Reference Manual for VisualDOC MATLAB API

INTRODUCTION

Before reading this document, you should be familiar with VisualDOC and VisualDOC database
concepts. To become familiar with these, please review the VisualDOC Getting Started document
and VisualDOC Online Help.

VisualDOC API functions will allow you to embed all the capabilities of VisualDOC into your own
program. These capabilities include Direct Gradient-based Optimization (DGO), Response
Surface Approximate Optimization (RSA), and Design Of Experiments (DOE).

NOTE: List of all currently available function calls in alphabetical and functional order is in the end of this manual

REQUIREMENTS FOR VISUALDOC API

To compile and run VisualDOC API you need to be sure that your PATH contains the directory
with all VisualDOC DLLs. These include both VDOC_API.DLLs and regular VisualDOC DLLs.
VDOC_API.DLLs give access to the VisualDOC API functions. Regular VisualDOC DLLs are
used by VisualDOC API functions.

GENERAL SEQUENCE OF CALLS IN ViISUALDOC API

The use of VisualDOC API should start by opening a VisualDOC database. The database may be
an existing database or a new one. After opening a database, you may perform general "get" and
"put" operations with the database. The majority of the VisualDOC API consists of these get/put
functions.

To define design problems, you will provide your users with the ability to define "inputs" and
"responses”. You may supply these inputs and responses to any of the design modules in
VisualDOC. For optimization problems (i.e., minimization or maximization using DGO or RSA),
your users must specify a design objective. This objective may be one or more of the defined
inputs and responses. Your users may provide limits to some of the responses. These will then
become constraints when you direct the VisualDOC database to construct a "design task". For
design of experiments, your users must define side constraints on the inputs, which the DOE
design module uses to place design points throughout the design space (depending on the
chosen design). Your users can also specify that the DOE design module creates approximations
to the responses. Most of your function calls to define design problems work with the "Interface"
portion of the VisualDOC database.

Once your users have defined a design problem, you need to call the function that transforms the
Interface objects into Design Task objects before you run the optimization from within your code.
This function call checks all data for consistency and returns error/warning codes if problems were
encountered that would prevent the design task from running.

There are distinct function calls for running Direct Gradient-based Optimization, Response
Surface Approximation optimization, and Design of Experiments.

Once you have instructed the VisualDOC design task to start, you can periodically check the
database for the run status and process design data in real time. After VisualDOC is finished, you
can retrieve design results from the results objects of the database for further processing in your
application.

When you are finished making VisualDOC API calls you should close the database.

NOTE: When accessing data from the database, the primary lookup key is a database ID for each object in the
database. The database will return the database ID of an object when you call API functions that create or
modify objects in the database.

NAMING CONVENTION

In this documents a certain naming convention was used to help you distinguish between various
types of arguments in the function calls. All the argument names are prepend with one letter
designating the type of the argument. The meaning of the prepending letters is the following:

m - two-dimensional array

Vv - one-dimensional row-vector
‘..." - string

Here are examples of using this naming convention.

mA - Two-dimensional array “A”
VA - One-dimensional row-vector “A”
‘A - String “A”

All the arguments passed into and returned from the API function calls are assumed to be of the
type “double”, except for the case of strings.

GENERAL PURPOSE CALL

Error = VDOC SetPath(‘D rectory nane’)

This function adds the specified directory in front of the users’s PATH. So that MATLAB will be
able to search for files at first in the specified directory and then in the rest of the path.

The function may take 1 parameter.

Input Argument

Description

Directory_name

String - Name of the directory

Return Parameter

Description

Error

Return code.

Possible values are:

DB_FAIL=-2

DB_SUCCESS=1

GENERAL DATABASE ACCESS CALLS

Error = VDOC (penDat abase(‘ Dat abase_nane’, Ti meQut,

Queue)

This function opens a database for processing. You must call this function before making any
other database API calls. This function either opens an existing database or creates a new

database.

The function may take 1, 2, or 3 parameters.

Input Argument

Description

Database_name

String - Name of the database

Queue

Key defining whether to queue the request for
VisualDOC license or not when there are no free
license available

Possible values are: 0 - quit when license is not
found
1 - Queue until a valid license is found

If all licenses are hanged then the value of “1” will
result in queuing for indefinite time. It is possible
to free hanged licenses using license manager.

[0]

TimeOut

Number of seconds until a license shall timeout.
When this occurs the license server automatically
frees the license.

To prevent timeout, applications can set this
number to 0. In this case, however, if the
application crashes, the license will be hanged.

If this number is too small, the license will be freed
before the application is completed, and, therefore
this will prevent application from completion.

If the timeout value is set to less than 3600 (1
hour) it will be automatically set to 3600.
Exception is the value of 0, which indicates no
timeout.

[3600]

Return Parameter

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2

Error = VDOC d oseDat abase()

This function closes the currently open database. You must call this function after you are finished
making other API calls. You may not call other API functions after this call, unless you call

VDOC_OpenDatabase.

Return Parameter

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2

Error = VDOC | sQpen()

This function checks if a database is open.

Return Parameter

Description

Error

Return code.

Possible values are: DB SUCCESS=1

4

DB_FAIL=-2

“Error Message’ = VDOC Get DBError ()

This function returns the message corresponding to the last error occurred in the database. This
function may be called to get details of an error after any unsuccessful API call.

Return Parameter Description

ErrorMessage String with the details of the last error occurred in
the database.

CALLS TO ACCESS INPUT OBJECTS

[Error, vDBlI D nput] = VDOC Putlnput All (vDBI D nput, vX0, VLB,
vuB)

This function puts initial values, upper, and lower bounds of all input objects into the open
database. 1, 2, 3, or 4 input arguments may be specified in the argument list.

This function operates based on the contents of the vDBIDInput vector. For each element of this
vector that is 0, the database will create a new input object with default values for all attributes
except initial values and bounds, which the database sets to the supplied values. For each
element of this vector that has a non-zero value, the database will edit the input object that
matches that database ID. The database will only modify the initial value and bounds. If a non-
zero value does not match any database ID of existing input objects, the error code will be
returned.

On return, this function provides current values of the database IDs for all input objects. You will
use these database IDs whenever you access the attributes of the corresponding input object.

The transfer indices for input objects are set according to the order in which the input objects
appear in the input arguments to this functions call.

The names for the input objects are set to tnput_#", where # - is the transfer index of the input
object.

The input objects present in the database, but whose database IDs are not specified in
vDBIDInput will be removed from the database.

Input Arguments Description
vDBIDInput Vector of the input objects’ database IDs
vX0 Vector of initial values for all input objects. This

vector is not required for DOE

5

[0]

vLB

Vector of the lower bounds on input objects. This
vector is not required to perform optimization

[-1.e30]

vUB

Vector of the upper bounds on input objects. This
vector is not required to perform optimization

[1.630]

Return Parameters

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2

vDBIDInput

Vector of all input objects' database IDs

[Error, vXO, vLB, vUB, vDBID nput, vType, vlsQbjective] =

VDOC Get I nput ALl ()

This function gets the current values of all input objects from the database.

Return Parameters

Description

Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2
vX0 Vector of current values for all input objects.
vLB Vector of the lower bounds on input objects.
vUB Vector of the upper bounds on input objects.
vDBIDInput Vector of the input objects database IDs
vType Vector of types of input objects.
Possible values are: independent=0, link=1,
synthetic=2, constant=3, discrete=4, integer=5
vIsObjective Vector with flags defining whether the

corresponding input object is also an objective.

Possible values: TRUE=1, FALSE=0

[Error, DBID nput] = VDOC Putl nput Cbj (DBI DI nput, Coal, Target,

Vi ght, Wrst)

Function to specify that the given input object (based on the database ID) is an objective. 1, 2, 3,

4, or 5 arguments may be specified.

This function operates based on the contents of the input argument DBIDInput. If DBIDInput has a
non-zero value, the database will modify the attributes specified in the API call for the input object
that matches that database ID. If DBIDInput has value of 0, a new input object will be created with
all the attributes set to their default values, except for the ones specified in the API call. If a non-
zero value of DBIDInput does not match any database ID of existing input objects, the error code

will be returned.

If DBIDInput has value of 0, all the input objects present in the database, except for the one
created during this functional call will be removed from the database.

Input Arguments Description

DBIDInput Database ID of the input object, which is an
objective. If the Database ID is zero, a new input
object will be put into the database. Its initial value,
upper and lower bounds will be set to default
values.

Goal Defines the optimization goal for this component
of the objective.
Possible values are: minimize=0, maximize=1,
target=2
[minimize=0]

Target Target value for the objective
0]

Weight Weight factor for the objective in multiobjective
optimization.
(1]

Worst Worst value for the objective
[0]

Return Parameters Description
Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2

DBIDInput Database ID of the input object, which is also an

objective. Is equal to the input value of DBIDInput,
except when input value of DBIDInput is equal to
zero.

[Error, Goal, Target, Weight, Wrst] = VDOC CGetl nput (bj (

DBl Dl nput)

This function gets the objective attributes of the specified input object.

This function operates based on the contents of the input argument DBIDInput. If DBIDInput has a
non-zero value, the database will extract the objective attributes of the input object that matches
that database ID. If DBIDInput has a value of 0, an error code will be returned. If a non-zero value
of DBIDInput does not match any database ID of existing input objects, the error code will be

returned.
Input Arguments Description
DBIDInput Database ID of the input object. If equal to zero,
an error code will be returned.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10
Goal Defines the optimization goal for this component
of the objective.
Possible values are: minimize=0, maximize=1,
target=2
Target Target value for the objective
Weight Weight factor for the objective in multiobjective
optimization.
Worst Worst value for the objective

Error = VDOC Changel nput Type(DBl DI nput, Type)

Function to change type of the given input object (based on the database ID of the input object).
2 arguments must be specified. The type may be changed to “independent’, “discrete”, or
“‘integer”. (See description of the arguments). If the type of the input object is desired to be
discrete, the corresponding discrete set should be previously defined using
VDOC_PutDiscreteSet. The parameter returned from VDOC_PutDiscreteSet should be used
as a second argument to VDOC_ChangelnputType.

8

This function operates based on the contents of the input argument DBIDInput. DBIDInput has to
have a positive value. It could be one of the values returned by VDOC_PutlnputAll.

Input Arguments Description

DBIDInput Database ID of the input object which type will be

changed.

Defines the type the specified input object should
take

Possible values are:
=0 — continuous

<0 - integer
>0 — discrete (the value represents the integer set
that should be used fore this design variable).

Return Parameters Description

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

CALLS TO ACCESS RESPONSE OBJECTS

[Error, vDBlI DResp] = VDOC Put RespAl | (vDBlI DResp, VvLB, vUB,

vLBSc, vUBSC)

API call to put bounds and scale factors for all response objects in the open database. Some of
these responses may be constraints and some — objectives. 1, 2, 3, 4, or 5 arguments may be
specified.

This function operates based on the contents of the vDBIDResp vector. For each element of this
vector that is 0, the database will create a new response object with default values for all attributes
except the ones specified in the API call. For each element of this vector that has a non-zero
value, the database will replace the response object that matches that database ID. The database
will only modify the specified values. If a non-zero value does not match any database ID of
existing response objects, the error code will be returned.

On return, this function provides current values of the database IDs for all response objects. You
will use these database IDs whenever you access the attributes of the corresponding response
object.

The transfer indices for response objects are set according to the order in which the response
objects appear in the input arguments to this functions call.

The names for the response objects are set to ‘response_#", where # - is the transfer index of the
response object.

The response objects present in the database, but whose database IDs are not specified in
vDBIDResp will be removed from the database.

On return, this function provides current values of the database IDs for provided response objects.
You will use these database IDs whenever you access the attributes of the corresponding

response object.

Input Arguments Description
vDBIDResp Vector of the response objects’ database IDs
vLB Vector of lower bounds for all response objects
[-1.e30]
vUB Vector of lower bounds for all response objects
[1.e30]
VLBSc Vector of scale factors for the lower bounds for all
response objects
[1]
vUBSc Vector of scale factors for the upper bounds for all
response objects
(1]
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2
vDBIDResp Vector of the responses database IDs

[Error, vDBlI DResp, vLB, vUB, vLBSc, vUBSc, vType, vlsjective,
visConstraint] = VDOC Get RespAll ()

API call to get bounds and scale factors for all response objects from the open database.

Return Parameters

Description

Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2

vDBIDResp Vector of the response objects’ database IDs

10

vLB Vector of lower bounds for all response objects
vUB Vector of lower bounds for all response objects
VvLBSc Vector of scale factors for the lower bounds for all
response objects
vUBSc Vector of scale factors for the upper bounds for all
response objects
vType Vector of types of response objects.
Possible values are: independent=0, link=1,
synthetic=2, constant=3, discrete=4, integer=5
vIsObjective Vector with flags defining whether the

corresponding response object is an objective.

Possible values: TRUE=1, FALSE=0

visConstraint

Vector with flags defining whether the
corresponding response object is a constraint.

Possible values: TRUE=1, FALSE=0

[Error, DBlIDResp] = VDOC Put RespChj (DBI DResp, Coal, Target,

Véi ght, Wrst)

API call to specify that ONE of the response objects is objective. 1, 2, 3, 4, or 5 input arguments

may be specified.

This function operates based on the contents of the input argument DBIDResp. If DBIDresp has a
non-zero value, the database will modify the attributes specified in the API call for the response
object that matches that database ID. If DBIDResp has a value of 0, the new response object will
be created with all the attributes set to their default values, except for the ones specified in the API
call. If a non-zero value does not match any database ID of existing response objects, the error

code will be returned.

DBIDResp for the input argument may be obtained as one of the elements of the returned vector
vDBIDResp from the call to VDOC_PutRespAll.

On return, this function provides current value of the database ID for the provided response object.

If DBIDResp has value of 0, all the response objects present in the database, except for the one
created during this functional call will be removed from the database.

Input Arguments

Description

DBIDResp

Database ID of the response object, which is also
objective. One of the database IDs returned by

11

API call VDOC_PutRespAll. If the database ID is
zero, the new response object will be created in
the database. Its upper and lower bounds, as well
as scale factors will be set to default values. If a
non-zero value does not match any database ID
of existing response objects, the error code will be
returned.

Goal Defines the optimization goal for this component
of the objective.
Possible values are: minimize=0, maximize=1,
target=2
[minimize=0]

Target Target value for the objective
[0]

Weight Weight factor for the objective in multiobjective
optimization.
(1]

Worst Worst value for the objective
[0]

Return Parameters Description

Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2

DBIDResp Database ID of the response object, which is also

an objective. Is equal to the input value of
DBIDResp, except when input value of DBIDResp
is equal to zero.

[Error, Goal, Target, Wight, Wrst] = VDOC CGet RespChj (DBl DResp)

API call to get the objective attributes of the specified response object.

This function operates based on the input value of the database ID DBIDResp. If DBIDResp has a
non-zero value, the database will extract the attributes related to objective in response object that
matches that database ID. If DBIDresp has a value of 0, the error code will be returned. If a non-
zero value does not match any database ID of existing response objects, the error code will be

returned.

12

DBIDresp may be obtained as one of the elements of the returned vector vDBIDResp from the

call to VDOC_PutRespAll.

Input Argument

Description

DBIDResp

Database ID of the response object. One of the
database IDs returned by APl call
VDOC_PutRespAll. If the database ID is zero,
the error code will be returned. If a non-zero value
does not match any database ID of existing
response objects, the error code will be returned.

Return Parameters

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2

Goal

Defines the optimization goal for this component
of the objective.

Possible values are: minimize=0, maximize=1,
target=2

Target

Target value for the objective

Weight

Weight factor for the objective in multiobjective
optimization.

Worst

Worst value for the objective

Error = VDOC ChangeRespType(DBl DResp, Type)

Function to change type of the given response object (based on the database ID of the response
object). 2 arguments must be specified. The type may be changed to “independent” or ‘passfail”

(See description of the arguments).

This function operates based on the contents of the input argument DBIDResp. DBIDResp has to
have a positive value. It could be one of the values returned by VDOC_PutRespAll.

Input Arguments Description
DBIDResp Database ID of the response object which type
will be changed.
Type Defines the type the specified response object

should take

Two possible values are subset of enumerator

13

“Type” defined in “defs.h”:
=0 — continuous
=3 - passfail

Return Parameters

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

CALLS TO ACCESS USER DEFINED POINTS (G-POINTS)

Error = VDOC Put GPoi nts(nDVs, vToAnal yze, vTolse, nResps)

API call to specify user-defined G-points. These points may be used for DOE run, or as an initial
DOE for Response Surface Approximate optimization. 1, 2, 3, or 4 arguments could be supplied

for the API call.

This call creates a new G-Points object in the open database.

NOTE: One should distinguish between G-points and D-points. D-points are the points obtained as a result of

the run of the task.

Input Arguments Description

mDVs Two-dimensional array with the values of the
design variables for each G-Point. The number of
rows should equal to the number of points, the
number of columns should equal to the number of
ALL design variables.

vToAnalyze Array with the flags for each point. Each flag
indicates whether the corresponding point should
be analyzed or not.
Possible values for each element: TRUE=1,
FALSE=0
[TRUE]

vToUse Array with the flags for each point. Each flag

indicates whether the corresponding point should
be used in further calculations or not.

Possible values for each element: TRUE=1,

14

FALSE=0

[TRUE]

mResps Two-dimensional array with the values of the
responses for each G-Point. The number of rows
should equal to the number of points, the number
of columns should equal to the number of ALL
responses.
The values of the responses should be evaluated
at the points with the values of the design
variables from matrix mDVs.
The number of rows should be equal to the
number of rows in mDVs.

Return Parameters Description
Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

[Error, nDVs, vToAnal yze, vTolUse, nResps] = VDOC Get GPoi nts()

API call to extract user-defined G-points. These points may be used for DOE run, or as an initial
DOE for Response Surface Approximate optimization.

This call accesses a current G-Points object in the open database.

Retrun Arguments

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

mDVs

Two-dimensional array with the values of the
design variables for each G-Point. The number of
rows should equal to the number of points, the
number of columns should equal to the number of
ALL design variables.

vToAnalyze

Array with the flags for each point. Each flag
indicates whether the corresponding point should
be analyzed or not.

Possible values for each element: TRUE=1,
FALSE=0

15

[TRUE]

vToUse Array with the flags for each point. Each flag
indicates whether the corresponding point should
be used in further calculations or not.
Possible values for each element: TRUE=1,
FALSE=0
[TRUE]

mResps Two-dimensional array with the values of the

responses for each G-Point. The number of rows
should equal to the number of points, the number
of columns should equal to the number of ALL
responses.

The values of the responses are the ones
evaluated at the points with the values of the
design variables from matrix mDVs.

CALLS TO ACCESS AUXILIARY OBJECTS

[Error, DBIDSet] = VDOC PutDi screteSet(DBl DSet, vSetVal ues,

*Set Nane’)

API call to put the set of discrete values in the open database.

This function operates based on the contents of the input argument DBIDSet. If DBIDSet has a
non-zero value, the database will modify the attributes specified in the API call for the Auxiliary
object (discrete set) that matches that database ID. If DBIDSet has a value of 0, the new Auxiliary
object (discrete set) will be created with all the attributes set to their default values, except for the
ones specified in the API call. If a non-zero value does not match any database ID of existing the
Auxiliary objects (discrete sets), the error code will be returned.

2 or 3 parameters may be specified.

The current database ID of the discrete set will be returned. You will use these ID when you will
need to refer the design variable to take the values from this set.

Input Arguments Description
DBIDSet database ID of the set.
vSetValues Vector of the discrete values for the set
SetName String defining the name of the set of values

16

[']

Return Parameters

Description

Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB BAD_ARGS=-10

DBIDSet database ID of the set.

[Error, vSetVal ues, " SetNane’]

VDOC Cet D screteSet (DBI DSet)

API call to get the set of discrete values from the open database.

This function operates based on the contents of the input argument DBIDSet. If DBIDSet has to
have a positive value previously returned by VDOC_PutDiscreteSet. The API call will extract the
Auxiliary object (discrete set) that matches that database ID. The parameters of this object will be
passed out to the user as return parameters. If a non-zero value of DBIDSet does not match any
database ID of existing the Auxiliary objects (discrete sets), the error code will be returned.

Input Arguments Description
DBIDSet database ID of the set.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB _BAD_ARGS=-10
vSetValues Vector of the discrete values for the set
SetName String defining the name of the set of values

[']

CALLS TO ACCESS DESIGN CONTROL OBJECT. GENERAL DESIGN CONTROL

Error = VDOC Put TaskType(TaskType,

‘TaskTitle)

API call to specify the general design control parameters: task type and task title. 1 or 2,

arguments may be specified.

This call modifies the specified attributes of the current design control object.

17

Input Arguments

Description

TaskType Type of the task to be performed.
Possible values: DGO=0, RSA=1, DOE=2
TaskTitle String defining a short task description
[']
Returm Parameter Description
Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

[Error, TaskType, ‘TaskTitle’]

VDOC_Get TaskType()

API call to get the general design control parameters: task type and task title.

This call extracts the general attributes of the current design control object.

Return Parameters

Description

Error

Return code.

Possible values are:

DB_FAIL=-2

DB_SUCCESS=1

TaskType

Type of the task to be performed.
Possible values: DGO=0, RSA=1, DOE=2

[DGO=0]

TaskTitle

String defining the short task description

[']

18

CALLS TO ACCESS DESIGN CONTROL OBJECT. DGO CONTROL

Error = VDOC Put DAOCont r ol Gener al (GConst Met hod, Unconst Met hod,

N tersMax, N tersConv,
ToM ni m ze)

API call to specify the general design control parameters related to DGO. 1, 2, 3, 4, or 5

arguments may be specified.

This call modifies the specified attributes of the current design control object.

Input Arguments

Description

ConstMethod

Method of constrained optimization.
Possible values: SQP=0, SLP=1, MMFD=2

The values are defined in enumerator “Method” in
“defs.h”

UnconstMethod

Method of unconstrained optimization.
Possible values: BFGS=0, FR=1

The values are defined in enumerator “Method” in
“defs.h”

NltersMax

Maximum number of iterations to perform in DGO.
Should be a positive humber.

[100]

NltersConv

Number of iterations where convergence criteria
should be satisfied for the optimization to stop.
Should be a positive humber.

(2]

ToMinimize

Flag specifying whether the combined objective
function in DGO will be minimized (or maximized)

Possible values are: TRUE=1, FALSE=0 (defined
in “defs.h”)

[TRUE]

Returm Parameter

Description

Error

Return code.

Possible values are: DB SUCCESS=1

19

DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put DA0Cont r ol Constr(Act Const Tol er, Vi ol Const Tol er)

API call to specify DGO control parameters for active and violated constraints. 1 or 2 arguments

may be specified.

This call modifies the specified attributes of the

current design control object.

Input Arguments

Description

ActConstToler

A constraint is considered active if its value is
more positive than ActConstToler. Should be a
negative number.

[-0.03]

ViolConstToler

A constraint is considered violated if its value is
more negative than ViolConstToler. Should be a
positive number.

[0.003]
Return Parameter Description
Error Return code.
Possible values are: DB_SUCCESS=1

DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put DAOCont rol Conv(Soft Rel , Soft Abs,
Har dAbs)

Har dRel

API call to specify control parameters for convergence of direct gradient based optimisation

(DGO). 1, 2, 3, or 4 arguments may be specified.
NitersConv

corresponding values at the last

VDOC_PutDGOControlGeneral).

This call modifies the specified attributes of the

Convergence is determined comparing
consecutive iterations (defined in

current design control object.

Input Arguments

Description

SoftRel

A maximum relative change in design variables
during the last NitersConv consecutive iterations
to achieve relative soft convergence. Should be a
positive number.

[0.001]

SoftAbs

A maximum absolute change in design variables
during the last NitersConv iterations to achieve
absolute soft convergence. Should be a positive
number.

[0.0001]

HardRel

A maximum relative change in objective function
during the last NitersConv consecutive iterations
to achieve relative hard convergence. Should be
a positive number.

[0.001]

HardAbs

A maximum absolute change in objective function
during the last NitersConv iterations to achieve
absolute hard convergence. Should be a positive
number.

[the value is determined after the first evaluation of
objective function: 0.0001*ABS(OBJ)]

Return Parameter

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put DAOCont rol FO(G adCal cMet hod, Rel FDSt ep,

AbsFDSt ep)

API call to specify parameters for calculating gradients in DGO. 1, 2, or 3 arguments may be

specified.

This call modifies the specified attributes of the current design control object.

Input Arguments

Description

GradCalcMethod

Method of calculating gradients.

Possible values are: O-Forward differences; 1-
Central differences; 2-User supplied gradients.

(Enumerator Grad in “defs.h™)

[0]

RelFDStep

Relative finite difference step when calculating
gradients.

21

[0.001]

AbsFDStep Minimum absolute finite difference step when
calculating gradients.
[0.0001]
Return Parameter Description
Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

[Error, vintDAControl, vDbl DAControl] = VDOC Get DAControl ()

API call to get the current control parameters that govern DGO from a database.

Description of each argument see in the tables below.

This call extracts the attributes of the current design control object.

Return Arguments

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

vIintDGOControl

Vector with the current integer DGO control
parameters. At least 6 elements.

See description in the table below.

vDbIDGOControl

Array with the current double DGO control
parameters. At least 8 elements.

See description in the table below.

Description of the elements of the array with INTEGER DGO control parameters.

Name 1-based Index Description
MethodCons 1 Method of constrained optimization to be used.
Possible values are: SQP=0, SLP=1, MMFD=2 (defined
in enumerator “Method” in the files “defs.h”)
MethodUncons 2 Method of unconstrained optimization to be used.

22

Name

1-based Index

Description

Possible values are: BFGS=0, FR=1 (defined in
enumerator “Method” in the files “defs.h”)

NumliterConv

Number of iterations for convergance

NumlterMax Maximum number of iterations to be performed in
optimization.

GradCalcMethod Method of calculating gradients.
Possible values are: O-Forward differences; 1-Central
differences; 2-User supplied gradients. (Enumerator
Grad in “defs.h”)
[0]

ToMinimize Flag specifying whether the combined objective function

in DGO will be minimized (or maximized)

Possible values are: TRUE=1, FALSE=0 (defined in
“defs.h”)

Default is TRUE.

Description of the elements of the array with DOUBLE DGO control parameters.

Name

1-based Index

Description

CT

A constraint is considered active if its value is > CT

CTViolated

Violated constraint tolerance. A constraint is considered
violated if its value is > CTViolated

HardConvRel

Relative hard convergence for optimization (Relative
change in objective function).

HardConvAbs

Absolute hard convergence for optimization (Absolute
change in objective function).

Unless specifically set, this value is defined after the first
objective function is evaluated in the optimization
process. If this parameter was not specifically set 0.0
will be returned as its value.

SoftConvRel

Relative soft convergence for optimization (Relative
change in design variables).

SoftConvAbs

Absolute soft convergence for optimization (Absolute

Name 1-based Index

Description

change in design variables).

FDStepRel 7

Relative finite difference step to calculate gradients.

FDStepAbsMin 8

Absolute minimum finite difference step to calculate

gradients.

CALLS TO ACCESS DESIGN CONTROL OBJECT. RSA CONTROL

Error = VDOC Put RSAControl Ini(Initial DCE)

API call to specify the initial starting strategy for RSA (what DOE to create initially) and whether to
minimize or maximize the global objective function.

This call modifies the specified attributes of the current Design Control object.

Input Arguments Description
InitialDOE DOE from which RSA will start
Possible values for constrained optimization:
Koshal=5, Simplex=9, Taylor=99, UserDOE=11
If the ‘UserDOE” is defined, then corresponding
G-Points should be set before making the task.
Default is Koshal=5.
(defined in enumerator ‘DOEMethod” in the files
“defs.h”)
Return Parameter Description
Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB _BAD_ARGS=-10

Error = VDOC Put RSAControl General (N tersConv, NPoi nt sMax,

NPoi nt sM n, Mdel O der,
ToM ni m ze)

API call to specify the general design control parameters related to RSA. 1, 2, 3, 4, or 5 arguments

may be specified.

This call modifies the specified attributes of the

current design control object.

Input Arguments Description

NltersConv Number of iterations where convergence criteria
should be satisfied for the optimization to stop.
Should be a positive humber.
[2]

NPointsMax Maximum number of points to be analyzed during
RSA. Should be >= 2.

NPointsMin Minimum number of points to be analyzed during
RSA. Should be <= NpointsMax and > Q.

ModelOrder Maximum order of the polynomial model internally
created during RSA.
Possible values are: Linear = 0, Linearinter = 1,
QuadNoilnter = 2, FullQuad =3
The values are taken from DOEModel enumerator
in “defs.h”
[FullQuad = 3]

ToMinimize Flag specifying whether the combined objective
function in RSA will be minimized (or maximized)
Possible values are: TRUE=1, FALSE=0 (defined
in “defs.h”)
[TRUE]

Return Parameter Description

Error Return code.

Possible values are: DB_SUCCESS=1

DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put RSACont rol Const r(Act Const Tol er, Vi ol Const Tol er)

API call to specify RSA control parameters for active and violated constraints. 1 or 2 arguments

may be specified.

This call modifies corresponding attribute of the current design control object.

Input Arguments

Description

ActConstToler

A constraint is considered active if its value is
more positive than “ActConstToler”. Should be a
negative number.

[-0.03]

ViolConstToler

A constraint is considered violated if its value is
more negative than ‘ViolConstToler”. Should be a
positive number.

[0.003]

Return Parameter

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put RSAControl Conv(SoftRel, SoftAbs, HardRel,

Har dAbs)

API call to specify control parameters for convergence of response surface approximate
optimization (RSA). 1, 2, 3, or 4 arguments may be specified. Convergence is determined
comparing corresponding values at the last NitersConv consecutive iterations (defined in

VDOC_PutRSAControlGeneral).

This call modifies the specified attributes of the current design control object.

Input Arguments

Description

SoftRel

A maximum relative change in design variables
during the last NitersConv consecutive iterations
to achieve relative soft convergence. Should be a
positive number.

[0.001]

SoftAbs

A maximum absolute change in design variables
during the last NitersConv iterations to achieve
absolute soft convergence. Should be a positive
number.

[0.0001]

HardRel

A maximum relative change in objective function
during the last NitersConv consecutive iterations
to achieve relative hard convergence. Should be
a positive number.

26

[0.001]

HardAbs

A maximum absolute change in objective function
during the last NitersConv iterations to achieve
absolute hard convergence. Should be a positive
number.

[the value is determined after the first evaluation of
objective function: 0.0001*ABS(OBJ)]

Return Parameter

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put RSACont r ol MovelLi n{ Rel M_Li n, Rel M_M x,

Rel M.Quad, AbsM.Li n
AbsM.M x, AbsM.Quad)

API call to specify move limit parameters for RSA optimization. During RSA the approximation a
polynomial model used inside is increased in complexity from iterations to iteration from linear to

full quadratic.

Different move limits for the design variables are used for each particular

polynomial model. 1, 2, 3, 4, 5, or 6 arguments may be specified for this API call

This call modifies corresponding attribute of the current design control object.

Input Arguments Description
RelMLLin Relative move limits for the linear model.
[0.2 of the current design variable values]
RelMLMix Relative move limits for the model that is more
than linear but not yet full quadratic
[0.3 of the current design variable values]
RelMLQuad Relative move limits for the full quadratic model.
[0.4 of the current design variable values]
AbsMLLin Absolute move limits for the linear model.
[0.02]
AbsMLMix Absolute move limits for the model that is more

than linear but not yet full quadratic

27

[0.03]

AbsMLQuad Absolute move limits for the full quadratic model.
[0.04]
Return Parameter Description
Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

[Error, vintRSAControl, vDbl RSAControl] = VDOC Get RSAControl ()

API call to get the current control parameters that govern RSA from a database.

Description of each argument see in the tables below.

This call extracts the attributes of the current design control object.

Return Arguments

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

vIntRSAControl

Vector with the current integer RSA control
parameters. At least 6 elements.

See description in the table below.

vDbIRSAControl

Array with the current double RSA control
parameters. At least 12 elements.

See description in the table below.

Description of the elements of the array with INTEGER RSA control parameters.

Name 1-based Index

Description

Design 1

DOE from which RSA wil start

Possible values for constrained optimization: Koshal=5,
Simplex=9, Taylor=99, UserDOE=11

Default is Koshal=5.

(defined in enumerator “DOEMethod” in the files

28

Name 1-based Index Description
“defs.h”)

nNItersConv 2 Number of iterations where convergence criteria should
be satisfied for the optimization to stop. Should be a
positive number.

Default is 2.

NPointsMax 3 Maximum number of points to be analyzed during RSA.
If this parameter was not specifically set 0 will be
returned as its value.

NPointsMin 4 Minimum number of points to be analyzed during RSA.

If this parameter was not specifically set 0 will be
returned as its value.

ModelOrder 5 Maximum order of the polynomial model internally
created during RSA.
Possible values are: Linear = 0, Linearinter = 1,
QuadNolnter = 2, FullQuad =3
Default is FullQuad = 3.
The values are taken from DOEModel enumerator in
“defs.h”.

ToMinimize 6 Flag specifying whether the combined objective function

in RSA will be minimized (or maximized)

Possible values are: TRUE=1, FALSE=0 (defined in
“defs.h”)

Default is TRUE.

Description of the elements of the array with DOUBLE RSA control parameters.

Name 1-based Index Description
CT 1 A constraint is considered active if its value is > CT
CTViolated 2 Violated constraint tolerance. A constraint is considered
violated if its value is > CTViolated
HardConvRel 3 Relative hard convergence for optimization (Relative

change in objective function).

Name

1-based Index

Description

HardConvAbs 4 Absolute hard convergence for optimization (Absolute
change in objective function).
Unless specifically set, this value is defined after the first
objective function is evaluated in the optimization
process. |If this parameter was not specifically set 0.0
will be returned as its value.
SoftConvRel 5 Relative soft convergence for optimization (Relative
change in design variables).
SoftConvAbs 6 Absolute soft convergence for optimization (Absolute
change in design variables).
RelMLLin, 7 Relative move limits for the linear model.
Default is 0.2 of the current design variable values.
dRelMLMix 8 Relative move limits for the model that is more than
linear but not yet full quadratic
Default is 0.3 of the current design variable values.
dRelMLQuad 9 Relative move limits for the full quadratic model.
Default is 0.4 of the current design variable values.
AbsMLLin, 10 Absolute move limits for the linear model.
Default is 0.02.
AbsMLMix 11 Absolute move limits for the model that is more than
linear but not yet full quadratic
Default is 0.03.
AbsMLQuad 12 Absolute move limits for the full quadratic model.

Default is 0.04.

CALLS TO ACCESS DESIGN CONTROL OBJECT. DOE CONTROL

Error = VDOC Put DCECont r ol Gener al (DCEActi on, Model O der)

API call to specify the general design control parameters related to DOE. 1 or 2 arguments may

be specified.

30

This call modifies the specified attributes of the

current design control object.

Input Arguments Description
DOEAction Type of action to be performed by DOE.
Possible values are: Points = 0, PointsResps = 1,
PointsRespsModels = 2
The values are taken from DOETask enumerator
in “defs.h”.
[Points = 0]
ModelOrder Maximum order of the polynomial model to be
created during DOE run.
Possible values are: Linear = 0, Linearinter = 1,
QuadNointer = 2, FullQuad = 3, MixedFwdRegr =
4
The values are taken from DOEModel enumerator
in “defs.h”
[MixedFwdRegr = 4]
Returm Parameter Description
Error Return code.
Possible values are: DB_SUCCESS=1

DB_FAIL=-2, DB_BAD_ARGS=-10

Error = VDOC Put DCECont r ol Desi gn(Desi gn,
NDopt Poi nts)

Desi gnQpt i on,

API call to specify the type of the design to be used when running DOE. 1, 2, or 3 arguments may

be specified.

This call modifies the specified attributes of the current design control object.

Input Arguments

Description

Design

Type of the design to be used when running DOE.
The values are taken from DOEMethod
enumerator in ‘defs.h”. They are also described
in the table below.

[Composite = 1]

31

DesignOption

Option for the particular design.
Possible values are provided in the table below

[0]

NDoptPoints Number of D-optimal points to be selected. D-
optimal points will selected from the original
design. D-optimal points will be selected only if
Random or User-supplied design are provided as
the original design.

0]
Return Parameter Description

Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10
Description of the design options for the individual designs.
Design Options
Factorial = 0 0 — Full factorial design

1 - 1/2 Fractional factorial design (2**(NDV-1) points)
2 — 1/4 Fractional factorial design (2**(NDV-2) points)
3 — 1/8 Fractional factorial design (2**(NDV-3) points)
etc.

Composite=1

0 — Full factorial design is used for the fractional portion of the CCD

1 — 1/2 Fractional factorial design (2**(NDV-1) points) is used for
the fractional portion of the SCD

2 — 1/4 Fractional factorial design (2**(NDV-2) points) is used for
the fractional portion of the SCD

3 — 1/8 Fractional factorial design (2**(NDV-3) points) is used for
the fractional portion of the SCD

etc.

Box-Behnken = 2

1 - Perturb 1 factor at a time

2 - Perturb 2 factors at a time

3 - Perturb 3 factors at a time

12 - Perturb 1 & 2 factors at a time

13 - Perturb 1 & 3 factors at a time

23 - Perturb 2 & 3 factors at a time
123 - Perturb 1, 2, & 3 factors at a time

[1]

32

Plackett-Burman = 3

The numerical value of the option corresponds to the number of points in the
design.

Possible values are: 12, 20, 24, 28, 36

[12]
Notz = 4 -1 —“Pure” Notz design: factorial portion is a full factorial design without the
point where all the design variables are at their high levels.
0 — Full factorial design is used for the fractional portion of the design
1 — 1/2 Fractional factorial design (2**(NDV-1) points) is used for
the fractional portion of the design
2 — 1/4 Fractional factorial design (2**(NDV-2) points) is used for
the fractional portion of the design
3 — 1/8 Fractional factorial design (2**(NDV-3) points) is used for
the fractional portion of the design
etc.
[-1]
Koshal =5 10 — Design for the 1 order model without interactions

11 - Design for the 1 order model with interactions

20 - Design for the 2" order model with only quadratic terms but without
interactions

21 — Design for the full-quadratic model

[10]

Rechtschaffner = 6

10 — Design for the 1 order model without interactions

11 - Design for the 1 order model with interactions

20 - Design for the 2" order model with only quadratic terms but without
interactions

21 — Design for the full-quadratic model

[10]

Hybrid = 7 3101 — 3 variables, 10 points, design #1
3111 — 3 variables, 11 points, design #1
3112 — 3 variables, 11 points, design #2
4161 — 4 variables, 16 points, design #1
4162 — 4 variables, 16 points, design #2
4163 — 4 variables, 16 points, design #3
6281 — 6 variables, 28 points, design #1
6282 — 6 variables, 28 points, design #2
[3101]

Taguchi= 8 1 - Latin Square 1

2 - Latin Square 2
9 — L9 Taguchi orthogonal array
27 — L27 Taguchi orthogonal array

33

[1]

81 — L81 Taguchi orthogonal array

Simplex=9 No options available. The number of point is always equal to the number of

[0]

design variables + 1.

Random = 10 The numerical value of the option corresponds to the number of points in the

design.

[0]

User-Supplied = 11 No options available. The points should be supplied as G-points

[0]

[Error, vDCEControl] = VDOC Get DCEControl ()

API call to get the current control parameters that govern DOE from a database.

Description of each argument see in the tables below.

This call extracts the attributes of the current design control object.

Return Arguments Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB _BAD_ARGS=-10
vDOEControl Vector with the current integer DOE control

parameters. At least 5 elements.

See description in the table below.

Description of the elements of the array with DOE control parameters.

Name 1-based Index

Description

DOEAction 1

Type of action to be performed by DOE.

Possible values are: Points = 0, PointsResps = 1,
PointsRespsModels = 2

The values are taken from DOETask enumerator in

Name 1-based Index Description
“defs.h”.
[0]

ModelOrder 2 Maximum order of the polynomial model to be created
during DOE run.

Possible values are: Linear = 0, Linearinter = 1,
QuadNolnter = 2, FullQuad = 3, MixedFwdRegr = 4

The values are taken from DOEModel enumerator in
“defs.h”

[MixedFwdRegr = 4]

Design 3 Type of the design to be used when running DOE.

The values are taken from DOEMethod enumerator in
“defs.h”. They are also described in the table below.
[Composite = 1]

DesignOption 4 Option for the particular design.

Possible values are described in the table for the
function VDOC_PutDOEControlDesign
[0]

NDoptPoints 5 Number of D-optimal points to be selected. D-optimal
points will selected from the original design. D-optimal
points will be selected only if Random or User-supplied
design are provided as the original design.

(0]

CALL TO MAKE A TASK

TaskNunber = VDOC MakeTask()

Function to create a task using the information that is already in the database in the Interface
objects (Input, Response, Auxiliary, Design Control objects).

You will use the returned task number whenever you access the results of the corresponding task.

Return Parameter

Description

TaskNumber The database number of the task that was

created. The task number should be always
positive. If there was an error during task creation
DB_FAIL=-2 will be returned.

CALLS TO RUN FUNCTIONAL MODULES

[Error, StatusCode, nDVs, nResps, vindActiveResp] = VDOC RunDGY

TaskNunber, StatusCode, nDVs, nResps, vindActiveResp)

Function to run the direct gradient-based optimization (DGO) task with the specified ID. You may
need to call this function in a loop, until the returned value of the status code will indicate that the
process is completed (F_DONE). After each call to this function you may be asked to evaluate
the responses at one or several points with the provided values of design variables (F_RESP,
F_GRAD).

When this function is called for the first time StatusCode should be set to F_INIT=0. Later on
VisualDOC will be updating this StatusCode and no more changes should be made to its value.

When this function is called NOT for the first time user should provide the values of ALL the
design variables that he got as return arguments from the previous call to VDOC_RunDGO. The
order of the design variables should correspond to the transfer indices obtained from
VDOC_PutinputAll or VDOC_GetinputAll. Thus, only 2 arguments could be provided during the
first functional call instead of 4, if desired. If 4 arguments will be provided, the values of the design
variables and responses will be ignored.

When responses are supplied to this functional call, ALL the responses should be present. The
order of the responses should correspond to the transfer indices obtained from
VDOC_PutRespAll or VDOC_GetRespAill.

Vector of indices of independent response when used as an input argument should be just a copy
of the same vector supplied as return arguments from the previous call to VDOC_RunDGO. This
argument could be omitted in the initial call to VDOC_RunDGO.

Only DGO type tasks will be run using this call. An attempt to run DOE or RSA task will result in
error.

Input Argument Description

TaskNumber The DGO task number to run. One of the task

numbers returned by VDOC_MakeTask. The
task number should be always positive.

StatusCode Status code of the run. Specifies what step of the

run is being currently executed

Possible values are: F_INIT=0, F_DONE=1,
F RESP=2, F GRAD=3, F_GRAD INIT=4,

36

F_USER_GRAD=5

Complete description of all possible codes is
given in the file “defs.h” in enumeration
“Design_Step”

mDVs

Two-dimensional array with the values of the
design variables. The number of rows should
equal to the number of points, the number of
columns should equal to the number of ALL
design variables.

During the very first call to this function the values
in the array will be ignored.

mResps

Two-dimensional array with the values of the
responses. The number of rows should equal to
the number of points, the number of columns
should equal to the number of ALL responses.

The values of the responses should be evaluated
at the points with the values of the design
variables from array mDVs.

During the very first call to this function the values
in the array will be ignored.

vindActiveResp

Vector of indices of independent response.

Is used only for the case of user-provided
gradients (not implemented in the API yet).

Return Parameters

Description

Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10,
DB_EXCEPTION=-91

StatusCode Status code of the run. Specifies what step of the
run is being currently executed
Possible return values are: F_DONE=1,
F_RESP=2, F_GRAD=3, F_GRAD_INIT=4,
F_USER_GRAD=5
Complete description of all possible codes is
given in the file “defs.h” in enumeration
“Design_Step”

mDVs Two-dimensional array with the values of the

design variables. The number of rows should

37

equal to the number of points, the number of
columns should equal to the number of ALL
design variables.

All responses should be evaluated at the provided
points.

mResps Two-dimensional array with the values of the

responses. The number of rows should equal to
the number of points, the number of columns
should equal to the number of ALL responses.

vindActiveResp Vector of indices of independent response.

Is used only for the case of user-provided
gradients (not implemented in the API yet).

[Error, StatusCode, nbDVs, nResps] = VDOC RunRSA(TaskNunber,

St at usCode, nDVs, nResps)

Function to run the response surface approximate optimization (RSA) task with the specified ID.
You may need to call this function in a loop, until the returned value of the status code will indicate
that the process is completed (F_DONE). After each call to this function you may be asked to
evaluate the responses at one or several points with the provided values of design variables
(F_RESP).

When this function is called for the first time StatusCode should be set to F_INIT=0. Later on
VisualDOC will be updating this StatusCode and no more changes should be made to its value.

When this function is called NOT for the first time user should provide the values of ALL the
design variables that he got as return arguments from the previous call to VDOC_RunRSA. The
order of the design variables should correspond to the transfer indices obtained from
VDOC_PutinputAll or VDOC_GetinputAll. Thus, only 2 arguments could be provided during the
first functional call instead of 4, if desired. If 4 arguments will be provided, the values of the design
variables and responses will be ignored.

When responses are supplied to this functional call, ALL the responses should be present. The
order of the responses should correspond to the transfer indices obtained from
VDOC_PutRespAll or VDOC_GetRespAll.

Only RSA type tasks will be run using this call. An attempt to run DGO or DOE task will result in
error.

Input Argument Description

TaskNumber The RSA task number to run. One of the task

numbers returned by VDOC_MakeTask. The
task number should be always positive.

StatusCode Status code of the run. Specifies what step of the

38

run is being currently executed

Possible values are: F_INIT=0, F_DONE=1,
F_RESP=2

Complete description of all possible codes is
given in the file “defs.h” in enumeration
“Design_Step”

mDVs

Two-dimensional array with the values of the
design variables. The number of rows should
equal to the number of points, the number of
columns should equal to the number of ALL
design variables.

During the very first call to this function the values
in the array will be ignored.

mResps

Two-dimensional array with the values of the
responses. The number of rows should equal to
the number of points, the number of columns
should equal to the number of ALL responses.

The values of the responses should be evaluated
at the points with the values of the design
variables from array mDVs.

During the very first call to this function the values
in the array will be ignored.

Return Parameters

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10,
DB_EXCEPTION=-91

StatusCode

Status code of the run. Specifies what step of the
run is being currently executed

Possible return values are: F_DONE=1,
F_RESP=2

Complete description of all possible codes is
given in the file “defs.h” in enumeration
“Design_Step”

mDVs

Two-dimensional array with the values of the
design variables. The number of rows should
equal to the number of points, the number of
columns _should equal to the number of ALL

39

design variables.

All responses should be evaluated at the provided
points.

mResps Two-dimensional array with the values of the

responses. The number of rows should equal to
the number of points, the number of columns
should equal to the number of ALL responses.

[Error, StatusCode, nbDVs, nResps] = VDOC RunDCE(TaskNunber,

St at usCode, nDVs, nResps)

Function to run the design of experiments (DOE) task with the specified ID. You may need to call
this function in a loop, until the returned value of the status code will indicate that the process is
completed (F_DONE). After each call to this function you may be asked to evaluate the
responses at one or several points with the provided values of design variables (F_RESP).

When this function is called for the first time StatusCode should be set to F_INIT=0. Later on
VisualDOC will be updating this StatusCode and no more changes should be made to its value.

When this function is called NOT for the first time user should provide the values of ALL the
design variables that he got as return arguments from the previous call to VDOC_RunDOE The
order of the design variables should correspond to the transfer indices obtained from
VDOC_PutinputAll or VDOC_GetinputAll. Thus, only 2 arguments could be provided during the
first functional call instead of 4, if desired. If 4 arguments will be provided, the values of the design
variables and responses will be ignored.

When responses are supplied to this functional call, ALL the responses should be present. The
order of the responses should correspond to the transfer indices obtained from
VDOC_PutRespAll or VDOC_GetRespAll.

Only DOE type tasks will be run using this call. An attempt to run DGO or RSA task will result in
error.

Input Argument Description

TaskNumber The RSA task number to run. One of the task

numbers returned by VDOC_MakeTask. The
task number should be always positive.

StatusCode Status code of the run. Specifies what step of the

run is being currently executed

Possible values are: F_INIT=0, F_DONE=1,
F_RESP=2

Complete description of all possible codes is
given in the file “defs.h” in enumeration
“Design_Step”

40

mDVs

Two-dimensional array with the values of the
design variables. The number of rows should
equal to the number of points, the number of
columns should equal to the number of ALL
design variables.

During the very first call to this function the values
in the array will be ignored.

mResps

Two-dimensional array with the values of the
responses. The number of rows should equal to
the number of points, the number of columns
should equal to the number of ALL responses.

The values of the responses should be evaluated
at the points with the values of the design
variables from array mDVs.

During the very first call to this function the values
in the array will be ignored.

Return Parameters

Description

Error

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10,
DB_EXCEPTION=-91

StatusCode

Status code of the run. Specifies what step of the
run is being currently executed

Possible return values are: F_DONE=1,
F_RESP=2

Complete description of all possible codes is
given in the file *“defs.h” in enumeration
“Design_Step”

mDVs

Two-dimensional array with the values of the
design variables. The number of rows should
equal to the number of points, the number of
columns should equal to the number of ALL
design variables.

All responses should be evaluated at the provided
points.

mResps

Two-dimensional array with the values of the
responses. The number of rows should equal to
the number of points, the number of columns
should equal to the number of ALL responses.

a1

CALLS TO EXTRACT RESULTS INFORMATION FROM A DATABASE

[Error, BestTaskNunber, Best(Chj, WrstConstr, BestlterNunber,

Best Subl t er Nunber, StopCode, RunStatus] =
VDQOC Get Fi nal Resul t sQpti m(TaskNunber)

Function to get final results of the optimization for the specified task The obtained best task
number and ID numbers of the best iteration and sub-iteration should be used to extract more
detailed information.

Note, that when the discrete optimization is performed, the returned value of the parameter
BestTaskNumber will be different from the task number supplied. This is because discrete
optimization internally creates and solves several tasks. You should use the returned value of the
parameter BestTaskNumber to retrieve more detailed information about best iteration or best
point.

When continuous optimization is performed, the returned values of the parameter
BestTaskNumber is equal to the supplied value of the parameter TaskNumber.

Input Argument Description

TaskNumber The DGO or RSA task number. One of the task

numbers returned by VDOC_MakeTask. The
task number should be always positive.

Return Parameters Description

Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

BestTaskNumber The task number with the best results. When the

discrete optimization is performed, the returned
value of the parameter BestTaskNumber will be
different from the task number supplied
(TaskNumber). When continuous optimization is
performed, the returned values of the parameter
BestTaskNumber is equal to the supplied value of
the parameter TaskNumber.

You should use the returned value of the
parameter BestTaskNumber to retrieve more
detailed information about best iteration or best

point.

BestODbj Objective function for the best point found during
optimization.

WorstConstr Worst constraint for the best point found during

42

optimization.

BestlterNumber Iteration number for the best point found during
optimization.
BestSublterNumber Sub-iteration number for the best point found

during optimization.

StopCode Optimization Stop Code. Possible values are
given in enumeration “StopCode” in the file
“defs.h”

RunStatus Run status of the optimization task.

Possible values are: NotRun = 0, Running = 1,
Done = 2, RunTimeError = 4

[Error, PointNunber, (bj, Constr, BestPoi nt Nunber, Best(yj,
Worst Constr] = VDOC Get Sublter (TaskNunber, |terNunber,
Subl t er Nunber)

API call to get the attributes of the specified iteration and subiteration from the specified
optimization task. Values of major iteration numbers and sub-iteration numbers always start

from 0.
Input Argument Description
TaskNumber The DGO or RSA task number. The number of
the best task returned by
VDOC_GetFinalResultsOptim. The task
number should be always positive.
IterNumber Iteration number for which the results are desired.
Should be non-negative.
SublterNumber Sub-iteration number for which the results are
desired. Should be non-negative.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10
PointNumber Number of the point corresponding to the desired
iteration and sub-iteration.
Obj Objective function value at the point
corresponding to the desired iteration and sub-

43

iteration.

Constr Value of the worst constraint at the point
corresponding to the desired iteration and sub-
iteration.

BestPointNumber Number of the best SO FAR point found during
optimization.

BestObj Objective function for the best SO FAR point

found during optimization.

WorstConstr Worst constraint for the best SO FAR point found
during optimization.

[Error, vDVs, vResps] = VDOC Get DPoi nt (TaskNunber, Poi nt Nunber)

API call to get the array of the input parameter values and the array of responses for the specified
point from results of the specified task. Point numbering always starts from 0. Point numbers are
unique inside each task.

Input Argument Description

TaskNumber The DGO or RSA task number. The number of
the best task returned by
VDOC_GetFinalResultsOptim. The task
number should be always positive.

PointNumber Desired Point number.

Return Parameters Description

Error Return code.

Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10

vDVs Vector of design variables at the desired point.

vResps Vector of responses at the desired point.

[Error, nDVs, nResps, vToAnal yze] = VDOC Get DPoi nt sAl | (
TaskNunber)

API call to get the design variables and responses for all the points visited by VisualDOC in the
specified task. The design variables and responses are arranged in the form of matrices. The
vector of keys specifying whether the particular point should be analyzed if used again is also
provided after this function call.

Input Argument Description

TaskNumber The DGO or RSA task number. The number of
the best task returned by
VDOC_GetFinalResultsOptim. The task
number should be always positive.

Return Parameters Description

Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB BAD_ARGS=-10

mDVs Two-dimensional array with the values of the
design variables. The number of rows is equal to
the number of points, the number of columns is
equal to the number of ALL design variables.

mResps Two-dimensional array with the values of the
responses. The number of rows is equal to the
number of points, the number of columns is equal
to the number of ALL responses.

vToAnalyze Vector of flags defining whether this point should
be analyzed if used again. The number of
elements is equal to the number of points.
Possible values are:
1 — The point should be analyzed; 0 — Not.

[Error, DEffic, AEffic, GEffic, ScVar, LnDet, Resol] =

VDOC Get DCEEffic (TaskNunber)

API call to get the characteristics of the geometrical distribution of points in DOE. The values are
extracted from the specified task. The corresponding values are calculated only if the DOE task
was to create points only, without calculating responses or model coefficients.

Input Argument Description
TaskNumber The DOE task number. The task number should
be always positive.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB _FAIL=-2, DB_BAD ARGS=-10
DEffic D-efficienciy

AEffic

A-efficienciy

ScVar Scaled predicted variance

LnDet Logarithm of the determinant of the X’X matrix,
where X is the model matrix.

Resol Resolution of the fractional factorial design if

applicable.

[Error, vParansANOVA] = VDOC Get DCEANOVA(TaskNunber, DBI DResp)

API call to get parameters of ANOVA table for the specified response from the DOE run. The
corresponding values are calculated only if the DOE task included creating the response surface
model. The 15 parameters are returned in one vector.

Input Arguments Description
TaskNumber The DOE task number. The task number should
be always positive.
DBIDResp Response database ID.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10
vParamsANOVA Vector with the parameters of the ANOVA table

for the specified response. At least 15 elements.

See description in the table below.

Description of the elements of the array with the ANOVA table parameters.

Name 1-based Index Description
SSR 1 Sum of squares due to regression (response surface
model)
SSE 2 Sum of squares due to error (Error sum of squares)
SYY 3 Total sum of squares
MSR 4 Mean squared regression
MSE 5 Mean squared error

46

Name 1-based Index Description
FO 6 Fo value for the approximation
PValue 7 P-value corresponding to Fq
SE 8 Sum of the errors
PRESS 9 Predicted Error Sum of Squares (PRESS)
RMSE 10 Root-mean square error
MeanResp 11 Mean value of the response
Ccv 12 Coefficient of variation for the whole response surface
model
R2 13 Coefficient of multiple determinations, R®
R2Adj 14 Adjusted R°
R2PRESS 15 R® from PRESS

[Error, vPredResp, vResi, vStdResi, vStuResi, VRStuResi,
VPRESSResi, vCookD, vHD ag] = VDOC CGet DCEResi dual s(

TaskNunber, DBl DResp)

API call to get various residuals (errors) for the specified response from the DOE run for all the
points in the DOE run. The corresponding values are calculated only if the DOE task included

creating the response surface model.

Input Arguments Description
TaskNumber The DOE task number. The task number should
be always positive.
DBIDResp Response database ID.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10
vPredResp Vector with predicted response values for all the
points of the current DOE task.
VResi Vector with the residual values for all the points of

the current DOE task.

47

vStdResi Vector with the standardized residual values for all
the points of the current DOE task.

vStuResi Vector with the studentized residual values for all
the points of the current DOE task.

VRStuResi Vector with the R-studentized residual values for
all the points of the current DOE task

VPRESSResi Vector with the PRESS-residual values for all the
points of the current DOE task.

vCookD Vector with Cook’s D-statistic values for all the
points of the current DOE task.

vHDiag Vector with the values of the diagonal elements of

the H matrix for all the points of the current DOE
task. (H = X*(X’X)**(-1)*X’, where X is the model
matrix)

[Error, vCoeffs, vMddel Exp, vStdErr, vTStat, vPvVal] =
VDOC Get DCEMbdel (TaskNunber, DBI DResp)

API call to get parameters of the polynomial response surface model created during the DOE run.
The corresponding values are calculated only if the DOE task included creating the response

surface model.

Input Arguments Description
TaskNumber The DOE task number. The task number should
be always positive.
DBIDResp Response database ID.
Return Parameters Description
Error Return code.
Possible values are: DB_SUCCESS=1
DB_FAIL=-2, DB_BAD_ARGS=-10
vCoeffs Vector with the values of the coefficients in front of
the terms of the response surface model. The
size of this vector is equal to the number of terms
in the response surface model.
vModelExp Vector of exponents of the independent design

variables for each terms of the responses surface
model. The size of this vector is equal to the
number of terms in the response surface model
times the number of independent design variables

48

(NDV).

The elements in this array are organized as
follows: at first NDV exponents corresponding to
the design variables in the first term, then NDV
exponents corresponding to the design variables
in the second terms, etc. The constant terms has
all the exponents equal to zero.

VvStdErr

Vector with the values of the standard errors of
the individual terms of the response surface
model. The size of this vector is equal to the
number of terms in the response surface model.

vTStat

Vector with the values of the t-statistic of the
individual terms of the response surface model.
The size of this vector is equal to the number of
terms in the response surface model.

vPVal

Vector with the p-values of the individual terms of
the response surface model. The size of this
vector is equal to the number of terms in the
response surface model.

Functional Listing of VisualDOC MATLAB API functions

GENERAL PURPOSE CALL

VDOC_SetPath

GENERAL DATABASE ACCESS CALLS

VDOC_OpenDatabase
VDOC_CloseDatabase
VDOC_IsOpen
VDOC_GetDBError

CALLS TO ACCESS INPUT OBJECTS

VDOC_PutinputAll
VDOC_GetlnputAll
VDOC_PutlnputObj
VDOC_GetlnputObj
VDOC_ChangelnputType

CALLS TO ACCESS RESPONSE OBJECTS
VDOC_PutRespAll
VDOC_GetRespAll
VDOC_PutRespODbj
VDOC_GetRespObj
VDOC_ChangeRespType

CALLS TO ACCESS USER DEFINED POINTS (G-POINTS)

VDOC_PutGPoints
VDOC_GetGPoints

CALLS TO ACCESS AUXILIARY OBJECT

VDOC_PutDiscreteSet
VDOC_GetDiscreteSet

CALLS TO ACCESS DESIGN CONTROL OBJECT. GENERAL DESIGN CONTROL

VDOC_PutTaskType
VDOC_GetTaskType

CALLS TO ACCESS DESIGN CONTROL OBJECT. DGO CONTROL

VDOC_PutDGOControlGeneral
VDOC_PutDGOControlConstr
VDOC_PutDGOControlConv
VDOC_PutDGOControlFD
VDOC_GetDGOControl

CALLS TO ACCESS DESIGN CONTROL OBJECT. RSA CONTROL

VDOC_PutRSAControlini
VDOC_PutRSAControlGeneral
VDOC_PutRSAControlConstr
VDOC_PutRSAControlConv
VDOC_PutRSAControlMoveLim
VDOC_GetRSAControl

CALLS TO ACCESS DESIGN CONTROL OBJECT. DOECONTROL

VDOC_PutDOEControlGeneral
VDOC_PutDOEControlDesign
VDOC_GetDOEControl

CALL TO MAKE A TASK

VDOC_MakeTask

CALLS TO RUN FUNCTIONAL MODULES

VDOC_RunDGO
VDOC_RunRSA
VDOC_RunDOE

CALLS TO EXTRACT RESULTS INFORMATION FROM A DATABASE

VDOC_GetFinalResultsOptim
VDOC_GetSubilter
VDOC_GetDPoint
VDOC_GetDPointsAll

51

VDOC_GetDOEEffic
VDOC_GetDOEANOVA
VDOC_GetDOEResiduals
VDOC_GetDOEModel

52

Alphabetical Listing of VisualDOC MATLAB API functions

VDOC_ChangelnputType
VDOC_ChangeRespType
VDOC_CloseDatabase
VDOC_GetDBError
VDOC_GetDGOControl
VDOC_GetDiscreteSet
VDOC_GetDOEANOVA
VDOC_GetDOEControl
VDOC_GetDOEEffic
VDOC_GetDOEModel
VDOC_GetDOEResiduals
VDOC_GetDPoint
VDOC_GetDPointsAll
VDOC_GetFinalResultsOptim
VDOC_GetGPoints
VDOC_GetlnputAll
VDOC_GetlnputObj
VDOC_GetRespAll
VDOC_GetRespObj
VDOC_GetRSAControl
VDOC_GetSublter
VDOC_GetTaskType
VDOC_IsOpen
VDOC_MakeTask
VDOC_OpenDatabase
VDOC_PutDGOControlConstr
VDOC_PutDGOControlConv
VDOC_PutDGOControlFD
VDOC_PutDGOControlGeneral
VDOC_PutDiscreteSet
VDOC_PutDOEControlDesign
VDOC_PutDOEControlGeneral
VDOC_PutGPoints
VDOC_PutinputAll
VDOC_PutlnputObj
VDOC_PutRespAll
VDOC_PutRespODbj
VDOC_PutRSAControlConstr
VDOC_PutRSAControlConv
VDOC_PutRSAControlGeneral
VDOC_PutRSAControllni
VDOC_PutRSAControlMoveLim
VDOC_PutTaskType
VDOC_RunDGO
VDOC_RunDOE
VDOC_RunRSA
VDOC_SetPath

