

Manuel Castells

A SOCIEDADE EM REDE Volume I

4ª EDIÇÃO

Tradução: Roneide Venancio Majer com a colaboração de Klauss Brandini Gerhardt

A Revolução da Tecnologia da Informação

Que revolução?

O "gradualismo", escreveu o paleontólogo Stephen J. Gould, "o conceito de que toda mudança deve ser suave, lenta e firme, nunca foi lido nas rochas. Representava uma tendência cultural comum, em parte uma resposta do liberalismo do século XIX a um mundo em revolução. Porém, ele continua a colorir a nossa leitura supostamente objetiva da história da vida... A história da vida, como a vejo, é uma série de situações estáveis, pontuadas em intervalos raros por eventos importantes que ocorrem com grande rapidez e ajudam a estabelecer a próxima era estável". Meu ponto de partida, e não estou sozinho nesta conjetura, e que no final do século XX estamos vivendo um desses raros intervalos na história. Um intervalo cuja característica é a transformação de nossa "cultura material" pelos mecanismos de um novo paradigma tecnológico que se organiza em torno da tecnologia da informação.

Como tecnologia, entendo, em linha direta com Harvey Brooks e Daniel Bell, "o uso de conhecimentos científicos para especificar as vias de se fazerem as coisas de uma maneira reproduzível". Entre as tecnologias da informação, incluo, como todos, o conjunto convergente de tecnologias em microeletrônica, computação (software e hardware), telecomunicações/radiodifusão, e optoeletrônica. Além disso, diferentemente de alguns analistas, também incluo nos domínios da tecnologia da informação a engenharia genética e seu crescente conjunto de desenvolvimentos e aplicações. Em primeiro lugar, isso se deve ao fato de a engenharia genética concentrar-se na decodificação, manipulação e conseqüente reprogramação dos códigos de informação da matéria viva. E também ao fato de, nos anos 90, a biologia, a eletrônica e a informática parecerem estar convergindo e interagindo em suas aplicações e materiais e, mais fundamentalmente, na abordagem conceitual, tópico merecedor de maior atenção ainda neste capítulo. Ao redor deste núcleo de tecnologias da informação, definido em um sentido mais amplo, uma constelação de grandes avanços tecnológicos vem ocor-

rendo, nas duas últimas décadas do século XX, no que se refere a materiais avançados, fontes de energia, aplicações na medicina, técnicas de produção (já existentes ou potenciais, tais como a nanotecnologia) e tecnologia de transportes, entre outros.⁸ Além disso, o processo atual de transformação tecnológica expande-se exponencialmente em razão de sua capacidade de criar uma interface entre campos tecnológicos mediante uma linguagem digital comum na qual a informação é gerada, armazenada, recuperada, processada e transmitida. Vivemos em um mundo que, segundo Nicholas Negroponte, se tornou digital.⁹

O exagero profético e a manipulação ideológica que caracteriza a maior parte dos discursos sobre a revolução da tecnologia da informação não deveria levar-nos a cometer o erro de subestimar sua importância verdadeiramente fundamental. Esse é, como este livro tentará mostrar, no mínimo, um evento histórico da mesma importância da Revolução Industrial do século XVIII, induzindo um padrão de descontinuidade nas bases materiais da economia, sociedade e cultura. O registro histórico das revoluções tecnológicas, conforme foi compilado por Melvin Kranzberg e Carroll Pursell,10 mostra que todas são caracterizadas por sua penetrabilidade, ou seja, por sua penetração em todos os domínios da atividade humana, não como fonte exógena de impacto, mas como o tecido em que essa atividade é exercida. Em outras palavras, são voltadas para o processo, além de induzir novos produtos. Por outro lado, diferentemente de qualquer outra revolução, o cerne da transformação que estamos vivendo na revolução atual refere-se às tecnologias da informação, processamento e comunicação. 11 A tecnologia da informação é para esta revolução o que as novas fontes de energia foram para as Revoluções Industriais sucessivas, do motor a vapor à eletricidade, aos combustíveis fósseis e até mesmo à energia nuclear, visto que a geração e distribuição de energia foi o elemento principal na base da sociedade industrial. Porém, essa afirmação sobre o papel preeminente da tecnologia da informação muitas vezes é confundida com a caracterização da revolução atual como sendo essencialmente dependente de novos conhecimentos e informação. Isso é verdade no caso do atual processo de transformação tecnológica, mas foi assim também com as revoluções tecnológicas anteriores, conforme mostraram os principais historiadores de tecnologia, como Melvin Kranzberg e Joel Mokyr. 12 A primeira Revolução Industrial, apesar de não se basear em ciência, apoiava-se em um amplo uso de informações, aplicando e desenvolvendo os conhecimentos preexistentes. E a segunda Revolução Industrial, depois de 1850, foi caracterizada pelo papel decisivo da ciência ao promover a inovação. De fato, laboratórios de P&D apareceram pela primeira vez na indústria química alemã nas últimas décadas do século XIX.13

O que caracteriza a atual revolução tecnológica não é a centralidade de conhecimentos e informação, mas a aplicação desses conhecimentos e dessa infor-

mação para a geração de conhecimentos e de dispositivos de processamento/comunicação da informação, em um ciclo de realimentação cumulativo entre a inovação e seu uso. 14 Uma ilustração pode esclarecer esta análise. Os usos das novas tecnologias de telecomunicações nas duas últimas décadas passaram por três estágios distintos: a automação de tarefas, as experiências de usos e a reconfiguração das aplicações. 15 Nos dois primeiros estágios, o progresso da inovação tecnológica baseou-se em aprender usando, de acordo com a terminologia de Resenberg. 16 No terceiro estágio, os usuários aprenderam a tecnologia fazendo, o que acabou resultando na reconfiguração das redes e na descoberta de novas aplicações. O ciclo de realimentação entre a introdução de uma nova tecnologia, seus usos e seus desenvolvimentos em novos domínios torna-se muito mais rápido no novo paradigma tecnológico. Consequentemente, a difusão da tecnologia amplifica seu poder de forma infinita, à medida que os usuários apropriam-se dela e a redefinem. As novas tecnologias da informação não são simplesmente ferramentas a serem aplicadas, mas processos a serem desenvolvidos. Usuários e criadores podem tornar-se a mesma coisa. Dessa forma, os usuários podem assumir o controle da tecnologia como no caso da Internet (ver capítulo 5). Segue-se uma relação muito próxima entre os processos sociais de criação e manipulação de símbolos (a cultura da sociedade) e a capacidade de produzir e distribuir bens e serviços (as forças produtivas). Pela primeira vez na história, a mente humana é uma força direta de produção, não apenas um elemento decisivo no sistema produtivo.

Assim, computadores, sistemas de comunicação, decodificação e programação genética são todos amplificadores e extensões da mente humana. O que pensamos e como pensamos é expresso em bens, serviços, produção material e intelectual, sejam alimentos, moradia, sistemas de transporte e comunicação, mísseis, saúde, educação ou imagens. A integração crescente entre mentes e máquinas, inclusive a máquina de DNA, está anulando o que Bruce Mazlish chama de a "quarta descontinuidade" (aquela entre seres humanos e máquinas), alterando fundamentalmente o modo pelo qual nascemos, vivemos, aprendemos, trabalhamos, produzimos, consumimos, sonhamos, lutamos ou morremos. Com certeza, os contextos culturais/institucionais e a ação social intencional interagem de forma decisiva com o novo sistema tecnológico, mas esse sistema tem sua própria lógica embutida, caracterizada pela capacidade de transformar todas as informações em um sistema comum de informação, processando-as em velocidade e capacidade cada vez maiores e com custo cada vez mais reduzido em uma rede de recuperação e distribuição potencialmente ubíqua.

Há um aspecto adicional que caracteriza a revolução da tecnologia da informação quando comparada a seus antecessores históricos. Mokyr¹⁸ demonstrou que as revoluções tecnológicas ocorreram apenas em algumas sociedades e foram difundidas em uma área geográfica relativamente limitada, muitas vezes

ocupando espaço e tempo isolados em comparação a outras regiões do planeta. Assim, embora os europeus tomassem emprestadas algumas descobertas feitas na China, por muitos séculos a China e o Japão adotaram pouca tecnologia européia, restrita principalmente a aplicações militares. O contato entre civilizações de níveis tecnológicos diferentes frequentemente provocava a destruição da menos desenvolvida ou daquelas que quase não aplicavam seus conhecimentos à tecnologia bélica, como no caso das civilizações americanas, aniquiladas pelos conquistadores espanhóis, às vezes mediante guerras biológicas eventuais. 19 De sua origem na Europa Ocidental, a Revolução Industrial estendeu-se para a maior parte do globo durante os dois séculos seguintes. Mas sua expansão foi muito seletiva e seu ritmo bastante lento pelos padrões atuais de difusão tecnológica. Na verdade, até na Inglaterra em meados do século XIX, os setores que representavam a maioria da força de trabalho e, pelo menos, metade do PNB não foram afetados pelas novas tecnologias industriais.²⁰ Além disso, seu alcance planetário nas décadas seguintes teve, com bastante frequência, um caráter de dominação colonial, seja na Índia sob o Império Britânico, na América Latina sob a dependência comercial/industrial da Inglaterra e dos EUA, no desmembramento da África mediante o tratado de Berlim, ou na abertura do Japão e da China para o comércio exterior pelas armas dos navios ocidentais. Ao contrário, as novas tecnologias da informação difundiram-se pelo globo com a velocidade da luz em menos de duas décadas, entre meados dos anos 70 e 90, por meio de uma lógica que, a meu ver, é a característica dessa revolução tecnológica: a aplicação imediata no próprio desenvolvimento da tecnologia gerada, conectando o mundo através da tecnologia da informação.²¹ Na verdade, há grandes áreas do mundo e consideráveis segmentos da população que estão desconectados do novo sistema tecnológico: essa é precisamente uma das discussões centrais deste livro. Além disso, a velocidade da difusão tecnológica é seletiva tanto social quanto funcionalmente. O fato de países e regiões apresentarem diferenças quanto ao momento oportuno de dotarem seu povo do acesso ao poder da tecnologia representa fonte crucial de desigualdade em nossa sociedade. As áreas desconectadas são cultural e espacialmente descontínuas: estão nas cidades do interior dos EUA ou nos subúrbios da França, assim como nas favelas africanas e nas áreas rurais carentes chinesas e indianas. Mas atividades, grupos sociais e territórios dominantes por todo o globo estão conectados, em meados dos anos 90, em um novo sistema tecnológico que, como tal, começou a tomar forma somente na década de 70.

Como ocorreu essa transformação fundamental em um período que representa apenas um instante histórico? Por que essa transformação está se difundindo por todo o mundo em ritmo tão intenso, ainda que irregular? Por que é uma "revolução"? Como nossa experiência sobre o novo está baseada em passado

recente, penso que as respostas a essas questões básicas podem ser encontradas com a ajuda de uma rápida revisão histórica da Revolução Industrial, ainda presente em nossas instituições e, portanto, em nossa mente.

Lições da Revolução Industrial

Segundo os historiadores, houve pelo menos duas Revoluções Industriais: a primeira começou pouco antes dos últimos trinta anos do século XVIII, caracterizada por novas tecnologias como a máquina a vapor, a fiadeira, o processo Cort em metalurgia e, de forma mais geral, a substituição das ferramentas manuais pelas máquinas; a segunda, aproximadamente 100 anos depois, destacouse pelo desenvolvimento da eletricidade, do motor de combustão interna, de produtos químicos com base científica, da fundição eficiente de aço e pelo início das tecnologias de comunicação, com a difusão do telégrafo e a invenção do telefone. Entre as duas há continuidades fundamentais, assim como algumas diferenças cruciais. A principal é a importância decisiva de conhecimentos científicos para sustentar e guiar o desenvolvimento tecnológico após 1850.²² É precisamente por causa das diferenças que os aspectos comuns a ambas podem oferecer subsídios preciosos para se entender a lógica das revoluções tecnológicas.

Primeiramente, em ambos os casos, testemunhamos o que Mokyr descreve como um período de "transformação tecnológica em aceleração e sem precedentes" em comparação com os padrões históricos. Um conjunto de macroinvenções preparou o terreno para o surgimento de microinvenções nos campos da agropecuária, indústria e comunicações. A descontinuidade histórica fundamental irreversível foi introduzida na base material da espécie humana em um processo dependente do percurso, cuja lógica interna e seqüencial foi pesquisada por Paul David e teorizada por Brian Arthur. Foram, de fato, "revoluções" no sentido de que um grande aumento repentino e inesperado de aplicações tecnológicas transformou os processos de produção e distribuição, criou uma enxurrada de novos produtos e mudou de maneira decisiva a localização das riquezas e do poder no mundo, que, de repente, ficaram ao alcance dos países e elites capazes de comandar o novo sistema tecnológico. O lado escuro dessa aventura tecnológica é que ela estava irremediavelmente ligada a ambições imperialistas e conflitos interimperialistas.

Todavia, essa é precisamente a confirmação do caráter revolucionário das novas tecnologias industriais. A ascensão histórica do chamado Ocidente, limitando-se de fato à Inglaterra e a alguns países da Europa Ocidental, bem como à América do Norte e à Austrália, está fundamentalmente associada à superio-

ridade tecnológica alcançada durante as duas Revoluções Industriais. Nada na história universal cultural, científica, política ou militar antes da Revolução Industrial poderia explicar a indiscutível supremacia (anglo-saxônica/alemã com um toque francês) do "Ocidente" entre 1750 e 1950. A China mostrou-se uma cultura muito superior durante a maior parte da história pré-renascentista; a civilização muçulmana (tomando a liberdade de usar esse termo) dominou a maior parte do Mediterrâneo e exerceu grande influência na África e na Ásia durante toda a Idade Moderna; no geral, a África e a Ásia mantiveram-se organizadas em torno de centros políticos e culturais autônomos; a Rússia reinou com extremo isolamento em uma vasta área da Europa Oriental e Ásia; e o Império Espanhol, a retardatária cultura européia da Revolução Industrial, foi a maior potência mundial por mais de dois séculos depois de 1492. A tecnologia, expressando condições sociais específicas, introduziu nova trajetória histórica na segunda metade do século XVIII.

Essa trajetória originou-se na Inglaterra, apesar de suas raízes intelectuais poderem ser encontradas por toda a Europa e no espírito renascentista das descobertas.²⁶ Na verdade, alguns historiadores insistem que os conhecimentos científicos necessários à primeira Revolução Industrial já estavam disponíveis cem anos antes, prontos para ser usados sob condições sociais maduras; ou, como afirmam outros, aguardando a engenhosidade técnica de inventores autodidatas, como Newcomen, Watts, Crompton ou Arkwright, capazes de transformar a tecnologia disponível, combinada com a experiência artesanal, em novas e decisivas tecnologias industriais.²⁷ Porém, a segunda Revolução Industrial, mais dependente de novos conhecimentos científicos, mudou seu centro de gravidade para os EUA e a-Alemanha, onde ocorreu a maior parte dos desenvolvimentos em produtos químicos, eletricidade e telefonia.²⁸ Historiadores têm feito uma análise meticulosa das condições sociais associadas às mudanças geográficas das inovações técnicas, muitas vezes enfocando as características dos sistemas educacionais e científicos ou a institucionalização dos direitos de propriedade. Porém, a explicação contextual para a trajetória irregular da inovação tecnológica parece ser muito ampla e aberta a interpretações alternativas. Hall e Peston, ao analisarem a mudança geográfica da inovação tecnológica entre 1846 e 2003, mostram a importância de fontes locais de inovação, das quais Berlim, Nova York e Boston são coroadas como "centros mundiais de alta tecnologia industrial" entre 1880 e 1914, enquanto "Londres no mesmo período era uma sombra pálida de Berlim". 29 O motivo disso encontra-se na base territorial para a interação dos sistemas de descobertas e aplicações tecnológicas, isto é, nas propriedades sinérgicas do que é conhecido na literatura como "meios de inovação".30

Na verdade, as descobertas tecnológicas ocorreram em agrupamentos, interagindo entre si num processo de retornos cada vez maiores. Sejam quais fo-

rem as condições que determinaram esses agrupamentos, a principal lição que permanece é que *a inovação tecnológica não é uma ocorrência isolada.*³¹ Ela reflete um determinado estágio de conhecimento; um ambiente institucional e industrial específico; uma certa disponibilidade de talentos para definir um problema técnico e resolvê-lo; uma mentalidade econômica para dar a essa aplicação uma boa relação custo/benefício; e uma rede de fabricantes e usuários capazes de comunicar suas experiências de modo cumulativo e aprender usando e fazendo. As elites aprendem fazendo e com isso modificam as aplicações da tecnologia, enquanto a maior parte das pessoas aprende usando e, assim, permanecem dentro dos limites do pacote da tecnologia. A interatividade dos sistemas de inovação tecnológica e sua dependência de certos "ambientes" propícios para trocas de idéias, problemas e soluções são aspectos importantíssimos que podem ser estendidos da experiência de revoluções passadas para a atual.³²

Os efeitos positivos, a longo prazo, das novas tecnologias industriais no crescimento econômico, na qualidade de vida e na conquista humana da Natureza hostil (refletidos no aumento impressionante da expectativa de vida, que não tivera uma melhoria constante antes do século XVIII) são indiscutíveis nos registros históricos. Porém não vieram cedo, apesar da difusão da máquina a vapor e das novas máquinas e equipamentos. Mokyr relembra que "no início, o consumo per capita e a qualidade de vida aumentaram pouco [no fim do séc. XVIII], mas as tecnologias de produção mudaram drasticamente várias indústrias e setores, preparando o caminho para o crescimento sustentado schumpeteriano na segunda metade do século XIX, quando o progresso tecnológico penetrou em indústrias não afetadas anteriormente". 33 Essa estimativa crucial força-nos a avaliar os verdadeiros efeitos de grandes transformações tecnológicas à luz de uma defasagem no tempo em função das condições específicas de cada sociedade. Todavia, os registros históricos parecem indicar que, em termos gerais, quanto mais próxima for a relação entre os locais de inovação, produção e utilização das novas tecnologias, mais rápida será a transformação das sociedades e maior será o retorno positivo das condições sociais sobre as condições gerais para favorecer futuras inovações. Assim, na Espanha, a Revolução Industrial difundiu-se de forma rápida na Catalunha, já no fim do século XVIII, mas alcançou uma velocidade bem menor no resto do país, particularmente em Madri e no Sul; apenas o País Basco e Astúrias tinham aderido ao processo de industrialização no final do século XIX.34 As fronteiras da inovação industrial eram coincidentes em grande parte com áreas onde foi proibido comercializar com as colônias da América espanhola por cerca de dois séculos: embora as elites andaluzas e castelhanas, bem como a Coroa, pudessem viver de suas rendas norteamericanas, os catalães tinham de prover o próprio sustento através do comércio e da engenhosidade, enquanto eram submetidos à pressão de um Estado centralizador. Em parte como resultado dessa trajetória histórica, até a década de 1950 a Catalunha e o País Basco eram as únicas regiões totalmente industrializadas, até a década de 1950, e as principais fontes de espíritos empreendedores e de inovação, em profundo contraste com as tendências do resto da Espanha. Assim, condições sociais específicas favorecem a inovação tecnológica, que alimenta a trilha do desenvolvimento econômico e as demais inovações. Contudo, a reprodução dessas condições é tão cultural e institucional quanto econômica e tecnológica. A transformação de ambientes sociais e institucionais pode alterar o ritmo e a geografia do desenvolvimento tecnológico (por exemplo, o Japão depois da Restauração Meiji ou a Rússia durante um breve período sob o regime Stolypin), embora a história passada ostente uma inércia considerável.

Uma última lição importante das Revoluções Industriais, que considero pertinente a esta análise, gera controvérsia: apesar de ambas terem causado o surgimento de novas tecnologias que na verdade formaram e transformaram um sistema industrial em estágios sucessivos, no âmago dessas revoluções havia uma inovação fundamental em geração e distribuição de energia. R. J. Forbes, famoso historiador de tecnologia, afirma que "a invenção da máquina a vapor é o fator central na revolução industrial", seguida pela introdução de novos motores primários e motores primários móveis, com os quais "a força da máquina a vapor podia ser levada aonde fosse necessária e na extensão desejada".35 E, embora însista no caráter multifacetado da Revolução Industrial, Mokyr também acha que "não obstante os protestos de alguns historiadores econômicos, a máquina a vapor é ainda amplamente considerada a invenção mais requintada da Revolução Industrial".36 A eletricidade foi a força central da segunda revolução, apesar de outros avanços extraordinários como produtos químicos, aço, motor de combustão interna, telégrafo e telefonia. Isso porque, apenas mediante geração e distribuição de eletricidade, os outros campos puderam desenvolver suas aplicações e ser conectados entre si. Um caso em especial foi o do telégrafo elétrico que, utilizado experimentalmente de 1790-99 e em pleno uso desde 1837, só conseguiu desenvolver-se em uma rede de comunicação, conectando o mundo em larga escala, quando pôde contar com a difusão da eletricidade. O uso difundido da eletricidade a partir de 1870 mudou os transportes, telégrafos, iluminação e, não menos importante, o trabalho nas fábricas mediante a difusão de energia na forma de motores elétricos. Na verdade, embora as fábricas sejam associadas à primeira Revolução Industrial, por quase um século elas não foram concomitantes com o uso da máquina a vapor, bastante utilizada em pequenas oficinas artesanais, enquanto muitas fábricas grandes continuavam a usar fontes melhoradas de energia hidráulica (daí a razão de, por muito tempo, terem sido conhecidas como moinhos). Foi o motor elétrico que tanto tornou possível quanto induziu a organização do trabalho em larga escala nas fábricas industriais.³⁷ Nas palavras de R. J. Forbes (em 1958):

Durante os últimos 250 anos, cinco novos motores primários importantes geraram aquilo que é freqüentemente chamado de a Era das Máquinas. No século XVIII foi a máquina a vapor; no séc. XIX a turbina hidráulica, o motor de combustão interna e a turbina a vapor; no séc. XX a turbina de combustão. Historiadores sempre inventaram lemas que denotassem movimentos ou correntes históricas. Assim é com a "Revolução Industrial" título para um processo de desenvolvimento freqüentemente descrito como tendo seu início no começo do século XVIII e estendendo-se por quase todo o século XIX. Foi um movimento lento, mas forjou mudanças tão profundas em sua combinação entre progresso material e deslocamento social que, no conjunto, talvez possam ser descritas como revolucionárias se consideradas no período de tempo abrangido por essas datas.³⁸

Portanto, atuando no processo central de todos os processos — ou seja, a energia necessária para produzir, distribuir e comunicar — as duas Revoluções Industriais difundiram-se por todo o sistema econômico e permearam todo o tecido social. Fontes móveis de energia barata e acessível expandiram e aumentaram a força do corpo humano, criando a base material para a continuação histórica de um movimento semelhante rumo à expansão da mente humana.

A sequência histórica da Revolução da Tecnologia da Informação

A breve, porém intensa, história da Revolução da Tecnologia da Informação foi contada tantas vezes nos últimos anos, que é desnecessário dar ao leitor um outro relato completo. Além disso, devido ao ritmo acelerado dessa revolução, qualquer outro relato tornar-se-ia obsoleto, tanto que, entre o momento em que este livro está sendo escrito e o de sua leitura (digamos 18 meses), *microchips* terão dobrado seu desempenho a um determinado preço, de acordo com a geralmente aceita "lei de Moore". Todavia, considero útil para a análise nos lembrarmos dos principais eixos da transformação tecnológica em geração/processamento/transmissão da informação, colocando-os na sequência que se deslocou rumo à formação de um novo paradigma sociotécnico. Este breve resumo me autorizará, posteriormente, a omitir referências sobre aspectos técnicos ao discutir sua interação específica com a economia, cultura e socie-

dade por todo o itinerário intelectual deste livro, exceto quando novos elementos de informação forem necessários.

Macromudanças da microengenharia: eletrônica e informação

Apesar de os antecessores industriais e científicos das tecnologias da informação com base em microeletrônica já poderem ser observados anos antes da década de 40⁴² (não menosprezando a invenção do telefone por Bell, em 1876, do rádio por Marconi, em 1898, e da válvula a vácuo por De Forest, em 1906), foi durante a Segunda Guerra Mundial e no período seguinte que se deram as principais descobertas tecnológicas em eletrônica: o primeiro computador programável e o transistor, fonte da microeletrônica, o verdadeiro cerne da Revolução da Tecnologia da Informação no século XX. ⁴³ Porém, defendo que, de fato, só na década de 70 as novas tecnologias da informação difundiram-se amplamente, acelerando seu desenvolvimento sinérgico e convergindo em um novo paradigma. Vamos reconstituir os estágios da inovação em três principais campos da tecnologia que, intimamente inter-relacionados, constituíram a história das tecnologias baseadas em eletrônica: microeletrônica, computadores e telecomunicações.

O transistor, inventado em 1947 na empresa Bell Laboratories em Murray Hill, no estado de Nova Jersey, pelos físicos Bardeen, Brattain e Shockley (ganhadores do Prêmio Nobel pela descoberta), possibilitou o processamento de impulsos elétricos em velocidade rápida e em modo binário de interrupção e amplificação, permitindo a codificação da lógica e da comunicação com e entre as máquinas: esses dispositivos têm o nome de semicondutores, mas as pessoas costumam chamá-los de chips (na verdade, agora constituídos de milhões de transistores). O primeiro passo na difusão do transistor foi dado em 1951, com a invenção do transistor de junção por Shockley. Porém, sua fabricação e utilização em ampla escala exigiam novas tecnologias de produção e uso de material apropriado. A mudança para o silício, construindo, literalmente, a nova revolução na areia, foi pioneiramente realizada pela Texas Instruments (em Dallas) em 1954 (um feito facilitado pela contratação de Gordon Teal, em 1953, outro importante cientista da Bell Laboratories). A invenção do processo plano em 1959 pela empresa Fairchild Semiconductors (localizada no Vale do Silício) abriu a possibilidade de integração de componentes miniaturizados com precisão de fabricação.

Contudo, o passo decisivo da microeletrônica foi dado em 1957: o circuito integrado foi inventado por Jack Kilby, engenheiro da Texas Instruments (que o patenteou) em parceria com Bob Noyce, um dos fundadores da Fairchild. Mas foi Noyce que fabricou CIs pela primeira vez, usando o processo plano. Essa

iniciativa acionou uma explosão tecnológica: em apenas três anos, entre 1959 e 1962, os preços dos semicondutores caíram 85%, e nos dez anos seguintes a produção aumentou vinte vezes, sendo que 50% dela foi destinada a usos militares. A título de comparação histórica, levou setenta anos (1780 — 1850) para que o preço do tecido de algodão caísse 85% na Inglaterra durante a Revolução Industrial. Então, o movimento acelerou-se na década de 60: à medida que a tecnologia de fabricação progredia e se conseguia melhorar o *design* dos *chips* com o auxílio de computadores, usando dispositivos microeletrônicos mais rápidos e mais avançados, o preço médio de um circuito integrado caiu de US\$ 50 em 1962 para US\$ 1 em 1971.

O avanço gigantesco na difusão da microeletrônica em todas as máquinas ocorreu em 1971 quando o engenheiro da Intel, Ted Hoff (também no Vale do Silício), inventou o microprocessador, que é o computador em um único *chip*. Assim, a capacidade de processar informação poderia ser instalada em todos os lugares. Começava a disputa pela capacidade de integração cada vez maior dos circuitos contidos em apenas um *chip*, e a tecnologia de produção e *design* sempre excedia os limites da integração antes considerada fisicamente impossível sem abandonar o uso do silício. Em meados dos anos 90, as avaliações técnicas ainda prevêem entre dez e vinte anos de emprego satisfatório para os circuitos à base de silício, embora já se tenham intensificado as pesquisas sobre materiais alternativos. O nível de integração tem progredido em ritmo bastante rápido nos últimos vinte anos. Embora detalhes técnicos não tenham vez neste livro, é pertinente à análise indicar a velocidade e a extensão da transformação tecnológica.

Como se sabe, a capacidade dos chips pode ser avaliada por uma combinação de três características: sua capacidade de integração, indicada pela menor largura das linhas de condução no interior do chip medida em mícrons (1 mícron = a milionésima parte de uma polegada); sua capacidade de memória, medida em bytes: milhares (kbytes) e milhões (megabytes); e a velocidade do microprocessador medida em megahertz. Assim, o primeiro processador de 1971 foi produzido com linhas de aproximadamente 6,5 mícrons; em 1980 alcançou 4 mícrons; em 1987, 1 mícron; em 1995, o Pentium da Intel tinha um tamanho na faixa de 0,35 mícron; e enquanto este livro era escrito, as projeções já estavam em 0,25 mícron para 1999. Assim, enquanto em 1971 cabiam 2.300 transistores em um chip do tamanho de uma unha, em 1993 cabiam 35 milhões. Em 1971, a capacidade de memória, indicada como memória DRAM (memória dinâmica de acesso aleatório), era de 1.024 bytes; em 1980, 64.000; em 1987, 1.024.000; em 1993, 16.384.000; e, segundo as projeções, será de 256.000.000 bytes em 1999. No tocante à velocidade, os atuais microprocessadores de 64 bits são 550 vezes mais rápidos que o primeiro chip da Intel em 1972; e o número de MPUs dobra a cada 18 meses. As projeções para 2002 prevêem uma aceleração da tecnologia de microeletrônica na integração (*chips* de 0,18 mícron), na capacidade da memória DRAM (1.024 *megabytes*) e na velocidade dos microprocessadores (até mais de 500 megahertz, comparados aos 150 de 1993). Ao combinar os surpreendentes desenvolvimentos em processamento paralelo, usando microprocessadores múltiplos (inclusive, no futuro, unindo-se microprocessadores múltiplos em apenas um *chip*), parece que o poder da microeletrônica ainda está sendo liberado, aumentando continuamente a capacidade da computação. Além disso, a miniaturização, a maior especialização e a queda dos preços dos *chips* de capacidade cada vez maior possibilitaram sua utilização em máquinas usadas em nossa rotina diária, de lava-louças e fornos de microondas a automóveis, cujos instrumentos eletrônicos, nos modelos básicos dos anos 90, alcançaram um valor mais alto que o próprio aço utilizado em sua fabricação.

Os computadores também foram concebidos pela mãe de todas as tecnologias, a Segunda Guerra Mundial, mas nasceram somente em 1946 na Filadélfia, se não considerarmos as ferramentas desenvolvidas com objetivos bélicos, como o Colossus britânico (1943) para decifrar códigos inimigos e o Z-3 alemão que, como dizem, foi criado em 1941 para auxiliar os cálculos das aeronaves. ⁴⁶ Todavia, os Aliados concentravam a maior parte de seus esforços em eletrônica nos programas de pesquisa do MIT (Instituto de Tecnologia de Massachusetts), e a verdadeira experiência da capacidade das calculadoras ocorreu na universidade da Pensilvânia com o patrocínio do exército norte-americano, onde Mauchly e Eckert desenvolveram o primeiro computador para uso geral, em 1946, o ENIAC (computador e integrador numérico eletrônico). Os historiadores lembram que o primeiro computador eletrônico pesava 30 toneladas, foi construído sobre estruturas metálicas com 2,75 m de altura, tinha 70 mil resistores e 18 mil válvulas a vácuo e ocupava a área de um ginásio esportivo. Quando ele foi acionado, seu consumo de energia foi tão alto que as luzes de Filadélfia piscaram. ⁴⁷

Porém, a primeira versão comercial dessa máquina primitiva, o UNIVAC-1, desenvolvido em 1951 pela mesma equipe e depois com a marca Remington Rand, alcançou tremendo sucesso no processamento dos dados do Censo norte-americano de 1950. A IBM, também patrocinada por contratos militares e, em parte, contando com as pesquisas do MIT, superou suas restrições iniciais em relação à era do computador e entrou na disputa em 1953 com uma máquina de 701 válvulas. Em 1558, quando Sperry Rand introduziu um computador de grande porte (*mainframe*) de segunda geração, a IBM logo deu seqüência com seu modelo 7090. Mas foi apenas em 1964 que a IBM, com seu *mainframe* 360/370, conseguiu dominar a indústria de computadores, povoada por novas (Control Data, Digital) e antigas (Sperry, Honeywell, Burroughs, NCR) empresas fabricantes de máquinas comerciais. A maior parte dessas empresas estava decadente ou desaparecera na década de 90: esta é a velocidade da "destruição criativa"