∈T vi = 2V .
QUESTION: Is there subset T ′ ⊂ T such that Σi∈T ′ki = Σi∈T −T ′ki = K?

to the decision version of our problem:

F2|mpflx|Cmax≤B?
INSTANCE: A real B > 0, and n jobs each with parameters <aj, bj, pj, qj>
to be scheduled in a two-machine flow shop, where aj [bj] is the time of Jj on
M1 [M2], and pj [qj] is the time of task 1 [2] if multiprocessed.
QUESTION: Does there exist a schedule with Cmax ≤ B?

Given an instance of Partition, construct an instance of F2|mpflx|Cmax as
follows:

• n := k + 1;
• <aj, bj, pj, qj> := <0, vj, 0, vj/2>, j = 1, 2, ..., k;
• <aj, bj, pj, qj> := <V, 0, V, 0>, j = k + 1;
• B := 3V/2.
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Since Jt+1 must occupy M1 for a time V , we can only achieve a perfect
packing if a subset T ′ of the other jobs fills the same time on M2 (see Fig.
8.4), with the rest being multiprocessed.

Fig. 8.4 The F2|mpflex|Cmax instance produced by reduction from Partition

Dynamic Program for F2|mpflex|Cmax

The following pseudopolynomial algorithm solves F2|mpflx|Cmax optimally.
Incidentally, its existence shows that our problem is not strongly NP-complete.
Let the jobs be indexed according to JR(a, b), and let

fj(t1, t2, t3, I1, I2) = the makespan of an optimal schedule for the
subset of jobs {J1, J2, ..., Jj}

where (see Fig. 8.3):

t1 [t2, t3] = the total processing time of jobs in V1 [V2,V3] on
M1 [M2, M1], respectively;

I1 [I2] = the idle time on M1 [M2].

There is no need to add the variable t4; it is determined by the other five.
The recurrence below is in the spirit of the one for F2|mtflx|Cmax in the

previous section, and the reader is referred to Vairaktarakis and Lee (2004)
for derivation and discussion. Since, given a partial schedule for the jobs
{J1, J2, ..., Jj−1}, the next job Jj can be assigned to any one of the four sets
V1 through V4, we can go from a given state (t′1, t

′
2, t

′
3, I

′
1, I

′
2) at stage j−1 to

four states (t1, t2, t3, I1, I2) at the next stage. We get:

fi(t1, t2, t3, I1, I2) =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ji ∈ V1 :

⎧⎪⎨
⎪⎩

fi−1(t1, t2, t3, I1 + ai − bi, I2) + bi , if I1 > bi

minI′
1≤ai

fi−1(t1, t2, t3, I′
1, I2 − ai + I′

1 + bi) + ai − I′
1,

if bi < ai − I′
1 , bi ≤ t3, I1 = 0

fi−1(t1, t2, t3, I1 − bi + ai, I2) + bi , if I1 ≤ bi ≤ t3 + I1

Ji ∈ V2 :

{
minI′

2≤bi
fi−1(t1, t2− bi , t3, I1 − bi + I′

2 , I′
2) + pi + bi − I′

2, if I2 = 0

fi−1(t1, t2 − bi, t3, I1, I2 + bi) + pi, if I2 > 0

Ji ∈ V3 :

{
minI′

1≤ai
fi−1(t1, t2−ai , t3, I′

1, I2−ai + I′
1) + qi + ai − I′

1, if I1 = 0

fi−1(t1, t2, t3 − ai, I1 + ai, I2) + qi, if I1 > 0
Ji ∈ V4 : fi−1(t1, t2, t3, I1 , I2) + pi + qi

with boundary conditions:
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f1(t1, t2, t3, I1, I2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J1 ∈ V1 : I2 + b1, if a1 + I1 = I2 + b1 , t1 = a1, t2 = b1, t3 = 0
J1 ∈ V2 : p1 + I2 + b1, if I1 = I2 + b1, t1 = t3 = 0, t2 = b1
J1 ∈ V3 : I2 + q1, if I1 = I2 − a1, t1 = t2 = 0, t3 = a1

J1 ∈ V4 : I1 + p1 + q1, if I1 = I2 , t1 = t2 = t3 = 0
∞, otherwise.

The optimal solution is:

f�
n = min{fn(t1, t2, t3, I1, I2) : t1 + t2 ≤

∑
i

ai, t3 ≤
∑

i

bi , I1 ≤ max
i

bi , I2 ≤ max
i

ai}

To determine complexity, we first note from Fig. 8.3 that I1 ≤ t2 + t4 ≤
Σjbj, and I2 ≤ t1 + t3 ≤ Σjaj . Thus, each of the five arguments is bounded
by T = max{Σjaj,Σjbj}, so that the state space for our dynamic program
is O(nT 5). Since the effort required per iteration is of order O(pmax), where
pmax = max{maxi ai,maxi bi}, the complexity of the dynamic program is
O(nT 5pmax).

Heuristics

The above algorithm is viable for small problems, but its complexity is pro-
hibitive for medium and large ones. The same authors offer several heuristics,
of which we present two. The first is based on the relaxation where all tasks
are multiprocessed.

Heuristic R: Relaxation where V1 = V2 = V3 = φ

With all jobs in V4, all tasks are multiprocessed, so the problem reduces
to a trivial single-machine sequencing problem. Each job Jj has processing
time pj +qj , and any sequence is optimal. Though seemingly a crude approx-
imation, R is optimal when pj ≤ aj/2 and qj ≤ bj/2 for all j = 1, 2, ..., n,
as we show in the following theorem. This case reflects production environ-
ments where capacity is additive and/or multiprocessing offers operational
synergies that reduce task times.

Theorem 8.3 Let CR(θ) be the makespan of the schedule SR(θ)
produced by R for an instance of F2|mpflx|Cmax with parameter
θ = maxj{pj/aj , qj/bj}, θ ∈ [0, 1]. Then:

CR(θ)/C� ≤
{

1 if θ ∈ [0, 1
2
]

2θ if θ ∈ [1
2
, 1]

and these bounds are tight.

Proof: (a) θ ∈ [0, 1
2
]. Let V�

1 ,V�
2 , ...,V�

4 be an optimal partition, giving
a schedule S� with makespan C�. Suppose that S� has the form depicted in
Fig. 8.3, and let z be the time that the machines are not multiprocessing:
z = t1 + t3 + I1. Then:

C� =
∑

j∈V�
2∪V�

4
pi +

∑
j∈V�

3∪V�
4

qi + z

On the other hand, R multiprocesses all tasks. Of the tasks that are not
multiprocessed in S�, there are at most z time units on each machine which
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are sequentially processed in SR, and these tasks take at most θ times as long
to process. This gives:

CR(θ) ≤
∑

j∈V�
2∪V�

4
pi +

∑
j∈V�

3∪V�
4

qi + 2θz ≤ C�

Since C� is the minimal makespan, we must have C� = CR(θ).

(b) θ ∈ [1
2
, 1]. Now, with 2θ > 1, we get in place of the last inequality:

CR(θ) ≤
∑

j∈V�
2∪V�

4
pi +

∑
j∈V�

3∪V�
4

qi + 2θz ≤ 2θC�

The two-job instance where the job parameters <aj , bj, pj, qj> are
<K, 0, θK, 0> and <0, K, 0, θK> clearly has C� = K and CR(θ) = 2θK ,
which shows that this bound is tight. �

Heuristic H: Golden Section Threshold

The basic idea is simply that the first [second] task of Jj should be mul-
tiprocessed whenever the multiprocessed time pj [qj] is sufficiently smaller
than the singly-processed time aj [bj], as determined by a threshold value, λ,
for the ratio, pj/aj [qj/bj]. It can be shown that the optimal threshold is the
“golden section” parameter

λ = (
√

5 − 1)/2 ≈ 0.618

Specifically, the steps of heuristic H are:

1. For every j = 1, 2, ..., n :
(a) if pj < λaj , multiprocess the stage-1 task of Jj; otherwise process it on

M1.
(b) if qj < λbj , multiprocess the stage-2 task of Jj ; otherwise process it on

M2.
2. Given the partition V1,V2,V3,V4 resulting from step 1, construct an opti-

mal schedule as in Fig. 8.3.

The complexity of H is O(n logn). It gives a schedule that is at most 62%
longer than optimal. We state this formally, omitting the proof:

Theorem 8.4 Let CH be the makespan of the schedule produced by heuristic
H for an instance of F2|mpflx|Cmax. Then:

CH/C� ≤ (
√

5 + 1)/2 ≈ 1.618

and the bound is tight.

Finally, we make the commonplace observation that, when we have several
easily-implemented heuristics, it makes sense to try them all and use the best
result. For worst case analysis when using both heuristics R and H, we apply
each algorithm in that range of θ where it outperforms the other. This gives:
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Corollary 8.1 Let CB be the makespan of the schedule produced by applying
both heuristics R and H to an instance of F2|mpflx|Cmax. Then:

CB/C� ≤

⎧⎪⎨
⎪⎩

1 if θ ∈ [0, 1
2
]

2θ if θ ∈ [12 ,
√

5+1
4 ]

(
√

5+1)/2 if θ ∈ [
√

5+1
4 , 1]

and these bounds are tight.

8.4 Resource Flexibility

We described resource flexibility in Subsect. 8.1.1 as arising when one or more
limited resources can or must be allocated across jobs and stages. This scarce
commodity (we will generally assume there is only one) may be a consumable
or material resource of which a fixed amount is available, or a reusable or
work resource of which a fixed number may be assigned in each period. In
this section we will focus on the latter type, of which labor provides a common
example. Labor flexibility can be achieved by cross-training workers in the
skills needed for various tasks associated with multiple processing centers.

If each task requires a fixed and predetermined amount of the resource,
there are no flexibility issues, though the scheduling problem is already com-
plex (see the complexity discussion in Sect. 8.4.1 below), since tasks must
not be scheduled to overlap if their total resource requirements exceed the
supply. Here, we are concerned with the still more difficult situation where
we can allocate various amounts of the resource to each task, to reduce its
processing time: the more of the resource we allocate to a task, the quicker
it can be processed. We will call this resource flexibility, denoted rflx.

8.4.1 Fm|perm, rflx|Cmax

The simple permutation flow shop with work resource flexibility is discussed
by Daniels and Mazzola (1993, 1994). They assume that R units of a single
resource are available in each period. Each task Tij (task i of job j) has a
finite number of processing modes, such that uijk units of resource allocated
to Tij in mode k produces a processing time pijk. As the language above
implies, there is one machine at each of m stations, every machine processes
jobs in the same order, and no preemption is allowed. We wish to determine
a sequence of jobs, the processing mode for each task, and the start time for
each task, so as to minimize the makespan.

The Complexity of F m|perm, rflx|Cmax

Since the special case Fm|perm|Cmax is strongly NP-complete for m > 2,
the same is true for the present problem. Daniels and Mazzola (1994) show
that the following two special cases of Fm|perm, rflx|Cmax are just as hard.
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• The resource-constrained flow shop, in which each task has a single mode
of processing, so that the resource requirement uij and processing time pij

of a task Tij are given constants, is strongly NP-complete even for m = 2.
• The fixed-sequence resource-constrained flow shop, which in addition pre-

specifies the order in which the jobs must be processed through each ma-
chine, is strongly NP-complete.

Solution Approaches to F m|perm, rflx|Cmax

In Daniels and Mazzola (1994) (which, despite the publication date, is ev-
idently earlier work than Daniels and Mazzola (1993)), an integer program
and a branch-and-bound formulation are presented, but neither is capable of
solving problems of realistic size. A heuristic based on tabu search is given,
but we will discuss the improved version given in Daniels and Mazzola (1993).

Our problem requires the simultaneous optimization of three interrelated
subproblems: job sequencing, resource allocation, and the specification of
task start times. Let π be a job permutation, and P be the set of all such
permutations. Let ρ be a vector whose nm components are the resource
allocations to each task, and R the set of all such feasible allocations (i.e.,
allocations where no more than R units of the resource are used in each
period). Finally, let σ be an nm-vector containing the start times of each
task on each machine, with S(π, ρ) the set of all feasible start times σ (that
is, start times that are achievable using sequence π and resource allocation
ρ). Our goal is to find

C�
max = minπ∈P {minρ∈R {minσ∈S(π,ρ) {Cmax(π, ρ, σ)}}}

where Cmax(π, ρ, σ) is the makespan resulting from the solution (π, ρ, σ).
We see from this formulation how the problem can be decomposed into

three nested subproblems. The heuristic of Daniels and Mazzola (1993) ex-
ploits this using a nested search strategy. It uses two tabu searches, one
(STABU) to select the best sequence and the other (RTABU) to select the
corresponding best resource allocation. For the innermost subproblem, given
a sequence and an allocation, subroutine START assigns start times sequen-
tially as early as possible. When so many tasks are available for simultaneous
processing that the resource limit is exceeded, preference is given to those
producing the greatest time reduction per unit resource.

Thus, STABU starts by picking a job sequence using an initializing rule.
A neighborhood of the initial sequence (a neighboring sequence is generated
by moving the job in position i to position j for any i, j) is searched for a
schedule with smaller value (i.e., makespan), and we move to the improved
solution, define a new neighborhood, and repeat. Each sequence considered
is evaluated by calling up RTABU and START. We will not discuss further
the many other details and complexities of the algorithm.

The authors tested their procedure on over 1600 randomly generated in-
stances. Where optimal solutions could be identified (four machines or less),
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the algorithm produced them over 70% of the time. On larger problems, it
showed that the flow shop with resource flexibility performed significantly
better than the fixed-resource flow shop: an average decrease in makespan of
about 25%.

8.5 Mix Flexibility

Consider now a shop where each job belongs to one of several job types or part
types, and jobs are batched for processing. Batches may consist of a mixture
of job types. Jobs of the same type require the same processing time, and no
setup is required between them. Mix flexibility occurs when the mix of each
batch (the proportion of parts of each type in a batch) can be controlled.

Wittrock (1985) uses linear programming to batch jobs over a finite hori-
zon. Here, we adapt the original more general formulation to the simple job
shop. We wish to produce dj units of part type j (j = 1, 2, . . . , n) in an m-
machine flow shop over H days, where a part of type j requires time pij at
stage i (i = 1, 2, . . . , m). We assume that a single batch will be processed in
its entirety each day. The primary goal is to keep the makespans low each
day (thus maximizing the time available to react to breakdowns or other
crises), and secondarily to keep the number of part types in each batch small
(this is a proxy for minimizing setup costs, which are not explicitly handled).
Wittrock proposes that, as a surrogate for daily makespan minimization, the
workload for each machine be leveled over the planning horizon. This appears
in the linear program below as a constraint requiring the workload at each
stage on each day to be a constant, wi. The second objective, too, is replaced
by a roughly equivalent objective. Each part type is assigned a hypothetical
unit cost of production on each day. On most days the cost is high, and dif-
ferent parts are given different low-cost days. Then cost minimization tends
to concentrate production of each part in its few low-cost days. Let

cjt = the imputed unit cost of producing a type -j part on day t;
ujt = the number of type -j parts produced on day t.

A possible cost function would be cjt = (t − j)modn, giving each part type
its own least-cost period every n periods, with other low-cost opportunities
adjacent. The linear program is:

minimize
∑H

t=1

∑n
j=1 cjt ujt

subject to
∑n

j=1 pij ujt = wi, i = 1, 2, . . ., m, t = 1, 2, . . . , H,∑H
t=1 ujt = dj, j = 1, 2, . . . , n,

ujt ≥ 0 j = 1, 2, . . . , n, t = 1, 2, . . . , H.

Though extensive testing of the performance of this heuristic was not con-
ducted, the author reported positive results for a real production line.
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8.6 Conclusions

In this chapter, we presented various modes of internal flexibility in a flow
shop, including routing, resource, mix, multitask and multiprocessor flexibili-
ties. The intricacy of the results presented makes it apparent that theoretical
analyses of these environments are extremely difficult. This is probably the
reason why existing literature lags behind practice, where a myriad of flexible
modes are utilized every day in factories across the world. The importance of
flexibility in manufacturing creates the need for further analyses of flexible
systems whose mode of flexibility has not yet appeared in the literature. This
is a major research agenda that needs to be expanded further. Whenever
theoretical models of manufacturing flexibility are found to be intractable,
empirical research should be done to lay the groundwork for future study.

Even for the flexible modes presented in this chapter, most of the anal-
yses are limited to 2-stage production. Extending to more than 2 stages is
extremely difficult but worthy of attention due to its practical relevance. Fur-
ther, the bulk of the existing literature focuses on the makespan objective,
which by itself is hard enough. However, total cost objectives where cost
may be captured by weighted flow time, earliness/tardiness penalties, etc.
find applications in great many production settings and to this date have not
received much attention. Again, empirical analysis may be the way to start
such studies.
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Chapter 9

REENTRANT FLOW SHOPS

Abstract We introduce flow shops that revisit certain processors, and
define the common patterns of flow: cyclic, chain, hub, and V-shaped.
We show that even the simplest case, the (1,2,1)-reentrant shop, is NP-
hard, establish properties that facilitate a branch-and-bound algorithm,
and present two simple but very effective heuristics. With m machines,
we give for chain-reentrance simplifying properties, for hub-reentrance
a DP based on simplifying assumptions that yet performs well, for V-
reentrance a solvable special case. For cyclic production of a single prod-
uct in the general m-machine reentrant shop, we give an algorithm for
finding the efficient frontier between cycle time and flow time, and a
heuristic for larger instances. For the hybrid reentrant system, if all
jobs require the same time for each production step but have different
due dates, dispatching rules are recommended and compared.

9.1 Preliminaries

Many manufacturing layouts take the form of job shops or flow shops in which
jobs progress from station to station without ever visiting the same stage
twice. However, in some industries, as in semiconductor fabrication, product
design may call for jobs to recirculate or revisit a stage in the manufacturing
process. In general, a reentrant flow shop is distinguished from a simple
flow shop by the requirement that one or more jobs may need to be processed
repeatedly at one or more stations. Each of the visits of a job to the same
station is called a pass.

Consider a flow shop with m stations. Let φi be the ith stage visited by
each job, where φi ∈ {1, 2, ...,m}. Then the flow vector φ̄ = (φ1, φ2, ..., φl)
is the sequence in which jobs visit the stages of the manufacturing system.
The reentrant property occurs when at two steps in the sequence, φi = φj

for i = j. In maximal generality, the station sequence determined by the

H. Emmons and G. Vairaktarakis, Flow Shop Scheduling: Theoretical Results, Algorithms,  
and Applications, International Series in Operations Research & Management Science 182,  
DOI 10.1007/978-1-4614-5152-5_9, © Springer Science+Business Media New York 2013 
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manufacturing process may be arbitrary, provided all jobs follow the same
sequence (i.e., we have a flow shop) and at least one stage is revisited.

Throughout this monograph, we have dealt largely with deterministic flow
shops in which a fixed set of distinct jobs with known characteristics is to
be scheduled. However, in much of the literature on reentrant manufacturing
systems, jobs are of one or a few types, each type having identical processing
times, and we are not scheduling a given predetermined set of them. Instead,
work proceeds continuously, with jobs arriving either at random intervals as a
stochastic process, or according to an input release policy that decides when
a fresh job should be started. Such research is part of queuing network theory
and largely beyond our scope, but we will touch on some of the highlights.

Although we use the language of hybrid flow shops in these preliminary
remarks, it must be admitted that most of the published research to be
discussed deals with simple flow shops (one machine at each stage). Also,
almost always it is concerned with makespan minimization.

9.1.1 Common Flow Patterns

While the station sequence may often be arbitrary, there are certain specific
patterns of flow that arise frequently in practice and are reported in the
literature. They include:

• cyclic-reentrant: In a cyclic-reentrant flow shop, or simply a cyclic shop,
all jobs make r passes (r > 1) through all the stations in order. Thus, for
r = 3, the route is

φ̄ = (1, 2, . . . , m, 1, 2, . . ., m, 1, 2, . . ., m).

• chain-reentrant: In a chain-reentrant flow shop, jobs start their process-
ing at the primary station G1, then visit the secondary stages G2, G3, ..., Gm

in order, and finally return to G1 for the finishing operation. Thus:

φ̄ = (1, 2, . . . , m, 1).

• hub-reentrant: In a reentrant shop with a hub every job visits alternately
the hub G1 for the primary operations, and stations G2, ..., Gm for the
secondary operations, in the sequence

φ̄ = (1, 2, 1, 3, ...,1,m, 1).

• V-reentrant: In a V-reentrant flow shop, or simply V-shop, the primary
operation at Gm is preceded by a sequence of preliminary tasks, and fol-
lowed by the same tasks in reverse order. This gives a flow vector:

φ̄ = (1, 2, . . . , m − 1, m, m − 1, . . . , 2, 1).

• (1, 2, 1)-reentrant: This simple reentrant flow shop has two stations,
with flow
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φ̄ = (1, 2, 1).

In fact, chain-, hub- and V-reentrant shops all reduce to (1, 2, 1) when m = 2.
Simplest of all is the two-machine version, which will be the first model we
discuss.

9.1.2 Examples

Many instances of reentrant flows are encountered in manufacturing. Here
are some examples, from semiconductor and other production systems.

• Photolithography is one of the most complex steps in the wafer fabrication
process of semiconductor production. It is an optical process used to etch
multiple layers of circuit patterns on the silicon wafer. Every layer is etched
by visiting the photolithography station several times. Between successive
visits to that station, it has to be processed on other machines. As we shall
see, this facility has the form of a hub-reentrant shop.

• In manufacturing printed circuit boards (PCB’s), surface-mounted and
pin-through-hole devices must be applied. The bare PCB is first fed into
a machine (say, M1) where surface-mounted devices are attached to the
upper side. Then the board is transferred to another machine (M2) where
pin-through-hole devices are inserted. It then returns to M1 where other
surface-mounted devices are applied to the underside. The flow pattern,
therefore, is (1, 2, 1).

• Consider the assembly and testing of electronic circuits (or dies) stacked
on top of each other. Every time a new die is attached, a set of machines
is revisited. If the same machines are visited in the same order each time,
we have a cyclic-reentrant shop.

• Two-machine cyclic shops arise wherever two processes alternate. For ex-
ample, in a painting shop, parts have to move back and forth between the
painting and baking departments for successive coats of paint.

9.2 F2|(1, 2, 1)-reentrant|Cmax

The results of this section come mainly from Wang et al. (1997). The notation
used includes the usual <aj, bj, cj> for the task times of Jj, and in addition:

• a, b, c : a = Σjaj, b = Σjbj , c = Σjcj .
• x ≺ [�] y: Tx precedes [follows] Ty (or, in a permutation schedule, Jx

precedes [follows] Jy).
• x ≺≺ [��] y: Tx (or Jx) immediately precedes [follows] Ty (or Jy).

Note that the above ordering is not by precedence or preference; it simply
means that the tasks or jobs happen to be ordered that way in the schedule
being considered.
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9.2.1 Complexity

Theorem 9.1 (Lev and Adiri, 1984)
F2|(1, 2, 1)-reentrant|Cmax is (at least ordinary) NP-complete.

Proof: The reduction is from the NP-complete problem:

PARTITION
INSTANCE: An integer V , and k positive integers vi : i ∈ T = {1, 2, ..., k}
such that Σi∈T vi = 2V .
QUESTION: Is there subset T ′ ⊂ T such that Σi∈T ′vi = Σi∈T −T ′vi = V ?

Given an instance of Partition, construct an instance of the decision prob-
lem F2|(1, 2, 1)-reentrant|Cmax ≤ B? as follows:

• n := k + 1;
• <aj, bj, cj> := <0, vj, 0>, j = 1, 2, ..., k;
• <aj, bj, cj> := <V, V, V >, j = k + 1;
• B := 3V.

To achieve the makespan 3V , Jk+1 must be scheduled without delay. This
leaves two intervals on M2, each of length V , into which the other jobs must
fit. Thus, only if the partition exists can the makespan equal 3V . �

9.2.2 Dominance of a Simple Class of Schedules

Let the set of all the ith tasks constitute entry i, abbreviated Ei, (i = 1, 2, 3).
For example, the a-tasks make up E1. We shall say that Ei is compact in a
schedule if all the tasks of Ei are scheduled contiguously.

Theorem 9.2 (Wang et al., 1997)
For F2|(1, 2, 1)-reentrant|Cmax, there exists an optimal schedule where:

(a) all three entries are compact;
(b) all three entries maintain the same job order.

Proof: In any optimal schedule where the a-tasks are not all scheduled before
the c-tasks, there must be a c-task that immediately precedes some a-task.
They can be interchanged without loss of optimality (that is, the schedule
remains feasible and the makespan is no greater). Repeat this as often as
necessary, then slide all a-tasks as far left as possible, and all c-tasks to the
right as far as possible, keeping the last c-task fixed. We now have made E1

and E3 compact without loss of optimality.
To see that E2 can also be made compact, let

bj� = the task on M2 that bridges (or ends during) the transition
from E1 to E3 on M1

= the first b-task that finishes later than a.
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Call Jj� the partition job. Now, all tasks in E2 to the left of bj� can be moved
to the right as needed, and tasks to the right can be moved left, to compactify
E2.

Next, suppose the job order of E1 differs from that of E2 in an optimal
schedule, in violation of Theorem 9.2(b). Let Ji and Jj be the first jobs such
that ai ≺≺ aj but bi � bj . Again, we can interchange ai and aj without loss
of compactness or optimality. This can be repeated until the job order of E1

matches that of E2. A similar argument reorders E3 to conform with E2. �

We now have a schedule of the type illustrated in Fig. 9.1 for an instance with
five jobs, arbitrarily sequenced in order of index. Note how the three blocks
of tasks that make up the entries are each scheduled as early as possible,
subject to precedence constraints (see the up and down arrows in Fig. 9.1),
and how E1 and E3 are separated by an idle interval I ≥ 0. The partition job
has j� = 3.

Incidentally, it often happens that I =0, in which case Cmax =a+c. Such a
schedule is clearly optimal. Unless the b-tasks tend to be significantly longer
than the a-tasks and c-tasks ( as they are in Fig. 9.1), an instance may have
many such optimal schedules.

Fig. 9.1 A compact permutation schedule for F2|(1, 2, 1)-reentrant|Cmax

The authors establish one other important property of an optimal schedule.
Given any compact permutation schedule, the partition job Jj� separates the
other jobs into two sets, J1 = {Jj : Jj ≺ Jj�}, and J2 = {Jj : Jj � Jj�}. A
partition {J1, Jj� ,J2} is admissible if it can be generated from a schedule in
this way.

Theorem 9.3 For F2|(1, 2, 1)-reentrant|Cmax, there exists an optimal
schedule:

S� = (J1 :JR(a, b) , Jj� , J2 :JR(b, c)),
where {J1, Jj� ,J2} is an admissible partition of the jobs.

That is, start with the jobs in J1, sequenced according to Johnson’s Rule us-
ing task times from E1 and E2; put Jj� next; then add J2 ordered by Johnson’
Rule applied to the b-tasks and c-tasks. The theorem is somewhat appealing
intuitively; the proof is a fairly straightforward but tedious consideration of
cases; we shall omit it.
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Solution Algorithms: Optimization

A branch-and-bound algorithm is outlined, based on Theorem 9.3. In what
follows, it will be convenient to define:

C(J1) [C2(J1)] = completion time on M1 [M2] of a job set J1

ordered by JR(a, b).

At the first level of branching, each of the n nodes represents a choice of a
partition job. At lower levels, binary branching places a job either in J1 or
J2, which start out as empty sets and gradually fill as branching proceeds.
A node can be fathomed if the partial schedule becomes inadmissible; e.g., if
C2(J1) > a, which would violate the definition of Jj� .

If we define J̄1 as the set of all jobs not in J1, then two lower bounds that
can be used at a node are:

C2(J1) +
∑

Jj∈J̄1
bj + minJj∈J̄1

cj , and
C(J1) +

∑
Jj∈J̄1

cj

For further details, consult Wang et al. (1997).

Solution Algorithms: Approximation

The authors propose three simple heuristics. We omit one of them; it is
too simplistic and dominated by the other two. Heuristics HF (the forward
heuristic) and HB (the backward one) generate schedules SF and SB with
makespans CF and CB, respectively. Both make use of the partition property.

Heuristic HF for F2|(1, 2, 1)-reentrant|Cmax

1. Let Sab = JR(a, b) , with makespan Cab . If Cab = a + c, stop; Sab is
optimal.

2. Find the partition {J1, Jj� ,J2} for Sab .
3. Let SF = (J1 :JR(a, b) , Jj�∪J2 :JR(b, c)), with makespan CF .

The other heuristic is essentially HF with time reversed. Clearly, with E1 and
E3 interchanged, we have an equivalent problem. However, in the heuristic,
the schedule in Step 1 and the partition in Step 2 will be different.

Heuristic HB for F2|(1, 2, 1)-reentrant|Cmax

1. Interchange aj and cj, j = 1, . . . , n, and repeat HF.

Finally, the makespan found heuristically is CH = min{CF , CB}.
The authors state without proof the following worst case performance

guarantee, which is probably not tight. Of course, it holds for CB, too.

Theorem 9.4 For F2|(1, 2, 1)-reentrant|Cmax,

CF /C� ≤ 3/2 .
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Computational Experiments

The performance of the combined heuristics was tested in extensive experi-
ments; we present here a small part of the reported results. Processing times
aj, bj , and cj were generated from uniform distributions with means μa, μb,
and μc, respectively. Table 9.1 shows two sets of values for these parameters.
Each row represents the average of 200 experiments.

% of instances where
μa μb μc n C� = a + c CH = C�

10 78% 96%
75 100 50 30 95% 99%

100 100% 100%
20 1% 87%

50 200 75 50 0% 93%
500 0% 100%

Table 9.1 Performance of heuristics for F2|(1, 2, 1)-reentrant|Cmax

As we remarked earlier, unless the b-tasks are “large” relative to the a-
tasks and c-tasks, we are likely to get the trivial solution Cmax = a + c.
“Large”, as it turns out, means roughly μb ≥ μa + μc. In the first case of
Table 9.1, where μb < μa + μc, Cmax = a + c almost always; in the second
case, with μb large, almost never. In any case, however, the heuristic gives the
optimal solution most of the time. When it does not, the heuristic solution
is very close to the optimum, so that in all the experiments run the average
relative error was tiny (less than 0.0001).

9.3 Fm|chain-reentrant|Cmax

In a chain-reentrant flow shop, where φ̄ = (1, 2, . . . , m, 1), Wang et al. (1997)
establish some properties of the general problem, but do not propose a solu-
tion algorithm (except for the case of m = 2, reported in Sect. 9.2).

9.3.1 Complexity Results

For m = 2, we showed in Theorem 9.1 of Sect. 9.2 that the problem was
ordinary NP-complete. For larger m we have

Theorem 9.5 (Wang et al., 1997)
For m ≥ 3, Fm|chain-reentrant|Cmax is strongly NP-complete.

Proof: It is sufficient to show this for m = 3. This time, the simple reduc-
tion is from F3||Cmax. Given an instance of the latter with processing times
<aj, bj, cj>, construct an instance of F3|chain-reentrant|Cmax with times
<aj, bj, cj, 0>. The equivalence of the two problems should be obvious. �
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9.3.2 Dominance of a Simple Class of Schedules

The following theorem, an obvious extension of Theorem 9.1, can help to
narrow down the search for an optimum. As before, we call the set of all the
kth tasks, {Tk1, Tk2, . . . , Tkn}, entry k, abbreviated Ek, (k = 1, . . . , m + 1),
and we say Ek is compact if all its tasks are scheduled contiguously.

Theorem 9.6 (Wang et al., 1997)
For Fm|chain-reentrant|Cmax, there exists an optimal schedule where:

(a) E1 is compact, and Em+1 is compact;
(b) job order is unchanged from M1 to M2, and from Mm to M1.

The proof is essentially the same as that of Theorem 9.1, and will be
omitted.

9.4 Fm|hub-reentrant|ΣCj

The problem of minimizing mean flow time in a simple hub-reentrant
flow shop has been considered by Kubiak et al. (1996). Recall, a hub-
reentrant shop, as shown in Fig. 9.2a (where m = 3), has flow vector
φ̄ = (1, 2, 1, 3, ..., 1, m, 1). Each of the m visits of a job to the hub, M1, is
called a pass. Thus, the ith primary operation of Jj is performed on pass i
through M1.

Having observed that the problem is strongly NP-complete (F2| − |ΣCj

can be reduced to the two-machine hub-reentrant case with cj = 0 ∀j), they
define a heavily constrained version of the problem that is more tractable.

Notation and Assumptions

Let us define

Pij = primary operation i of Jj, requiring time pij (i = 1, ..., m);
Tij = secondary operation i of Jj, with time tij (i = 1, ..., m− 1).

Note that Tij is performed on Mi+1.

The following simplifying assumptions are made:

Assumption 1 No setups are required for secondary operations. However,
M1 must be set up when successive tasks are on different passes. The setup
time is pass-dependent, but not job-dependent. Let

sii′ = the setup time on M1 for Pi′j′ if it follows Pij, regardless
of which jobs Jj and Jj′ are involved. Note that sii = 0.

Assumption 2 On each secondary machine, all jobs have the same pro-
cessing time, so we can write tij = ti. The same results hold for job-
dependent tij, provided that tij ≤ si−1,i; that is, the times to process sec-
ondary operations are shorter than the ensuing setups. But this turns the
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definition of s(ij)(i′j′) (see below) into a triviality.

Figure 9.2a is labeled with the processing times and setup times for an arbi-
trary Jj′, under Assumptions 1 and 2.

Fig. 9.2 (a) A three-machine hub reentrant shop, and
(b) the one-machine equivalent

Assumption 3 (Bottleneck Assumption)

mini,j pij ≥ maxi,j tij.

That is, roughly speaking, jobs spend most of their time on M1.

Assumption 4 (No-passing Assumption) Given the order in which the
first operations of the jobs are sequenced, that order is maintained among the
second primary operations of all jobs, and the third, etc. That is, if pass 1 of
Jj is processed before pass 1 of Jj′, then all other passes of those two jobs are
similarly ordered. We can now speak of scheduling the jobs in a particular
order. Although this does not fully specify the schedule, it does restrict the
selection to a small subset of schedules. For example, For m = n = 2, the job
sequence (1, 2) is maintained if the schedule on M1 is (P11, P21, P12, P22) (all
of J1 done before J2), or (P11, P12, P21, P22) (the first primary operations of
both jobs are done before the second), but not by (P11, P12, P22, P21).

Assumption 5 (Hereditary Order) If we define pj = Σipij, then:

pj ≤ pj′ ⇒ pij ≤ pij′, for all i.

That is, if the total primary processing time of one job is bigger than an-
other’s, then so is the time of each primary operation individually.

The One-Machine Equivalent System

These assumptions allow us to collapse the original problem shown in
Fig. 9.2a into the equivalent single machine reentrant system shown in
Fig. 9.2b; where equivalent means that, for any given schedule, every task
has the same completion time in both systems. Each job still has m primary
operations with the same processing times pij, but with new setup times.
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The modified setup time (i.e., the enforced delay between finishing one task
and starting the next) is now job-dependent as well as pass-dependent, and
is defined:

s(ij)(i′j′) = setup time when Pij is followed by Pi′j′

=
{

sii′ if j = j′

max{sii′ , tj} if j = j′

In the first case, Jj′ is either on its first pass or was processed earlier on M1

and, by Assumption 3, its secondary operation is negligible compared to pij.
In the second case, the same job immediately returns to M1 (so i′ must equal
i + 1), and it cannot start until its secondary operation is complete and M1

has been set up for it, both of which are proceeding simultaneously.

The SPT Rule and Cluster Schedules

Hereafter we deal only with the single machine model, so the only tasks
being scheduled are primary operations. Given the assumptions above, the
authors show that (at least) one of the SPT schedules is always optimal,
where S = (1, 2, ..., n) is an SPT schedule if p1 ≤ p2 ≤ ... ≤ pn, or by
Assumption 5, pi1 ≤ pi2 ≤ ... ≤ pin for any i. Lets assume jobs are indexed
that way.

Using this observation to limit their search, the authors develop a dynamic
program to find the optimal sequence of primary operations among the SPT
schedules. The algorithm runs in time O(mnm), which is prohibitive for prob-
lems with more than five machines. They then further restrict the search to
“cluster schedules”.

In a cluster schedule, the jobs are partitioned into k subsets or clusters,
k = 1, . . . , n. We then require that all of the tasks of a cluster be scheduled
contiguously, with the first pass tasks coming first (in SPT order) then the
second pass, etc. Thus, each cluster results in a block of processing, with
setup times between each pass (note there is no setup between the tasks of
the same pass since i = i′ and j = j′.) The SPT requirement also means that
the first cluster to be scheduled contains the shortest jobs, the second cluster
the next shortest, etc. Between clusters there is a setup time of sm1.

It is now a straightforward if tedious calculation to compute the contri-
bution of any cluster to the total flow time (including the flow times of all
following jobs) of any clustered schedule in which it appears, noting that this
contribution is independent of the rest of the schedule. Let cuv be the con-
tribution of cluster {Ju, Ju+1, ..., Jv}. The search for the optimal clustering
can now be formulated as a Shortest Path problem, in which a typical node,
labeled (i, j), denotes all the partial schedules in which the first i clusters con-
tain j jobs. Thus, a start node is connected to n nodes {(1, j), j = 1, ..., n}
representing all the possible sizes of the first cluster, by arcs costing c1j. Each
outgoing arc adds another cluster, with the arc from (i, j) to (i + 1, j′) cost-
ing cj+1,j′. Hopefully this gives the idea; further details will be omitted. The
algorithm to find this shortest path has time complexity O(n3).
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Although scheduling jobs in clusters is not necessarily optimal (except, it
turns out, for m = 2), it does tend to give good schedules since it keeps down
the number of setups. Simulations by Wang and Lou (1991) have shown that
clustered SPT scheduling performs well. The authors also give a tight worst
case bound (too complicated to give here) for the ratio of the total flow time
of an optimal clustered schedule to the total flow time of an optimal schedule.
They argue that, if the total processing times pj are roughly equal, and for
large values of n, the bound is approximately 2.

9.5 Fm|V -reentrant|Cmax or ΣjCj

The V-reentrant shop, or V-shop, with flow φ̄ = (1, 2, . . ., m − 1, m, m −
1, . . . , 2, 1), is discussed in Lev and Adiri (1984). For F2|V -reentrant|Cmax,
which reduces to φ̄ = (1, 2, 1), see Sect. 9.2.

9.5.1 Complexity

Theorem 9.7 (Lev and Adiri, 1984)

(a) Fm|V -reentrant|Cmax is ordinary NP-complete, for m = 2.
(b) Fm|V -reentrant|Cmax is strongly NP-complete, for m ≥ 3.
(b) Fm|V -reentrant|ΣjCj is strongly NP-complete, for m ≥ 2.

Proof: (a) See Sect. 9.2
(b, c) Garey et al. (1976) showed that F3||Cmax and F2||ΣjCj are strongly

NP-complete. But, clearly, the simple flow shop is a special case of the V-shop
where the last m−1 task times of each job are zero. �

The authors present a number of very special cases in which the problem
is polynomially solvable. We will mention just one, where all processing times
are equal. The following algorithm simultaneously minimizes both schedule
length and sum of completion times.

Algorithm for Fm|V -reentrant, pij = 1|Cmax or ΣjCj

1. i := 1.
2. Schedule Ji as early as possible on each machine over the complete route
φ̄ = (1, 2, . . . , m − 1, m, m − 1, . . . , 2, 1).
3. If i = n, stop. Else i := i + 1 and return to Step 2.

We omit the proof of this algorithm, which has time complexity O(mn),
but illustrate it for the instance with m = 3 and n = 6 in Fig. 9.3. The jobs
are shaded to help in grasping how they fit together. Note especially how,
although scheduled singly, they pair up; a peculiarity that remains true for
all values of m and n.
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The minimal job completion times are

Cj =
{

2(m − 2) + 2j, j = 2, 4, 6, . . .
2(m − 2) + 2j + 1, j = 1, 3, 5, . . .

Fig. 9.3 Optimal schedule for a V-shop with all task times equal

9.6 Cyclic Scheduling of a Single Product

First, note that the word “cyclic” has multiple meanings. In a cyclic shop,
there may be a variety of jobs (different setup and processing times, etc.), but
they all follow the same route, visiting the same sequence of work stations
several times. If instead, as here, we have a cyclic schedule, we are generally
manufacturing one product (or a few products), making multiple copies of
the same thing. The pattern of visiting the stations is generally not cyclic,
but repetition produces a cycle of production.

Aldakhilallah and Ramesh (2001) model a simple (not hybrid) reentrant
shop in which a single product is produced repetitively, in batches, in a pre-
determined sequence of operations; call this batch for short. They seek the
batch size and schedule of operations that will minimize both flow time and
cycle time. A cyclic schedule is repeated every Z time units (the cycle time),
producing one batch per cycle. While cycle time is the time between succes-
sive batch completions, flow time is the time spent in the system by one unit
or batch. We illustrate these concepts with the following example.

Example 9.1: The manufacture of a certain product entails a sequence of
five operations or tasks on three machines. The machine assignment (mi),
setup time (si), and processing time (pi) of the tasks is as follows:

i 1 2 3 4 5
mi 1 2 1 3 1
si 1 1 1 2 2
pi 3 11 4 7 5

The setups are assumed to be detached (often called separable): they can
be done in advance of the task’s arrival from the previous stage. Attached
setups can simply be incorporated into the processing time. Incidentally,
there might be other time-consuming preparations or follow-ups associated



9.6 Cyclic Scheduling of a Single Product 281

with a task: material handling, transportation, etc. We assume they have
been incorporated into the processing time if attached, or into the setup if
detached. Of course, for a batch of Q units, any times that are incurred once
per batch should simply be added, while per-unit times should be multiplied
by Q. A task is considered to start on a machine when its setup begins.

One possible schedule is shown in Fig. 9.4, assuming a batch size of one.
Note that the cycle time, Z = 16, is as small as possible (M1 is fully loaded),
while the flow time F , as determined by precedence constraints and shown
by the sequence of darkly shaded tasks, is 48.

Fig. 9.4 Three cycles of a schedule for the sample instance

Each of the two objectives has its merit, cycle time being a measure of
throughput while flow time is correlated with work-in-process inventory. Un-
fortunately, they tend to be in conflict, so actually minimizing both simulta-
neously is usually impossible. Even finding an undominated cyclic schedule
(i.e., a schedule such that no other schedule is better in both measures) is
strongly NP-complete (Roundy 1992).

The authors build on the work of Roundy (1992), who gives a search algo-
rithm similar to branch-and-bound to solve a somewhat simpler formulation.
They seek to minimize flow time (F ) for given cycle time (Z) and lot size
(Q), then searching over Z and Q for the overall optimum. After formulating
the problem, which we might summarize Fm|batch, reentrant, si|(F |Z, Q),
as a mathematical program, they give a heuristic solution.

9.6.1 A Mixed Integer Program

The program MIP uses the following notation (some already introduced above
but repeated here):

• Z, F : cycle time, product flow time.
• Q: batch size.
• Ti: task i.
• mi, si, pi: machine assignment, setup time, processing time of Ti.
• Xi: start time of Ti in the batch flow across cycles (see Fig. 9.4).
• Yi: start time of Ti within the cycle (see Fig. 9.4).
• σ(i): immediate successor of Ti on mi.
• Oi: cycle offset between Ti and Ti+1:
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Oi =
{

0, if Ti+1 begins in the same cycle as Ti,
k, if Ti+1 starts k cycles after Ti.

The following mixed integer program minimizes flow time (F ) for given
cycle time (Z) and lot size (Q):

MIP minimize F = Xn + sn + Qpn

subject to X1 = Y1 = 0
Xi ≥ Xi−1 + si−1 + Qpi−1 − si i = 2, ..., n (9.1)

Yi = Xi − Z
∑i−1

k=1Ok i = 2, ..., n (9.2)
Yσ(i) ≥ Yi + si + piQ i = 1, ..., n (9.3)

Oi ∈ {0, 1, 2}; Z > Yi ≥ 0; Q > 0, integer i = 1, ..., n (9.4)

Constraints (9.1) enforce precedence on the successive tasks of the product.
Constraints (9.2) amount to Yi = Xi mod Z, and determine the position of
each task within the cycle. Constraints (9.3) prevent tasks overlapping on
any machine. Constraints (9.4) on Oj reflect the authors’ observation that
the offset is never more than two (recall, this is the offset from the previous
task, not from T1).

9.6.2 A Heuristic

We now outline a heuristic given by Aldakhilallah and Ramesh (2001) that
also searches over Q and Z for the best solution, using the criterion R =
Z/Zmin + F/Fmin, where Zmin [Fmin] are the smallest possible cycle [flow]
times. The heuristic proceeds in the following steps:

1. For Q = 1 to Qmax, repeat steps 2 - 8.
2. (a) Compute Zmin = maxm

k=1 Σi:mi=k(si + Qpi).
In Fig. 9.4, Zmin is determined by the total load on M1.

(b) Compute Fmin = s1 + Σn
i=1Qpi.

3. For Z = Zmin to Zmin + m, repeat steps 4 - 7
4. Determine product start times for each Ti:

X1 = 0, Xi = Xi−1 + si−1 + Qpi−1 − si, for i = 2, ..., n.
5. Determine preliminary cycle start times:

Y1 = 0, Yi = Xi mod Z, for i = 2, ..., n.
6. In increasing order of Yi, adjust each Yi as follows:

(a) If Ti−1 is already scheduled, put Ti immediately after it.
(b) If not, put Ti as early as possible.
(c) If Ti cannot be scheduled, delay other tasks to make room.

7. If possible, reduce Z without increasing F .
8. Given the schedule for each cycle, find the flow time F , and

compute the criterion R.
9. Output the solution with smallest R, over all Q, Z values.
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9.6.3 Performance of the Heuristic

The authors considered how well their heuristic did from several points of
view.

Worst Case Analysis

The worst case for this problem is defined as the cyclic schedule with the
longest flow time for a given cycle time. Since the flow time for a given cycle
time is F = Yn + sn + Qpn + ZΣn−1

j=1 Oj, minimizing the total cycle offsets
minimizes total flow time. This, however, turns out to be an NP-complete
problem (Rao and Jackson 1993). We can give attainable bounds for the cycle
offsets: 0 ≤ Σn−1

j=1 Oj ≤ n − 1.

Trade-off between Cycle Time and Flow Time

For any instance, the plot of Z versus F is not a smooth curve; clearly,
the particular values of processing and other times may fit one cycle time
better than slightly shorter or longer cycle times. Of course, when the cycle
time is so long that all the tasks can be accommodated end-to-end (i.e.,
Z ≥ Fmin = s1 + Σn

j=1Qpj), the flow time is minimized.

Computational Results

Twenty-four experiments were conducted, each characterized by the number
of machines (m = 3, 4, 5, or 6) and the number of tasks (n = 10, 11, . . . ,
15). Each experiment consisted of 25 randomly generated instances. For each
instance, the flow and cycle times generated by the heuristic were compared
to their smallest possible values by computing their relative deviations, (F −
Fmin)/Fmin and (Z − Zmin)/Zmin. As an overall average, they found a flow
time deviation of only 0.7% from the smallest possible, but a cycle time
deviation of 53% from the (admittedly unrealistically small) minimum.

9.7 Dispatching in a Reentrant Hybrid Flow Shop

Lu and Kumar (1991) consider a problem encountered in semiconductor and
some flexible manufacturing where jobs of wafers, each job with a due date,
follow roughly the same sequence of work stations, each station having one or
more identical machines, often revisiting the same sequence of stations repeat-
edly for the application of several layers. Again, a problem far too complex
to admit optimization. They use the approach often employed in studying
large job shops: propose one or more criteria for evaluating schedules, pro-
pose several dispatching rules for sequencing the jobs at each work station,
and evaluate the scheduling rules against the criteria using simulation. A
dispatching rule is applied independently at each work station, selecting the
next task to process from among the jobs waiting at the station, using a
criterion based solely on the characteristics of those jobs. This is sometimes
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called distributed scheduling. Since there is no coordination between stations,
this is clearly a suboptimal approach, but it is simple to grasp and implement
and often gives satisfactory results.

We note that, rather than simulation, Narahari and Khan (1996) have
applied mean value analysis to analyze the performance of re-entrant manu-
facturing systems. This technique, often used to analyze queueing networks,
is beyond the scope of this monograph.

9.7.1 Single Part Model

Consider a reentrant flow shop with m work stations (also called machine
groups or service centers) producing large numbers of a single part or product.
Thus, every job or item is identical except that each may have its own due
date. Machine group Gi (i = 1, ..., m) has ki identical machines in parallel.
All jobs follow the same arbitrary route φ̄. For example, Fig. 9.5 shows a
cyclic-reentrant shop with three stations and two cycles. At step r of the
production sequence, the item is first stored in a buffer br (with effectively
unlimited capacity) prior to processing at station φr . No setup times are
considered. The job will then require pr time units of processing by one of
the machines Mh,φr (h = 1, ..., kφr; φr = 1, ..., m).

Fig. 9.5 A cyclic reentrant hybrid shop with three machine groups

We use the following additional notation for this model:

• u(t): number of items released in time interval [0, t];
• λ: arrival rate of items;
• rj : time that an item Jj is released into the system;
• Cj: time that Jj exits the system;
• Dj : delay or cycle time of Jj . Dj = Cj − rj;
• dj: due date of Jj;
• Bi: set of buffers serving machine group Gi;

and we make the following assumptions:
1. Bursty Arrivals Arrivals are called “bursty” when they satisfy the

following regularity constraint used by Cruz (1991):

u(t) − u(s) ≤ λ(t − s) + γ, for all 0 ≤ s ≤ t
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and for some constant γ ≥ 0. The parameter γ allows for the burstiness in
the arrivals.

2. Feasible Load on the System For the system to be able to meet the
demand, the arrival rate λ satisfies: ρ ≡ max i λwi < 1, where ρ is the load
on the system and wi is the time units of work per machine that a job brings
to Gi, given by the expression: wi = Σr:br∈Bipr/ki.

3. Non-Idling All scheduling policies that will be considered are non-
idling. A policy is non-idling if machine Mhi is allowed to remain idle only if
all buffers in Bi are empty.

4. All scheduling policies are nonpreemptive.

9.7.2 Scheduling Policies

Two types of scheduling policies are considered for this model, namely: buffer
priority policies and due date policies. A buffer priority policy selects the job
that is first in line at a specified buffer, while a due date policy chooses on
the basis of the jobs’ due dates.

The specific policies chosen for evaluation are listed below.

Buffer Priority Policy Description of Priorities
First Buffer First Serve (FBFS) An idle machine at Gi processes the

first job in buffer br ∈ Bi only if all
other buffers br′ ∈ Bi, r′ < r, are
empty.

Last Buffer First Serve (LBFS) An idle machine at Gi processes the
first job in buffer br ∈ Bi only if all
other buffers br′ ∈ Bi, r′ > r, are
empty.

First Come First Serve (FCFS) An idle machine at Gi processes the
waiting job that arrived earliest, re-
gardless of which buffer br ∈ Bi it is
in.

Due Date Policy Description of Priorities
Earliest Due Date (EDD) An idle machine at Gi processes a job with

earliest due date among jobs in any br ∈ Bi.
Least Slack (LS) For every buffer br ∈ Bi, let there be a δr ≥ 0

that represents an estimate of the remaining
delay for a job Jj commencing service in br.
Slack for such a unit is defined as dj − δr . An
idle machine at Gi processes a job with the
smallest slack among the jobs in any br ∈ Bi.
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These policies are called distributed scheduling policies or dispatching rules
because they can be implemented independently of each other at each station
without any need of coordination. From the structure of the policies, one gets
the insight that the LBFS attempts to “greedily” empty the system, hurrying
along the jobs closest to completion. Thus, it could be expected to minimize
the number of units in the system which is also equivalent to minimizing
mean delay. The LS policy on the other hand takes account of due dates,
and tries to make all units equally late or early, thereby making it tend to
minimize the variance of the delay. These insights will be verified through
simulation experiments.

9.7.3 Stability of the Scheduling Policies

An important property of a scheduling policy is its stability. A policy is
stable if the delay, or time-in-system, of each part is bounded, whenever the
arrival rate is within the system’s capacity. That is, for any λ that gives ρ < 1
(see Assumption 2),

Dj = Cj − rj ≤ B for all Jj , for some B ≥ 0

By Little’s theorem, stability also guarantees that the maximum work in
process is bounded.

You might think that satisfying Assumption 2 would always guarantee the
stability of a scheduling policy, but this is not true as shown by a counterex-
ample in the paper. Proofs of the stability of the FBFS, LBFS, EDD and
LS policies are given in the paper. However, the stability of FCFS is still an
open issue.

9.7.4 Generalizations

The stability results above continue to hold under the following generaliza-
tions:

• Jobs may have different processing times. If pij is the time for Jj at bi,
then define pi as maxj pij.

• The ki machines at station Gi may differ in speed. When we say that shi

is the speed of Mhi, we mean that a job requiring time p on a “standard”
machine takes p/shi on Mhi. In this case, we simply replace the formula
for wi in Assumption 2 by wi = Σr:br∈Bipr/Σki

h=1shi.
• A state-dependent transportation delay may be incurred between centers,

as long as such times are uniformly bounded.

The authors also briefly discuss the extension to multiple parts, with part
v having its own arrival rate λv, processing times pvr, buffers bvr, and route
(φv1, φv2, ..., φv,lv). Of course, since routes differ, this is no longer a flow shop.
They extend the definitions and assumptions, and define two new policies,
Interleaved First Buffer First Serve and Uniform Last Buffer First Serve,
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as tabulated below. These two policies are proven to be stable. However,
the stability of the interleaved versions of LBFS and EDD has not yet been
established.

Buffer Priority Policy Description of Priorities
Interleaved First Buffer
First Serve (IFBFS)

Order the buffers bvr ∈ Bi in a list Li, in in-
creasing order of pass number r. For given r,
buffers of different part types may be ordered
arbitrarily. Then, an idle machine at Gi pro-
cesses the first job in the first nonempty buffer
in Li.

Uniform Last Buffer First
Serve (ULBFS)

Order the buffers bvr ∈ Bi in a list Li, with
all the buffers for product v contiguous in de-
creasing order of pass number r. The products
may be ordered arbitrarily. Then, an idle ma-
chine at Gi processes the first job in the first
nonempty buffer in Li.

9.7.5 Simulation Results

A simulation experiment was conducted on a single product reentrant flow
shop with five service centers having one machine each and each machine
being visited five times. Thirty simulations for the FBFS, FCFS, LBFS and
LS policies were conducted for three different loads on the system for a total
of 90 simulation runs. Results showed that the LS policy had the smallest
variance in delay in 81 of the 90 simulation runs. LBFS had the smallest
mean delay and the smallest mean + three standard deviation values in the
simulation runs. The FBFS on the other hand consistently performed the
worst among the four policies. From these 90 runs, the results support the
insights mentioned earlier that the LBFS performs well for mean delay and
the LS policy for the variance of the delay. We cannot however say that these
results are conclusive, but merely indicative for a particular set of instances.
More simulations are needed to validate these results for larger and more
general systems.

9.8 A Two-Machine Reentrant Job Shop

The problem of minimizing makespan in a two-machine side frame press shop
of a truck manufacturing company is discussed by Hwang and Sun (1997).
Although the jobs do not all flow through the machines in the same sequence,
we mention the paper briefly because the problem, though not originally a
flow shop, is reformulated as one.

Jobs move from stage to stage in one of three patterns: φ̄1 = (1, 1, 2, 1),
φ̄2 = (1, 2, 1), and φ̄3 = (1, 1, 1). Successive operations of a job on the same
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processor cannot be combined because of setup times that are sequence de-
pendent; details will be omitted. The device used by the authors is to redefine
each job as a sequence of shorter jobs interrelated by precedence. Each new
job either has flow pattern (1, 2) or is a single operation on M1, in which
case we add a dummy task of length zero on M2 so it too follows the path
(1, 2). For example, a job Jj that follows route φ̄1 with processing times
<p1, p2, p3, p4> is replaced by three jobs Jj1 = <p1, 0>, Jj2 = <p2, p3>,
and Jj3 = <p4, 0>, with Jj1 → Jj2 → Jj3. Thus, we end up with a simple
two-machine flow shop, without reentry but with precedence constraints.

A dynamic program is developed to solve F2|prec, sij|Cmax. Computation
time is further improved by exploiting sequence dominance properties of fea-
sible schedules. For further discussion of this algorithm, see Hwang and Sun
(1997).

9.9 Concluding Remarks

This chapter exposes the scarcity of research for the reentrant flow shop.
One explanation may be that this system is closer to a job shop than any
of the flow shop systems studied in this book. Available research shows that
the reentrant shop is widely found in the industry. It also shows that even
the simplest imaginable reentrant shops of practical interest are NP-hard. Re-
search on the reentrant flow shop is limited both on the objectives considered,
as well as on the number of machines involved. In fact, the only systems con-
sidered are those that can be approximated by two-machine flow shops. The
corresponding systems are shown computationally to provide near-optimal
solutions. The greater question still remains: can the special reentrant flow
structure be exploited to yield satisfactory algorithms for general systems?
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Chapter 10

THE ROBUST FLOW SHOP

Abstract In this chapter, job processing requirements are considered
to be uncertain. They are no longer assumed to be deterministically
known. One modeling approach would be to consider processing time
probability distributions, and indeed this is done in a later chapter.
Here, we provide a standard minimax regret approach, which however
has been exploited very little in the context of scheduling. The limited
research that has been conducted on this topic demonstrates that the
minimax regret approach is particularly useful in scheduling problems
because the corresponding solutions are quite robust on processing time
variations. On a negative note, the available research indicates that this
technique is at least a level of magnitude harder to deal with than its
deterministic counterpart.

10.1 Preliminaries

So far, the processing time of each task has been assumed to be a known
constant, at least to a good approximation. When planning production in
the face of uncertain task durations, perhaps due to unpredictable conditions
or incomplete/unreliable information, there are two approaches we might
consider. The first, surveyed in Chap. 11, requires that we assign a probability
distribution to the quantities that cannot be precisely predicted. This, the
stochastic approach, treats each processing time as a random variable. Most
often, we then seek to minimize the expected value of the objective function.

If we find it too difficult to accurately estimate the necessary distributions,
or too difficult to deal with the complex stochastic processes that arise, we
may fall back on the second approach. We now seek schedules that will per-
form well in all eventualities. This robust performance is the focus of the
present chapter.
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Our objectives have always been to make some measure of cost as small as
possible. Now, instead of minimizing the value of our criterion (deterministic),
or minimizing its mean value (stochastic), our goal will be to minimize the
maximal value of our cost measure. Without sufficient information to find
the best solution, we shall at least avoid the worst.

There are two ways in which we can specify what limited information we
have about the processing times.

P rocessing T ime Scenarios

In this paradigm, we are given a finite set of processing time scenarios, Λ.
Each scenario λ ∈ Λ represents a unique assignment of a processing time to
each task, which can be realized with some positive (unknown) probability.
Let

pλ
kj = the processing time of Jj on Mk in scenario λ.

P rocessing T ime Intervals

Another type of uncertain task times can be described by specifying for each
task the range or interval of processing times that can occur. For example, the
processing time of Jj on Mk may fall within the range bounded by pkj and
p̄kj. In most cases, pkj and p̄kj can be more easily and confidently specified
than the entire probability distribution. Note that structuring processing time
uncertainty in this way implies an infinite number of scenarios.

We will refer to “using scenarios” or “using intervals”, and will sometimes
use one, sometimes the other, to express task time uncertainty. To begin with,
we use scenarios.

In our literature survey we were not able to identify real-world applica-
tions of the robust flow shop. It appears that robustness is presented more
as a modeling approach rather than a way to solve specific problems. Or,
the information collection process is too time-consuming for busy managers.
Nevertheless, as we will see shortly, the robust approach teaches us a lot on
the special structure of the corresponding solution. Also, robustness offers a
viable alternative when compared to the stochastic version of the problem
where distributional information has to be developed. Or it can be used as a
benchmark to the stochastic solution.

10.2 The Minimax Regret Makespan Problem

Unfortunately, the only objective considered in the literature for the robust
flow shop is makespan. Even then, only the case m = 2 has been considered, so
henceforth we use <aj , bj> instead of <p1j, p2j>. The results in this chapter
are mostly drawn from Kouvelis et al. (2000).

Let S denote a given schedule, and S�
λ the optimal schedule given pro-

cessing time scenario λ ∈ Λ. We can easily construct S�
λ using Johnson’s
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O(n logn) algorithm. If C(S, λ) denotes the makespan of schedule S given
processing time scenario λ, then C(S�

λ, λ) = minS C(S, λ).
Not knowing in advance which scenario will actually be realized, we want

a robust solution, one that performs well no matter what the outcome. One
may imagine several notions of robustness. The following approach is known
in the decision theory literature as minimax regret. The performance of any
schedule S differs, depending on which scenario is realized. For a given sce-
nario, the difference between the realized value (in our case, the length of
the makespan) using S, and the value that could have been achieved had we
known the scenario and chosen the schedule accordingly, is called the regret.
Since the scenario cannot be predicted, we propose to choose the schedule
whose maximal regret is smallest. This idea is the basis for the following
definition.

Definition 10.1. If schedule S is chosen and scenario λ is then realized, the
regret is C(S, λ) − C(S�

λ, λ). Let
R(S) = maxλ∈Λ{C(S, λ) − C(S�

λ, λ)}
be the maximal regret. The maximizing λ is the maximal regret scenario, λS .
Then the minimax regret schedule, S�, satisfies

R(S�) = minS{R(S)} .

The objective function value when using intervals is quite similar, hence we
limit our discussion to the problem using scenarios.

The minimax regret makespan (MRM) scheduling problem will be the
focus of our attention throughout this chapter. As is usual with two-machine
flow shops, we will limit our attention to permutation schedules. We do this
without loss of optimality, as we now show.

Theorem 10.1 In the two-machine flow shop with makespan objective, there
always exists a permutation schedule that achieves minimax regret.

Proof: Suppose a minimax regret schedule SNP is not permutation. Its re-
gret for any given λ is C(SNP , λ)−C(S�

λ, λ). But with λ fixed we have an or-
dinary deterministic flow shop, where SNP can be replaced by a permutation
schedule SP in which no task is moved on M2, so that C(SP , λ) = C(SNP , λ).
Since the regret is the same for each λ, the maximal regret is unchanged:
R(SP ) = R(SNP ). Thus, if SNP minimizes R(·), SP is an alternative opti-
mum. �

We can now call the problem of interest F2|(perm)|MRM .

10.2.1 An Integer Program for F2|(perm)|MRM

The following integer program determines S�. Letting [i] denote the index
of the job scheduled in position i, define the following decision variables for
i, j = 1, . . . , n and λ ∈ Λ:
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xij =
{

1, if [i] = j (i.e., if Jj takes position i),
0, otherwise,

Bλ
i = start time of J[i] on M2 given scenario λ.

The binary variables, of course, assign jobs to positions. For example, using
them and given scenario λ, the makespan is Bλ

n + Σn
j=1b

λ
j xnj. We can now

formulate F2|(perm)|MRM as:

MRM minimize R

subject to

Bλ
n +

∑n
j=1b

λ
j xnj − C(S�

λ, λ) ≤ R , λ ∈ Λ (10.1)∑i
=1

∑n
j=1a

λ
j xj ≤ Bλ

i , i = 1, . . . , n;λ ∈ Λ (10.2)

Bλ
i +

∑n
j=1b

λ
j xij ≤ Bλ

i+1 , i = 1, . . . , n− 1;λ ∈ Λ (10.3)∑n
i=1xij = 1 , j = 1, . . . , n (10.4)∑n
j=1xij = 1 , i = 1, . . . , n (10.5)

xij ∈ {0, 1} , i, j = 1, . . . , n (10.6)

10.2.2 Complexity of F2|(perm)|MRM

The complexity of the minimax regret makespan scheduling problem is es-
tablished by the following result.

Theorem 10.2 (Kouvelis et al., 2000) The F2|(perm)|MRM problem using
the scenario paradigm is NP-complete.

Outline of Proof: We reduce the NP-complete problem

PARTITION
INSTANCE: Finite set of positive integers vi, i ∈ T .
QUESTION:Does there exist a subset T0 ⊂ T such that

Σi∈T0vi = Σi∈T −T0vi?

to the decision version of the F2|(perm)|MRM .
For a given set {vi, i ∈ T }, suppose |T | = k. Construct an instance of

F2|(perm)|MRM with two processing time scenarios, k + 1 jobs (J0 and
Jj, j ∈ T = {1, 2, ..., k}). The following define the processing times of Jj on
M1 and M2 in each of the two scenarios.

<a1
j , b

1
j> =

{
<1

2

∑k
i=1 vi , 1

2

∑k
i=1 vi> , for j = 0 ,

<0 , vj> , for j ∈ T

<a2
j , b

2
j> =

{
<1

2

∑k
i=1 vi , 1

2

∑k
i=1 vi> , for j = 0 ,

<vj , 0>, for j ∈ T
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Observe that the Johnson order has makespan 3Σk
i=1vi/2 for both scenar-

ios. The authors show that there exists a partition with Σi∈T0vi = Σi∈T −T0vi

if and only if F2|(perm)|MRM has an optimal solution with Δ∗ = 0.
Assume that a set T0 ⊂ T of jobs is scheduled before J0, and the remaining

jobs are scheduled after J0. The above claim is easily verified for each of the
following three cases:

(1) Σi∈T0vi > Σi∈T vi/2 > Σi∈T −T0vi,
(2) Σi∈T0vi < Σi∈T vi/2 < Σi∈T −T0vi,
(3) Σi∈T0vi = Σi∈T vi/2 = Σi∈T −T0vi. �

10.3 The Two-Machine MRM Problem using Scenarios

In the following two sections we present results drawn from Kouvelis et al.
(2000) for minimax regret makespan schedules when processing times of jobs
are specified in terms of scenarios or intervals respectively. We start with
processing time scenarios.

The worst case scenario for any given sequence (i.e., the scenario that
maximizes regret) can be determined using a process referred to as Worst-
Case, that requires |Λ| iterations. For each scenario λ ∈ Λ, the makespan of
the given sequence is computed in O(n) time, and the corresponding optimal
makespan is determined in O(n logn) time using JR. If the difference between
the two makespans exceeds the largest difference encountered in iterations 1
through λ − 1, the new value and associated scenario are retained. After |Λ|
iterations, the stored value represents the worst case absolute deviation from
optimality for the given sequence, and the associated set of processing times
represents the worst case scenario for that sequence. By determining the set
of optimal makespans exactly once, the complexity of Worst-Case is O(|Λ|n).

10.3.1 Dominance Properties

The following dominance properties are also employed to enhance the com-
putational efficiency of the branch-and-bound procedure described below.

Property 10.1 For F2|(perm)|MRM using scenarios, if for two jobs Ji

and Jj , aλ
i ≤ aλ

j and bλ
i ≥ bλ

j for all λ ∈ Λ, then i
global
� j.

Property 10.2 For F2|(perm)|MRM using scenarios, if for two adjacent
jobs Ji and Jj, min{aλ

i , bλ
j } ≤ min{aλ

j , bλ
i } for all λ ∈ Λ, then i � j.

These properties are presented without proof. Similar results using intervals
will be presented later in more detail.
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10.3.2 Branch-and-Bound Algorithm

A depth first search branch-and-bound algorithm is presented, where at each
branching a job is added to an initial partial schedule σ. Let U denote the un-
scheduled jobs at a node σ, with |U| = u. To compute a bound for this node,
we must consider each of the scenarios. At iteration λ of this process, jobs
are assigned their processing times in scenario λ. The u unassigned jobs are
then arranged according to JR(aλ, bλ), and appended to σ. The difference be-
tween the makespan of this schedule and the corresponding optimal makespan
(both computed with respect to <aλ

j , bλ
j >) represents a lower bound on the

deviation from optimality (the regret) that could result given σ and λ. The
maximum obtained by repeating this process for each λ ∈ Λ is a lower bound
on the minimax regret that could result from any schedule starting with the
given partial sequence. Again, if the Johnson sequence associated with each
processing time scenario is determined external to the bounding process, then
the complexity of the procedure is O(|Λ|n).

10.3.3 Heuristic

The heuristic procedure in Kouvelis et al. (2000) requires |Λ| iterations. It is a
straightforward neighborhood search, at each iteration updating the current
overall best sequence, So, along with its worst case deviation from optimal-
ity, d(So), initially set to infinity. For every λ ∈ Λ, with processing times
set to <aλ

j , bλ
j > , we first find JR(aλ, bλ) and record this as the current best

sequence for scenario λ, Sλ, along with its worst case deviation from optimal-
ity, d(Sλ), found using procedure Worst-Case. Defining the neighborhood of
a sequence as all n(n − 1) possible insertions and n(n − 1)/2 pairwise inter-
changes, we next search the neighborhood of Sλ, and the performance of each
neighbor is evaluated and compared with d(Sλ). If no improvement is found,
iteration λ of the process is completed, and the procedure advances to sce-
nario λ+1. Otherwise, the neighbor yielding the lowest worst case deviation
from optimality becomes Sλ, and its neighborhood is searched, the process
being repeated until no further improvement results and we advance to the
next scenario. Each time λ is incremented, we update the overall best-yet
solution: if d(Sλ) < d(So), set So := Sλ. After |Λ| iterations, we output So .

The above branch-and-bound and heuristic algorithms were tested on
problems with n = 9, 12, and 15 jobs and |Λ| = 4, 8, and 12 processing time
scenarios drawn from a uniform distribution of integers [10βj, (10+ 40α)βj],
where α is a parameter that allows the variability of processing times across
jobs in a given problem instance to be controlled, and βj represents the
relative processing requirement on Mj, thus allowing the location of process-
ing bottlenecks to be controlled. Three values of α (α = 0.2, 0.6, 1.0) and
three vectors representing the relative processing requirements on M1 and
M2 ([β1, β2] = [1.0, 1.0], [1.2,1.0], [1.0,1.2]) were included in the experimental
design.
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It was found that the β values do not have an appreciable effect on the
quality of the heuristic solution. Also, the computational effort required to
run the branch-and-bound algorithm increases moderately (not factorially)
as n increases. Optimal solutions are increasingly difficult to obtain as the
number of processing time scenarios is decreased, suggesting that the addi-
tional computational effort required to identify the worst case scenario for
each sequence is more than offset by the enhanced effectiveness of the lower
bounding process as the number of processing time scenarios increases. The
heuristic required only modest computational effort to generate approximate
solutions. The heuristic produced the optimal solution in over 95% of the
problems tested, while the error incurred in approximating the optimal solu-
tion averaged 0.5%, with a maximum of 15.4%.

In addition, assuming that each processing time scenario is equally likely,
the sequence that optimizes expected makespan performance was determined
for each test problem using a branch-and-bound process. It was found that
the resulting schedule was an average of 21.3% off the performance of the
optimal robust schedule with a corresponding maximum error of 190.4%. In
contrast, the expected makespan performance of the robust schedule closely
approximated the optimal expected makespan, with an average percentage
deviation of 0.4%, and a maximum of 3.3%. Evidently, the robust schedule
optimally hedges against the worst case realization of job processing times
while maintaining excellent expected makespan performance.

10.4 The Two-Machine MRM Problem using Intervals

We now consider the case where processing time uncertainty is captured by
means of time intervals: the times for the tasks of Jj on M1 and M2 must
be chosen from the intervals [aj, aj] and [bj , bj ], respectively. Though we are
using intervals rather than scenarios, it will be convenient to continue to use
the term “scenario” to refer to an assignment of a feasible time to every task.
The set of all scenarios, Λ, is now uncountably infinite:

Λ = {λ} , where λ = (aλ
1 , bλ

1 , . . . , aλ
n, bλ

n) : aj ≤ aλ
j ≤ aj , bj ≤ bλ

j ≤ bj .

The following theorem helps identify the maximal regret scenario for any
S. Recall the portrayal of a two-machine flow shop as a precedence network
(see Fig. 2.1), in which the makespan of S = ([1], . . . , [n]) is the length of
the critical (i.e., longest) path, Σc

i=1a[i] + Σn
i=cb[i], where J[c] is the critical

job, with b[c] starting just as a[c] ends. In case there is more than one critical
path, choose the latest critical job in what follows.

Theorem 10.3 For F2|perm|MRM using intervals, for any schedule S,
there exists a maximal regret scenario λS such that
(i) The time for every task on the critical path is at its upper bound;
(ii) The time for every other task is at its lower bound.
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Proof Outline: Consider sequence S and scenario λ that is supposed to
be maximal regret, with critical job J[c]. Note that the tasks on the critical
path are {aλ

[i], i = 1, . . . , c} and {bλ
[i], i = c, . . . , n}. Suppose, contrary to the

theorem, that any of the following four cases holds, for the processing time
requirements <aλ

[i], b
λ
[i]> of job J[i] in scenario λ:

a) aλ
[i] < a[i] for some i = 1, . . . , c ,

b) bλ
[i] < b[i] for some i = c, . . . , n ,

c) aλ
[i] > a[i] for some i = c + 1, . . . , n ,

d) bλ
[i] > b[i] for some i = 1 . . . , c− 1 .

In cases a) and b), increasing aλ
[i] or bλ

[i] by ε results in an increase in the
makespan of schedule S, C(S, λ), of ε, while increasing the optimal system
makespan, C(S�

λ, λ) by no more than ε. In cases c) and d), decreasing aλ
[i]

or bλ
[i] by ε results in no change in C(S, λ), and does not increase C(S�

λ, λ).
Thus, if any of the four cases holds, the ε adjustment can only increase the
regret. With ε chosen as large as feasible, we get λS . �

The above result motivates exhaustive enumeration of the scenarios de-
scribed in Theorem 10.3 to find the maximal regret scenario associated with
a given permutation S of jobs. In iteration k of the procedure, J[k] is assumed
to be critical and the processing times of all jobs are determined using The-
orem 10.3. Subsequently, the makespan of S is computed for the resulting
scenario and compared to the corresponding optimal makespan determined
by JR. If the deviation between the two makespan values is greater than the
largest deviation encountered in iterations 1 through k − 1, the new value
and associated scenario are retained. The maximal regret scenario is found
after n iterations. The complexity of the resulting procedure is O(n2 logn).

10.4.1 Dominance Properties

The following two dominance properties can be used to establish the relative
position of pairs of jobs in an MRM schedule.

Property 10.3 For F2|perm|MRM using intervals, if for two jobs Ji and

Jj, ai ≤ aj and bi ≥ bj , then i
global
� j.

Proof: Let (ai, bi) and (aj , bj) be the processing times in an optimal (min-
imax regret) sequence. Then, ai ≤ ai ≤ aj ≤ aj and similarly bi ≥ bi ≥
b̄j ≥ bj. A simple interchange argument shows that the makespan is no worse
when Ji precedes Jj. �

Property 10.4 For F2|perm|MRM using intervals, if for two adjacent jobs
Ji and Jj, min{ai, bj} ≤ min{aj , bi}, then i � j.

Proof: Let (ai, bi) and (aj , bj) be the processing times in an optimal (min-
imax regret) sequence. Then, min{ai, bj} ≤ min{ai, bj} ≤ min{aj, bi} ≤
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min{aj, bi}. For these ai, bi, aj, bj values, a simple interchange argument
shows that the makespan is no worse when Ji immediately precedes Jj. �

10.4.2 Lower Bounds and Branch-and-Bound
Algorithm

The above dominance properties are incorporated into a branch-and-bound
algorithm for determining the minimax regret schedule. The branching pro-
cedure is similar to the one used with the scenario paradigm. At each node
of the search tree a lower bound is computed on the deviation of the partial
sequence corresponding to this node. Assume a partial sequence σ, of s jobs,
with the scheduling of the remaining u = n − s jobs as yet unknown. At
iteration k ≤ s, Jk is assumed to be critical and the processing times of the
jobs are assigned using Theorem 10.3. A lower bound can then be computed
on the makespan associated with the given partial sequence by

LB =
∑k

i=1 ai +
∑n

i=k bi

and compared to the corresponding Johnson makespan for this scenario. If
the difference between the two makespan values is greater than the incum-
bent, the new value is retained. After s iterations, the procedure yields a
lower bound on the maximal regret for all completions of the given partial
sequence. The complexity of this stage of the process is O(n2 logn).

To strengthen the lower bound associated with a node, one can evaluate
the impact of each of the unassigned jobs being the last critical job while
occupying either position s + 1 or position n in the final schedule. Suppose
unassigned job Jk is the last critical job and occupies position s + 1. Then:

• Jk should have ak = ak and bk = bk ,
• Ji should have ai = ai and bi = bi for i = [1], . . . , [s] ,
• Ji should have ai = ai and bi = bi for i = [s + 2], . . . , [n] .
Computing a lower bound on the difference between the makespan asso-

ciated with the given partial sequence, LB′ = Σs+1
i=1a[i] + Σn

i=s+1b[i], and the
corresponding optimal makespan using JR, we obtain an upper bound on the
worst case performance, since job k need not necessarily be either the last
critical job or occupy position s + 1 in sequence. However, if we repeat the
process for each of the n − s unassigned jobs, the minimal difference repre-
sents a lower bound on the maximal regret associated with the given partial
sequence, since one unassigned job must ultimately occupy position s + 1.

Similarly, if Jk is the last critical job and occupies position n in sequence,
then Jk should again have ak = ak and bk = bk, with all n − 1 remain-
ing jobs having ai = ai and bi = bi for i = [1], . . ., [n − 1]. Computing a
lower bound on the makespan associated with the given partial sequence,
LB

′′
= Σn

i=1a[i] + b[n], and the corresponding optimal makespan using the
Johnson algorithm, we again obtain an upper bound on the worst case per-
formance, since job k need not necessarily be either the last critical job or
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occupy position n in sequence. However, if we repeat the process for each of
the n−s unassigned jobs, the minimal difference represents a lower bound on
the worst case absolute deviation from optimality associated with the given
partial sequence, since one unassigned job must ultimately occupy position
n. The complexity of each of these two stages of the process is O(n2 logn).

The dominance properties and bounding procedure are easily incorporated
into a branch-and-bound solution framework to construct robust schedules.

10.4.3 Heuristic

Suppose Jc is critical in a permutation sequence, and set(s) L [R] of jobs pre-
ceding [following] Jc are given. Then, Theorem 10.3 is used to determine the
maximal regret scenario for the bipartition L and R. A promising sequence
may be constructed by arranging the jobs Ji, i ∈ L according to JR with
respect to (ai, bi), followed by Jc, followed by Ji, i ∈ R arranged in Johnson
order with respect to (ai, bi). This property is not necessarily characteristic
of the optimal solution and in fact Jc may no longer remain critical when the
task times are given the extreme values prescribed in Theorem 10.3.

According to Theorem 10.3, each Ji will contribute at least min{ai, bi}
to the makespan of the robust schedule. Hence, we can compute min{ai, bi}
for each job, and assign Ji to L if ai ≤ bi and to R if ai > bi. The hope
with this strategy is that the resulting permutation provides a good starting
solution for the minimax schedule. Performing all n(n−1) possible insertions
and n(n − 1)/2 possible pairwise interchanges can further improve the initial
solution.

An experiment similar to that for the scenario paradigm was performed
for the interval paradigm. The lower end of the processing time range for
each task was drawn from a uniform distribution of integers over [10βk, (10+
40α1)βk], where α1 is a parameter that allows the variability of processing
times across jobs in a given problem instance to be controlled, and βk again
represents the relative processing requirement on Mk. The upper end of the
range for each task time was next randomly drawn from a uniform distribu-
tion of integers on the interval ai ∈ [ai, ai(1+α2)], bi ∈ [bi, bi(1+α2)], where
α2 controls the variability of a given job’s processing time. Three values of
α1 (0.2,0.6, 1.0), three values of α2 (0.2,0.6, 1.0), and three vectors represent-
ing the relative processing requirements on M1 and M2 ([β1, β2] = [1.0,1.0],
[1.2,1.0], [1.0, 1.2]) were included in the experimental design.

In addition, the sequence that optimizes expected makespan performance
was directly determined by assuming independent, exponential processing
time distributions fit to the minimal and maximal processing times specified
for each job on each machine, and using the results of Cunningham and
Dutta (1973) (see also Pinedo, 1984 and Ku and Niu, 1986). As before, the
performance of the heuristic is not affected by the values [β1, β2]). Also. the
computational effort required to obtain optimal solutions using the branch-
and-bound procedure grew rapidly with problem size but not factorially. Also,
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problem difficulty was significantly affected by the variability of individual
job processing times, as measured by the interval ranges.

As before, the heuristic produced an optimal solution in over 95% of the
810 test problems, while the average error was 0.2% with a maximum of
16.7%. In addition, the sequence that optimizes expected makespan per-
formance was determined for each test problem using a branch-and-bound
process that assumes that each processing time scenario is equally likely.
The solution quality associated with the resulting schedule was considerably
lower, with an average approximation error of 22.1%, and a maximum error
of 289.1%. In contrast, the expected makespan performance of the robust
schedule closely approximated the optimal expected makespan, with an av-
erage percentage deviation of 0.2%, and a maximum of 3.9%.

10.5 Conclusions

Using the interval paradigm, robust scheduling requires a decision maker to
specify processing time ranges for uncertain task durations. The robust ap-
proach yields schedules that minimize the worst case deviation from optimal
makespan performance, i.e., find the minimax regret, for the processing time
ranges specified. Experiments indicate that small to moderate increases in the
minimal deviation from optimality are realized when processing time ranges
are widened by 50% or so, and that the identity of the robust schedule remains
relatively constant as processing time ranges are enlarged. Thus, a decision
maker can have considerable confidence in the minimax regret schedule even
when processing time ranges are relatively inaccurate.
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Chapter 11

STOCHASTIC FLOW SHOPS

Abstract When job parameters are uncertain or unpredictable, new
types of policies become possible. Besides static policies, we now should
consider dynamic policies, with or without preemption. Objectives too
have more variety. The makespan, for example, is now random; we usu-
ally choose to minimize its expectation.

We present new conditions under which permutation schedule are op-
timal for two or three machines. If these do not hold, then to minimize
expected makespan on two machines:
• A simple optimum exists when task times are exponential;
• for arbitrary distributions, Johnson’s Rule is asymptotically optimal;
• three simple heuristics have been tested using log normal distribu-
tions, and give good results in combination.
For more than two machines, we report the very limited results that
have been published.

11.1 Preliminaries

We now present the somewhat limited results that are known concerning the
flow shop when any parameters of the problem, especially processing times,
are not given fixed values known in advance, but are specified as random
variables with some probability distribution. In practice, such uncertainty is
frequently encountered (processing times are not often precisely predictable),
but a good guess often suffices. However, when experience shows that some
parameter varies a lot from case to case, and there is enough historical data
to estimate a distribution, a stochastic model may be appropriate. In any
case, such analysis often provides valuable insights, as we hope to show.

The reader is expected to have a basic knowledge of probability theory
and stochastic processes. He should recognize the common continuous and
discrete distributions, and understand the uses of the functions that describe

H. Emmons and G. Vairaktarakis, Flow Shop Scheduling: Theoretical Results, Algorithms,  
and Applications, International Series in Operations Research & Management Science 182,  
DOI 10.1007/978-1-4614-5152-5_11, © Springer Science+Business Media New York 2013 

303



304 11 STOCHASTIC FLOW SHOPS

them: the density and mass functions, cumulative distribution function, mean
and variance. We adopt the usual conventions, denoting random variables by
capital letters, with the corresponding lower case letter often used for a par-
ticular value. Thus, X is a random variable with cumulative distribution
function (CDF) FX(x) =P(X ≤ x). A continuous X has density function
fX(x) = dFX(x)/dx, while fX (x) =P(X = x) for discrete X. In particu-
lar, we capitalize the lower case letters we have been using for known fixed
parameters, to emphasize their randomness. For example:

• Pij : Random processing time of Tij.
• Aj , Bj : Random task times of T1j, T2j respectively, when m = 2.
• aj , bj : Average task times: aj = E(Aj), bj = E(Bj).

Random variables are assumed to be independent unless otherwise noted. We
will enter Pij in the second field of the problem descriptor to indicate random
task times.

11.1.1 The Exponential Distribution

We give here some of the basic properties of the exponential variate, on which
many of the results in this chapter are based. An exponential random vari-
able, X, with rate λ, has density function f(x) = λe−λx (x > 0), distribution
F (x) = 1 − e−λx, and mean value E(X) = 1/λ. An important characteristic
of this distribution is

Theorem 11.1 If X is exponential with rate λ, then

P (X > x + t|X > t) = P (X > x).

This is called the memoryless property.

Proof: P (X > x + t|X > t) = P (X > x + t)/P (X > t) = e−λx �

Thus, if the time to an anticipated event is exponential, then, no matter how
much time has passed, if the event has not yet occurred, the time remaining
is just as long, probabilistically, as it was at the start. It shares this property
with the discrete geometric distribution, which has PMF P (X = x) = (1 −
p)px, (x = 0, 1, 2, . . ., 0<p<1) and E(X) = p/(1 − p).

Other results we shall find useful are

Theorem 11.2 If X and Y are exponential with rates λ and μ, then
min{X, Y } is exponential with rate λ + μ.
Proof: P (min{X, Y } ≤ t) = 1 − P (X > t)·P (Y > t) = 1 − e−(λ+μ)t. �

Theorem 11.3 If X and Y are exponential with rates λ and μ, then

P (X < Y ) = λ/(λ + μ).
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Proof: Integrating over the joint probability space:

P (X<Y ) = λμ

∫ ∞

0

e−μy

∫ y

0

e−λxdx dy = μ

∫ ∞

0

e−μy(1− e−λy)dy =
λ

λ + μ
. �

Theorem 11.4 If X and Y are exponential with rates λ and μ, then X +Y
has the distribution

P (X + Y > t) = μ
μ−λe−λt + λ

λ−μe−μt.

Proof: Simply compute the convolution:

P (X + Y > t) =
∫ t

0
fX (x) (1 − FY (t − x)) dx + 1 − FX(t). �

11.1.2 Types of Policies

In the study of flow shops, randomness introduces some new considerations.
For example, consider a schedule as it evolves over time. In the deterministic
world, having chosen a schedule, we know exactly what will happen from
start to finish. But as we watch an unpredictable sequence of events unfold, as
random variables are realized, we gain new information that might suggest a
change of plans for the remaining work. Thus, two types of scheduling policies
emerge:

1. static policies specify schedules that are fixed at the start, and can
never thereafter be changed. Research on stochastic shops, up to now, has
been limited to the class of static list policies, giving rise to permutation
schedules, where a predetermined job ordering is given at time zero, that
must be followed on all machines. Thus, whenever a machine becomes idle,
the next job on the list is processed as soon as it is available.

As an example of a static policy that is not permutation, we might specify
different job sequences to be followed on different machines. As we know, for
deterministic shops, such schedules may be optimal, at least for more than
three machines.

Evidently, the above definition precludes preemption: once a task is
started, it will process to completion. Pinedo (2008) makes an exception for
the case where jobs have different release times. If J1 is released earlier than
J2 but has lower priority, it should be preempted, provided of course preemp-
tion is allowed and J1 is in process at r2. This may be called static, in that a
predetermined job list is followed, but has the flavor of dynamic scheduling
in that the actual order of the tasks (or parts of tasks) is not known at the
start. We will not include this case among static policies, and so for us static
policies are always nonpreemptive.
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2. dynamic policies give schedules that are determined over time:
(a) without preemption: when any task is completed, we can

reassess the situation and make any feasible task assignment to
the freed-up processor.

(b) with preemption: at any moment, we can reassess the
situation and make any feasible change of task assignments.

Dynamic policies may be very complex and hard to specify, involving many
“If this, then do that” statements. We can, however, fully spell them out at
time zero. What we cannot do is promise to always work on a job at the top
of a predetermined priority list.

A final remark. An assumption that is universally made but rarely stated
explicitly is that, subject to precedence requirements and to the policy being
followed, each task should be processed as early as possible. This is fine for
regular measures (see Chap. 1 for definition of regularity), but if, for example,
there are costs for completing a job early, we may want to delay a task.
Criteria involving inserted idle time have not been considered for stochastic
flow shops; their analysis would be very complicated.

Preemption in the Stochastic Setting

In the context of random task times, the term “preemption” deserves more
careful definition. Given a fixed task length, if the work is interrupted part
way through, it is clear enough how much is left to be completed later on.
But if a random variable is interrupted, what is the length of the residual
task time? We give two possible answers to this question.

(a) Task length fixed at start. It may be that the task time is deter-
mined at the instant processing begins. Thereafter, of course, it behaves like
a deterministic time, and preemption is well understood.

(b) Task length revealed at completion. If the duration remains
uncertain until processing ends, then when a task is preempted at time t,
its residual time is a random variable. Let the complete task time, X, have
distribution F (x) = P (X ≤ x). Then the time remaining after preemption,
Y = X − t, has distribution:

P (Y ≤ y|X > t) = P (X ≤ y + t|X > t) =
F (y + t) − F (t)

1 − F (t)
.

We do not propose to make use of this formula, but include it to make precise
the underlying assumptions that allow us to say: the total time to process a
job, deterministically or in distribution, is the same, whether it is preempted
or not.

These results can easily be extended to the case of multiple preemptions
of a task, and to a random preemption time, as when a higher-priority job is
simultaneously in process on the preceding machine.



11.1 Preliminaries 307

11.1.3 Types of Objectives and Stochastic Ordering

With random elements introducing uncertainty into schedule times, the best
policy is no longer as clear. The makespan, or other measure, is now a random
variable. Thus, in comparing two schedules S1 and S2, we may find that, with
some probability p, S1 has the shorter makespan, while S2 wins out with
probability 1−p. In either case, the difference in makespan may be a little
or a lot. It is no longer obvious which schedule is preferred. We are led to
consider how to rank random variates, a topic called stochastic ordering or
stochastic dominance.

As usual, let X be a random variable with density (or mass) function
fX(x), and CDF FX (x); and similarly for Y . Three ways in which they might
be compared are as follows:

• Expectation Ordering The simplest, most practical and most com-
monly used basis of comparison:

X is smaller than Y in expectation ⇐⇒ E(X) ≤ E(Y ).

• Stochastic Ordering

X is stochastically smaller than Y ⇐⇒ P (X>t) ≤ P (Y>t) ∀t.

This of course implies that FX (t) ≥ FY (t) ∀t. We denote this X ≤st Y .
It means roughly that X has more of its probability mass at low values,
so that the CDF builds up faster. It is a very strong result to show that a
certain solution is stochastically minimal. It may not be possible: CDF’s
often intersect each other, in which case no single solution dominates all
the rest.

• Almost Sure Ordering

X is almost surely smaller than Y ⇐⇒ P (X ≤ Y ) = 1

In such a case, we write X ≤as Y . If we could establish this relationship,
say between two makespans (we will not be able to), it would be an in-
credibly strong result. When we assume it, say between processing times,
the situation will not be very different from the deterministic case, and we
might expect to get similar results.

Lemma 11.1 X ≤st Y ⇒ E(X) ≤ E(Y ).

Proof: If X and Y are continuous:

E(X) =
∫∞
0

[1 − FX(t)]dt ≤
∫∞
0

[1 − FY (t)]dt = E(Y ). ��

11.1.4 Permutation Schedules

Only rather limited results exist for stochastic flow shop scheduling, and most
of them find optimal schedules in the class of static list policies; that is, they
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seek the best permutation schedule. The question arises: when are permu-
tation schedules dominant over all static schedules? That is, when can we
be sure that there exists a permutation schedule that is optimal in the class
of static schedules? For two-machine deterministic flow shops, we have seen
(in Theorem 1.1) that this is the case for a wide range of objective func-
tions. A similar result (which appears to be widely known but not previously
published) holds for the stochastic case.

Theorem 11.5 In a simple flow shop with random processing times, to min-
imize the expected value of any regular measure over all static policies,
there exists an optimal schedule with the same job order on the first two
processors.

Proof: When optimizing over static policies, as in the deterministic proof,
if we are given an optimal schedule in which the job order on the first two
machines is not identical, we find the first two consecutive jobs on M1 whose
order is reversed on M2, and interchange them on M1. For every sample path
(that is, every set of possible values of the random variables, producing a
realization of the entire schedule), the completion times of all tasks at all
stations (except for one task on M1) are made no later (some may move
earlier). Since this is true in particular for all tasks on Mm, i.e., all job
completion times, a regular measure cannot be made larger in any realization,
hence its expected value does not increase. We can, of course, make as many
such interchanges as are needed. �

With fixed processing times, as we saw in Chap. 1, this result holds for a
larger class of objectives: all measures that are functions of job completion
times. But here we cannot hold completion times fixed when we reorder tasks
on earlier machines. With random times, we cannot, for example, insert idle
time to avoid earliness penalties, because we cannot predict how much will
be needed. All we can do is process tasks as early as possible, and this is all
we need for regular objectives.

Another similar result carries over from deterministic scheduling:

Theorem 11.6 In a simple flow shop with random processing times, to min-
imize the expected value of the makespan

(a) over all static policies, or over all nonpreemptive dynamic policies,
there exists an optimal schedule with the same job order on the last two
processors;

(b) over all preemptive dynamic policies, preemption is never needed on the
last machine, where tasks may be processed in the order they become available.

Proof: First, without preemption, the argument is simply this: as long as Mm

keeps working on whatever task is available, the sequence does not matter:
the total time to complete all work will have the same distribution. Thus,
whatever sequences are optimal on the first m − 1 machines, the order on
Mm−1 may as well be followed on Mm. Similarly, if preemption is allowed,
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it gives no advantage on Mm, as the total remaining processing time is un-
changed by interrupting the in-process task. �

We may note that the last two theorems extend from expected value min-
imization to stochastic minimization, but only in the following very limited
sense. Since we now have only a partial ordering of schedules, there may not
exist one with stochastically minimal makespan (or other objective), and in-
deed there hardly ever will. All we can say is that, if such a schedule can be
found in the class of static policies, then we can construct an equally good
schedule that satisfies the theorems.

11.2 F2|(pmtn)|E(Cmax)

Even for the two-machine case, there are no analytic results without stringent
conditions. We first present the one rather well-known case in which a simple
list schedule is optimal, namely expected makespan minimization when all
task times have exponential distribution. We will then briefly discuss heuristic
approaches for general distributions.

11.2.1 F2|(pmtn), exp Pij|E(Cmax)

The simplest result in stochastic flow shop theory is the extension of the
classic two-machine makespan problem to the case where the processing
times, Aj [Bj], of Jj on M1 [M2] are exponentially distributed, and we
seek to minimize the expected makespan. Let the task times have means
aj = E(Aj), bj = E(Bj), and rates αj = 1/aj, βj = 1/bj. For convenience,
we will let Aj [Bj ] represent the tasks of Jj , as well as their (random) pro-
cessing times.

We might start by asking, in this two-machine makespan setting, if the
task times are random, can we simply use E(Aj) and E(Bj) in JR? The
answer is “no”. We still have Cmax = maxj=1,...,n Rj (see (2.1)), but Rj is
now a random variable: Rj = Σj

i=1Ai + Σn
i=jBi. Unfortunately, E(Cmax) =

E(maxj Rj) = maxj E(Rj).
Nevertheless, if the task times are exponentially distributed, a simple so-

lution still exists. It is sometimes called Talwar’s Theorem. The proof below
is due to Weiss (1982), as presented in Pinedo (2008).

Theorem 11.7 (Talwar 1967; Bagga 1970; Cunningham and Dutta 1973)
For F2|(pmtn), exp Pij|E(Cmax), using static or dynamic scheduling, with or
without preemption:

S� = ↘(αj − βj).

Proof: First, we will show that S� is optimal over all static policies, by
contradiction. We have by Theorem 11.5 that only permutation schedules
need be considered. Consider any schedule S = S�. There must be adjacent
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jobs, Jj and Jk, in S, with Jj preceding Jk but αj − βj < αk − βk. We will
show that interchanging these jobs reduces the expected makespan.

As shown in Fig. 11.1, the jobs preceding Jj in S occupy M1 [M2] up to
time C1i [C2i], where Ji is the last job before Jj . Let Di = C2i − C1i be
the excess occupancy or stagger of M2 over M1. Similarly, following Jk, the
stagger is Dk = C2k − C1k, and let the next job be Jl.

Fig. 11.1 A realization of schedule S

Now interchange Jj and Jk, leaving the rest of the schedule unchanged.
Call the new schedule S′, and distinguish the new completion times by primes.
The occupancy of M1 preceding Jl is unchanged, since C′

1j = C1k = C1i +
Aj +Ak. That is, C′

1j and C1k are stochastically identical: they have the same
distribution. What about the occupancy of M2? How does C2k compare to
C′

2j? Since things are unchanged on M1, this is equivalent to asking how
Dk compares with D′

j . We seek to show that the interchange improves the
schedule, or specifically that the stagger after the interchange is stochastically
smaller than it was before: D′

j <st Dk. There are two cases.

• If Di ≥ Aj +Ak, or C2i ≥ C1k (see Fig. 11.1), then, as on M1, interchange
makes no difference: D′

j = Dk = Di + Bj + Bk − Aj − Ak.
• If Di ≤ Aj + Ak, then before the interchange Dk has the distribution

P (Dk > t|Di ≤ Aj + Ak) =
βj

αk+βj
e−βkt + αk

αk+βj

(
βk

βk−βj
e−βjt + βj

βj−βk
e−βkt

)
To see this, first note that, with Di ≤ Aj + Ak, Ak and Bj start at the
same time (actually, if Di > Aj , Ak starts earlier than Bj , but when Di

ends, the memoryless property allows us to assume that Ak starts afresh).
The first term on the right results when, with probability βj/(αk+βj), Bj

ends first (see Theorem 11.3), in which case Dk = Bk. In the second case,
when Bj > Ak as illustrated in Fig. 11.1, Dk equals the residual (which,
memoryless, equals total) Bj plus Bk, and this sum has the distribution
given in Theorem 11.4.

After the job interchange, P (D′
j > t|Di ≤ Aj +Ak) has the same formula,

with subscripts j and k interchanged. We can now show that this interchange
has made the stagger, Dk, stochastically smaller. Thus, after much algebra,
we find that, always conditional on Di ≤ Aj + Ak:

P (Dk > t)− P (D′
j > t) =

βjβk

(αj+βk)(αk+βj)
e−βkt−e−βj t

βj−βk
(αk − βk − [αj − βj ]) ≥ 0.
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Using a sample path argument, it follows that, for each realization of the
schedule before and after Jj and Jk, if C1k is unchanged and C2k is reduced,
the makespan can only be smaller. Thus, with D′

j stochastically smaller than
Dk, the expected makespan is reduced. This ends the proof for static policies.

As for dynamic nonpreemptive policies, we first note that on M2 the order
of jobs is immaterial. Given the order on M1, the work coming to M2 must
simply be done as soon as possible; rearrangement will not affect makespan.
On M1, suppose a task has just been completed. What new information could
we now observe, to cause us to change our initial ordering? The only relevant
information is the amount of work left to be done on M2, the stagger, which
is now a random variable yet to be determined. But for any realization, the
decision is the same, as shown above in the static case, and so it must remain
the best choice.

Preemption is even more easily disposed of, using the memoryless property.
On M2, the residual time of the in-process task is always the same; there can
be no reason to change an earlier decision. On M1, we might wish to preempt a
task because of its own duration (“its taking too long”), but memorylessness
makes this pointless; or because of the evolving situation on M2, but the
argument in the last paragraph applies here again, leaving the static list
schedule intact. ��

It was later shown by Ku and Niu (1986) that this simple list schedule
stochastically minimizes the makespan. It looks very different from Johnson’s
Rule; for one thing, a job’s position depends on both its task times, not just
on the smaller one. However, it turns out to have a close relationship. Recall,
from Theorem 2.14, the basic preference ordering result in the deterministic
case, which led to JR:

j � k ⇐⇒ min(aj, bk) ≤ min(ak, bj).

It turns out that our new preference order (j � k ⇐⇒ αj − βj ≥ αk − βk) is
nothing but

j � k ⇐⇒ E(min(Aj, Bk)) ≤ E(min(Ak, Bj)) (11.1)

as is quickly seen using Theorem 11.2.

11.2.2 Asymptotic Optimality of Johnson’s Rule

While the optimal schedule cannot be specified when task distributions are
arbitrary, Portougal and Trietsch (2006) have shown that, under reasonable
conditions, the following heuristic is asymptotically optimal, as the number
of jobs increases.

Johnson’s Heuristic Replace task times by their mean values and solve
the deterministic equivalent problem using JR. One additional rule is added:
if two tasks have the same mean time, then to break ties the one with smaller
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variance is considered shorter. Let the resulting schedule be SJ = JR(a, b),
with expected makespan CJ .

If S� is the optimal schedule, with expected makespan C�, the precise result
is as follows.

Theorem 11.8 If, for all n = 1, 2, . . . and for finite positive γ and δ:
(a) (1/n)

∑n
j=1(E(Aj) + E(Bj)) ≥ δ,

(b) (1/n)
∑n

j=1(V (Aj) + V (Bj)) ≤ γ2,
then, for all ε> 0, there exists a number nε such that, for every instance of
F2|(pmtn)|E(Cmax) with n > nε:

(CJ − C�)/C� ≤as ε.

The authors show that a value nε = (4γ/δε)2 satisfies the theorem, but find
experimentally that about half that value is sufficient.

11.2.3 Heuristics

No optimal algorithms exist for distributions other than exponential. Baker
and Trietsch (2009) propose the following heuristics for F2|(pmtn)|E(Cmax).

• Talwar’s Heuristic Use ↘(αj − βj).
This, of course, treats each task time as though it were exponential.

• Johnson’s Heuristic Use JR(a, b).
This is the same stochastic extension of JR specified in the last section.

• API (Adjacent Pair Interchange) Heuristic Starting with any se-
quence, use an API neighborhood search to iteratively improve it. Even
to evaluate a schedule can be prohibitive, so we use a heuristic to assess
the difference between two neighboring solutions. This is based on John-
son’s Relation, for which the stochastic equivalent given in (11.1) is valid,
as we have just seen, when processing times are exponential. Otherwise,
it only holds when the two jobs are being sequenced in isolation; it is
not strictly true for two adjacent jobs in a longer schedule. Nevertheless,
the API heuristic uses it as the criterion for comparing two neighboring
schedules in searching for an improved solution. As usual, adjacent jobs
are compared, and interchanged when indicated, repeatedly from left to
right until no further improvement is possible.

It should be pointed out that even this rather simple test criterion can
be intractable for some distributions: there may be no analytic formula
for E(min(A, B)). The authors suggest approximating the task times with
the normal distribution. In this case, it can be shown that

Lemma 11.2 If X and Y are independent normal random variables with
means μx and μy with μx ≥ μy, and variances σ2

x and σ2
y with σ2

t = σ2
x+σ2

y,
and letting ρ = (μx − μy)/σt, we have:

E(min(X, Y )) = μx − σt [ϕ(ρ) + ρ Φ(ρ)],
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where ϕ(·) and Φ(·) are the standard normal density and distribution func-
tions.

We have required that μx ≥ μy simply to make ρ ≥ 0; this is not necessary.

These heuristics are easy to use; no simulation or implicit search is needed.
Moreover, Baker and Trietsch (2011) report in a later paper that computa-
tional tests show good performance of all three. Briefly, the methodology
employed was as follows. First, a family of processing time distributions was
selected. After some initial experimentation with exponential and uniform
distributions, the authors settled on the log normal for all task time distribu-
tions. To specify a problem instance now requires the choice of the number of
jobs, and the mean and variance of two task times of each job, although we
may note that the first two heuristics only utilize mean values. Means and
variances were drawn randomly from given intervals; for example, the means
of ten jobs might be 20 samples uniformly drawn from [10, 20].

Given the job parameters, the heuristics quickly produced three candidate
job sequences. For each, 100,000 simulations were run using log normal dis-
tributions, to estimate the expected value of the makespan. Additionally, a
proprietary genetic algorithm, the Evolutionary solver, was used to find a
near-optimal benchmark solution.

Most of the testing was for 10-job problems (the relative merits of the
heuristics seemed insensitive to problem size). A variety of ranges were tested
for means and variances. The authors found that:

• None of the heuristics was dominated; each performed best under certain
conditions.

• While it did not dominate the others, The API Heuristic was a clear fa-
vorite, coming in first or a close behind under almost all conditions. It did
worst when task time variance was high.

• Johnson’s Heuristic excelled when the probability distributions had little
or no overlap, as when variances are small and/or means are widely sep-
arated. Under these conditions, the sizes of task times retain their rank
ordering under (almost) all realizations, so it is not surprising that the
problem behaves like its deterministic counterpart.

• On the other hand, Talwar’s Heuristic tended to do best when task time
distributions overlap a great deal. Of course, it is unequivocally best when
the distributions are exponential.

• All the heuristics can be used to dispatch jobs; that is, to select the next
job to process from a set of jobs that is constantly changing over time.
Both Talwar’s and Johnson’s Rules are of course list schedules, so the
job order remains the same when a job is added or removed. The API
Heuristic is not a list schedule (we cannot compute a number for each job
that determines it place in the order), but a new arrival can be inserted
into the earliest stable position without rearranging the others.
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11.3 Fm|perm, Pij = Pj|E(Cmax) or E(ΣCj)

Henceforth, we will have to make rather restrictive assumptions in order
to get any results. Throughout this chapter, unless otherwise indicated, we
limit consideration to nonpreemptive static policies; that is, to permutation
schedules. In this section, we assume that the task times of a job are the same
on every machine. That is, the processing times of Jj on the m machines
are independent random variables with the same distribution Fj and mean
value pj. Our shorthand for this will be Pij = Pj. This notation should not
be misinterpreted to mean that all Pij for a given j are the same random
variable. Think of Pj as symbolizing any one of the m independent, identically
distributed task times of Jj .

11.3.1 Fm|perm, Pij = Pj|E(Cmax)

We start by giving the rather trivial deterministic result.

Lemma 11.3 For Fm|(perm), (pmtn), pij = pj|Cmax, any permutation sched-
ule is optimal, with

Cmax =
∑n

j=1 pj + (m − 1)pmax , where pmax = maxj=1,...,n pj.

Proof: First, limit consideration to permutation schedules. Note that, in
any partial schedule, the staggers (i.e., the differences between the occupan-
cies of successive machines) are all the same, and equal to the largest pj

so far scheduled. Now, let S = (1, 2, . . . , n) be an arbitrary schedule, and
suppose pk = pmax. The above observation implies that the stagger remains
the same for all jobs after Jk, which in turn implies that there is no further
idle time on any machine; in particular, on Mm. Of course, the jobs pre-
ceding Jk are contiguous on M1 (all jobs on M1 are contiguous). Thus, the
makespan is determined by the total time on M1 preceding Jk (Σk−1

j=1pj), plus
the time required to process Jk (mpk), plus the total time on Mm following
Jk (Σn

j=k+1pj). This gives the desired result.
But this is clearly a lower bound on the makespan, so it must be optimal

over all schedules, with or without preemption. ��

For the stochastic analogue, we have:

Lemma 11.4 For Fm|perm, Pij = Pj|E(Cmax), any schedule has

E(Cmax) ≥
∑n

j=1 pj + (m − 1)pmax ,

where pj = E(Pj) , pmax = maxj=1,...,n pj .

Proof: By the logic of the deterministic counterpart, and again letting Jk be
the job with largest processing time in an arbitrary S = {1, 2, . . . , n}, Cmax

is the sum of three independent time intervals:

1. the time on M1 until Jk begins, whose mean is Σk−1
j=1pj;
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2. the time to process Jk through all stages, with mean at least mpmax (the
m tasks of Jk must be done sequentially, but some may be delayed due to
random variation of other task times); and
3. the time on Mm after Jk is finished, with mean at least Σn

j=k+1pj. ��

We now extend the concept of pyramidal schedules to incorporate random-
ness.

Definition 11.1 If Jj has task times Pj with the same distribution Fj with
mean pj on all m machines, for j = 1, 2, . . ., n, then an arbitrary permutation
schedule S = (1, 2, . . . , n) is pyramidal if there is a job Jk such that p1 ≤
p2 ≤ . . . ≤ pk and pk ≥ pk+1 ≥ . . . ≥ pn. Of course, pk = pmax.

Pyramidal schedules are also called SEPT -LEPT (see Pinedo 2008).
SEPT and LEPT schedules are special cases, when k = n and k = 1,
respectively.

Theorem 11.9 (Pinedo 1982) For Fm|perm, Pij = Pj|E(Cmax), if

P1 ≤as P2 ≤as . . . ≤as Pn,

then any pyramidal schedule is optimal, with

E(Cmax) =
∑n

j=1 pj + (m − 1)pmax.

Proof: By hypothesis, pmax = pn. In any pyramidal schedule, let B [A] be the
set of jobs scheduled before [after] Jn. The jobs in B ∪ {Jn}, in SEPT order
and with nonoverlapping distributions, are never delayed at any machine,
so their task times are independent and the expected time until the end of
Jn is Σj∈B pj + mpn. After Jn, decreasing task times and nonoverlapping
distributions imply that no machine has any idle time, so the expected time
remaining on Mm is Σj∈A pj. Optimality follows by Lemma 11.4. ��

11.3.2 Fm|perm, Pij = Pj|E(ΣCj)

Based on the above results, we can extend the analysis to cover the objective
of minimizing total expected completion times.

Theorem 11.10 (Pinedo 2008) For Fm|perm, Pij = Pj|E(ΣCj), if

P1 ≤as P2 ≤as . . . ≤as Pn,

then SEPT is optimal, with

E(
∑

Cj) =
∑n

j=1(m + n − j)pj .

Proof: By Theorem 11.9, to minimize the expected completion time in any
position k, the k smallest jobs should be scheduled first, in any pyramidal
sequence. Thus, SEPT = (1, 2, . . . , n) simultaneously minimizes E(Ck) for all
k, so is optimal for E(ΣCj). The formula for E(ΣCj) follows easily. ��
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11.4 F2|perm, no -wait or block, Pij|E(Cmax)

As in the deterministic case, it remains true with random task times that with
two machines, nondelay scheduling is equivalent to scheduling with blocking.
As usual, for Jj , we let Aj [Bj ] denote both its tasks and their processing
times on M1 [M2], with distribution FAj(·) [FBj(·)] and mean value aj [bj].
Also, recall that permutation schedules must be static and nonpreemptive.

11.4.1 A Traveling Salesman Formulation

As we saw repeatedly in the chapter on no -wait flow shops, the no -wait
feature locks a job’s operations together so that, if Jj follows Ji, a fixed
amount is added to the makespan regardless of the rest of the schedule. As
noted in Pinedo (1982), this permits a TSP formulation, with n + 1 cities
J0, J1, . . . , Jn, where J0 is the dummy city where the tour starts and ends,
having A0 = B0 = 0.

Suppose Jj immediately follows Ji in any schedule. The expected time
added, from the start of Bi to the start of Bj , is

dij = E(max{Aj, Bi}) .

Noting that, if Z = max{X, Y }, then FZ(t) = FX(t)FY (t), we have:

dij =
∫∞
0

[1 − FAj(t)FBi(t)]dt .

This is a deterministic TSP, but it does not have the special structure that
lends itself to polynomial solution.

11.4.2 F2|perm, no-wait or block, Pij = Pj |E(Cmax)

We now again make the assumption (denoted Pij = Pj) that the task times
of a job on all machines are independent variates with the same distribution
Fj.

Theorem 11.11 (Pinedo 1982)
For F2|perm, no-wait or block, Pij = Pj|E(Cmax), if

P1 ≤st P2 ≤st . . . ≤st Pn,

then

S� = (1, 3, 5, . . . , n, . . . , 6, 4, 2), or its reverse.

We omit the proof; it is found in Pinedo (1982, 2008).

11.5 Conclusions

While some results, both practical and theoretical, exist for two machines,
almost nothing is known about the stochastic problem with m > 2. We need
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at least some testing of simple heuristics, so that satisfactory schedules can
be provided for practical use.
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Appendix A

THE COMPLEXITY OF PROBLEMS

A.1 Preliminaries

Many scheduling problems are combinatorial in nature: problems where we
seek the optimum from a very large but finite number of solutions. Sometimes
such problems can be solved quickly and efficiently, but often the best solution
procedures available are slow and tedious. It therefore becomes important to
assess how well a proposed procedure will perform.

The theory of computational complexity addresses this issue. The seminal
papers of complexity theory date from the early 70’s (e.g., Cook, 1971 and
Karp, 1972). Today, it is a wide field encompassing many sub-fields. For a
formal treatment, the interested reader may wish to consult Papadimitriou
(1994). As we shall see, the theory partitions all realistic problems into two
groups: the “easy” and the “hard” to solve, depending on how complex (hence
how fast or slow) the computational procedure for that problem is. The theory
defines still other classes, but all except the most artificial mathematical
constructs fall into these two.

It should be noted that “easy” or “hard” does not simply mean quickly or
slowly solved. Sometimes, for small problem instances, “hard” problems may
be more quickly solved than “easy” ones. As we shall see, the difficulty of a
problem is measured not by the absolute time needed to solve it, but by the
rate at which the time grows as the problem size increases.

To this point, we have not used the accepted terminology; we introduce
it now. A problem is a well-defined question to which an unambiguous an-
swer exists. Solving the problem means answering the question. The prob-
lem is stated in terms of several parameters, numerical quantities which are
left unspecified but are understood to be predetermined. They make up the
data of the problem. An instance of a problem gives specified values to each
parameter. A combinatorial optimization problem, whether maximization or
minimization, has for each instance a finite number of candidates from which
the answer, or optimal solution, is selected. The choice is based on a real-
valued objective function which assigns a value to each candidate solution. A
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decision problem or recognition problem has only two possible answers, “yes”
or “no”.

An example of an optimization problem is a linear program, which asks
“what is the greatest value of cx subject to Ax ≤ b?”, where bold characters
denote n-dimensional vectors (lower case) or n×n matrices (upper case). To
make this a combinatorial optimization problem, we might make the variable
x bounded and integer-valued so that the number of candidate solutions is
finite. A decision problem is “does there exist a solution to the linear program
with cx ≥ k?”

To develop complexity theory, it is convenient to state all problems as de-
cision problems. An optimization (say, maximization) problem can always be
replaced by a sequence of problems of determining the existence of solutions
with values exceeding k1, k2, . . .. An algorithm is a step-by-step procedure
which provides a solution to a given problem; that is, to all instances of the
problem. We are interested in how fast an algorithm is. We now introduce a
measure of algorithmic speed: the time complexity function.

A.2 Polynomial versus Exponential Algorithms

Note that we always think of solving problems using a computer. Thus, an
algorithm is a piece of computer code. Similarly, the size of a problem in-
stance is technically the number of characters needed to specify the data, or
the length of the input needed by the program. For a decision problem, an
algorithm receives as input any string of characters, and produces as output
either “yes” or “no” or “this string is not a problem instance.” An algorithm
solves the instance or string in time k if it requires k basic operations (e.g.,
add, subtract, delete, compare, etc.) to reach one of the three conclusions
and stop.

It is customary to use as a surrogate for instance size, any number that is
roughly proportional to the true value. We shall use the positive integer n to
represent the size of a problem instance. In scheduling, this usually represents
the number of jobs to be scheduled. In summary, for a decision problem Π:

Definition A.1 The Time Complexity Function (TCF) of algorithm A is:
TA(n)=maximal time for A to solve any string of length n.

In what follows, the big oh notation introduced by Hardy and Wright
(1979) will be used when expressing the time complexity function. We say
that, for two real-valued functions f and g, f(n) is O(g(n)), or f(n) is of the
same order as g(n) if |f(n)| ≤ k · |g(n)| for all n ≥ 0 and some k > 0.

An efficient, polynomially bounded, polynomial time, or simply polynomial
algorithm is one which solves a problem instance in time bounded by a power
of the instance size. Formally:
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Definition A.2 An algorithm A is polynomial time if there exists a polyno-
mial p such that

TA(n) ≤ p(n), ∀n ∈ Z+ ≡ {1, 2, . . .}.

More specifically, an algorithm is polynomial of degree c, or has complexity
O(nc), or runs in O(nc) time if, for some k > 0, the algorithm never takes
longer than knc (the TCF) to solve an instance of size n.

Definition A.3 The collection P comprises all problems for which a poly-
nomial time algorithm exists.

Problems which belong to P are the ones we referred to earlier as “easy”. All
other algorithms are called exponential time or just exponential, and problems
for which nothing quicker exists are “hard”. Although not all algorithms in
this class have TCF’s that are technically exponential functions, we may
think of a typical one as running in O(cp(n)) for some polynomial p(n). Other
examples of exponential rates of growth are nn and n! .

We can now see how, as suggested earlier, the terms “hard” and “easy” are
somewhat misleading, even though exponential TCFs clearly lead to far more
rapid growth in solution times. Suppose an “easy” problem has an algorithm
with running time bounded by, say kn5. Such a TCF may not be exponential,
but it may well be considered pretty rapidly growing. Furthermore, some
algorithms take a long time to solve even small problems (large k), and hence
are unsatisfactory in practice even if the time grows slowly. On the other
hand, an algorithm for which the TCF is exponential is not always useless
in practice. The concept of the TCF is a worst case estimate, so complexity
is only an upper bound on the amount of time required by an algorithm.
This is a conservative measure and usually useful, but it is too pessimistic
for some popular algorithms. The simplex algorithm for linear programming,
for example, has a TCF that is O(2m) where m is the number of constraints,
but it has been shown (see Nemhauser et al., 1989) that for the average case
the complexity is only O(nm) where n is the number of variables. Thus, the
algorithm is actually very fast for most problems encountered.

Despite these caveats, exponential algorithms generally have running times
that tend to increase at an exponential rate and often seem to “explode” when
a certain problem size is exceeded. Polynomial time algorithms usually turn
out to be of low degree (O(n3) or better), run pretty efficiently, and are
considered desirable.

A.3 Reducibility

A problem can be placed in P as soon as a polynomial time algorithm is found
for it. Sometimes, rather than finding such an algorithm, we may place it in P
by showing that it is “equivalent” to another problem which is already known
to be in P. We explain what we mean by equivalence between problems with
the following definitions.
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Definition A.4 A problem Π ′ is polynomially reducible, or simply reducible
to a problem Π (Π ′ ∝ Π) if, for any instance I′ of Π ′, an instance I of Π
can be constructed in polynomially bounded time, such that, given the solution
SI to I, the solution SI′ to I′ can be found in polynomial time.

We call the construction of the I that corresponds to I′ a polynomial
transformation of I′ into I. Later, we will briefly mention a more general type
of reducibility, in which the polynomial time requirements for constructing
I and finding SI′ are relaxed. Until then, reduction will mean polynomial
reduction.

Definition A.5 Two problems are equivalent if each is reducible (or simply
reduces) to the other.

Since reduction, and hence equivalence, are clearly transitive properties,
we can define equivalence classes of problems, where all problems in the same
equivalence class are reducible (or equivalent) to each other. Consider poly-
nomial problems. Clearly, for two equivalent problems, if one is known to be
polynomial, the other must be, too. Also, if two problems are each known to
be polynomial, they are equivalent. This is because any problem Π ′ ∈ P is
reducible to any other problem Π ∈ P in the following trivial sense. For any
instance I′ of Π ′, we can pick any instance of Π, ignore its solution, and find
the solution to I′ directly. We conclude that P is an equivalence class.

We state a third simple result for polynomial problems as a theorem.

Theorem A.1 If Π ∈ P, then Π ′ ∝ Π ⇒ Π ′ ∈ P.

Proof: Given any instance I′ of Π ′, one can find an instance I of Π by
applying a polynomial time transformation to I′. Since Π ∈ P, there is a
polynomial time algorithm that solves I. Hence, using the transformation
followed by the algorithm, I′ can be solved in polynomial time. �

Normally, to “reduce” means to “make simpler”. Not so here. Keep in
mind that if Π ′ reduces to Π (Π ′ ∝ Π) then, unless they are equivalent, Π
is the more difficult problem. We can say that Π ′ is a special case of Π.

A.4 Classification of Hard Problems

In practice, we do not usually use reduction to show a problem is polynomial.
We are more likely to start optimistically looking for an efficient algorithm
directly, which may be easier than seeking another problem known to be
polynomial, for which we can find an appropriate transformation. But sup-
pose we cannot find either an efficient algorithm or a suitable transformation.
We begin to suspect that our problem is not “easy” (i.e., is not a member of
P). How can we establish that it is in fact “hard”? We start by defining a
larger class of problems, which includes P and also all the difficult problems
we may ever encounter. To describe it, consider any combinatorial decision
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problem. For a typical instance, there may be a very large number of possible
solutions which may have to be searched. Picture a candidate solution as a
set of values assigned to the variables x = (x1, ..., xn). The question may be
“for a given vector c is there a feasible solution x such that cx ≤ B?” and the
algorithm may search the solutions until it finds one satisfying the inequality
(whereupon it stops with the answer “yes”) or exhausts all solutions (and
stops at “no”).

This may well be a big job. But suppose we are told “the answer is ‘yes’,
and here is a solution x that satisfies the inequality”. We feel we must at least
verify this, but that is trivial. Intuitively, even for the hardest problems, the
amount of work to check that a given candidate solution confirms the answer
“yes” should be small, even for very large instances. We will now define our
“hard” problems as those which, though hard to solve, are easy to verify,
where as usual “easy” means taking a time which grows only polynomially
with instance size. To formalize this, let:

VA(n) = maximal time for A to verify that a given solution
establishes the answer “yes” for any instance of length n.

Definition A.6 An algorithm Ã is nondeterministic polynomial time if there
exists a polynomial p such that for every input of length n with answer “yes”,
VÃ(n) ≤ p(n).

Definition A.7 The collection NP comprises all problems for which a non-
deterministic polynomial algorithm exists.

It may be noted that a problem in NP is solvable by searching a decision
tree of polynomially bounded depth, since verifying a solution is equivalent to
tracing one path through the tree. From this, it is easy to see that P ⊆ NP .
Strangely, complexity theorists have been unable to show that P ⊂ NP ;
it remains possible that all the problems in NP could actually be solved by
polynomial algorithms, so that P = NP. However, since so many brilliant re-
searchers have worked on so many difficult problems in NP for so many years
without success, this is regarded as being very unlikely. Assuming P = NP ,
as we shall hereafter, it can be shown that the problems in NP include an
infinite number of equivalence classes, which can be ranked in order of in-
creasing difficulty; where an equivalence class C is more difficult than another
class C′ if, for every problem Π ∈ C and every Π ′ ∈ C′, Π ′ ∝ Π but Π ∝ Π ′.
There also exist problems that cannot be compared: neither Π ∝ Π ′ nor
Π ′ ∝ Π.

Fortunately, however, all problems that arise naturally have always been
found to lie in one of two equivalence classes: the “easy” problems in P, and
the “hard” ones, which we now define.

The class of NP-hard problems (NPH) is a collection of problems with
the property that every problem in NP can be reduced to the problems in
this class. More formally,
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Definition A.8 NPH = {Π : ∀Π ′ ∈ NP , Π′ ∝ Π}

Thus each problem in NPH is at least as hard as any problem in NP. We
know that some problems in NPH are themselves in NP, though some are
not. Those that are include the toughest problems in NP, and form the class
of NP-complete problems (NPC). That is,

Definition A.9 NPC = {Π : (Π ∈ NP) and (∀Π ′ ∈ NP, Π′ ∝ Π)}

The problems in NPC form an equivalence class. This is so because all prob-
lems in NP reduce to them, hence, since they are all in NP, they reduce to
each other. The class NPC includes the most difficult problems in NP. As
we mentioned earlier, by a surprising but happy chance, all the problems we
ever encounter outside the most abstract mathematical artifacts turn out to
belong to either P or NPC.

When tackling a new problem Π, we naturally wonder whether it belongs
to P or NPC: is it “easy” or “hard”? As we said, to show that the problem
belongs to P, we usually try to find a polynomial time algorithm, though we
could seek to reduce it to a problem known to be polynomial. If we are unable
to show that the problem is in P, the next step generally is to attempt to
show that it lies in NPC; if we can do so, we are justified in not developing
an efficient algorithm.

To show that our problem Π is hard, we look for a problem, call it Π ′ that
has already been proven hard, and can be reduced to our problem. That is,
for any instance of the hard problem, we can efficiently construct an instance
of our problem such that knowing the answer to our problem will immediately
tell us the answer to the hard problem. Effectively, the hard problem Π ′ is a
special case of our problem Π. Now, if our problem is easy, the hard problem
would be easy. But it is not. So our problem must be hard, too.

This logic is summarized in the following theorem, which should be clear
enough to require no proof.

Theorem A.2 ∀Π, Π ′ ∈ NP, (Π ′ ∈ NPC) and (Π ′ ∝ Π) ⇒ Π ∈ NPC

Thus, we need to find a problem Π ′ ∈ NPC and show Π ′ ∝ Π, thereby
demonstrating that Π is at least as hard as any problem in NPC. To facilitate
this, we need a list of problems known to be in NPC. Several hundred are
listed in Garey and Johnson (1979) in a dozen categories such as Graph
Theory, Mathematical Programming, Sequencing and Scheduling, Number
Theory, etc., and more are being added all the time. Even given an ample
selection, a good deal of tenacity and ingenuity are usually needed to pick
one with appropriate similarities to ours and to fill in the precise details of
the transformation.

In the next section, we describe the basic technique for theorem proving
in complexity theory, and conclude with an illustrative example.
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A.5 Strong NP-Completeness

We now introduce one of the various ways NP-complete problems can be
classified into smaller subclasses, the only one we will use in this monograph:
the partitioning of the class NPC into the two sets, ordinary and strongly NP-
complete problems. For a detailed description of these classes see Garey and
Johnson (1979). In practical terms, an ordinary NP-complete problem can be
solved using implicit enumeration algorithms like dynamic programming. In
this case, the time complexity of the algorithm is not polynomial in the length
of input data, but it is polynomial in the size of these data. For instance,
Partition is an NP-complete problem (to be defined shortly, in Sect. A.7),
for which the input data are k positive integers vi (i = 1, 2, ..., k). Let V be the
size of this data: V = Σivi. Partition is solvable by dynamic programming
in O(nV ) time (see Martello and Toth, 1990). Evidently, this complexity is
polynomial in V . To see that this complexity bound is not polynomial in the
length of the data, consider the binary encoding scheme. In this scheme each
vi can be represented by a string of length O(log vi), and hence v1, . . . , vn

can be described by a string of length O(Σi log vi) which is no greater than
O(n logV ). We see that the time complexity O(nV ) of the dynamic program
(DP) is polynomial in the size V of the data, but not polynomial in the
length of the input data, O(n logV ). When the complexity of an algorithm
is polynomial in the size of the data, but not the length of the input, we
refer to it as a pseudo-polynomial algorithm. A NP-complete problem solvable
by a pseudo-polynomial algorithm is called ordinary NP-complete. Else, the
problem is strongly NP-complete.

A.5.1 Pseudo-Polynomial Reduction

As we know, to show ordinary NP-completeness of Π, we start with an or-
dinary NP-complete Π ′ and provide a polynomial reduction to Π. That is,
for any instance I′ of Π ′ we produce an instance I of Π in polynomial time,
and given the solution SI of I, we produce a solution SI′ of I′, also in poly-
nomial time. Now, if we could solve Π in polynomial time, we would have a
sequence of three polynomial steps that would solve Π ′. But we know Π ′ is
not polynomially solvable, and so Π cannot be, either.

The same logic applies if we start with a strongly NP-complete Π ′. Given
a polynomial reduction, Π must also be strongly NP-complete: if Π were
anything less (polynomial or ordinary NP-complete), Π ′ would be, too. But
now note: if either or both the steps in the reduction were pseudo-polynomial,
and if Π could be solved polynomially or pseudo-polynomially, we would still
have an overall pseudo-polynomial solution to Π ′, giving us the contradiction
we need. This should provide the motivation for the following analogue of
Definition A.4:

Definition A.10 A problem Π ′ is pseudo-polynomially reducible to a prob-
lem Π (Π ′ ∝Π) if, for any instance I′ of Π ′, an instance I of Π can be
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constructed in pseudo-polynomially bounded time, such that, given the solu-
tion SI to I, the solution SI′ to I′ can be found in pseudo-polynomial time.

This definition leads to the following extension of Theorem A.2:

Theorem A.3 ∀Π, Π ′ ∈ NP , if Π ′ is strongly NP-complete, and Π ′ ∝Π,
then Π is strongly NP-complete.

This is a stronger result than Theorem A.2. However, it is not to our
knowledge ever used, partly because Theorem A.2 seems to be sufficient,
partly because pseudo-polynomial transformations are much harder to find
than polynomial ones, and finally because Theorem A.3 does not seem to be
widely known.

A.6 How to show a Problem is NP-Complete

We now summarize the process of actually proving the NP-completeness,
whether ordinary or strong, of a new Problem Π of interest. Recall, we are
dealing only with decision problems.

1. Show that Π ∈ NP.
That is, given a solution SΠ of Π we must be able to check whether SΠ

provides a “yes” or “no” answer for Π in polynomial time. This is a technical
requirement. After all, as we said earlier, “all the problems we ever encounter
outside the most abstract mathematics turn out to belong to either P or
NPC ” and hence to NP. Thus, in practice, this step is commonly assumed
without mention.

2. Find a problem Π′ ∈ NPC that reduces to Π.
This, of course, is the crux of the matter. It is not easy to do, requiring
technical skills born of insight and experience. If a candidate problem Π ′ is
to serve our purposes, then by the definition of reduction in Sect. A.3, the
following must be true and verifiable:

• For any instance I′ of Π ′, we must be able to construct an instance I of
Π such that I has the solution SI = yes if and only if I′ has the solution
SI′ = yes.

• The times required to construct I from I′, and to construct SI′ from SI ,
must be polynomial [may be polynomial or pseudo-polynomial] in the size
of (i.e., the length of input data required to specify) I′, when I′ is ordinary
[strongly] NP-complete.

3. Determining whether Π is ordinary or strongly NP-complete
The precise complexity of Π depends largely on the complexity status of the
known NP-complete problem Π ′.

• If Π ′ is strongly NP-complete, then Π is strongly NP-complete.
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• If Π ′ is ordinary NP-complete, then Π is at least ordinary NP-complete.
If in addition a pseudo-polynomial algorithm exists for Π, it is confirmed
to be ordinary NP-complete.

Finally we summarize, in the decision tree of Fig. A.1, the sequence of logical
steps required to show the complexity of a new problem by reduction of
a known problem. We have presented the steps as they are usually given,
leaving out the complication that in some cases the reduction may be pseudo-
polynomial.

Fig. A.1 Establishing the complexity status of a problem Π

A.7 A Sample Proof

Here is a very simple application of the reduction process outlined previously.
More ingenious reductions will be found scattered through this monograph.

A.7.1 PARTITION ∝ P2||Cmax

We wish to show that the following problem is NP-complete:

P2||Cmax ≤ B?

INSTANCE: Two parallel identical processors, a set J = {J1, J2, . . . , Jn} of
jobs with a processing time pj for each Jj, and threshold value B.
QUESTION: Is there a nonpreemptive assignment of the n jobs to the two
processors so that at any time each machine processes at most one job, and
the completion time of Jj is Cj ≤ B for every j = 1, 2, . . . , n ?

This is the decision version of the problem P2||Cmax, replacing a minimiza-
tion problem with a yes-or-no question to answer. It can be solved repeatedly
for different values of B in order to find the minimal makespan. To prove it
“hard”, we will show that the following problem, known to be NP-complete,
can be reduced to it:
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PARTITION

INSTANCE: A set of k positive integers vi : i ∈ T = {1, 2, ..., k}.
QUESTION: Is there a subset T ′ ⊂ T such that∑

i∈T ′ vi =
∑

i∈T −T ′ vi ?

We must first show that P2||Cmax ∈ NP . That is, given a schedule S of
the n jobs, we must be able to check in polynomial time whether the asso-
ciated makespan Cmax(S) ≤ B. To perform the check, we need to find the
completion time of the last job processed by each of the processors. This re-
quires no more than n additions involving the processing times of the jobs in
J . Thus, Cmax(S) can be computed in O(n) time, and subsequently, whether
Cmax(S) ≤ B or not can be established in O(1) time. Hence, P2||Cmax ∈ NP .

Next, we must construct an instance I of P2||Cmax corresponding to an
instance I′ of Partition. Let v1, . . . , vk be the integers in I′. Then I is sim-
ply defined by letting n = k, pi = vi (i = 1, . . . , n), and B = (1/2)Σipi. The
construction of I requires n + 2 assignments and n + 1 basic operations to
compute B, so the total amount of effort is O(n).

To confirm that this is indeed a reduction, we need to show that the answer
is “yes” for the instance I′ of Partition if and only if the answer is “yes”
for the instance I of P2||Cmax. Indeed, given any I′ with answer “yes”, let
T ′ be a subset of T giving Σi∈T ′ vi = Σi∈T −T ′ vi . We can now construct a
solution for I by assigning all jobs Jj : j ∈ T ′ to be processed (in any order)
by M1, and all jobs Jj : j ∈ T − T ′ to be processed (in any order) by M2.
Let S be the resulting schedule for P2||Cmax. By definition of T ′,∑

i∈T ′ pi =
∑

i∈T −T ′ pi = 1
2

∑
i pi = B.

Clearly, given T ′, the schedule S is constructed in O(n) time. Similarly, given
a schedule S that solves P2||Cmax, we can construct the partition T ′, T − T ′

in O(n) time as well.
Since Partition is an ordinary NP-complete problem, to completely de-

termine the status of P2||Cmax, we will have to develop a pseudo-polynomial
algorithm for it. Such an algorithm can in fact be developed (see Cheng
and Sin, 1990) which means that P2||Cmax belongs to the class of ordinary
NP-complete problems.

A.8 Clarification of Terminology

The language of complexity theory can be a bit confusing, with several terms
being used in different branches of the literature to refer to the same thing.
We have introduced the sets NPH and NPC. All NP-complete problems are
NP-hard, and in practice the only NP-hard problems we ever encounter are
NP-complete. Though the terms are not synonymous, they have come to be
used interchangeably. We have chosen to use “NP-complete” throughout this
monograph.
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We say a problem is “strongly NP-complete”, but we could also say it is
“NP-complete in the strong sense”, or “unary NP-complete” (a term used
in computer science which we will not further motivate). An ordinary NP-
complete problem can be simply called NP-complete, without qualification.
It is also acceptable to say “NP-complete in the ordinary sense” or “binary
NP-complete”.

A.9 Conclusion

In this appendix we have presented an introduction to the foundations of
computational complexity together with some basic techniques used in prov-
ing NP-completeness results. Following Cook’s seminal paper (Cook, 1971),
the first list of reductions for combinatorial problems was compiled in Karp
(1972). The example described in this article can be found in Garey and
Johnson (1979).
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