

ESCOLA Politécnica Da USP

Fluid Film Bearings

Prof. Francisco J. Profito

Laboratório de Fenômenos de Superfície (LFS) Departamento de Engenharia Mecânica Escola Politécnica da Universidade de São Paulo

Francisco J. Profito – fprofito@usp.br

April 2023

Outline

1. Bearing Types and Functions

- 1.1 Sliding and Thrust Bearings
- **1.2 Rolling Element Bearings**
- 1.3 Journal Bearings

2. Lubrication of Counterformal Contacts

- 2.1 System Configuration
- 2.2 General Aspects
- 2.3 Film Thickness Calculation
- 2.4 EHD Lubrication Regimes
- 2.5 Example

3. Journal Bearing Systems

- 3.1 System Configuration
- 3.2 Lubricant Film Thickness
- 3.3 Reynolds Equation
- 3.4 Short Bearing Theory (Ocvirk Solution)
- 3.5 Bearing Design Calculation
- 3.6 Example
- 3.7 Limits of the Hydrodynamic Lubrication

1. Introduction

1.1 Lubrication Regimes (Stribeck curves)

2. Fluid Film Lubrication

2.2 Generalized Reynolds Equation

- □ (Isothermal) Generalized Reynolds Equation
 - Substituting Eq. (4) in Eq. (3), one obtains the Generalized Reynolds Equation for isothermal flows:

$$\underbrace{\frac{\partial}{\partial x} \left[\frac{\rho (H_2 - H_1)^3}{12\mu} \frac{\partial p}{\partial x} \right] + \frac{\partial}{\partial z} \left[\frac{\rho (H_2 - H_1)^3}{12\mu} \frac{\partial p}{\partial z} \right]}_{Pressure-Flow (Poiseuille)} = \underbrace{\frac{\partial}{\partial x} \left[\frac{\rho (U_2 + U_1)}{2} (H_2 - H_1) \right] + \frac{\partial}{\partial z} \left[\frac{\rho (W_2 + W_1)}{2} (H_2 - H_1) \right]}_{Wedge-Flow (Couette)} + \underbrace{\frac{\rho \left[\left(U_1 \frac{\partial H_1}{\partial x} - U_2 \frac{\partial H_2}{\partial x} \right) + \left(W_1 \frac{\partial H_1}{\partial z} - W_2 \frac{\partial H_2}{\partial z} \right) \right]}_{Translation Squeeze} + \underbrace{\frac{\rho (V_2 - V_1)}{V_{coal Expansion}}}_{V_{coal Expansion}} + \underbrace{\frac{\rho (H_2 - H_1) \frac{\partial \rho}{\partial t}}_{V_{coal Expansion}} + \underbrace{\frac{\rho (W_2 - H_1) \frac{\partial \rho}{\partial t}}_{V_{coal Expansion}}}$$
(5)

Conservative vector form:

$$\nabla \cdot (\boldsymbol{\Gamma}^{\boldsymbol{p}} \nabla p_{H}) = \nabla \cdot (\boldsymbol{\Gamma}^{\boldsymbol{c}} \vec{\boldsymbol{\nu}}) + [S_{TS} + S_{NS}] + S_{T} \frac{\partial \rho}{\partial t}$$

Suitable for numerical solutions (Tensor, vector and source terms defined accordingly) • Fluid shear rate and stress:

$$\begin{cases} \tau_{xy} = \mu \frac{\partial u}{\partial y} = \frac{1}{2} \frac{\partial p}{\partial x} [2y - (h + 2H_1)] + \mu \left(\frac{U_2 - U_1}{h}\right) \\ \tau_{zy} = \mu \frac{\partial w}{\partial y} = \frac{1}{2} \frac{\partial p}{\partial z} [2y - (h + 2H_1)] + \mu \left(\frac{W_2 - W_1}{h}\right) \end{cases}$$

The velocity fields of Eq. (2) were substituted on the shear rate components

Laboratório de

Fenômenos de Superfície

Francisco J. Profito – fprofito@usp.br

Outline

1. Bearing Types and Functions

- 1.1 Sliding and Thrust Bearings
- **1.2 Rolling Element Bearings**
- 1.3 Journal Bearings

2. Lubrication of Counterformal Contacts

- 2.1 System Configuration
- 2.2 General Aspects
- 2.3 Film Thickness Calculation
- 2.4 EHD Lubrication Regimes
- 2.5 Example

3. Journal Bearing Systems

- 3.1 System Configuration
- 3.2 Lubricant Film Thickness
- 3.3 Reynolds Equation
- 3.4 Short Bearing Theory (Ocvirk Solution)
- 3.5 Bearing Design Calculation
- 3.6 Example
- 3.7 Limits of the Hydrodynamic Lubrication

1. Bearing Types & Functions

Bearing Functions

- (Bio)mechanical joints designed to allow power transmission and/or loading support between moving parts;
- Fluid film bearings \rightarrow Low friction and wear \rightarrow Improvements in tribological performance
- Bearing Types

1. Bearing Types & Functions

1.1 Sliding and Thrust Bearings

• Sliding only in the x-direction: $W_1 = W_2 = 0$

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial z} \right) = \frac{\partial}{\partial x} \left[\frac{\rho h (U_2 + U_1)}{2} \right] - \rho \left(U_2 \frac{\partial h}{\partial x} \right)$$

- Normal velocity: $V_1 = V_{1r}$ $V_2 = V_{2r}$
- Steady-state regime: $V_{1r} = V_{2r} = 0$

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial z} \right) = -\rho \left(\underbrace{U_2 - U_1}_2 \right) \frac{\partial h}{\partial x}$$

$$\tau_{xy} = -\frac{h}{2}\frac{\partial p}{\partial x} + \mu \underbrace{\begin{pmatrix} U_2 - U_1 \\ h \end{pmatrix}}_{h}$$

Fluid pressure AND hydrodynamic friction depend on the sliding (relative) velocity

Combining...

Francisco J. Profito – fprofito@usp.br

1. Bearing Types & Functions

1.2 Rolling Element Bearings

• Sliding only in the x-direction:
$$W_1 = W_2 = 0$$

 $\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial z} \right) = \frac{\partial}{\partial x} \left[\frac{\rho h (U_2 + U_1)}{2} \right] - \rho \left(U_2 \frac{\partial h}{\partial x} \right)$

Combining...

• Normal velocity: $V_{1} = V_{1r}$ Attention to the tangential component of the velocity $V_{2} = U_{2} \frac{\partial h}{\partial x} + V_{2r}$ $\int \frac{\partial}{\partial x} \left(\frac{\rho h^{3}}{12\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\rho h^{3}}{12\mu} \frac{\partial p}{\partial z} \right) = \rho \left(\frac{U_{1} + U_{2}}{2} \right) \frac{\partial h}{\partial x}$

Fluid pressure depends on the average velocity (rolling/entrainment speed)

Hydrodynamic friction depends on the sliding (relative) velocity

- Steady-state regime: $V_{1r} = V_{2r} = 0$

Francisco J. Profito – fprofito@usp.br

April 2023

 $\tau_{xy} = -\frac{h}{2}\frac{\partial p}{\partial x} + \mu \left(\underbrace{U_2 - U_1}{h} \right)$

Shaft surface

1. Bearing Types & Functions

1.3 Journal Bearings

- Sliding only in the x-direction: $W_1 = W_2 = 0$
- $-\frac{\partial}{\partial x}\left(\frac{\rho h^3}{12\mu}\frac{\partial p}{\partial x}\right) + \frac{\partial}{\partial z}\left(\frac{\rho h^3}{12\mu}\frac{\partial p}{\partial z}\right) = \frac{\partial}{\partial x}\left[\frac{\rho h(U_2 + U_1)}{2}\right] \rho\left(U_2\frac{\partial h}{\partial x}\right)$

 $\omega_1 + \omega_2$

Combining...

 $x = R\theta$

Fluid pressure depends on the average rotational speed

• Steady-state regime: $V_{1r} = V_{2r} = 0$

• Normal velocity:

$$V_{1} = V_{1r}$$
Attention to the tangential component of the velocity
$$V_{2} = U_{2} \frac{\partial h}{\partial x} + V_{2r}$$

$$\left(\frac{1}{R} \frac{\partial}{\partial \theta} \left(\frac{\rho h^{3}}{12\mu} \frac{\partial p}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(\frac{\rho h^{3}}{12\mu} \frac{\partial p}{\partial z} \right) = 0$$
• Steady-state regime: $V_{2r} = V_{2r} = 0$

 $\tau_{xy} = -\frac{h}{2R}\frac{\partial p}{\partial \theta} + \mu R\left(\frac{\omega_2 - \omega_1}{h}\right)$

∂h

Francisco J. Profito – fprofito@usp.br

Outline

- **1. Bearing Types and Functions**
 - 1.1 Sliding and Thrust Bearings
 - 1.2 Rolling Element Bearings
 - 1.3 Journal Bearings

2. Lubrication of Counterformal Contacts

- 2.1 System Configuration
- 2.2 General Aspects
- 2.3 Film Thickness Calculation
- 2.4 EHD Lubrication Regimes
- 2.5 Example

- **3. Journal Bearing Systems**
 - 3.1 System Configuration
 - 3.2 Lubricant Film Thickness
 - 3.3 Reynolds Equation
 - 3.4 Short Bearing Theory (Ocvirk Solution)
 - 3.5 Bearing Design Calculation
 - 3.6 Example
 - 3.7 Limits of the Hydrodynamic Lubrication

2.1 System Configuration and General Characteristics

2.1 System Configuration and General Characteristics

2.1 System Configuration and General Characteristics

Sample of film thickness solutions with different entrainment angles. Source: [1]

2.1 System Configuration and General Characteristics

from

2.2 General Characteristics

- Applications: rolling element bearings, gears, cam-tappets, etc.
- Fluid pressure magnitude: 0.5 5 GPa
- Lubrication mechanisms strongly influenced by:
 - Surface deformation (fluid-solid interaction problem)
 - Lubricant rheology (piezoviscosity and shear-thinning behaviour)
 - Thermal effects (high viscous dissipation and flash temperature)
- Operational parameters for engineering design:
 - <u>Central and minimum film thickness</u>: governed by the lubricant properties and rolling (entrainment) velocity at the inlet region
 - <u>Friction (or traction) coefficient</u>: governed by the lubricant rheology, local temperature rise and sliding velocity at the central contact region

2.3 Film Thickness Calculation

EHD film thickness calculations based on curve-fitted formulas obtained from numerical simulation and validated with experimental data

Line Contact (Dowson & Higginson)

$$h_0 = 0.975 R_X U^{0.727} G^{0.727} W^{-0.091}$$

 $h_m = 1.325 R_X U^{0.70} G^{0.54} W^{-0.13}$

$$h_{0} = 0.975 \quad \frac{\left[\alpha \eta_{0} \left(U_{1} + U_{2}\right)\right]^{0.727} R_{X}^{0.364} \left(\ell E^{*}\right)^{0.091}}{F_{n}^{0.091}}$$
$$h_{m} = 1.186 \quad \frac{\left[\eta_{0} \left(U_{1} + U_{2}\right)\right]^{0.70} \alpha^{0.54} R_{X}^{0.43} \ell^{0.13}}{F_{n}^{0.13} E^{*0.03}}$$

Point Contact
(Hamrock & Dowson)
$$H_{0} = 1.345 R_{x} U^{0.670} G^{0.530} W^{-0.067} \left\{ 1 - 0.61 Exp \left[-0.752 \binom{R_{y}}{R_{x}} \right]^{0.64} \right\}$$
$$H_{m} = 1.815 R_{x} U^{0.680} G^{0.490} W^{-0.073} \left\{ 1 - Exp \left[-0.7 \binom{R_{y}}{R_{x}} \right]^{0.64} \right\}$$
$$C_{M}$$
$$h_{0} = 1.165 C_{0} \frac{\left[\eta_{0} (U_{1} + U_{2}) \right]^{0.67} \alpha^{0.53} R_{x}^{0.464}}{F_{n}^{0.067} E^{*0.073}}$$
$$h_{m} = 1.438 C_{m} \frac{\left[\eta_{0} (U_{1} + U_{2}) \right]^{0.68} \alpha^{0.49} R_{x}^{0.466}}{F_{n}^{0.073} E^{*0.117}}$$

2.3 Film Thickness Calculation

- □ Film thickness correction:
 - Inlet temperature $(\boldsymbol{\Phi}_T)$
 - Inlet shear-thinning $(\boldsymbol{\Phi}_{ST})$
 - Surface roughness (Φ_R)
 - Starvation ($\boldsymbol{\Phi}_{SV}$)

Correction factors determined from analytical expressions, tables or charts available in specialized literature.

2.4 EHL Regimes

Specific film $\Lambda = \frac{h_0}{\sigma}$		Regime	Observações
	$A \ge 10 \times A_l$	Hidrodinâmico (hidrodynamic)	Superfícies em contacto completamente separadas por um filme lubrificante muito espesso (20 µm).
	$\Lambda \ge \Lambda_l$	Filme completo (full film)	Superfícies em contacto completamente separadas pelo filme lubrificante (1 µm).
	$\Lambda_0 < \Lambda < \Lambda_l$	Filme Misto (mixed film)	Superfícies em contacto parcialmente separadas pelo filme lubrificante, ocorrendo em alguns pontos contacto metal / metal.
	$\Lambda \leq \Lambda_0$	Filme Limite (boundary film)	Não existe um filme lubrificante a separar as superfícies em contacto, predominando o contacto metal / metal.

2.4 EHD Lubrication Regimes

h_0	Rolamentos	Engrenagens		
$A = \frac{\sigma}{\sigma}$	$A_0 = 1.0$ e $A_l = 3.0$	$A_0 = 0.7$ e $A_l = 2.0$		
Filme Completo	$\Lambda \ge 3.0$	$\Lambda \ge 2.0$		
Filme Misto	$1.0 < \Lambda < 3.0$	$0.7 < \Lambda < 2.0$		
Filme Limite	$\Lambda \leq 1.0$	$\Lambda \leq 0.7$		

2.5 Example

Line Contact

Maximum Hertz pressure (p_0) ? Specific film thickness (Λ)?

Parameter		Unit	Disc 1	Disc 2
Radius x-dir	Rxi	m	30 x10 ⁻³	45 x10 ⁻³
Radius y-dir	Ryi	m	×	8
Nominal Width	e	m	15 x10 ⁻³	15 x10 ⁻³
Speed	ni	rpm	1000	667
Young Modulus	Ei	GPa	210	210
Poisson Ratio	ni	/	0.3	0.3
Roughness (RMS)		um	0.30	0.30
Viscosity	v	Pas	0.0)16
Piezoviscous Coef.	α	Pa-1	0.2	E-7

Contacto seco		
Po	2,020E+09	
Pm	1,587E+09	
a	6,303E-04	
Ac	1,891E-05	

Espessura filme lub.		
U	1,190E-11	
G	4,553E+03	
w	4,815E-04	
ho	3,669E-07	
hm	2,742E-07	
Λ _{ISOT.}	0,865	

Francisco J. Profito – fprofito@usp.br

2.5 Example

Classificação dos Aços Est Grupo	truturais através do Limite d Limite de escoamento	le Escoamento mínimo Exemplos,
Aço carbono de média resistência	195a260 MPa	A36
Aço de alta resistência e baixa liga	290 a 345 MPa	A572, A242, A588, A992
Aços ligados tratados termicamente	630 a 700 MPa	A709

Discs material: Steel 1045 (ASTM A36) → Does plastic deformation occur?

	Contacto seco			Espessura film	
	Po	2,020E+09		U	1
	Pm	1,587E+09		G	4
	a	6,303E-04		w	4
	Ac	1,891E-05		ho	
	Tensões	instaladas		hm	
	σ11	-2,020E+09		Λ _{ISOT}	
	σ22	-1,212E+09	Н	1501.	
_	σ33	-2,020E+09		W/ba	t'a th
Г	Tmax	6,060E+08		vviia	เรแ
L	Zs	4,955E-04			
	2το	1,010E+09		E F	low t
	Zo	2,647E-04			

Espessura filme lub.		
U	1,190E-11	
G	4,553E+03	
W	4,815E-04	
ho	3,669E-07	
hm	2,742E-07	
Λ _{ISOT.}	0,865	

ne lubrication regime?

to improve the system reliability?

Francisco J. Profito – fprofito@usp.br

Outline

1. Bearing Types and Functions

- 1.1 Sliding and Thrust Bearings
- 1.2 Rolling Element Bearings
- 1.3 Journal Bearings

2. Lubrication of Counterformal Contacts

- 2.1 System Configuration
- 2.2 General Aspects
- 2.3 Film Thickness Calculation
- 2.4 EHD Lubrication Regimes
- 2.5 Case Study

3. Journal Bearing Systems

- 3.1 System Configuration
- 3.2 Lubricant Film Thickness
- 3.3 Reynolds Equation
- 3.4 Short Bearing Theory (Ocvirk Solution)
- 3.5 Bearing Design Calculation
- 3.6 Case Study
- 3.7 Limits of the Hydrodynamic Lubrication

3.1 System Configuration

- □ Unwrapped domain (from centerline) yPosição onde o filme se rompe. Corresponde a x = 0 e $x = 2 \pi R$
 - $y = L/2 \xrightarrow{f y} \pi D$ $y = L/2 \xrightarrow{f y} \pi D$ Filme do mancal "desenrolado" y = -L/2 x = 0 $\theta = 0$ $x = 2\pi R$ $\theta = 2\pi$
 - Bearing geometry (plane rigid bearing)

 $O_{\rm B}$: bearing center

Laboratório de

Fenômenos de Superfície

- O_S : shaft center
- R_1 : bearing radius
- R₂ : shaft radius
- h : film thickness

3.2 Lubricant Film Thickness

- $\rm O_B\,$: bearing center
- O_S : shaft center
- R_1 : bearing radius
- R₂ : shaft radius
- C : radial clearance
- e : eccentricity
- ε : eccentricity ratio
- h : film thickness

Finally:
$$h = e\cos\theta + (R_1 - R_2) = e\cos\theta + C$$

 $h(\theta) = C(1 + \varepsilon\cos\theta)$ with $\varepsilon = \frac{e}{C}$

• Lubrication theory: $\left(\frac{e}{R_1}\right) \ll 1 \implies \cos \alpha \approx 1$

Francisco J. Profito – fprofito@usp.br

April 2023

Laboratório de

Fenômenos de Superfície

Shaft surface 3.3 Reynolds Equation ωR V_2 Posição onde o filme se rompe. Corresponde a x = 0 e $x = 2 \pi R$ U_2 $\alpha \ll 1$ y = L/2 $cos(\alpha) \approx 1$ h $sin(\alpha) \approx tan(\alpha) \approx \frac{\partial h}{\partial x}$ x,0 V_1 $\boldsymbol{U_1}$ Filme do mancal "desenrolado" *y* y = -L/2 $\mathbf{x} = 2\pi \mathbf{R}$ $\begin{array}{l} \mathbf{x} = \mathbf{0} \\ \mathbf{\theta} = \mathbf{0} \end{array}$ х $\theta = 2\pi$ Unwrapped bearing $U_1 = \omega_1 R$ $U_2 = \omega_2 R$ $x = R\theta$ Attention to the tangential $V_1 = V_{1r}$ component of the velocity • Plain bearing: $\left(\frac{1}{R}\right)\frac{\partial}{\partial\theta}\left(\frac{\rho h^3}{12\mu}\frac{\partial p}{\partial\theta}\right) + \frac{\partial}{\partial z}\left(\frac{\rho h^3}{12\mu}\frac{\partial p}{\partial z}\right) = \rho\left(\underbrace{\omega_1 + \omega_2}{2}\right)\frac{\partial h}{\partial\theta}$ $+ V_{2r}$ $W_1 = W_2 = 0$

Fluid pressure depends on the average rotational speed

• Steady-state regime: $V_{1r} = V_{2r} = 0$

$$h(\theta) = C(1 + \varepsilon \cos\theta)$$

How to solve the Reynolds equation for the fluid pressure?

Laboratório de

Fenômenos de Superfície

Analytical vs. Numerical solutions

Francisco J. Profito – fprofito@usp.br

3.4 Short Bearing Theory (Ocvirk Solution)

□ Load Carrying Capacity

$$W_{1} = \int_{0}^{\pi} \int_{-L/2}^{L/2} (pR\cos\theta) dz d\theta = -\frac{\mu(\omega_{1} + \omega_{2})RL^{3}\varepsilon^{3}}{c^{2}(1 - \varepsilon^{2})^{2}}$$
$$W_{2} = \int_{0}^{\pi} \int_{-L/2}^{L/2} (pR\sin\theta) dz d\theta = -\frac{\mu(\omega_{1} + \omega_{2})R\varepsilon\pi L^{3}}{4c^{2}(1 - \varepsilon^{2})^{3/2}}$$

Coordinate system defined from the centerline

Carga e pressão no mancal

Load Magnitude

$$W = \sqrt{W_1^2 + W_2^2} \quad \Rightarrow \quad \left[W = \left[\frac{\mu(\omega_1 + \omega_2)R\varepsilon L^3}{c^2(1 - \varepsilon^2)^2} \right] \frac{\pi}{4} \sqrt{\left(\frac{16}{\pi^2} - 1\right)\varepsilon^2 + 1} \right]$$

- 3.4 Short Bearing Theory (Ocvirk Solution)
 - **Friction Torque**

Short bearing

$$T = \int_{0}^{\pi} \int_{-L/2}^{L/2} (\tau R^{2}) dz d\theta \qquad \tau = \mu \frac{\partial u}{\partial y} \qquad u(y) = \left(\frac{y^{2}}{2}\right) \frac{\partial p}{\partial \theta} + (\omega_{1} + \omega_{2})R \frac{y}{h}$$
• Concentric bearings

$$e = \varepsilon = 0$$
Petroff bearing (1883)
• Surfaces contact

$$e = c \qquad \varepsilon = 1$$
"Infinite" hydrodynam to-metal contact, mix

- rings (1883)
- <u>ct</u>

lynamic friction (metalt, mixed/boundary lubrication)

Francisco J. Profito – fprofito@usp.br

3.4 Short Bearing Theory (Ocvirk Solution)

Coefficient of Friction

$$COF = \frac{T}{RW} \quad \text{with} \quad \begin{cases} W = \left[\frac{\mu(\omega_1 + \omega_2)R\varepsilon L^3}{c^2(1 - \varepsilon^2)^2}\right] \frac{\pi}{4} \sqrt{\left(\frac{16}{\pi^2} - 1\right)\varepsilon^2 + 1} \\ T = \left[\frac{2\pi\mu(\omega_1 + \omega_2)R^3L}{c}\right] \frac{1}{\sqrt{1 - \varepsilon^2}} \end{cases}$$
$$COF = \frac{8Rc(1 - \varepsilon^2)^{3/2}}{\varepsilon L^2 \sqrt{0.621\varepsilon^2 + 1}}$$
$$DO \text{ NOT depend on lubricant viscosity}$$

3.5 Bearing Design Calculation

- □ Input or "controllable" variables
 - Lubricant viscosity: μ [Pa.s]
 - Average load pressure: P [Pa]
 - Speed rotation: N [RPM]
 - Bearing dimensions: R, L, c [m]
- Design or "*dependent*" variables
 - Eccentricity factor: ε [-]
 - MOFT: *h*₀ [m]
 - Attack angle: φ [deg]
 - Coefficient of friction: COF [-]
 - Avg. temperature raise: ΔT [°C]
 - Leakage flow: Q [m³/s]

<u>Fundamental Problem:</u> determine satisfactory limits for the "dependent" variables by varying the "controllable" ones.

Francisco J. Profito – fprofito@usp.br

April 2023

aboratório de

»ه Fenômenos Superfície

3.5 Bearing Design Calculation

- Sommerfeld number (dimensionless)
 - Characteristic number for the design of hydrodynamic bearings
 - Defined in term of the main <u>"controllable" variables</u>

$$\Delta = \frac{W}{LU\mu} \left(\frac{C}{R}\right)^2 \qquad or \qquad S = \Delta \pi = \frac{P}{N\mu} \left(\frac{C}{R}\right)^2$$

- R : bearing radius [m]
- L : bearing width [m]
- C : radial clearance [m]
- μ : Lubricant viscosity [Pa.s]
- W: Load force [N]
- P : Average load pressure [Pa]
- N : Rotational speed [RPM]

3.5 Bearing Design Calculation

MOFT and ε vs. Sommerfeld

Francisco J. Profito – fprofito@usp.br

Laboratório de

fenômenos de Superfície

3.5 Bearing Design Calculation

Position of MOFT vs. Sommerfeld

Shigley

3.5 Bearing Design Calculation

Laboratório de

fenômenos de Superfície

3.5 Bearing Design Calculation

Leakage flow vs. Sommerfeld

3.6 Example

The specifications and operating conditions of a given journal bearing are summarized as follows:

N = 30 rps W = 2200 N R = 20 mm L = 40 mm T = 50°C Lubricant: SAE60 (μ = 170 mmPa.s)

Based on the curves shown in the previous slides, determine the following operational parameters that ensure the system operate under **maximum loading conditions**.

- a) Radial clearance (C)
- b) Eccentricity (e)

c) MOFT (h_0)

d) Position of the MOFT (φ)

3.6 Case Study

Laboratório de Fenômenos de Superfície

3.6 Case Study

References

General

- 1. Hamrock B.J., Schmid S.R., Jacobson B.O., Fundamentals of Fluid Film Lubrication, 2nd edition, Marcel Dekker, 2004.
- 2. Wang J., Zhu D., Interfacial Mechanics: Theories and Methods for Contact and Lubrication, CRC Press, 2019.
- 3. Frene J., Nicolas D., Degueurce B., Berthe D., Godet M., Hydrodynamic Lubrication: Bearings and Thrust Bearings, Elsevier, 1997.
- 4. Szeri A.Z., Fluid Film Lubrication, 2nd edition, Cambridge University Press, 2011.
- 5. Pinkus O., Sternlicht B., Theory of Hydrodynamic Lubrication, McGraw-Hill, 1961.
- 6. Gohar R., Elastohydrodynamics, Imperial College Press, 2002.
- 7. Bair S.S., High Pressure Rheology for Quantitative Elastohydrodynamics, 2nd edition, Elsevier, 2019.
- 8. Seabra J.H.O., Campos A., Sottomayor A, Lubrificação Elastohidrodinâmica (Apostila), 2ª edição, Faculdade de Engenharia da Universidade do Porto (FEUP), 2002.
- 9. Wang J., Chung Y.-W., Encyclopedia of Tribology, Springer, 2013.
- 10. Stachowiak G.W., Batchelor A.W., Engineering Tribology, 4th edition, Butterworth-Heinemann, 2014.

Modelling & Simulation

- 1. Habchi W., Finite Element Modelling of Elastohydrodynamic Lubrication Problems, Wiley, 2018.
- 2. Venner C.H., Lubrecht A.A., Multilevel Methods in Lubrication, Elsevier, 2000.

Bearings Design & Applications

- 1. Adams M.L., Bearings Basic Concepts and Design Applications, CRC Press, 2018.
- 2. Harnoy A., Bearing Design in Machinery, Marcel Dekker, 2002.
- 3. Pirro D.M., Webster M., Daschner E., Lubrication Fundamentals, CRC Press, 2016.
- 4. Qiu M., Chen L., Li Y., Yan J., Bearing Tribology: Principles and Applications, Spring, 2017.
- 5. Totten G.E., Handbook of Lubrication and Tribology Vol. I Application and Maintenance, 2nd edition, CRC Press, 2006.
- 6. Bruce R.W., Handbook of Lubrication and Tribology Vol. II Theory and Design, 2nd edition, CRC Press, 2012.