

MATERIAIS DE APLICAÇÃO NA ENGENHARIA NUCLEAR

Materiais dos Reatores Nucleares

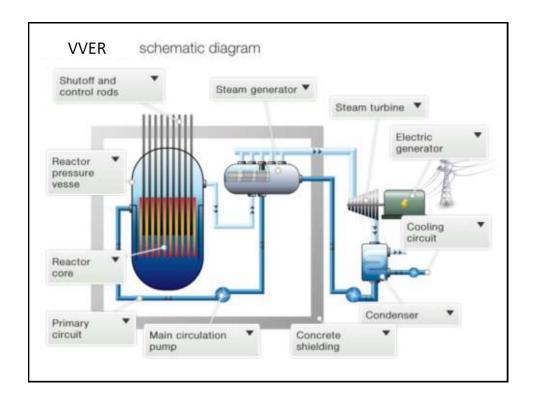
Profa. Raquel M. Lobo

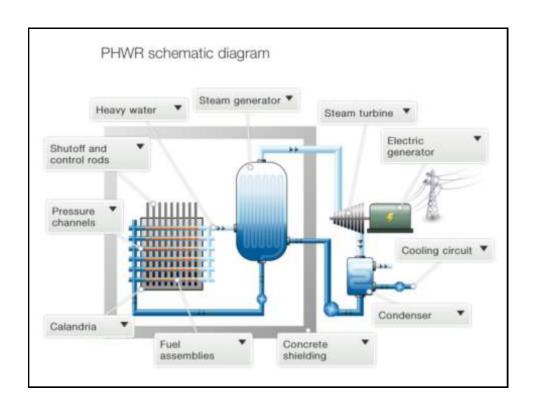
lpen 2023

Ementa

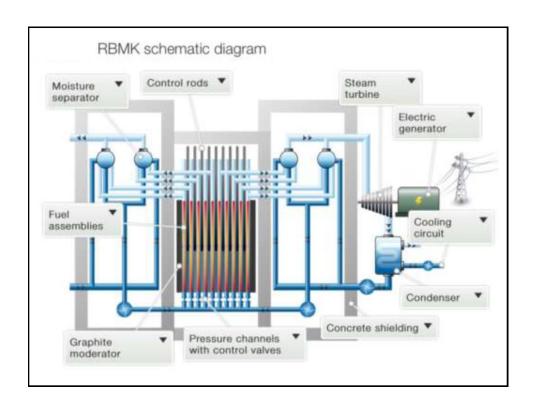
Introdução aos tipos de reatores nucleares, estruturas, componentes e materiais utilizados nas centrais nucleares

Revisão da ciência dos materiais especialmente da relação microestrutura e propriedades

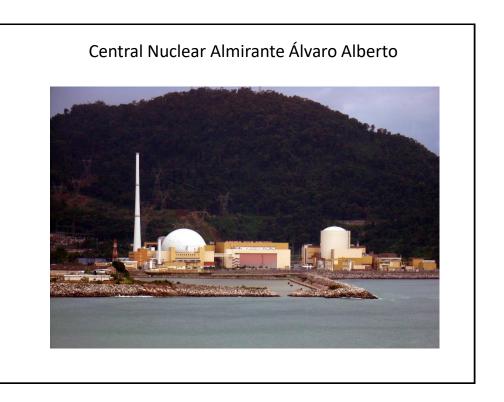

Interação entre partículas, matéria e defeitos elementares Danos de radiação e a microestrutura

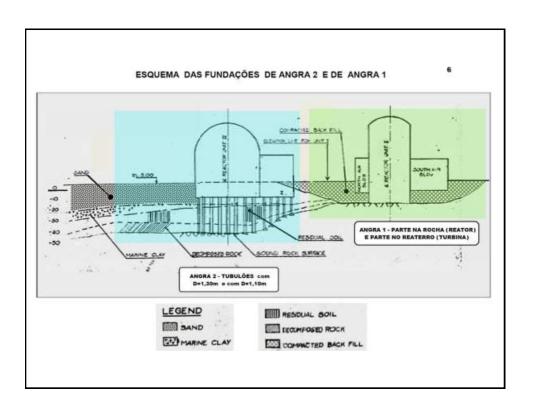

O combustível nuclear e seu revestimento. Modos de degradação do combustível nuclear

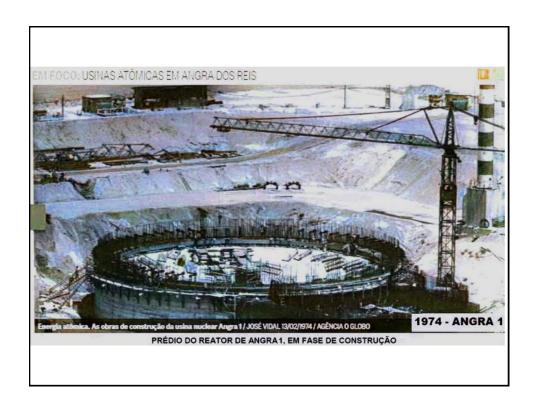

Vaso de pressão e tubulações do primário.

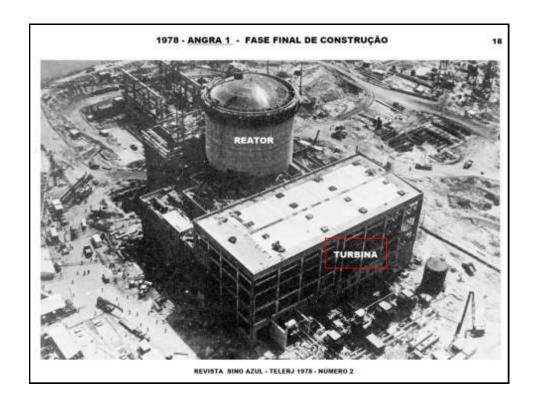

Materiais clássicos utilizados nos reatores (gerador de vapor; confinamento dos resíduos

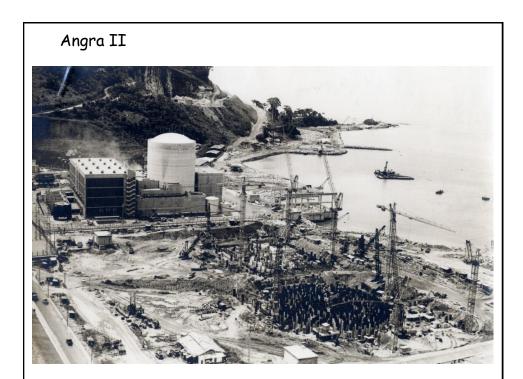
Extensão da vida útil. Recomendações e perspectivas.

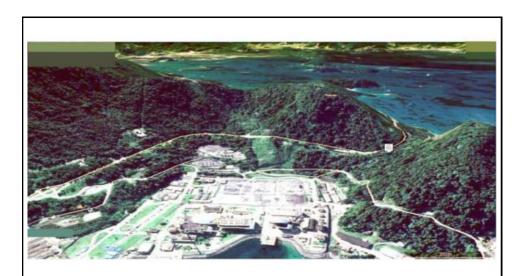












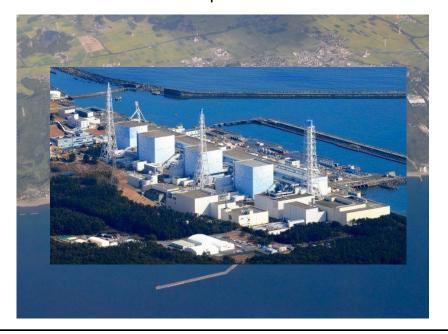
Prédio das Turbinas & Gerador Elétrico

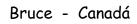
Angra II

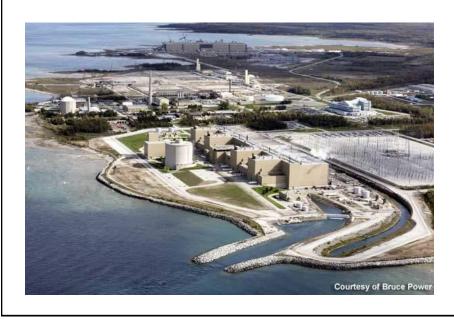
2018 - ITAORNA

Tupinambá - pedra podre

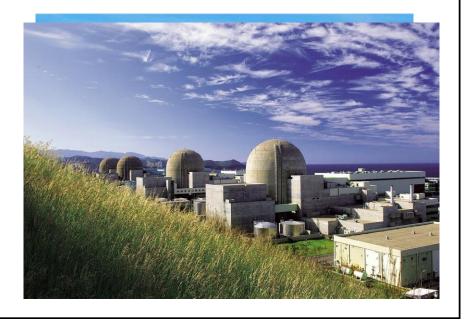
Através do túnel de 1 km de extensão, escavado na rocha, a água de refrigeração será lançada ao mar. Área do túnel = 65 m2; Largura = 8m; Altura = 9m; Comprimento = 1000 metros...

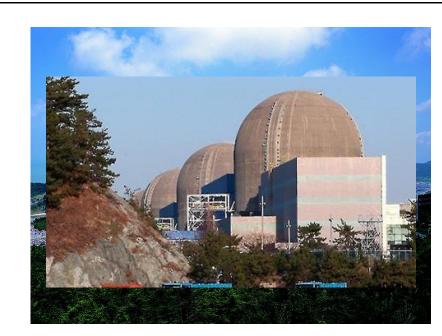





THE LARGEST NUCLEAR POWER PLANTS AROUND THE WORLD:

Power plant	Country	Power output
Kashiwazaki Kariwa	Japan	7 965 MW _e
Bruce	Canada	6 152 MW _e
Hanul	South Korea	5 881 MW _e
Hanbit	South Korea	5 875 MW _e
Zaporizhzhya Nuclear power station	Ukraine	5 700 MW _e


kashiwazaki kariwa - Japão



Hanul - Coréia do Sul

Hanbit - Coréia do Sul

Materiais para Reatores

Componentes e Materiais dos Reatores Nucleares **Principais Materiais** Componentes Urânio, Plutônio, Tório **Combustível Nuclear** Ligas de zircônio, aço inoxidável, ligas de alumínio, **Estruturais** ligas de níquel, aço carbono Grafite, água leve e pesada, berílio **Moderador e Refletor** Carbeto de boro, cádmio, háfnio, ácido bórico, Elementos de controle absorvedores queimáveis Hélio, CO_2 , H_2O , D_2O , metais líquidos Refrigerantes Elementos ou compostos de número atômico baixo, Blindagens leve ou pesado Sistemas de Segurança Sistemas de supressão de pressão, de resfriamento emergencial do núcleo, de monitoramento

Materiais Combustíveis

Função: Fonte de Energia

- Urânio (U): metálico e cerâmico

- *Plutônio (Pu)* : diluído no uranio na forma metálica ou cerâmica
- *Tório (Th)* : material fértil ligas metálicas e compostos cerâmicos

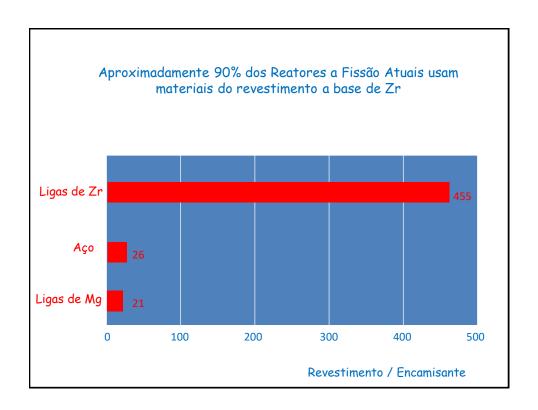
Materiais Estruturais

Função: proporcionar confinamento físico do combustível, resistência mecânica e suporte estrutural aos componentes do reator

- Encamisante
- Vaso de Pressão
- Canais e tubos de refrigeração do combustível
- Placas de suporte do núcleo

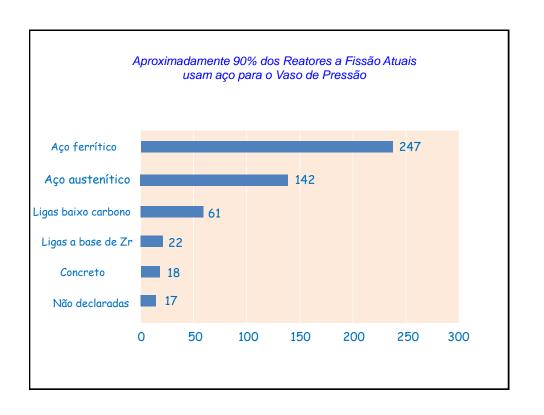
Materiais Estruturais

Materiais
Be, Mg <mark>, Zr</mark> , Al
Aço carbono, aço inoxidável
Mo, Ti, Ta, W
Grafite, concreto protendido
Al, Mg
BeO, Al ₂ O ₃ , MgO, SiO ₂


Atributos do Encamisante (revestimento) *

-Tensão de escoamento adequado em T elevada e durante a irradiação

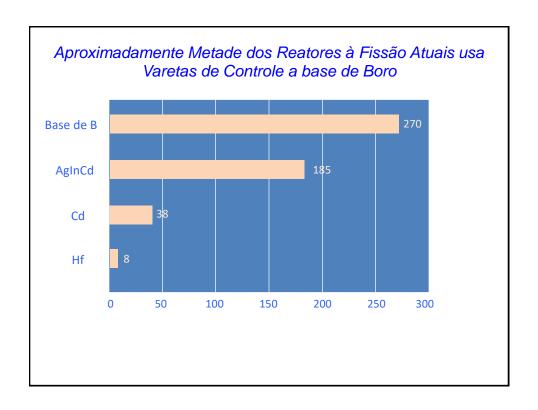
- Resistência à corrosão
- Estabilidade dimensional
- Propriedades mecânicas previsíveis
- Condutividade térmica elevada
- Boas propriedades neutrônicas
- Facilidade de fabricação e instalação
- Facilidade de reprocessamento
- Custo baixo
- Baixa demanda de recursos escassos


* O combustível deve ser protegido do refrigerante e vice-versa

7ircônio	como	Material	Estrutural	Nuclear
	COIIIC	//\u \u \u	L311 u l ul ul	i vucieui

Vantagens	Desvantagens
Baixa seção de choque de absorção de nêutrons térmicos	Baixa condutividade térmica
Alto ponto de fusão	Baixa resistência à corrosão em temperaturas elevadas
Resistência mecânica alta em temperaturas elevadas	Custo relativamente alto
Boa resistência à corrosão (água e vapor)	Baixo coeficiente de expansão térmica
Conformabilidade e usinabilidade	
Disponibilidade razoável	

Αl	umínio como Mater (Reator de	rial Estrutural Nuc Pesquisa)	lear
	Vantagens	Desvantagens	
	Absorção de nêutrons térmicos relativamente baixa	Baixo ponto de fusão	
	Condutividade térmica elevada	Resistencia mecânica baixa em temperaturas elevadas	
	Alta estabilidade sob irradiação		
	Boa resistência à corrosão (água e ar)		
	Conformabilidade e soldabilidade		
	Disponibilidade e baixo custo		



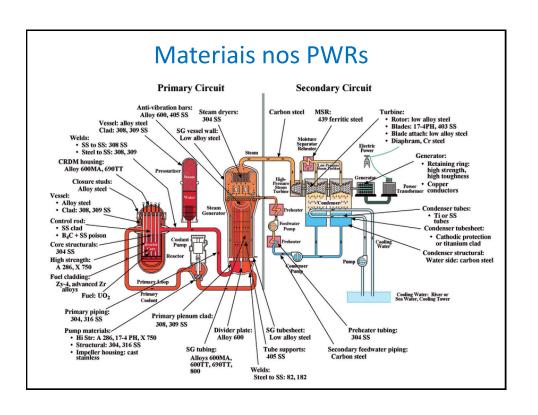
Atributos do Material Moderador

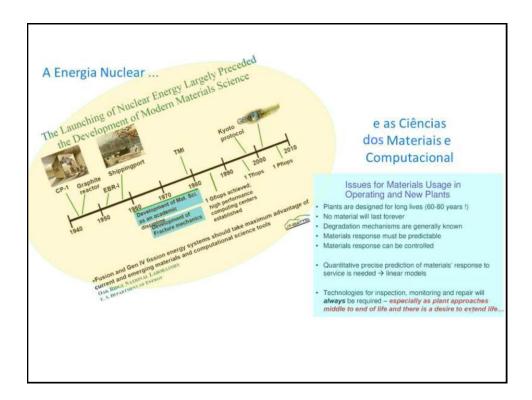
Seção de choque de espalhamento elevada Seção de choque de absorção baixa Perda de energia por colisão alta

Atributos dos Materiais das Barras de Controle

- Seção de choque de absorção elevada
- Resistencia mecânica adequada para barras sólidas
- Baixa massa para permitir movimentação rápida
- Resistencia à corrosão
- Estabilidade química e dimensional
- Baixo custo
- Boa capacidade de transferência de calor

Atributos do Refrigerante para Reatores a Fissão

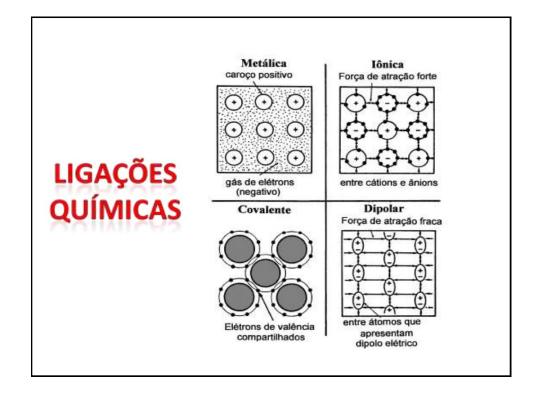

- Condutividade térmica elevada
- Calor específico elevado
- Estabilidade (sob irradiação, temperaturas)
- Radioatividade induzida baixa
- "Corrosividade "baixa


Atributos do Material de Blindagem

Bom material de moderação Bom absorvedor de neutrons Densidade elevada para atenuar radiação gama

Possíveis Materiais

Cimentos e concretos; cerâmicas e cermets; vidros e sais fundidos; minerais; ligas metálicas e pós sinterizados; polímeros e etc.

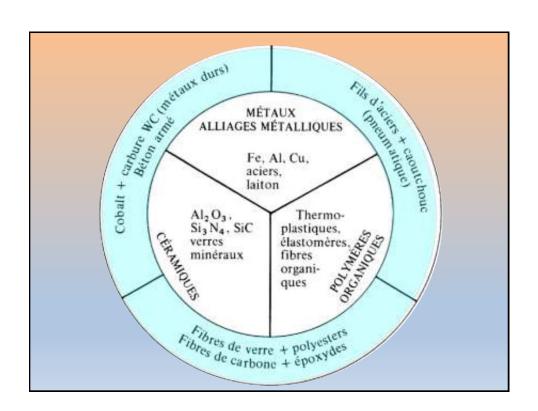


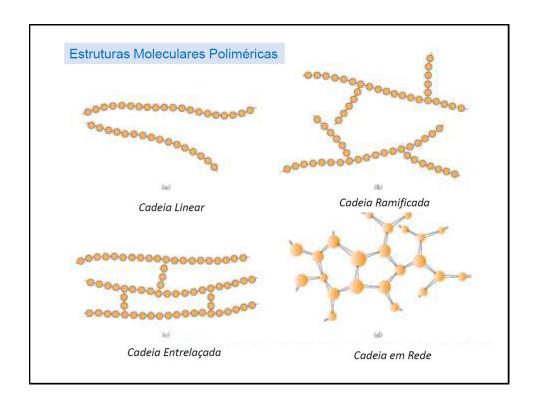
Noções Básicas de Ciência e Engenharia de Materiais

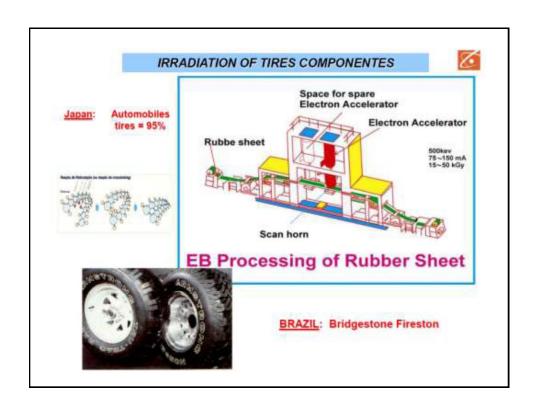
- ✓ O Estado Sólido
- ✓ Classes de Materiais
- ✓ Estrutura Cristalina
- ✓ Imperfeições nos Sólidos
- ✓ O Fenômeno da Difusão
- ✓ Discordâncias e Outros Defeitos
- √ Técnicas Experimentais para Micro e Nanoestruturas
- ✓ Testes Mecânicos (Tração, Fluência e Impacto)
- ✓ Degradação dos Materiais (Corrosão e Oxidação)

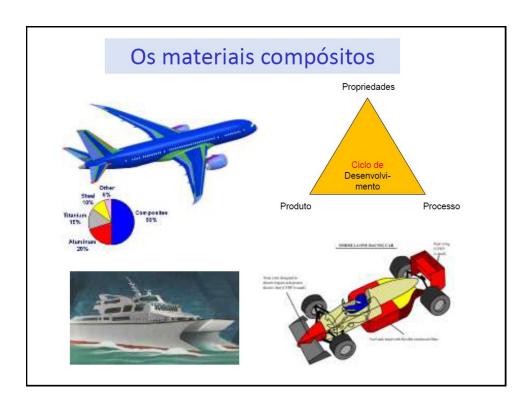
Sólidos – a grande imagem Estrutura eletrônica Estado de agregação Ligação •Gás •Átomo de Bohr Primária: •Líquido •Bohr - Sommerfeld •lônica •Sólido •Números quânticos Covalente Princípio aufbau (construção) Metálica •Átomos com multi-elétrons •Padrões da Tabela Periódica •Estabilidade dos octetos Secundária: •van der Waals •dipolo-dipolo dispersão de London •hidrogênio Classificação dos sólidos: •Tipo de Ligação Arranjo Atômico

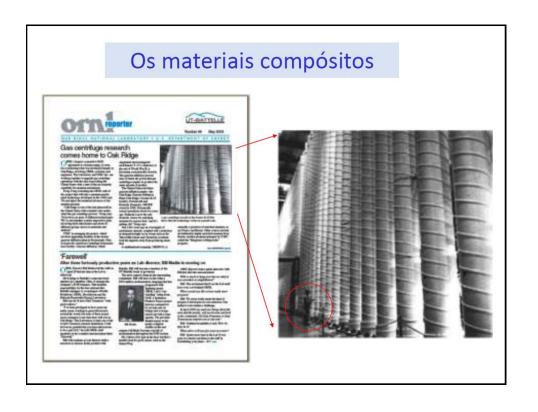
									Pe		IU	u						
1	1 H 1,01																	2 He 4,00
2	3 Li 6.94	4 Be 9.01											5 B 10,81	6 C 12.01	7 N 14.01	8 O 16,00	9 F 19,00	10 Ne 20.1
3	11 Na 23,00	12 Mg 24.31											13 Al 26,98	14 Si 28,09	15 P 30.97	16 S 32,06	17 Cl 35,45	18 Ar 39,9
4	19 K 39,10	20 Ca 40.08	21 Sc 44,96	22 Ti 47,90	23 V 50.94	24 Cr 52.00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58.71	29 Cu 63,54	30 Zn 65,37	31 Ga 69,72	32 Ge 72.59	33 As 74,92	34 Se 78,96	35 Br 79,91	36 Kr 83,8
5	37 Rb 85.47	38 Sr 87,62	39 Y 88.91	40 Zr 91,22	41 Nb 92.91	42 Mo 95.94	43 Te	44 Ru	45 Rh 102.9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114.8	50 Sn 118,7	51 Sb 121.8	52 Te 126.6	53 I 126,9	54 Xe
6	55 Cs 132.9	56 Ba 137.3	57 La 138,9	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir 192.2	78 Pt	79 Au 197.0	80 Hg 200.6	81 T1	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222
7	87 Fr (223)	88 Ra (226)	89 Ac (227)		1004	Tanada	1 277738	1,500	17414	Lecont	1 13/10	2300	1 200,11	1 20712	1 20010	12011	1410	1444
6				1	58 Ce 140,1	59 Pr 140,9+	60 Nd 144.2	61 Pm (147)	62 Sm 150,4	63 Eu 152,0	64 Gd 157,3	65 Tb 158,9	66 Dy 162.5	67 Ho 164,9	68 Er 167,3	69 Tm 168.9	70 Yb 173,0	71 Lu 175,
7					90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lw

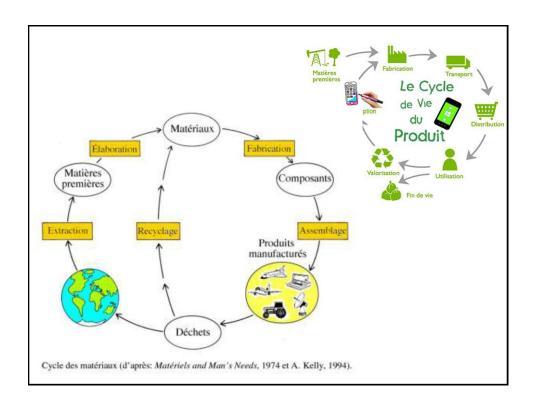

Classe dos Materiais

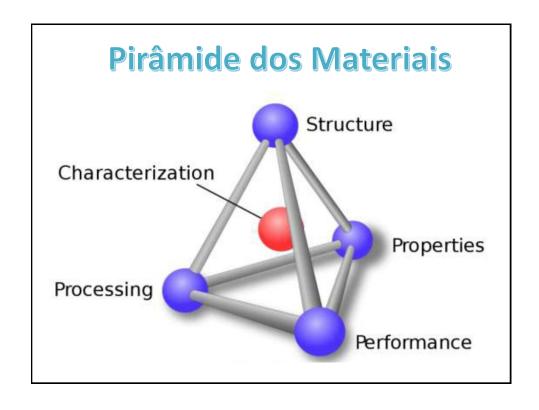

Os materiais e os tipos de ligação

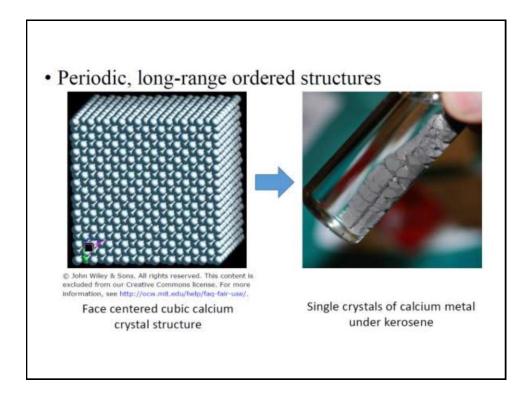

<u>Materiais Cerâmicos</u>: apresentam caráter iônico predominante. Entretanto, mesmo nestes casos, eles apresentam um certo grau de covalência. Outros materiais cerâmicos, tais como carbeto de silício, nitreto de silício e nitreto de boro, apresentam caráter covalente predominante.

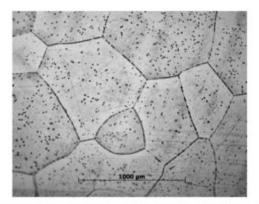

<u>Materiais Poliméricos</u>: ligação covalente entre átomos e ligações secundárias entre cadeias.

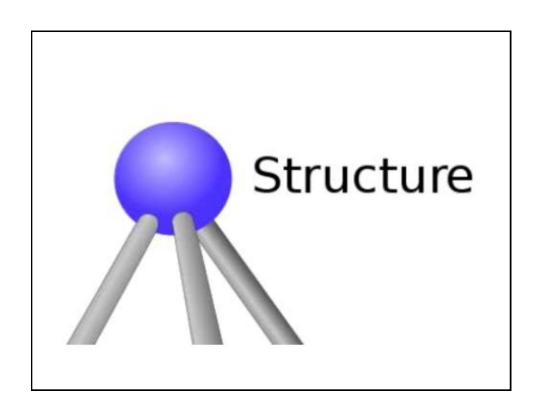

<u>Materiais Metálicos</u>: embora sempre apresentem caráter metálico predominante, exibem um certo caráter covalente. Quanto menor o número de elétrons de valência do átomo metálico, maior será a predominância da ligação metálica.










Estado Cristalino

Fe-12Cr-2Si ferritic alloy grains, 50x, etched with Kalling's reagent

- Most metals are granular in nature
- Grains are single crystals
- Grain boundaries separate them

