

O3 a 08/04
Semana Santa. Não haverá aula.

21 e 22/04
Recesso (Tiradentes).
Não haverá aula.

01/05
Dia do Trabalho
Não haverá aula.

08 a 10/06
Corpus Christi. Não haverá aula.

7500032 Química Orgânica I Aulas somente presenciais

Informações de participação do Google Meet

Link da videochamada:

https://meet.google.com/kbk-oybz-mgi

Créditos Aula: 4 Créditos Trabalho: 2 Tipo: Semestral

Objetivos

Estudar as várias classes de compostos orgânicos relacionando as estruturas moleculares às propriedades físicas e às reatividades químicas. Estudar as reações dos compostos orgânicos e compreender seus mecanismos através dos fundamentos e conceitos.

Docente Responsável em 2023.1

Carlos Montanari

Programa resumido

Compostos de carbono e ligações químicas. Grupos funcionais. Nomenclatura de compostos orgânicos. Forças intermoleculares. Reações orgânicas: ácidos e bases. Alcanos:análise conformacional e reações. Estereoquímica: moléculas quirais. Reações iônicas: reações de substituição nucleofílica e de eliminação em haletos de alquila. Intermediáriosde reações orgânicas. Termodinâmica e cinética de reações de compostos orgânicos. Alcenos e alcinos: reações de eliminação nos haletos de alquila. Alcoóis, éteres e epóxidos. Alcoóis a partir de compostos carbonílicos: óxido-redução e compostos organometálicos.

Programa

A teoria estrutural da química orgânica. Ligações químicas: a regra do octeto. Estruturas de Lewis. Carga formal. Ressonância. Mecânica quântica: orbitais atômicos e orbitaismoleculares. Hibridização sp3, sp2 e sp. Ligações covalentes carbono-carbono. Representação das fórmulas estruturais. Hidrocarbonetos: alcanos, alcenos e alcinos. Ligaçõescovalentes polares. Polaridade, momento dipolar e forças de interações moleculares: interações dipolo-dipolo, forças de Van der Waals. Ligações de hidrogênio. Reações ácidos ebases. Heterólise e homólise de ligações carbono: carbocátions e carbânions. A força de ácidos e bases: Ka e pKa. A relação entre estrutura e acidez. Definição de ácidos e basesde Lewis. Alcanos e cicloalcanos: propriedades físicas. Ligações sigma e rotação de ligação. Análise conformacional do butano. Estabilidades relativas dos cicloalcanos: tensão do anel, tensão angular e tensão torsional. Conformações do cicloexano. Átomos de hidrogênios axiais e equatoriais. Isomerismo cis e trans. Reações químicas dos alcanos. Estereoquímica: isômeros constitucionais e estereoisômeros. Nomenclatura de enantiômeros: o sistema R e S. Atividade óptica. Moléculas com mais de um centro estereogênico. Reações de substituição nucleofílica (SN2 e SN1). Nucleófilos e eletrófilos. Grupos abandonadores. Cinética e mecanismo de reação de substituição nucleofílica bimolecular(SN2).

Programa...

Estereoquímica das reações de SN2. Mecanismo da reação de substituição nucleofílica unimolecular (SN1). Estereoquímica das reações SN1. Reações de eliminações dehaletos de alquilas (E1 e E2). Alcenos e alcinos. Propriedades e síntese de alcenos e alcinos, hidrogenação, índice de deficiência de hidrogênio, estabilidades relativas e caloresde hidrogenação e de combustão. Sistema E e Z dos alcenos. Reações de adição. A regra de Markovnikov. Síntese de alcoóis a partir de alcenos. Adição de ácido sulfúrico, água ealcoóis aos alcenos. Reações de álcoois. Conversão de álcoois em haletos de alquila. Alcoóis a partir de compostos carbonílicos. Oxidação de álcoois. Epóxidos. Compostosorganometálicos.

MÉTODO

Aulas expositivas.

- Discussões: Incentivo à discussão dos temas abordados: contextualização, méritos e aplicação no mundo profissional.
- Aprendizagem baseada em problemas/baseada em investigação (PBL/EBL):
 apresentar um problema ou cenário da vida
 real e trabalhar em equipe para investigar soluções
 potenciais.
 - Quais habilidades (dado/informação/conhecimento/experimento) necessárias para gerir eficazmente a situação.
- 3. *E-learning*: componentes online como parte do aprendizado.
- 4. Atividades extracurriculares: envolvimento em atividades extracurriculares para o desenvolvimento dos conhecimentos (online também).

Avaliações:

Duas avaliações (Média = (Aval1 + Aval2)/2)

Aprovação:

Resultado final \geq 5: aprovado

3 ≤ Resultado final < 5: regime de recuperação

Resultado final < 3: reprovado

Recuperação:

Nota ≥ 5 em uma das avaliações, média < 5, liberação do conteúdo da avaliação com nota ≥ 5.

Oferecimento de 3 avaliações diferentes (conteúdo total, conteúdo 1ª avaliação, conteúdo 2ª avaliação).

Aprovação com nota > 5.

Bibliografia

- ▶ 1) SOLOMONS, T. W. G.; FRYHLE, C. B. Química orgânica.
 - ► Tradução de Maria Lúcia Godinho de Oliveira. 9.ed. Rio de Janeiro: LTC, 2011. v.1
- 2) SOLOMONS, T. W. G.; FRYHLE, C. B. Química orgânica. Tradução de Robson Mendes Matos. 8.ed. Rio de Janeiro: LTC, 2005. v.2
- 3) ALLINGER, N. L.; CAVA, M. P. Química orgânica. 2.ed. Rio deJaneiro: Guanabara Dois, 1978.
 961 p.
- 4) CONSTANTINO, M. G. Química orgânica curso básico universitário. Rio de Janeiro: Livros Técnicos e Científicos, c2008. 3 v.
- ▶ 5)MCMURRY, J. Química orgânica. 6.ed. São Paulo: Pioneira Thomson Learning, 2005. 2v.
- 6) VOLLHARDT, K. P. C.; SCHORE, N. E. Organic chemistry structure and function.3rd ed. New York: W. H. Freeman, c1999. 1210 p.
- 7) BROWN, W. H.; POON, T. Introduction to organic chemistry. 3rd ed. Hoboken: Wiley, c2005.
- ▶ 8) BRUICE, P. Y.Organic chemistry. 2nd ed. Upper Saddle River: Prentice Hall, c1998. 1v.
- 9) MORRISON, R. T.; BOYD, R. N. Química orgânica. 13.ed. Lisboa: Fundação CalousteGulbenkian, 1996. 1510 p.
- ▶ 10) CLAYDEN, J. Organic chemistry. Oxford: Oxford University, 2001. 1508 p.
- ▶ 11) COSTA, P.; PILLI, R. A.; PINHEIRO, S.; VASCONCELLOS, M.Substâncias carboniladas e derivados. 1.ed. Porto Alegre: Artmed, 2003. 411 p.
- 12) ORGANIC CHEMISTRY, 4th Ed., Francis A. Carey, 2000. McGraw-Hill

