SEL 0449 - Processamento Digital de Imagens Médicas

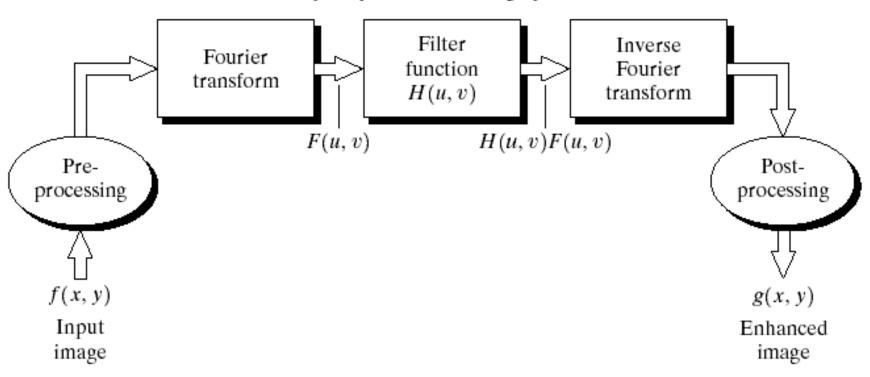
SEL 5895 – Introdução ao Processamento Digital de Imagens

Aula 7 – Processamento no Domínio da Frequência

Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br

Processamento no Domínio da Frequência

Frequency domain filtering operation



Filtragem sem alteração a fase

- Zero-Phase Shift Filters
- O filtro H(u,v) deve multiplicar a matriz complexa F(u,v) para garantir que a fase não seja alterada no processo de filtragem:

$$F(u,v) = R(u,v) + jI(u,v)$$

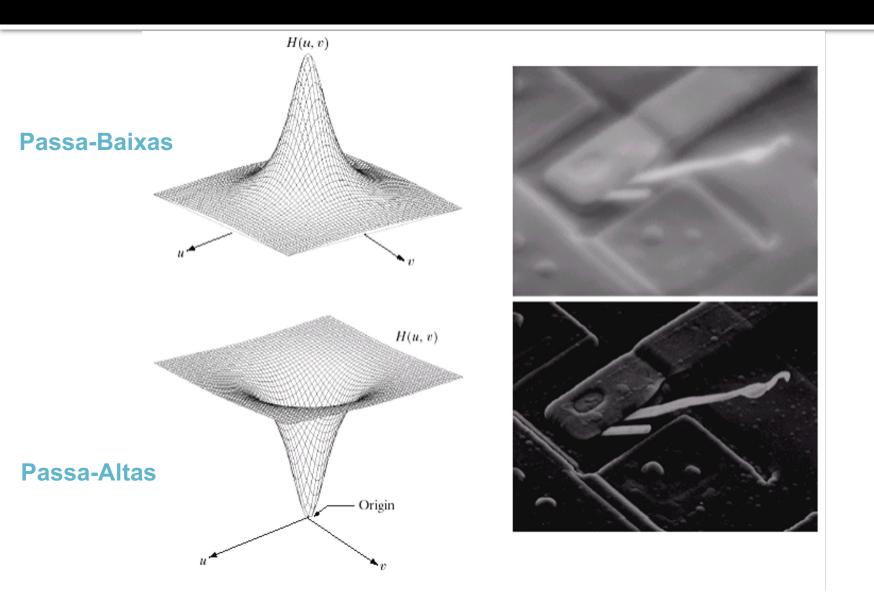
$$g(x,y) = \mathcal{F}^{-1}[H(u,v)F(u,v)]$$

$$g(x,y) = \mathcal{F}^{-1}[H(u,v)R(u,v) + jH(u,v)I(u,v)]$$

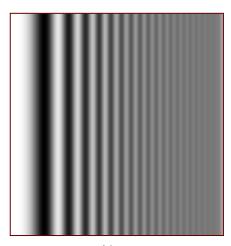
• Note que a fase não é alterada:

$$\varphi(u,v) = \tan^{-1} \left[\frac{H(u,v)I(u,v)}{H(u,v)R(u,v)} \right] = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$$

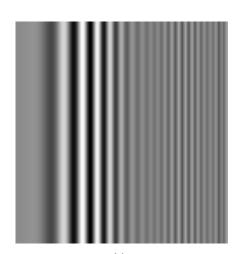
Filtros no Domínio da Frequência



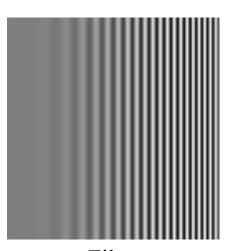
Efeito dos filtros



Filtro passa-baixa

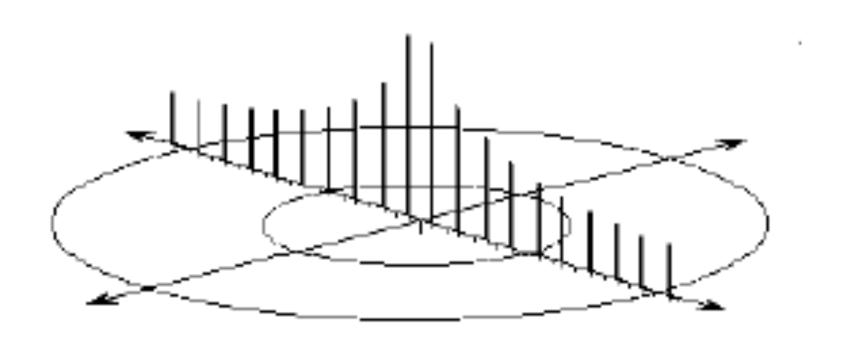


Filtro passa-banda



Filtro passa-alta

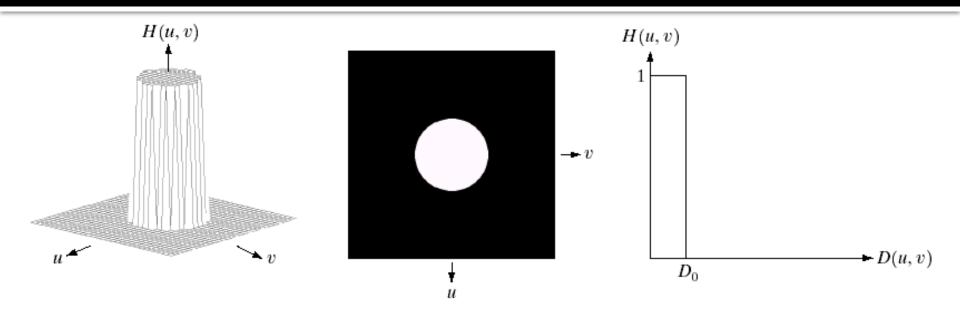
Os Filtros devem ser circulares e concêntricos



Filtros Passa-Baixa

- Retira (ou atenua) as ondas senoidais de alta-frequência espacial, ou seja, que estão acima da frequência de corte (D_0) definida na construção do filtro;
- Mantém apenas as ondas senoidais de baixa-frequência espacial, ou seja, que estão abaixo da frequência de corte (D_0) ;
- Não há aumento na amplitude de nenhuma onda senoidal do espectro de Fourier da imagem;
- Podem ser de vários tipos. Os mais comuns são: Ideal, Butterworth e Gaussiano.

Filtro Passa-Baixa Ideal

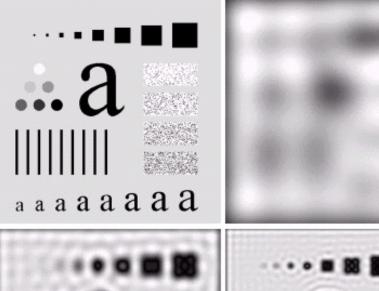


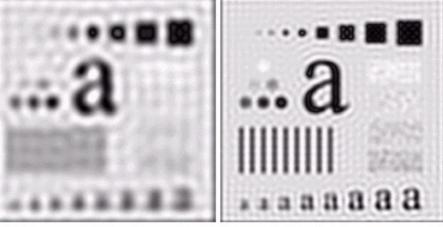
- as ondas senoidais de
- que D₀ não são alteradas.

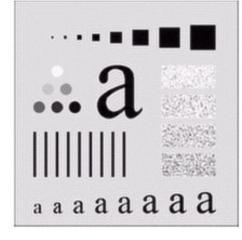
Filtro Passa-Baixas Ideal:

Resultados obtidos à medida que se aumenta a frequência de corte

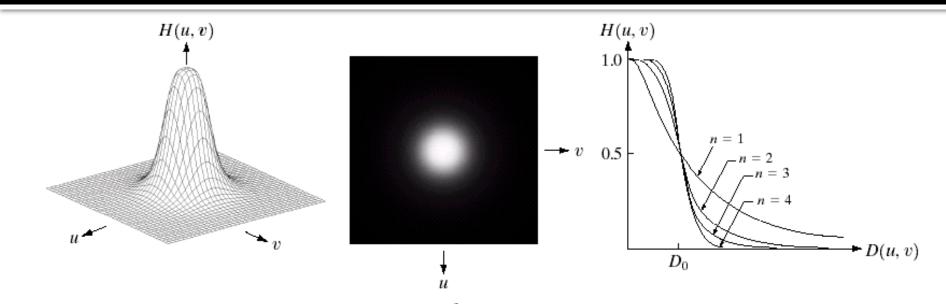
Efeito indesejado de ringing







Filtro Passa-Baixa Butterworth

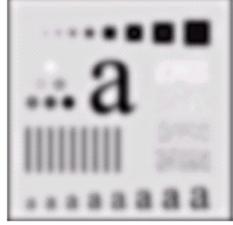


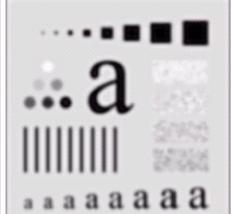
$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)}{D_0}\right]^{2n}}$$

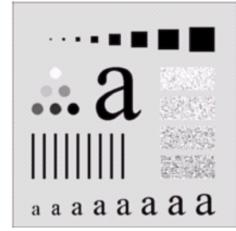
- A frequência de corte (D₀) define o valor onde a amplitude da onda é reduzida em 50%;
- As ondas de alta-frequência são cada vez mais atenuadas na imagem a medida que são maiores que D₀, ou seja, o filtro possui transição mais suave que o filtro ideal;
- O valor de **n** (ordem do filtro) determina a "suavidade" do filtro.

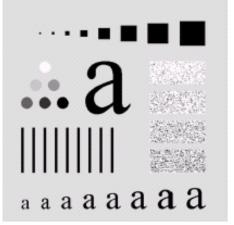
Filtro Passa-Baixa **Butterworth** (n=2)

Resultados obtidos à medida que se aumenta a frequência de corte



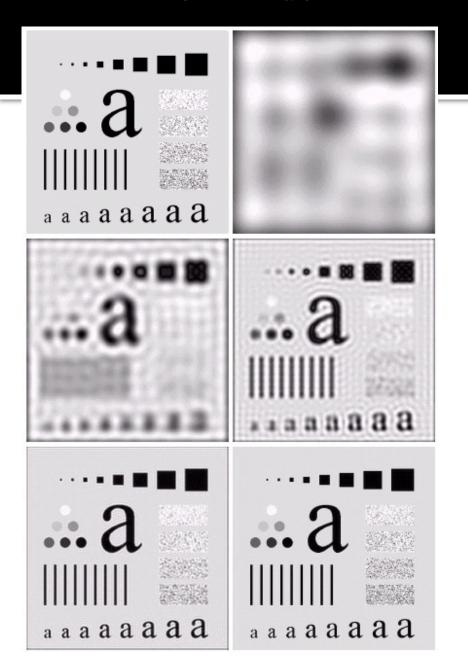


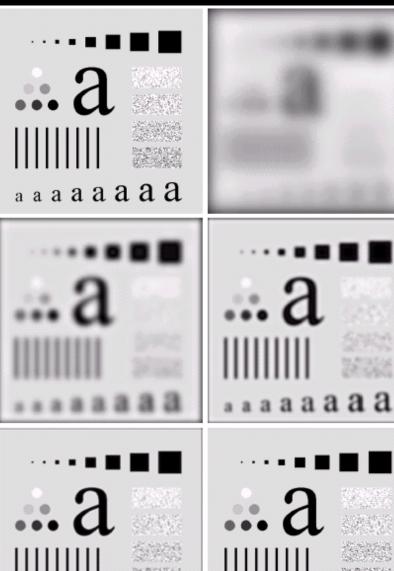




Filtro PB Ideal

Filtro PB Butterworth

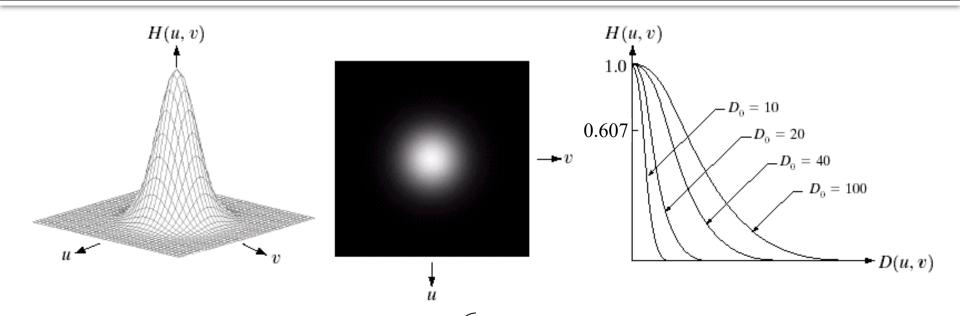




a a a a a a a a a

aaaaaaaa

Filtro Passa-Baixa Gaussiano

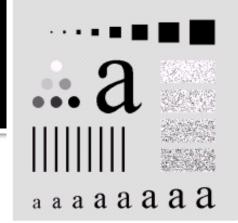


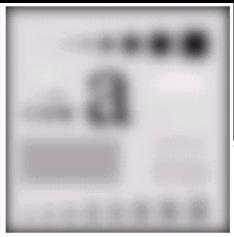
$$H(u,v) = e^{\frac{-[D(u,v)^2]}{2D_0^2}}$$

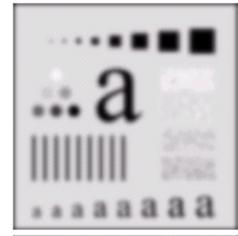
- A frequência de corte (D_0) define o valor onde a amplitude da onda é reduzida em 60,7%;
- Ondas de alta-frequência são cada vez mais atenuadas na imagem a medida que são maiores que D_0 , ou seja, o filtro possui transição mais suave que o filtro ideal;
- O filtro Gaussiano pode ser bem mais suave que o filtro Butterworth.

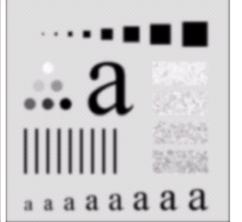
Filtro Passa-Baixa **Gaussiano**

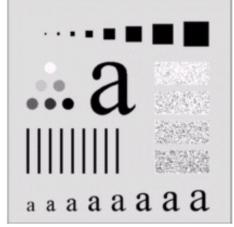
Resultados obtidos à medida que se aumenta a frequência de corte

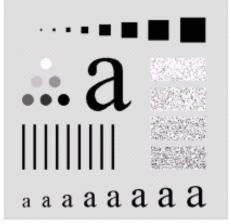












Filtro PB Butterworth (n=2)

aaaaaaaaa aaaaaaa aaaaaaaa a a a a a a a a

FIGURE 4.15 (a) Original image. (b)–(f) Results of filtering with BLPFs of order 2, with cutoff frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). Compare with Fig. 4.12.

Filtro PB Gaussiano

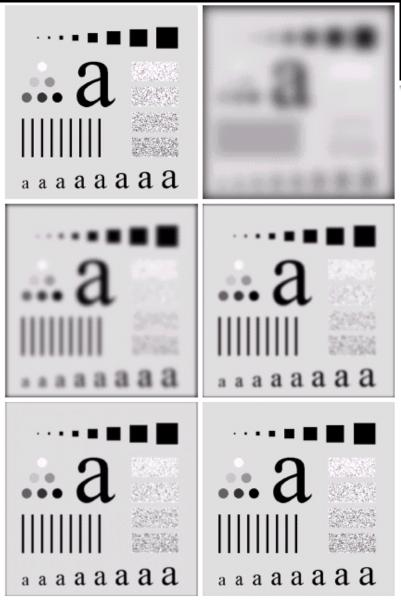
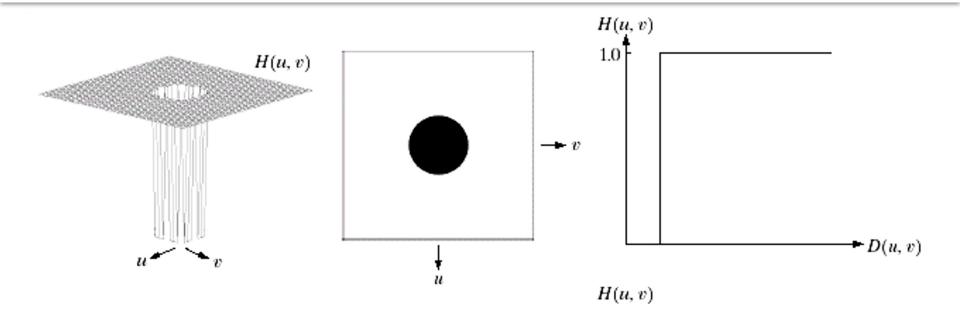


FIGURE 4.18 (a) Original image. (b)–(f) Results of filtering with Gaussian lowpass filters with cutoff frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.

Filtros Passa-Alta

- Retira (ou atenua) as ondas senoidais de baixafrequência espacial, ou seja, que estão abaixo da frequência de corte (D_0) definida na construção do filtro;
- Mantém apenas as ondas senoidais de alta-frequência espacial, ou seja, que estão acima da frequência de corte (D_0) ;
- Não há aumento na amplitude de nenhuma onda senoidal do espectro de Fourier da imagem;
- Podem ser de vários tipos. Os mais comuns são: Ideal,
 Butterworth e Gaussiano.

Filtros Passa-Alta Ideal

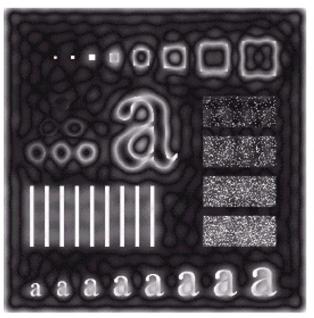


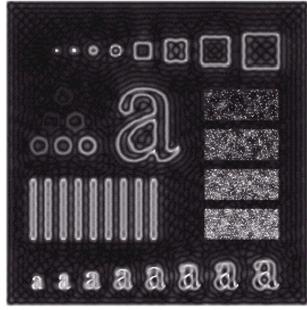
$$H\left(u,v\right) = \begin{cases} 0 \text{ , se } D\left(u,v\right) \leq D_0 \\ 1 \text{ , se } D\left(u,v\right) > D_0 \end{cases}$$
• Iodas as ondas senoidais de frequência abaixo da frequência de corte (D₀) são retiradas da imagem;
• As ondas de frequência mais altas que Do não são alteradas

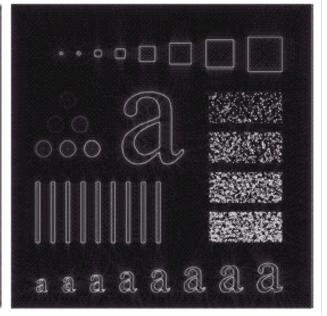
- ondas senoidais as de
- D₀ não são alteradas.

Filtro Passa-Alta Ideal

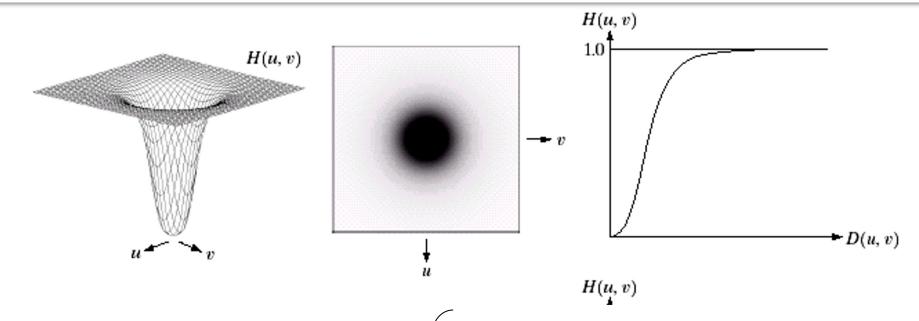
Resultados obtidos à medida que se aumenta a frequência de corte







Filtro Passa-Alta Butterworth

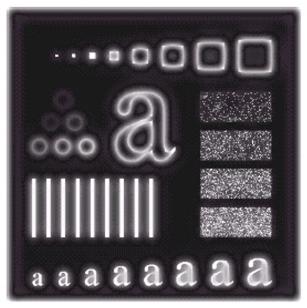


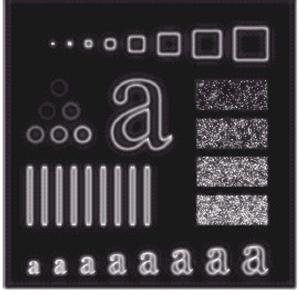
$$H(u,v) = \frac{1}{1 + \left[\frac{D_0}{D(u,v)}\right]^{2n}}$$

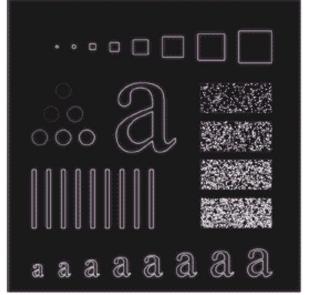
- A frequência de corte (D₀) define o valor onde a amplitude da onda senoidal é reduzida em 50%;
- \bullet Ondas de baixa-frequência são cada vez mais atenuadas na imagem a medida que são menores que D_0 , ou seja, o filtro possui transição mais suave que o filtro ideal;
- O valor de **n** (ordem do filtro) determina a "suavidade" do filtro.

Filtro Passa-Alta **Butterworth** (n=2)

Resultados obtidos à medida que se aumenta a frequência de corte

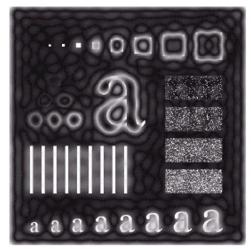


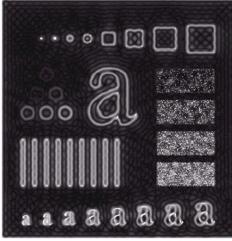


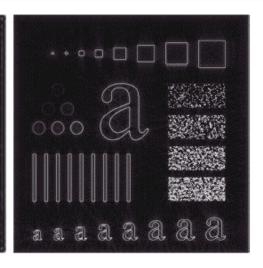


Filtros Passa-Alta

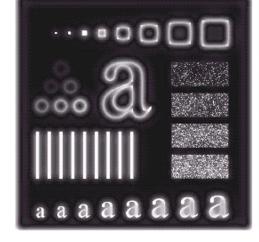
Ideal

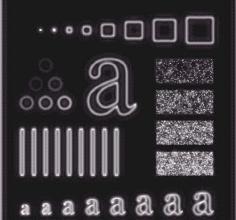


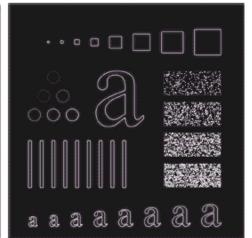




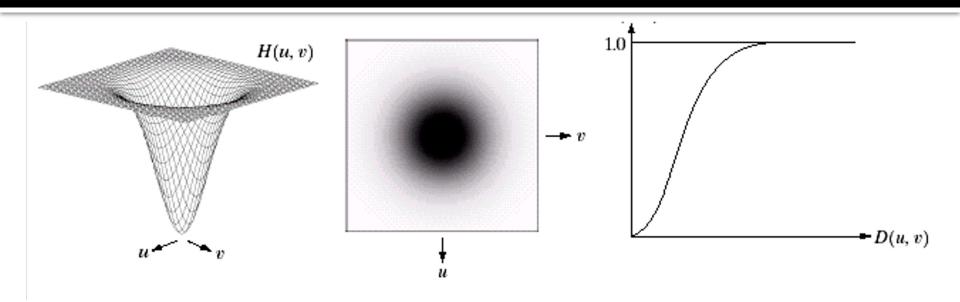
Butterworth







Filtro Passa-Alta Gaussiano

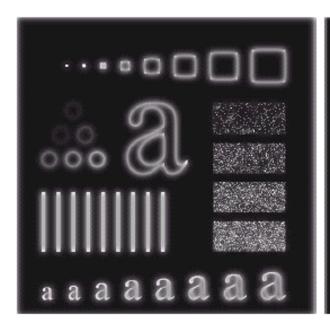


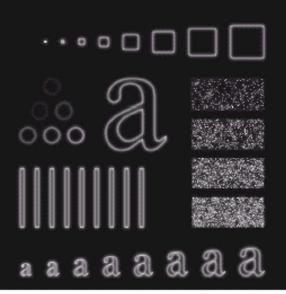
$$H(u,v) = 1 - e^{\frac{-[D(u,v)^2]}{2D_0^2}}$$

- A frequência de corte (D_0) define o valor onde a amplitude da onda senoindal é reduzida em 60,7%;
- Ondas de baixa-frequência são cada vez mais atenuadas na imagem a medida que são menores que D_0 , ou seja, o filtro possui transição mais suave que o filtro ideal;
- O filtro Gaussiano pode ser bem mais suave que o filtro Butterworth.

Filtro Passa-Alta Gaussiano

Resultados obtidos à medida que se aumenta a frequência de corte

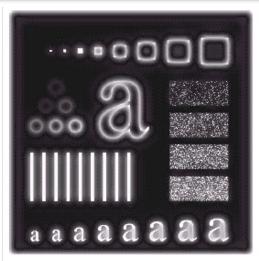


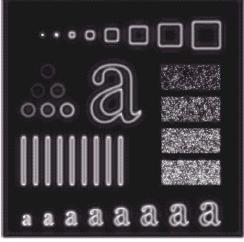


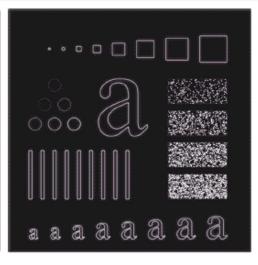


Filtros Passa-Alta

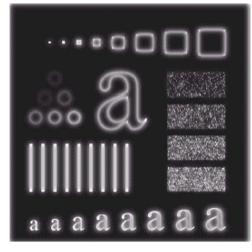
Butterworth

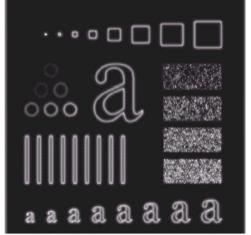


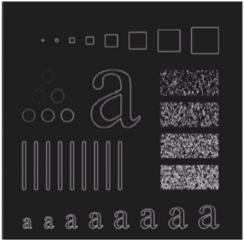




Gaussiano







Filtros

Rejeita-Banda e

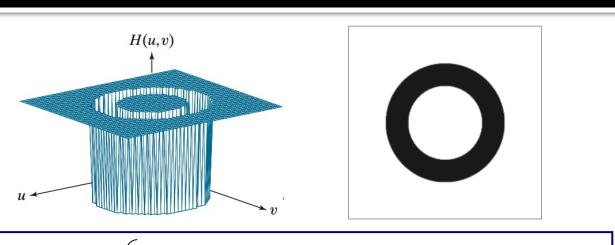
Passa-Banda

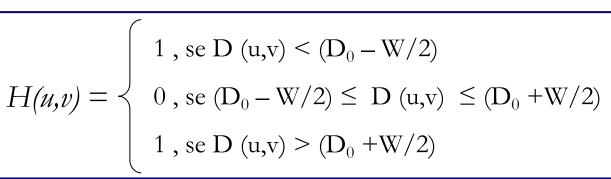
Filtros Rejeita-Banda

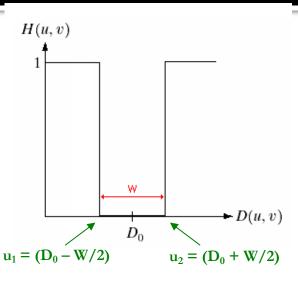
- Retira (ou atenua) as ondas senoidais cujas frequências espaciais estão dentro de uma faixa (banda) definida na construção do filtro;
- Mantém apenas as ondas senoidais cujas frequências espaciais estão fora da banda definida;
- Não há aumento na amplitude de nenhuma onda senoidal do espectro de Fourier da imagem;
- São feitos a partir da combinação de filtros passa-baixa e passa-alta;
- Podem ser de vários tipos. Os mais comuns são: Ideal, Butterworth e Gaussiano.

26

Filtro Rejeita-Banda Ideal

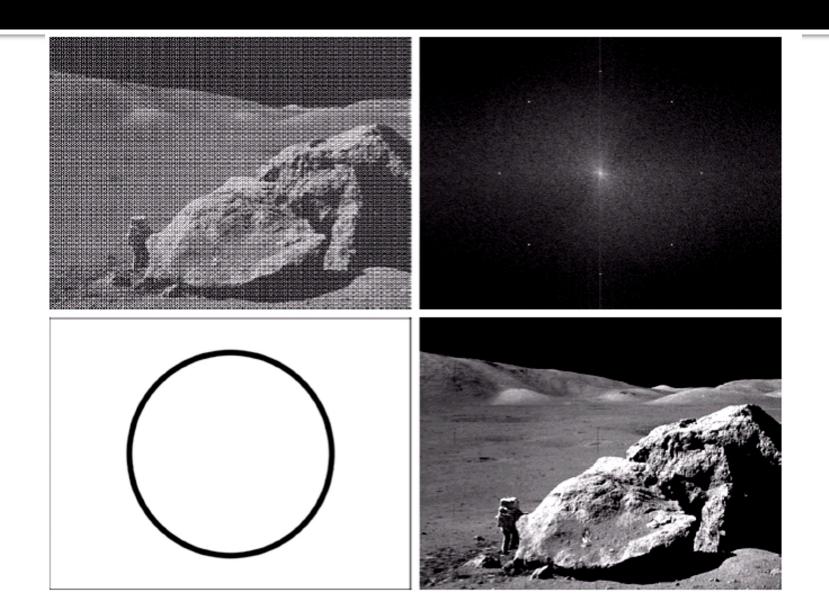




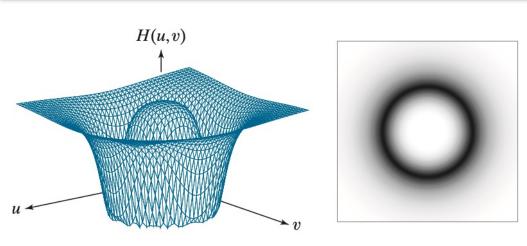


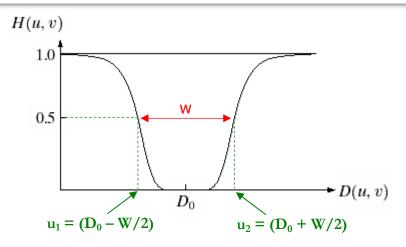
- As ondas senoidais cuja frequência espacial pertence à faixa definida por W (banda) são retiradas da imagem. As ondas cujas frequências são externas à banda W não são alteradas;
- D₀ corresponde ao centro da banda W, onde o valor do filtro deve ser zero;
- u₁ e u₂ são as frequências de corte do filtro.

Filtro Rejeita-Banda Ideal



Filtro Rejeita-Banda Butterworth

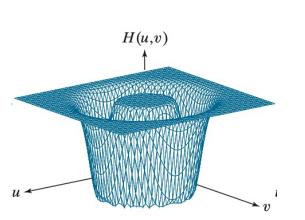


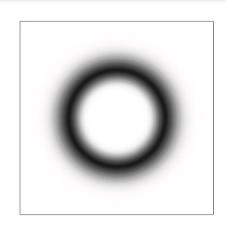


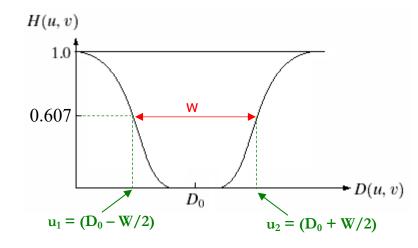
$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v) \cdot W}{D(u,v)^2 - D_0^2}\right]^{2n}}$$

- ullet O centro da banda (D_0) define o valor onde a amplitude do filtro é zero;
- As frequências de corte u_1 e u_2 definem os valores onde a amplitude da onda senoidal é reduzida em 50%;
- As ondas senoidais de frequência espacial dentro da faixa definida são cada vez mais atenuadas na imagem a medida que se aproximam de D_0 , ou seja, o filtro possui transição mais suave que o filtro ideal;
- O valor de *n* (ordem do filtro) determina a "suavidade" do filtro.

Filtro Rejeita-Banda Gaussiano







$$H(u,v) = 1 - e^{-\left[\frac{D(u,v)^2 - D_0^2}{D(u,v) \cdot W}\right]^2}$$

- O centro da banda (D_0) define o valor onde a amplitude do filtro é zero;
- As frequências de corte u_1 e u_2 definem os valores onde a amplitude da onda senoidal é reduzida em 60,7%;
- As ondas senoidais de frequência espacial dentro da faixa definida são cada vez mais atenuadas na imagem a medida que se aproximam de D_0 , ou seja, o filtro possui transição mais suave que o filtro ideal;
- O filtro Gaussiano pode ser bem mais suave que o filtro Butterworth.

Filtros Passa-Banda

- Retira (ou atenua) as ondas senoidais cujas frequências espaciais estão fora de uma faixa (banda) definida na construção do filtro;
- Mantém apenas as ondas senoidais cujas frequências espaciais estão dentro da banda definida;
- Não há aumento na amplitude de nenhuma onda senoidal do espectro de Fourier da imagem;
- São feitos a partir da combinação de filtros passa-baixa e passa-alta;
- Podem ser de vários tipos. Os mais comuns são: Ideal, Butterworth e Gaussiano.

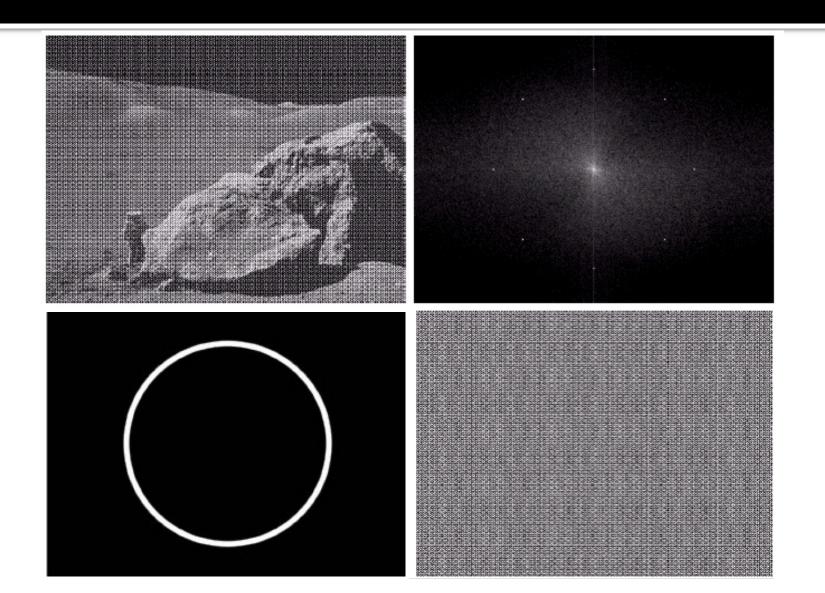
Filtros Passa-Banda

As equações dos filtros Passa-Banda podem ser obtidos a partir das equações dos filtros Rejeita-Banda:

$$H(u,v)_{PB} = 1 - H(u,v)_{RB}$$

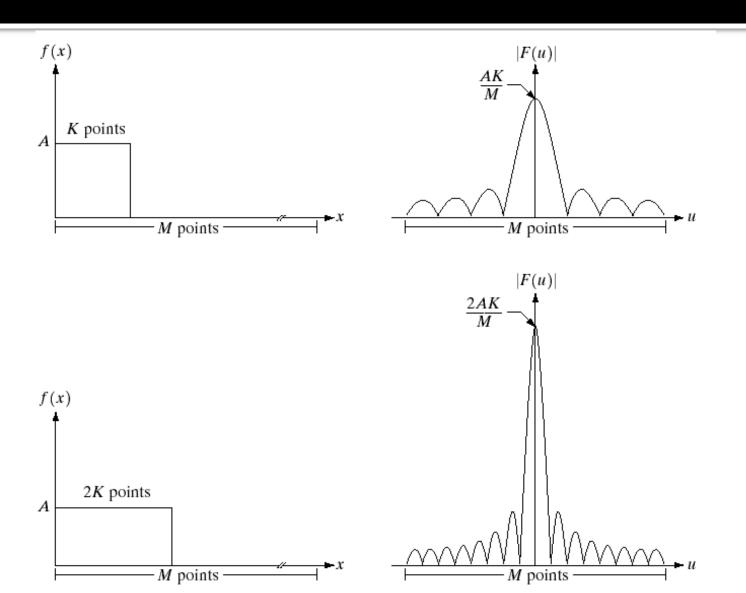
O centro da banda (D_0) define o valor onde a amplitude do filtro é 1.

Filtro Passa-Banda Ideal



Relação entre a posição do pixel e a frequência espacial

DFT 2-D



Intervalo de frequência a partir do centro (passo)

Imagem M x N pixels

$$\Delta u = \frac{1}{M \cdot \Delta x} \qquad \Delta v = \frac{1}{N \cdot \Delta y}$$

Em uma imagem digital, qual o valor da frequência máxima representada no espectro de Fourier?

Intervalo de frequência a partir do centro (passo) =

$$\Delta u = \frac{1}{M \cdot \Delta x}$$

Frequência Máxima

(Teorema de Nyquist) =

$$u_{m\acute{a}x} = \frac{1}{2\Delta x}$$

Image Padding

Preenchimento da imagem para resolver o problema com as bordas

Solução para os pixels das bordas na Convolução:

Podem ser usadas quatro soluções:

- 1. Preenchimento da imagem com qualquer valor (geralmente zeros) antes do cálculo da imagem final (padding) (constant*);
- 2. Espelhamento dos pixels das bordas (reflect*);
- 3. Replicação dos pixels das bordas (replicate*);
- 4. Convolução periódica ou circular (wrap*);

^{*} Função usada pelo Python

Multiplicação e Convolução

$$f(x,y)*g(x,y) \Leftrightarrow F(u,v)G(u,v)$$

$$f(x,y)g(x,y) \Leftrightarrow F(u,v)*G(u,v)$$

Convolução no domínio do tempo/espaço

Multiplicação no domínio da frequência

Multiplicação no domínio do tempo/espaço

Convolução no domínio da frequência

O que acontece com as bordas da imagem para filtragem no domínio da frequência?



Como a DFT é periódica. A multiplicação no domínio da frequência equivale a uma convolução periódica (ou circular) no domínio do espaço.

Esse fenômeno é chamado de Wrap-around Error

O que acontece com as bordas da imagem para filtragem no domínio da frequência?

Assim, se nenhum *padding* for realizado, a filtragem no domínio da frequência vai apresentar o mesmo resultado que uma convolução periódica no domínio do espaço:

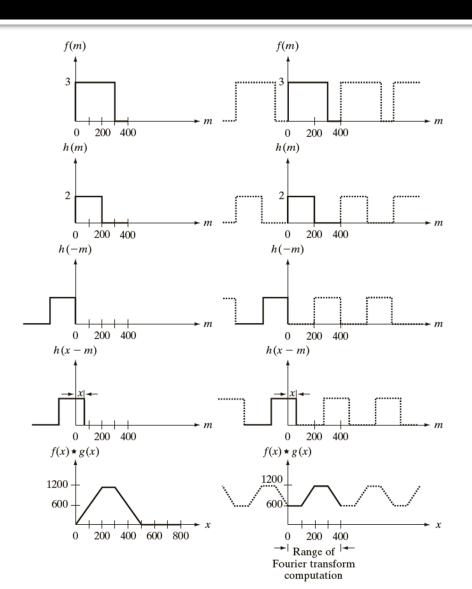
Imagem original

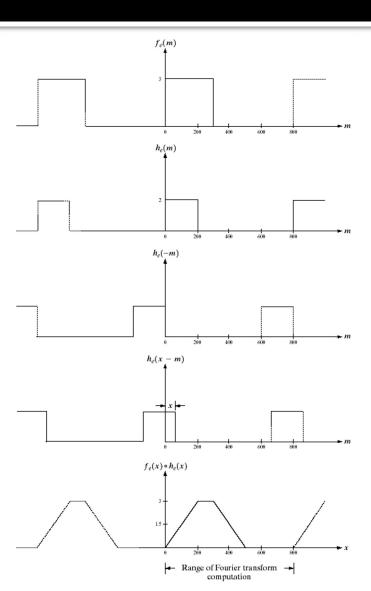
Imagem filtrada por um filtro passa baixa no domínio da frequência

Image Padding

- Se a convolução periódica não é desejável, deve-se realizar outro tipo de *padding* para resolver o problema do *wrap-around* error;
- O padding deve ser realizado levando-se em conta que o filtro é do mesmo tamanho da imagem, pois a filtragem é realizada no domínio da frequência;
- Assim, a dimensão da imagem, após o *padding*, deve ser de pelo menos o dobro do tamanho da imagem original.

Image Padding – 2D





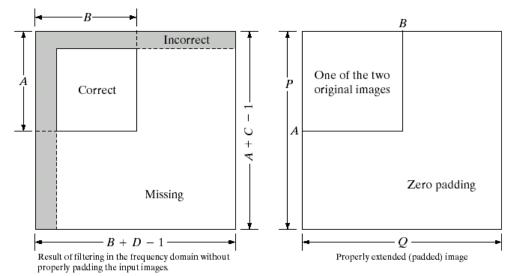
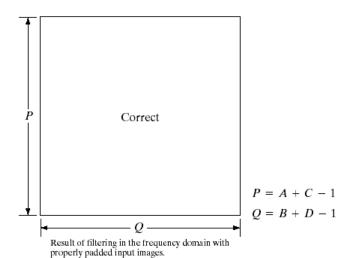
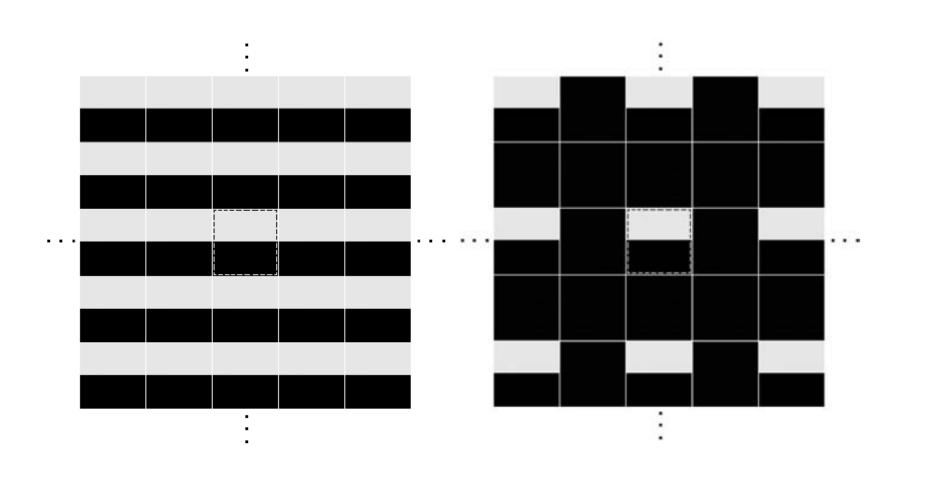


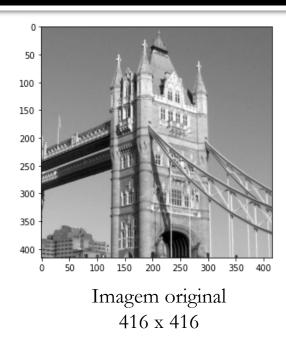
FIGURE 4.38

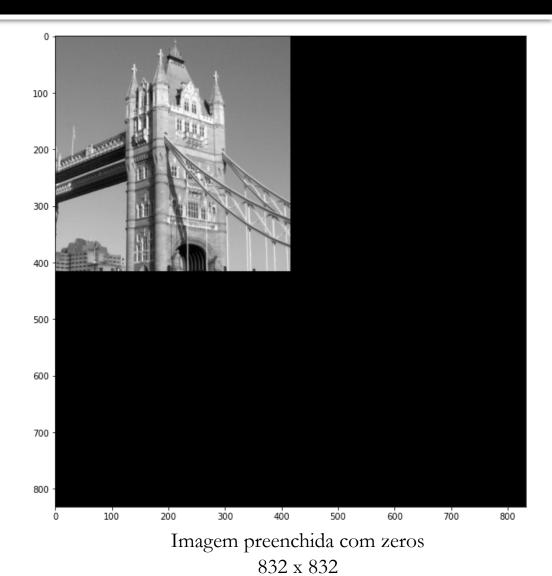
Illustration of the need for function padding.
(a) Result of

- performing 2-D convolution without padding.
- (b) Proper function padding.
- (c) Correct convolution result.









passa baixa no domínio da

frequência SEM padding

passa baixa no domínio da

frequência COM padding

Image Padding

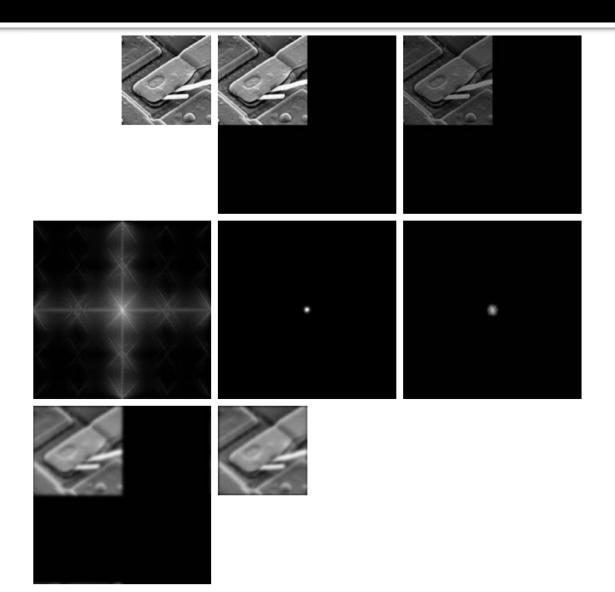
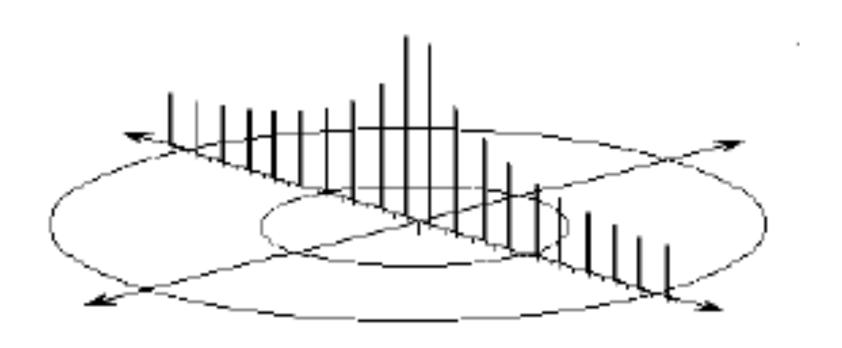


Image Padding

- Vantagens de se usar *Image Padding* para filtragem no domínio da frequência:
 - Evitar o wrap-around error, ou seja, evitar o resultado de uma convolução periódica;
 - Aumentar o tamanho da imagem para se obter um número maior de pixels na representação da imagem no domínio da frequência (maior precisão do espectro de Fourier), ou seja, alterar os valores de Δu e Δv , já que eles dependem de M e N, respectivamente;
 - Alterar os valores de M e N (e consequentemente de Δu e Δv) para que eles sejam iguais, de modo a tornar a imagem e o espectro de Fourier quadrados, o que facilita a construção dos filtros;

Os Filtros devem ser circulares e concêntricos



Métricas de Distância

- Os filtros circulares devem ser construídos calculando-se as distâncias dos pixels em relação ao ponto central do espectro (frequência zero).
- À medida que a distância aumenta, a frequência de corte também aumenta.

Distância Euclidiana:

$$D_e(p,q) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Distribuição de Frequências após a Transformada de Fourier em Python

Matriz de Tamanho Ímpar 7x7

YX	0	1	2	3	4	5	6
0	0,30822 - 3,557	i 7,4462 + 0,26201i	9,2165 + 1,4641i	-6,9946 - 4,3351i	-9,145 - 12,2i	7,7022 + 14,61i	-1,0266 - 3,3356i
1	2,2726 + 0,65998	3i 19,807 - 9,3154i	-15,659 + 12,658i	-22,223 + 6,7232i	15,244 - 2,057i	-3,0456 + 5,3591i	1,7265 + 4,6776i
2	19,809 - 4,2954	i 35,918 + 47,943i	36,384 - 8,7932i	5,2174 - 50,745i	15,072 - 27,215i	6,5109 + 14,033i	11,957 - 5,9855i
3	2,4511 - 4,7286	i -34,496 - 39,76i	-44,456 - 93,287i	4927	-44,456 + 93,287i	-34,496 + 39,76i	2,4511 + 4,7286i
4	11,957 + 5,9855	i 6,5109 - 14,033i	15,072 + 27,215i	5,2174 + 50,745i	36,384 + 8,7932i	35,918 - 47,943i	19,809 + 4,2954i
5	1,7265 - 4,6776	i -3,0456 - 5,3591i	15,244 + 2,057i	-22,223 - 6,7232i	-15,659 - 12,658i	19,807 + 9,3154i	2,2726 - 0,65998i
6	-1,0266 + 3,3356	6i 7,7022 - 14,61i	-9,145 + 12,2i	-6,9946 + 4,3351i	9,2165 - 1,4641i	7,4462 - 0,26201i	0,30822 + 3,557i

Distribuição de Frequências após a Transformada de Fourier em PYTHON

Matriz de Tamanho Par 6 x 6

YX	0	1	2	3	4	5
0	7	8 - 1,7321i	1 + 13,856i	-7	1 - 13,856i	8 + 1,7321i
1	7 + 5,1962i	11,5 + 12,99i	-8 - 8,6603i	-20 - 6,9282i	5,5 + 6,0622i	7 - 3,4641i
2	13 + 12,124i	-4 + 22,517i	38,5 + 12,99i	20 - 27,713i	7 - 17,321i	24,5 + 12,99i
3	-11	-8 - 39,837i	-35 - 65,818i	3583	-35 + 65,818i	-8 + 39,837i
4	13 - 12,124i	24,5 - 12,99i	7 + 17,321i	20 + 27,713i	38,5 - 12,99i	-4 - 22,517i
5	7 - 5,1962i	7 + 3,4641i	5,5 - 6,0622i	-20 + 6,9282i	-8 + 8,6603i	11,5 - 12,99i

Posição central do espectro no Python (tanto para matriz ímpar como para par)

YX	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0

YX.	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
1 2 3 4	0	0	0	1	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

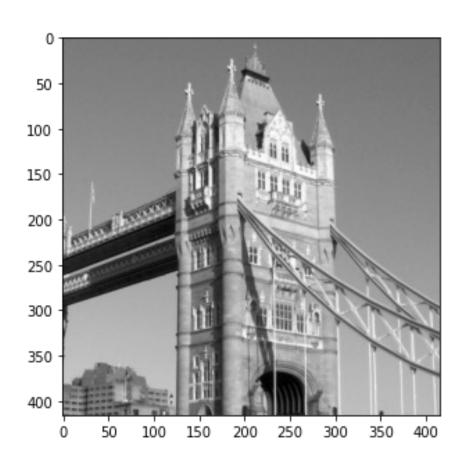
$$cx = int(M/2)$$

 $cy = int(N/2)$

Parte inteira da divisão por 2

Filtragem no domínio da frequência em Python

Imagem Original

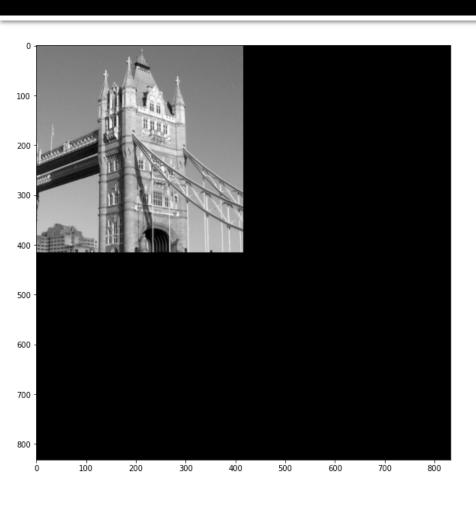


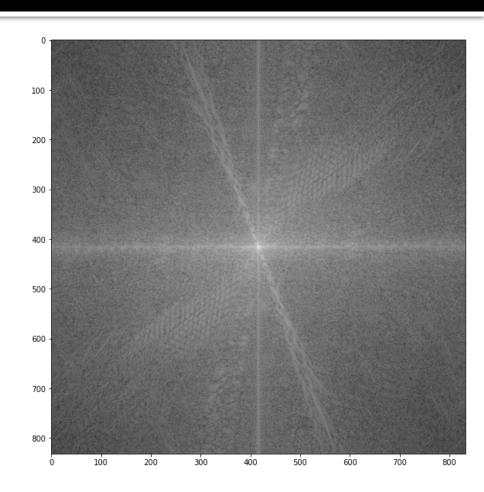
$$M = 416$$
$$N = 416$$

Visualização do Espectro de Fourier

```
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
# Leitura da imagem
a = cv.imread('towerbridge.tif',cv.IMREAD UNCHANGED)
# Dimensões imagem
M,N = a.shape
# Visualização da imagem
plt.figure()
plt.imshow(a,'gray')
plt.show()
# Dimensões considerando padding
Mf = 2*M;
Nf = 2*N;
# Transformação domínio de frequências
b = np.fft.fft2(a,s=(Mf,Nf)) #s = parâmetro zero padding
b = np.fft.fftshift(b)
# Visualização do espectro de Fourier
c = np.abs(b)
c_plot = 20*np.log(c+1)
plt.figure()
plt.imshow(c_plot,'gray')
plt.show()
```

Espectro de Fourier





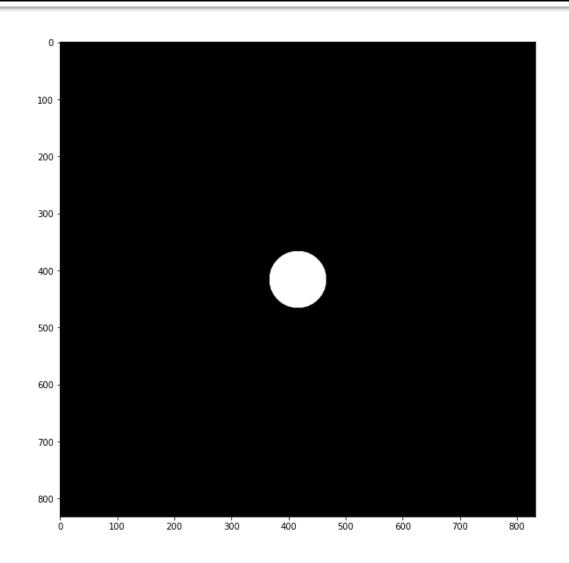
$$Mf = 416*2 = 832$$

 $Nf = 416*2 = 832$

Filtro Passa-Baixa Ideal

```
# Calculando o centro (// = parte inteira da divisão)
cx = Nf//2
cy = Mf//2
# Frequência de corte, em pixels a partir da origem
D0 = 50
filtro = np.zeros((Mf,Nf))
for x in range(0,Mf):
    for y in range (0,Nf):
        D = np.sqrt((x-cx)**2+(y-cy)**2)
        if D < D0:
            filtro[x,v] = 1
plt.figure()
plt.imshow(filtro,'gray')
plt.show()
```

Filtro Passa-Baixa Ideal



$$cx = 416$$

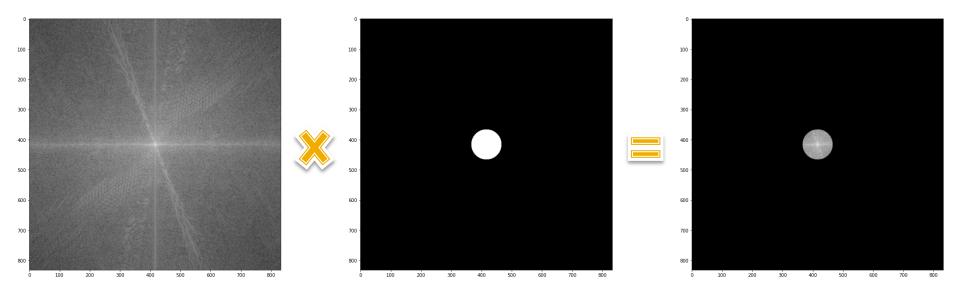
 $cy = 416$

Filtragem no Domínio da Frequência

```
#Processamento no domínio da frequência
b = b * filtro

# Visualização do espectro de Fourier após filtragem
c = np.abs(b)
c_plot = 20*np.log(c+1)
plt.figure()
plt.imshow(c_plot,'gray')
plt.show()
```

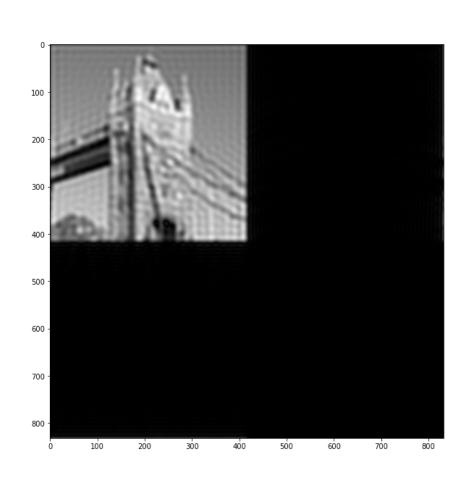
Filtragem no Domínio da Frequência

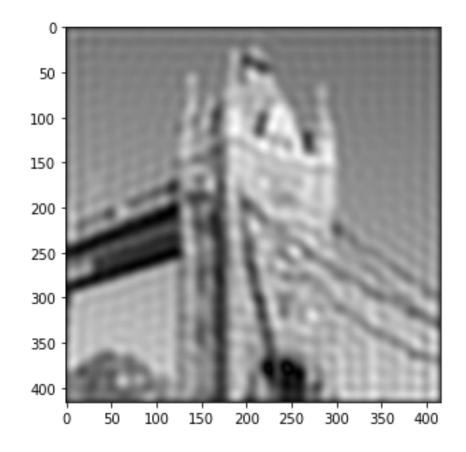


Transformada Inversa e Visualização da Imagem Filtrada

```
# Transformação inversa
i1 = np.fft.ifftshift(b)
i1 = np.fft.ifft2(i1)
i1 = np.abs(i1)
# Visualização da imagem filtrada
plt.figure()
plt.imshow(i1, 'gray')
plt.show()
# Recorte tamanho original
i1 = i1[0:M,0:N]
# Visualização da imagem filtrada
plt.figure()
plt.imshow(i1, 'gray')
plt.show()
```

Transformada Inversa e Visualização da Imagem Filtrada





Padding em PYTHON

Padding em Python (numpy)

- Pelo numpy.fft.fft2, só é possível fazer diretamente o padding com zeros (utilizando o parâmetro s);
- Para fazer outros paddings (symmetric, edge, wrap, etc.), deve-se utilizar, primeiramente, a função numpy.pad para realizar o padding antes de utilizar a função numpy.fft.fft2.

Função numpy.pad

Podem ser usadas diversas soluções para o *pαdding*. As mais comuns são:

- Preenchimento da imagem com qualquer valor (geralmente zeros) antes do cálculo da imagem final (padding) (constant*);
- 2. Espelhamento dos pixels das bordas (symmetric*);
- 3. Replicação dos pixels das bordas (edge*);
- 4. Convolução periódica ou circular (wrαp*);

* Função usada pelo numpy.pad

Função numpy.pad

Sintaxe:

```
numpy.pad(imagem, ((antes_x,depois_x),(antes_y,depois_y)),'tipo')
```

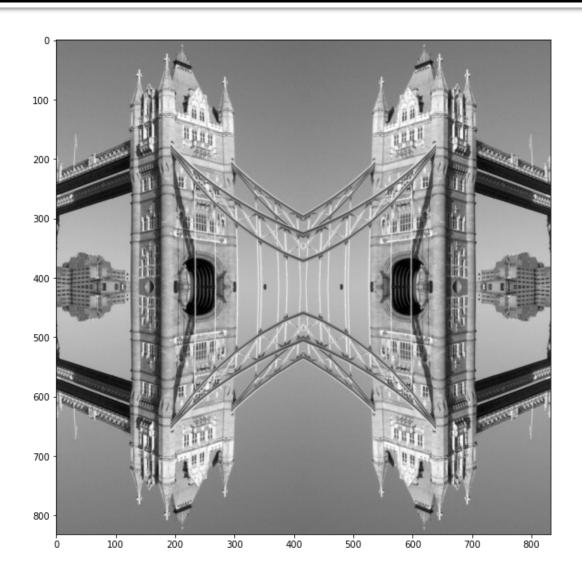
```
a = [[1,2],[3,4]]
b = np.pad(a,((0,2),(0,3)),'symmetric')
print(b)

[[1 2 2 1 1]
  [3 4 4 3 3]
  [3 4 4 3 3]
  [1 2 2 1 1]]
```

Padding Symmetric

```
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
# Leitura da imagem
a = cv.imread('towerbridge.tif',cv.IMREAD UNCHANGED)
# Dimensões imagem linhas, colunas
M,N = a.shape
# Visualização da imagem
plt.figure()
plt.imshow(a,'gray')
plt.show()
a padding sym = np.pad(a,((0,M),(0,N)),"symmetric")
# Transformação domínio de frequências
b = np.fft.fft2(a_padding_sym)
b = np.fft.fftshift(b)
# Visualização do espectro de Fourier
c = np.abs(b)
c plot = 20*np.log(c+1)
plt.figure()
plt.imshow(c_plot,'gray')
plt.show()
```

Padding Symmetric



Resultados com a filtragem

