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Abstract
Gut microbiota exerts a significant role in the patho-
genesis of the metabolic syndrome, as confirmed by 
studies conducted both on humans and animal models. 
Gut microbial composition and functions are strongly 
influenced by diet. This complex intestinal “superor-
ganism” seems to affect host metabolic balance modu-
lating energy absorption, gut motility, appetite, glucose 
and lipid metabolism, as well as hepatic fatty storage. 
An impairment of the fine balance between gut mi-
crobes and host’s immune system could culminate in 
the intestinal translocation of bacterial fragments and 
the development of “metabolic endotoxemia”, lead-
ing to systemic inflammation and insulin resistance. 
Diet induced weight-loss and bariatric surgery pro-
mote significant changes of gut microbial composition, 
that seem to affect the success, or the inefficacy, of 
treatment strategies. Manipulation of gut microbiota 
through the administration of prebiotics or probiotics 
could reduce intestinal low grade inflammation and im-
prove gut barrier integrity, thus, ameliorating metabolic 
balance and promoting weight loss. However, further 
evidence is needed to better understand their clinical 
impact and therapeutic use.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The present review offers a summary of avail-
able studies exploring the pathogenic role of gut mi-
crobiota in the development of metabolic syndrome, 
subdividing experimental evidences coming from ani-
mal models and human subjects, since their results 
are not always comparable. The relative influences of 
dietary intake on gut microbial composition and func-
tions are also explored, as well as the effects on intes-
tinal microhabitat exerted by diet-induced weight loss 
and bariatric surgery. Finally a critical evaluation of the 
available evidences on probiotic and prebiotics is re-
ported, delineating their potential clinical impact.
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INTRODUCTION
The metabolic syndrome is defined by a combination of  
interconnected physiological, biochemical, clinical and 
metabolic factors linked to an increased risk of  cardio-
vascular diseases and type 2 diabetes mellitus[1]. Raised 
blood pressure, dyslipidemia (defined by increased triglyc-
erides and reduced high-density lipoprotein cholesterol), 
raised fasting glucose and central obesity are metabolic 
syndrome’s main features, as defined by the International 
Diabetes Federation (IDF)[2].

The worldwide prevalence is variable, ranging from 
< 10% to 84%, depending on geographical origins and 
composition of  the studied population, as well as the 
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definition criteria applied[1]. However, its high economic 
and social burden is still growing, thus, clinical research 
is focusing on understanding the complex pathogenesis 
of  metabolic disorders.

Recent evidences have proposed the potential role of  
gut microbiota as pathogenic factor affecting host meta-
bolic balance and disorders[3]. In fact, gut microbiota 
seems to exert a great variety of  functional properties 
impacting human physiology and pathology[4]: modula-
tion of  host nutrition and energy harvest by the produc-
tion of  vitamins and fermentation of  food components 
indigestible by the host; influence of  intestinal epithelial 
homeostasis; development of  host immune system; pro-
tection against pathogens; drug metabolism[4-6].

Initial studies on gut microbial composition and func-
tion were limited by the difficulty to culture all intestinal 
microbes[7]. The recent introduction of  analyzing meth-
ods, based on bacterial genome sequencing and “metage-
nome” analysis, has contributed to increase the knowledge 
about uncultivable microbes, gut microbial functions, its 
cross-talk with the host and the potential pathogenic role 
related to host’s diseases[8].

In the present review, the pathogenic role of  gut 
microbiota on the development of  metabolic disorders, 
such as obesity, type 2 diabetes mellitus and non-alcohol-
ic fatty liver disease (NAFLD), as well as the influence 
of  diet on gut microbial composition, will be discussed. 
Available evidences emerging from studies conducted 
on animal models and humans are reported separately, 
thus, underlining that experimental and clinical observa-
tions are not always comparable. Finally, the therapeutic 
implications of  gut microbiota manipulation, through 
the administration of  probiotics and prebiotics, are also 
discussed.

GUT MICROBIOTA AND OBESITY
Experimental studies on animal models
First evidences about the role of  gut microbiota on the 
development of  obesity came from studies conducted 
on germ free mice (GF-mice) compared to convention-
ally raised mice (CONV-R)[9]. In basal conditions, the 
latter have a 40% higher body fat content than GF-mice 
and this phenomenon was independent from the food 
intake. Moreover, after colonization of  GF-mice with 
intestinal flora coming from CONV-R mice, a significant 
increase of  body weight, in particular a 60% increase of  
body fat, a significant increase of  hepatic triglycerides 
synthesis and the development of  insulin resistance 
were observed in recipients (CONV-D), independently 
from food intake and total energy expenditure[9]. Several 
mechanisms have been proposed to explain these ob-
servations[9]: the increased secretion of  leptin, observed 
in CONV-D mice, was associated to reduced insulin 
sensitivity; the increased monosaccharides absorption in 
CONV-D mice enhanced hepatic triglyceride synthesis 
by up-stimulation of  lipogenic genes, such as acetyl-
CoA carboxylase and fatty acid synthase, through the 

activation of  carbohydrate response element binding 
protein and sterol response element binding protein-1; 
moreover, gut microbiota, inoculated in CONV-D mice, 
seemed to suppress the expression of  fasting-induced 
adipose factor (FIAF), a central regulator of  lipid me-
tabolism, that modulates lipoprotein lipase (LPL) activity 
in adipose tissue[10]. The suppression of  FIAF, induced 
by gut microbiota, resulted in enhanced LPL activity and 
increased fatty acids storage in adipocytes[9]. Indeed, in 
their study[9], Bäckhed and colleagues concluded that gut 
microbiota represents an environmental factor affecting 
host’s predisposition to develop obesity and increase adi-
posity.

In a subsequent study[11], Bäckhed and colleagues ob-
served that GF-mice, fed with “high sugar - high fat West-
ern diet”, do not seem to develop obesity[11]. The main 
mechanisms explaining GF resistance to diet-induced 
obesity are the enhanced fatty acids oxidation, uncoupled 
with decreased LPL activity and fatty acids storage[11]. The 
first mechanism is promoted by increased AMP-activated 
protein kinase activity, an activator of  mitochondrial en-
zymes, involved in fatty acid oxidation in skeletal muscle 
and liver. On the other hand, GF-mice showed elevated 
levels of  FIAF, which suppresses LPL activity[11].

Moreover, GF-mice colonized with intestinal flora 
coming from obese mice showed a more evident in-
crease of  body weight and of  fat tissue than those 
colonized with gut flora deriving from lean mice[12]. The 
speculated mechanism was the increased energy harvest 
promoted by gut microbiota metabolism, in particular by 
microbes deriving from obese subjects[9,12].

The mechanism through which gut microbes con-
tribute to increased energy absorption seems to be the 
production of  short chain fatty acids (SCFAs), result-
ing from the hydrolysis and the fermentation of  dietary 
polysaccharides. SCFAs, such as propionate, butyrate and 
acetate, could be absorbed and used as source of  energy, 
but seem to exert more complex metabolic functions 
influencing host appetite[13,14], intestinal transit time[13], 
energy absorption and energy harvest[15].

For example, SCFAs increase intestinal absorption of  
monosaccharides stimulating the expression of  sodium/
glucose transporter-1[15].

SCFAs also contribute to modulate host appetite and 
food intake interacting with G-coupled proteins expressed 
by enteroendocrine cells and promoting the release of  
glucagon-like peptide-1 (GLP-1) and peptide YY, which 
directly influence host’s satiety[13,14].

Moreover, SCFAs influence lipid metabolism by increas-
ing lipogenesis[9] and inhibiting fatty acids oxidation[11], as 
previously reported.

Other studies have reported specific changes of  gut 
microbiota composition in genetically obese mice (ob/ob 
mice), compared to lean counterparts, showing a 50% 
reduction in the abundance of  Bacteroidetes and a pro-
portional increase in Firmicutes[16]. These specific changes 
could contribute to the increased SCFAs production and 
energy harvest observed both in obese mice and in GF-
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mice colonized with ob/ob mice microbiota[12].
However, it’s not clear how and why, in obese sub-

jects, gut microbiota seems to extract more energy from 
ingested food[17]. Moreover, this mechanism is insufficient 
to explain the more significant weight gain observed in 
GF-mice colonized with intestinal flora coming from 
obese donor, compared to that observed in mice receiv-
ing lean donor’s microbiota[12,17]. In genetically obese mice 
ob/ob, leptin deficiency could in part explain the increased 
efficiency of  gut microbiota to extract energy from food; 
however, it’s not clear why the metabolic activity of  
“obese-gut microbiota” is still increased, also when trans-
ferred to wild-type lean donors[17].

Other putative mechanisms have also been proposed. 
For example, high-fat diet has shown to increase the 
proportion of  Gram-negative species in gut microbiota, 
thus, contributing to an increased intestinal absorption 
of  bacterial fragments, such as lipopolysaccharides (LPS). 
As a consequence, the increased levels of  circulating 
LPS lead to a condition defined as “metabolic endotox-
emia”[18], in which, however, blood LPS levels are lower 
than those observed in septic shock. The experimentally 
induced endotoxemia in mice leads to body weight gain, 
fasted hyperglycemia and hyperinsulinemia, similar to 
that observed on high-fat-fed mice[18].

Increasing evidence suggests that high-fat diet pro-
motes changes in gut microbiota composition, but the 
subsequent development of  obese phenotype occurs only 
in the presence of  metabolic endotoxemia[19].

Fei et al[20] found that a specific endotoxin-producing 
bacterium, the Enterobacter cloacae B29, isolated from 
morbidly obese human’s gut, induced obesity and insulin 
resistance in GF-mice, increasing endotoxin circulating 
levels. The Authors concluded that an increase of  endo-
toxin-producing bacteria in gut microbiota, represents a 
cause, rather than a consequence, of  the host’s metabolic 
balance deterioration. Indeed, these two studies[19,20] 
imply that lowering metabolic endotoxemia, could repre-
sent a potential treatment strategy for the metabolic dis-
ease, even if  additional studies are necessary to confirm 
this assertion.

 Metabolic endotoxemia is promoted by increased 
intestinal permeability and bacterial translocation related 
to a low grade intestinal inflammation state, resulting 
from the interaction between luminal bacteria and host’s 
immune system[18,19,21].

Bacterial antigens are recognized by specific recep-
tors exposed by intestinal dendritic cells, such as NOD1, 
CD-14 and Toll-like receptor 4 (TLR-4). The interaction 
between these receptors and bacterial peptidoglycan or 
LPS activates mucosal inflammation and bacterial translo-
cation[21], through the activation of  the NF-κB pathway.

Bacterial translocation is prevented in mice lacking the 
specific microbial pattern recognition receptors NOD1 or 
TLR-4[21]. In fact, animal models resistant to high-fat diet 
induced obesity, showed reduced TLR-4 activation and 
decreased intestinal translocation[19].

However, even if  some studies have explained the 

role of  host immune system in promoting metabolic en-
dotoxemia and bacterial translocation[18,19,21], other studies 
have underlined the role of  immune response in maintain 
gut homeostasis and prevention of  gut dysbiosis[22,23].

For example, TLR-5 seems to exert a central function 
in the recognition of  pathogen-associated molecular pat-
terns (PAMPs) and in the stimulation of  inflammatory 
response in order to maintain mucosal homeostasis[22]. 
TLR-5 deficient mice develop intestinal dysbiosis, hyper-
phagia, obesity and insulin resistance[23]; moreover, these 
tracts could be transmitted by colonizing wild type mice 
with gut microbiota deriving from TLR-5 knock-out 
mice.

Another mechanism involved in the regulation of  gut 
ecosystem homeostasis is the endocannabinoid system[24]. 
In fact endocannabinoid receptors expressed in the gut 
(eCB1) interact with bacterial LPS, modulating gut perme-
ability, LPS translocation and inducing metabolic endotox-
emia[24].

On the other hand, gut microbiota is essential for 
host’s immune system maturation, gut-associated lym-
phoid tissue development and a well-balanced T-cells 
differentiation[25]. Indeed, GF-mice show an immature 
gut-associated lymphoid tissue and several systemic im-
mune system dysfunctions. Moreover, an intestinal dys-
biosis contributes to an altered differentiation of  T-cells, 
an imbalance between T-helper and T-regulatory lym-
phocites, leading to the disruption of  immune tolerance 
and the development of  autoimmune diseases[26].

In conclusion, evidences emerging from studies con-
ducted on animal models have confirmed the pathogenic 
role exerted by gut microbiota on the development of  
obesity. In fact, microbial products, mainly SCFAs, regu-
late several host’s metabolic functions, energy absorp-
tion and appetite. Moreover, the complex interactions 
between gut microbes and host’s immune system affect 
gut microbial homeostasis and composition, intestinal 
dysbiosis, bacterial translocation and the subsequent de-
velopment of  metabolic endotoxemia, which is essential 
for the development of  obese phenotype and insulin 
resistance.

Human clinical studies
Studies conducted on obese human subjects have con-
firmed specific changes on gut microbiota composition, 
such as a reduction of  Bacteroidetes phylum and a propor-
tional increase of  Firmicutes[27-29]. Moreover, a reduction 
of  Bifidobacterium and Bacteroides and an increase of  Staph-
ylococcus, Enterobacteriaceae and Escherichia coli were detected 
in overweight compared to normal-weight pregnant 
women[29].

However, other studies showed conflicting results: 
Duncan et al[30] reported no significant differences of  
the Bacteroidetes/Firmicutes ratio between obese and lean 
subjects, as well as no significant changes of  fecal Bac-
teroidetes count during diet induced weight loss. On the 
contrary, Schwiertz et al[31] reported a significant increase 
of  Bacteroidetes in obese and overweight subjects.
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Studies conducted on obese twins have revealed dif-
ferences on phyla distribution between obese and lean 
subjects: reduced microbial diversity, such as a relative 
reduction of  Bacteroidetes and Actinobacteria, were found 
among obese subjects, but no significant changes in 
Firmicutes proportion emerged[32]. The identification of  a 
“core microbiome” in obese subjects led to the assump-
tion that functional changes, related to different genes 
and metabolic pathways expression by gut microbiota, 
rather than the diversity of  organismal assemblage, could 
explain different physiological states (obese or lean)[32]; 
in particular, a preferential increase of  genes involved in 
sugar and carbohydrate metabolism could be present in 
overweight subjects[32].

The functional changes in overweight’s gut microbi-
ota lead to an increased production of  SCFAs[12,31], with 
a consequent raised capacity of  energy harvest[12] associ-
ated to a preferential increase of  propionate[31].

A more recent study underlined that low genetic rich-
ness in gut microbiota, reflecting a reduced microbial 
diversity and a preferential expression of  few metabolic 
pathways, is correlated with overall adiposity, insulin 
resistance and a more pronounced inflammatory phe-
notype[33]. The qualitative changes in gut microbiota of  
obese subjects were represented by an increase of  Proteo-
bacteria and Bacteroidetes phyla, a decrease of  anti-inflam-
matory bacteria, such as Akkermansia muciniphila, and an 
increase of  pathogens, such as Campylobacter and Shigella. 
The changes lead to a decreased production of  butyrate, 
a protective substance affecting intestinal barrier integrity, 
as well as an increased mucus degradation potential and 
oxidative stress management[33].

Qualitative changes of  gut microbiota composition 
have been found also in early stages of  life. Two stud-
ies[34,35] conducted on overweight children demonstrated 
a reduction of  beneficial bacteria, such as Bifidobacteria[34], 
Desulfovibrio and Akkermansia muciniphila-like bacteria[35], 
associated with an increase of  pathogens or Gram nega-
tive bacteria, such as Staphylococcus aureus[34] and Enterobac-
teriaceae[35]. Thus, identifying early changes of  gut micro-
biota could predict subsequent development of  obesity.

Moreover, gut microbial composition, in overweight 
adolescents, seems to influence the extent of  weight loss, 
obtained after dietary restriction and increased energy 
expenditure by physical activity, independently from total 
food intake[36]. Indeed, increased total bacteria, Bacteroides 
fragilis group, Clostridium leptum group, and Bifidobacterium 
catenulatum group counts, associated to decreased levels 
of  Clostridium coccoides group, Lactobacillus group and Bifi-
dobacterium group before and after dietary interventions 
are associated to a strongly significant weight loss, inde-
pendently from total food intake. Thus, gut microbiota 
could potentially influence the efficacy of  dietary inter-
ventions[36].

Several “non-dietary” factors seem to influence gut 
microbial composition, since the early stages of  life. In-
deed, delivery mode[37,38], infant feeding[39], antibiotic use[40], 
gestational age and infant hospitalization are the most im-

portant factors[37]. In fact, term birth, vaginal delivery, short 
hospitalization, less exposure to antibiotics and breastfeed-
ing are associated to a more “beneficial” gut microbiota, 
characterized by higher numbers of  Bifidobacteria and lower 
numbers of  Clostridium difficile and of  Escherichia coli[37].

In conclusion, studies conducted on human sub-
jects have confirmed the pathogenic role exerted by gut 
microbiota. However, the observations emerging from 
these clinical studies are not always comparable to the 
results reported in experimental studies conducted on 
animal models. In fact, the alteration of  Bacteroidetes/Fir-
micutes ratio in gut microbial composition has not been 
confirmed in all human studies. The main features char-
acterizing overweight subjects’ microbiota are reduced 
microbial diversity, decrease of  bacteria with potential 
anti-inflammatory properties and increase of  pathogens. 
Recent evidences have underlined the importance of  
functional changes of  gut microbiota, resulting from the 
alteration of  genetic pathways expression, on the patho-
genesis of  obesity, rather than the simple organismal as-
semblage.

INFLUENCE OF DIET
Observations in human subjects
Diet seems to strongly influence gut microbial compo-
sition since the first stages of  life[41]. De Filippo et al[42] 
compared fecal microbiota of  European children (EU), 
mostly fed with a “modern western diet”, to gut micro-
biota of  children coming from a rural African village 
of  Burkina Faso (BF), mostly fed with a “high-fiber 
diet”. BF children showed a significant enrichment in 
Bacteroidetes and depletion in Firmicutes, associated to in-
creased abundance of  bacteria from the genus Prevotella 
and Xylanibacter, compared to EU children. On the other 
hand, Enterobacteriaceae (Shigella and Escherichia) were 
significantly underrepresented in BF compared to EU 
children. These differences reflect the adaptation of  gut 
microbiota to host’s diet, with consequent enrichment of  
bacterial species hydrolyzing complex polysaccharides in 
BF group. The results of  this adaptation are the maximi-
zation of  energy extraction from dietary fibers, but also 
an enrichment of  microbial diversity and the potential 
protection from inflammation and non-infectious co-
lonic disease, observed in rural communities[42].

On the other hand, high-fat/low-fiber Western diet 
promotes the overgrowth of  gram-negative pathogens, 
with consequent increased intestinal translocation of  
bacterial LPS[18]. LPS interaction with specific receptor 
of  host’s immune-system (TLR-4/CD-14) culminates in 
an inflammatory cascade[43] that precedes the develop-
ment of  insulin resistance, obesity and diabetes[18].

Sequencing studies of  fecal metagenomes of  individu-
als coming from different countries lead to the identifica-
tion of  three robust clusters, defined “enterotypes”. The 
three main clusters are dominated by the genera Bacteroides, 
Prevotella and Ruminococcus (enterotype 1, 2 and 3 respec-
tively). These clusters are indicative of  the existence of  
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limited numbers of  well-balanced host-microbial symbiot-
ic states that are not influenced by the geographical origin, 
but seem to be shaped by the diet[44].

Regular red meat consumption, as well as the high-
fat/low fiber Western diet, is associated to a predomi-
nance of  Bacteroides -rich gut ecosystem, with associated 
increased expression of  genes involved in protein deg-
radation. On the other hand, Prevotella species dominate 
in vegetarians with preferential expression of  genes in-
volved in starch break-down[41,45].

The gut microbiome seems to rapidly respond to spe-
cific changes of  diet. Indeed, in a study in which “animal-
based diet” and “plant-based diet” were assigned to 
two groups of  healthy volunteers, rapid changes of  gut 
microbial composition were observed in both groups[46]. 
In particular, the animal-based diet increased the abun-
dance of  bile-tolerant and amino-acids metabolizing 
microorganisms (Alistipes, Bilophila and Bacteroides), while 
it decreased the levels of  Firmicutes that metabolize di-
etary plant polysaccharides (Roseburia, Eubacterium rectale 
and Ruminococcus bromii), thus reflecting the functional 
and metabolic changes induced by dietary compounds[46]. 
However, although these changes appeared within the 
first 24 h, the overall enterotype identity remains stable[47].

In conclusion, diet contributes to shape gut microbial 
composition, creating a stable cluster of  microorganisms 
defined “enterotype”. Diet modification seems to induce 
rapid changes of  gut microbial composition, although 
enterotype identity is not altered. However, further stud-
ies are needed to establish the effect of  long term dietary 
changes on gut microbial composition and function.

Lessons from animal models
High-fat Western diet contributes to the development 
of  obesity, to weight gain and to the increase of  white 
adipose tissue through the intermediation of  gut micro-
biota. A confirmation comes from experimental studies 
showing that high-fat diet (HFD) promotes weight gain 
only in conventional mice but not in germ-free mice[48].

Moreover HFD promotes the same changes in gut 
microbiota composition found in obese subjects, influ-
encing the Bacteroidetes/Firmicutes ratio[49]. The coloniza-
tion of  GF-mice with gut microbiota coming from high-
fat fed conventional mice is associated to significant 
weight gain.

de Wit et al[50] found that saturated fatty acids pro-
mote weight gain, increased adiposity and the develop-
ment of  fatty liver by modifying gut microbial composi-
tion and enhancing lipogenesis.

Moreover, high-fat diet promotes specific changes of  
gut microbial composition, such as a reduction of  Bacte-
roidetes and an increase of  Firmicutes and Proteobacteria, in 
both obese and lean phenotypes[51], suggesting its role in 
shaping intestinal flora, independently from genetically-
determined host’s phenotype[51]. Furthermore, the ex-
perimental study by Fleissner and colleagues[52], reported 
that high-fat diet promotes weight gain, also in absence 
of  gut microbiota. In fact, GF-mice, fed with high-fat 

chow, gained more body weight and body fat than their 
conventional counterpart[52].

Therefore, these observations demonstrate that a diet 
rich in lipids, in particular saturated fatty acids, promotes 
weight gain and increases visceral adiposity, shaping gut 
microbiota composition and influencing, both directly 
and indirectly through the intermediation of  intestinal 
flora, energy absorption and harvest[53].

Other studies have also underlined the role of  dietary 
lipids in promoting low-grade gut inflammation and in-
creased intestinal permeability, as previously described 
also in GF mice[48]. Indeed, diet rich in lipids is associ-
ated to a significant decrease of  Bifidobacteria, known to 
produce butyrate, which exerts anti-inflammatory effects 
and promotes gut barrier integrity[54]. Moreover, it is as-
sociated to an increase of  sulfate-reducing/endotoxin-
producing bacteria belonging to the Desulfovibrionaceae 
family, leading to an increased gut inflammation and 
impaired barrier function[55]. HFD contributes also to the 
development of  increased intestinal permeability as dem-
onstrated by the reduced expression of  genes encoding 
for components of  tight junctions[56]. Furthermore, the 
extent of  increased gut permeability is correlated to spe-
cific microbial changes, such as a reduction of  Lactobacil-
lus and an increase of  Oscillobacter[56].

In conclusion, experimental evidences from animal 
models demonstrate that HFD promotes weight gain 
by altering gut microbial composition and by increasing 
intestinal permeability.

GUT MICROBIOTA AND DIABETES
Experimental studies on animal models
LPS-induced metabolic endotoxemia is the first step for 
the development of  insulin resistance and diabetes[18]. 
Indeed, mice fed with high-fat diet have shown increased 
proportion of  LPS-containing microbiota in the gut as 
well as circulating LPS. Experimental LPS infusion lead 
to fasted hyperglycemia and hyperinsulinemia. Moreover, 
CD14/TLR-4 mutant mice, resistant to LPS, were also 
resistant to high-fat diet-induced metabolic diseases, be-
cause, in this animal models, the subsequent expression 
of  inflammatory cascade in liver and fat was significantly 
reduced[18,57]. CD14 mutant mice showed insulin hyper-
sensitivity even during normal diet, suggesting the poten-
tial role of  CD14 to set host’s insulin sensitivity in physi-
ological conditions[18].

The modulation of  gut microbiota, through the ad-
ministration of  a broad spectrum antibiotic therapy, ame-
liorated glucose tolerance in ob/ob and diet-induced obese 
and insulin-resistant mice, influencing inflammatory, and 
metabolic status of  the host, independently from food 
intake[58].

Similarly, Cani et al[59] found that antibiotic treatment 
reduced metabolic endotoxemia and the cecal content 
of  LPS in both high-fat-fed and ob/ob mice, with conse-
quent reduction of  systemic inflammation and improve-
ment of  insulin sensitivity. Similar results were observed 

16083 November 21, 2014|Volume 20|Issue 43|WJG|www.wjgnet.com

Festi D et al . Gut microbiota and metabolic syndrome



in CD14 mutant ob/ob mice, independently from antibi-
otic treatment.

On the other hand, a recent study[60] defined the pro-
tective role of  the bacterium Akkermansia (A.) muciniphila 
against the development of  metabolic diseases.

A. municiphila, a member of  the Verrucomicrobia phy-
lum, is a mucus-degradating bacteria, located in the mu-
cus layer, representing 1%-4% of  the bacterial population 
in the colon[61]. The abundance of  this mucin-degrading 
bacterium,is inversely correlated to body weight in ro-
dents and humans[60], and is negatively associated to type 
1[62] and type 2[63] diabetes. The normalization of  A. mu-
ciniphila abundance through prebiotic administration is 
correlated with an improved metabolic profile, reduced 
fat-mass, metabolic endotoxemia, adipose tissue inflam-
mation and insulin resistance. Moreover, it seems that A. 
muciniphila administration led to increased intestinal levels 
of  endocannabinoids that control inflammation, the gut 
barrier integrity, and gut peptide secretion[60]. However, 
the exploitation of  all these effects requires viable bac-
teria, because treatment with heat-killed cells did not im-
prove the metabolic profile[60].

In the presence of  bacteria producing butyrate or 
conjugated linolenic acid, such as Bifidobacteria or Lacto-
bacillus, an improvement of  glucose tolerance in associa-
tion with a decrease of  endotoxemia, of  circulating pro-
inflammatory cytokines and of  intestinal permeability, 
were observed[59,64].

In conclusion, gut microbiota promotes the devel-
opment of  insulin resistance and diabetes by inducing 
metabolic endotoxemia. Bacteria with potential anti-
inflammatory properties, such as A. municiphila, Bifidobac-
teria and Lactobacilli, exert a protective role by enhancing 
gut barrier integrity and by preventing bacterial translo-
cation.

Human clinical studies
As demonstrated in animals, high energy intake increases 
levels of  circulating LPS also in humans[65]. Circulating 
LPS stimulates the TLR-2 mediated inflammatory re-
sponse and increases the secretion of  pro-inflammatory 
cytokines by the adipose tissue[32]. LPS levels are signifi-
cantly increased in diabetic subjects, compared to con-
trols, and seem to decrease with the administration of  
antidiabetic therapy (rosiglitazone)[66].

A longitudinal study[67] found that increased levels of  
blood circulating bacteria are present before the devel-
opment of  diabetes. Moreover, pyrosequencing analyses 
conduced on subjects in the early phases of  reduced 
glucose tolerance, identified a core blood microbiota, 
mostly (85%-90%) composed by Proteobacteria phylum, 
which could represent a potential biomarker for predict-
ing the development of  diabetes[67].

Specific changes in gut microbiota composition have 
been observed in diabetic subjects: an increase of  Bacteroi-
des and Prevotella was associated to a proportional decrease 
of  Firmicutes and Clostridia[68]. Furthermore, a decrease of  
anti-inflammatory bacteria, such as Bifidobacteria was also 

observed[69].
However, Zhang et al[70] found that specific changes 

of  gut microbiota composition could be identified in 
each progressive stage leading to the development of  
diabetes. The relative abundances of  butyrate-producing 
bacteria (Akkermansia muciniphila and Faecalibacterium 
prausnitzii) seems to decrease along with decreasing glu-
cose tolerance, in association with a decrease of  Verruco-
microbiae. On the other hand, Betaproteobacteria levels show 
an opposite trend.

Recently, Qin et al[63] have developed a novel gut mi-
crobiota analytical platform to identify disease-associated 
metagenomic markers. Comparing gut microbial metage-
nome of  diabetic to healthy control subjects, the Authors 
found that in diabetic subjects only a moderate degree of  
gut microbial dysbiosis was present, characterized by a 
selective increase in several opportunistic pathogens and 
a reduction in bacteria producing beneficial metabolites, 
such as butyrate[63]. Indeed, it’s well known that butyrate 
may exert a protective role, enhancing the expression of  
tight junctions genes, promoting gut barrier function and 
reducing bacterial translocation[71].

The beneficial effect of  butyrate is confirmed by a 
study from Vrieze et al[72], in which diabetic subjects re-
ceived a fecal microbiota transplant from lean donors. 
After the transplant diabetic subjects showed a signifi-
cant increase of  intestinal butyrate-producing bacteria, 
which was correlated to an improvement of  insulin sen-
sitivity[72].

Similarly, Karlsson et al[73] developed a mathemati-
cal model, deriving from metagenome analysis of  fecal 
samples’ from 145 European women with different de-
grees of  glucose tolerance, to accurately predict the de-
velopment of  diabetes. Appling this model to a Chinese 
cohort, the Authors identified different metagenomic 
predictors for diabetes between European and Chinese 
people. Thus, they concluded that metagenomic predic-
tive tools for diabetes should be specific for the age and 
geographical location of  the studied population[73].

In conclusion, human studies confirmed the patho-
genic role of  metabolic endotoxemia for the develop-
ment of  insulin resistance and diabetes. The progres-
sive development of  glucose intolerance and diabetes 
proceeds along with a corresponding decrease of  anti-
inflammatory and butyrate-producing bacteria, as well 
as an increase of  pathogens. Indeed, the experimental 
enrichment of  butyrate-producing bacteria is associated 
to an improvement of  insulin sensitivity.

GUT MICROBIOTA AND NAFLD
Experimental studies on animal models
As previously explained, gut microbiota strongly influ-
ences energy absorption and storage, in particular by 
modulating monosaccharides absorption and hepatic 
de novo lipogenesis through complex pathways which 
influence expression of  genes involved in these specific 
metabolic reactions[9]. In fact, GF mice receiving gut 
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microbial colonization from conventional mice show a 
significant increase in triglycerides synthesis and fatty 
storage in hepatocytes[9].

Although gut microbiota could modulate per se lipid 
metabolic pathways in hepatocytes, specific changes in 
microbial composition are able to influence the develop-
ment of  fatty liver.

Indeed, although high-fat diet experimentally induced 
weight gain in conventional mice, not all of  them devel-
oped reduced glucose tolerance, hyperinsulinemia and 
overt fatty liver[74]. A pyrosequencing study revealed that 
mice developing insulin resistance and fatty liver showed 
an increased number of  Lachnospiraceae and Barnesiella, 
associated with a decrease of  Lactobacilli. These altera-
tions were not observed in mice resistant to diet induced 
metabolic syndrome[74].

Moreover, gut microbiota could contribute to the 
development of  fatty liver through the ethanol produc-
tion[75]. In fact, in genetically obese mice breath ethanol 
tested levels were significantly higher than in lean mice 
and antibiotic treatment could reduce by 50% the cumu-
lative ethanol production[75].

Other proposed mechanisms through which gut 
microbiota could influence the susceptibility to develop 
NAFLD are the alteration of  the choline[76] and the bile 
acid[77] metabolisms.

More recently, the role of  fructose-rich diet has been 
explored[78]: the experimental administration of  a 30% 
fructose solution, for 8 wk, to a group of  mice, is as-
sociated to the development of  hepatic steatosis and a 
significant increase of  hepatic transaminases. The onset 
of  fructose induced-NAFLD is associated to the devel-
opment of  small bowel bacterial overgrowth, increased 
intestinal permeability, increased circulating endotoxin 
and the subsequent activation of  Kupffer cells mediated 
hepatic inflammation[78].

Gut microbiota also exerts a role in the progression 
from fatty liver to non-alcoholic steatohepatitis (NASH) 
and the development of  hepatic fibrosis. It has been 
observed that experimentally induced endotoxemia acti-
vates hepatic inflammatory response through the recruit-
ment of  Kupffer cells by TLR-4 mediated signaling[79]. 
Indeed, in TLR-4 deficient mice, as well as after the 
experimental destruction of  Kupffer cells, inflammatory 
response and liver damage are significantly reduced[79].

Furthermore, recent studies[80,81] have underlined the 
role of  cytoplasmic multiprotein complexes, called in-
flammosomes, in the development of  inflammatory liver 
injury. These inflammosomes are expressed in most liver 
cells, such as Kupffer cells, liver sinusoidal endothelial 
cells, periportal myofibroblasts and hepatic stellate cells. 
The activation of  cytosolic inflammosomes, induced 
by the interaction with LPS or with other microbial 
antigens coming from bacteria circulating in the portal 
system, leads to the expression of  the pro-inflammatory 
cascade[80,81] and modulates hepatic fibrotic tissue deposi-
tion[82].

Although inflammosomes play a critical role in the 

pathogenesis of  liver disease, inflammosome-deficient 
mice show a more severe hepatic injury and a faster 
progression to NASH, probably because these cyto-
solic complexes may contribute to modulate gut mi-
crobial composition, and their dysfunction leads to gut 
dysbiosis[83].

In conclusion, gut microbiota affects the susceptibil-
ity to develop fatty liver and NASH. Bacterial ethanol 
production, alterations of  choline and bile acids me-
tabolism, the stimulation of  hepatocytes’ lipogenesis 
and the development of  an increased intestinal perme-
ability leading to metabolic endotoxemia are the main 
mechanisms involved. The complex interaction between 
microbial antigens and the cytosolic inflammosomes 
affects the activation of  inflammatory cascade and the 
development of  hepatic fibrosis.

Human clinical studies
Similar mechanisms observed in animals have been pro-
posed to explain the putative role of  gut microbiota on 
the pathogenesis of  NAFLD in humans.

In particular, an higher prevalence of  small bowel 
bacterial overgrowth and an increased intestinal perme-
ability have been observed in obese subjects affected by 
NAFLD, and these variables seem to be correlated with 
the severity of  hepatic steatosis[84].

Moreover, specific changes in gut microbial composi-
tion have been observed in patients affected by NASH, 
such as a lower percentage of  Bacteroidetes and higher 
fecal Clostridium coccoides concentrations. However, after 
adjusting for body mass index (BMI) and dietary intake, 
only the difference of  Bacteroidetes fecal concentrations 
resulted significant. Thus, an inverse association between 
the presence of  NASH and the percentage Bacteroidetes 
in the stools, independent from BMI and diet, was ob-
served[85].

A significant increase of  circulating levels of  ethanol, 
promoted by intestinal overgrowth of  ethanol-producing 
bacteria, such as Enterobacteriaceae and Escherichia coli, have 
been found also in patients affected by NASH[86].

Alteration of  choline metabolism have been pro-
posed as causative mechanism also in human subjects. In 
fact it’s well known that hepatic steatosis, promoted by 
parenteral nutrition, is partly due to choline deficiency, 
and its supplementation could reverse hepatic fat accu-
mulation[87]. More recently the experimental administra-
tion of  choline deficient diet was associated to variations 
of  the intestinal concentrations of  Gammaproteobacteria 
and Erysipelotrichi, that were directly associated to chang-
es in liver fat amount[88].

The development of  NASH is associated, also in hu-
mans, to increased systemic inflammation, promoted by 
TLR-4 mediated interaction with circulating PAMPs, with 
consequent release of  pro-inflammatory cytokines[89].

In conclusion, the development of  fatty liver is pro-
moted by small bowel bacterial overgrowth and increased 
intestinal permeability. Bacterial ethanol production and 
choline deficiency have been confirmed as pathogenic 
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mechanisms also in human subjects. Moreover, the devel-
opment of  NASH is affected by the complex interaction 
between circulating bacterial antigens and host’s immune 
system.

THERAPEUTIC STRATEGIES
Diet induced weight loss and bariatric surgery
Weight loss promoted by calories restricted diet and in-
creased physical activity is associated to significant chang-
es in the composition of  gut microflora.

Sotos et al[90] found that nutritional intervention strat-
egy based on an energy restricted diet associated to a 
physical activity program for 3 mo, on a group of  obese 
adolescents, was associated to a significant reduction of  
sulphate-reducing bacteria and Enterobacteriaceae, which 
was more pronounced in subjects in which interventions 
were successful. Moreover, in subjects who didn’t reach 
significant weight loss, the proportion of  beneficial 
bacteria belonging to Roseburia-Eubacterium populations 
remained low[90]. Furthermore, diet-induced weight loss 
has also been associated to a reduction of  C. histolyticum, 
C. lituseburense and E. rectale-C. coccoides and an increase of  
the Bacteroides-Prevotella group[91].

As previously reported, subjects with a low bacterial 
gene richness are characterized by more marked overall 
adiposity, insulin resistance and dyslipidaemia and a more 
pronounced inflammatory phenotype when compared 
to high bacterial gene richness individuals[33]. A recent 
study of  Cotillard et al[92] reported that dietary interven-
tion improves low gene richness and clinical phenotypes 
in obese subjects, but the treatment strategies seem to 
be less efficient for inflammation variables in individuals 
with lower gene richness. Thus, in these latter subjects, 
dietary interventions could be less effective.

Some studies conducted on subjects submitted to sur-
gical Roux-en-Y gastric by-pass (RYGB) reported a pro-
found change of  gut microbiota composition, related to 
the surgically reverted anatomy of  alimentary tube. These 
changes might contribute to the successful weight loss ob-
tained in these patients.

Zhang et al[93] found that the reduction of  gastric acid 
and the modification of  the total length of  small bowel 
contribute to the growth of  facultative anaerobes, with a 
significant increase of  Gammaproteobacteria. On the other 
hand, Firmicutes and in particular methanogens bacteria, 
which seem to contribute to the increased energy extrac-
tion from fermentation of  polysaccharides in obese sub-
jects, are strongly decreased after RYGB[93].

The increase of  Bacteroides-Prevotella group was also 
observed after weight loss promoted by RYGB, in as-
sociation to an increase of  Faecalibacterium prausnitzii spe-
cies, directly linked to the reduction in low-grade inflam-
mation[94].

The direct transit of  carbohydrates to the small in-
testine, without the prior exposure to gastric acids, pro-
motes the growth of  Proteobacteria and Enterobacteria fer-
menting complex carbohydrates[95]. The increased pro-

duction of  metabolites deriving from oligosaccharides 
fermentation is well known to contribute to increased 
GLP-1 and peptide YY production, which contribute to 
reduce appetite and to improve beta-pancreatic cell func-
tion and insulin secretion[96].

After RYGB it has been also observed an increase of  
intestinal gamma-amino-butyric acid production by gut 
microbes, which also stimulates the release of  GLP-1 
and peptide YY[95].

Lips et al[97] also reported that RYGB improves gut 
hormone release, such as GLP-1 and peptide YY, and 
glucose tolerance in diabetic subjects. However, it is not 
sufficient alone to maintain glucose metabolism balance, 
since calories restriction is the major determinant of  
short-term benefit in glucose tolerance.

RYGB does not induce only beneficial effects. In-
deed, it seems to influence the increase of  pathogens 
bacteria, such as Escherchia coli, and the decrease of  ben-
eficial bacteria, such as Lactobacilli and Bifidobacteria[94]. 
Moreover, the reduced availability of  energy extractable 
from glucose promotes increased energy extraction from 
tricarboxylic acid cycle intermediates and from protein 
catabolism, thus, facilitating the development of  renal 
tubular acidosis[95].

In conclusion, diet induced weight loss is associated 
to specific changes in gut microbial composition, in 
terms of  increased beneficial anti-inflammatory bacteria 
and reduced pathogens. A subgroup of  patients with low 
microbial gene richness has shown a more aggressive 
clinical phenotype and a less responsiveness to therapeu-
tic strategies.

Bariatric surgery promotes evident changes in intesti-
nal bacterial composition. These changes could reinforce 
the beneficial effects of  the surgical intervention on 
host’s appetite and insulin sensitivity. However, potential 
negative effects, such as the decrease of  beneficial bac-
teria and the risk of  developing renal tubular acidosis, 
need to be considered.

Probiotics
Probiotics are defined by the Food and Agricultural Or-
ganization and the World Health Organization as “live 
microorganisms which when administered in adequate 
amounts, confer a beneficial health effect on the host”[98].

Several studies have demonstrated that probiotic 
strains, in particular those of  the Lactobacillus and Bifido-
bacterium genera, exert multiple beneficial effects in sub-
jects affected by metabolic syndrome. Indeed, they seem 
to promote weight loss and the reduction of  visceral 
adiposity, to improve glucose tolerance, and to modulate 
intestinal low grade inflammation.

The experimental studies[98-104] demonstrating the ben-
eficial effects observed in HFD-induced metabolic syn-
drome, after the administration of  probiotics containing 
Bifidobacterium strains, are reported in Table 1.

Cani et al[105] and Amar et al[21] have demonstrated the 
putative mechanisms through which Bifidobacterium strains 
could contribute to counteract detrimental effects of  meta-
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Table 1  Studies conducted on animal models showing effects of probiotics containing Bifidobacterium  strains on metabolic disorders

bolic syndrome. The administration of  probiotics contain-
ing Bifidobacterium is associated to an improvement of  gut 
epithelial barrier, promoted by increased expression of  
tight-junction proteins[21,105]. Consequently, a significant re-
duction of  bacterial translocation, intestinal inflammation 
and metabolic endotoxemia have been observed[18,21].

Other studies[106-118] have demonstrated the benefi-
cial effects exerted by probiotics containing Lactobacillus 
strains on animals and human subjects, showed in Table 
2 and Table 3, respectively.

These studies underline that Lactobacillus strains, es-
pecially those producing conjugated linoleic acid[106-108], 
contribute to body weight loss, reduction of  adipocyte 
size and adipose tissue mass, as well as to improve glu-
cose tolerance, modulating the expression of  leptin and 
fatty acid synthetase.

Other studies reported the positive effects of  Lac-
tobacillus probiotics in modulating serum lipid profile 
through the stimulation of  fatty acids oxidation[109-111,115], 
or by inhibiting lipoprotein lipase activity through An-
giopoietin like-4, a microbial regulated protein[114].

Nerstedt et al[115] also reported the improvement of  gut 
immune functionality, promoted by Lactobacillus strains.

The administration of  probiotics combining Bifido-
bacterium and Lactobacillus strains, such as VSL#3, signifi-
cantly improve glucose tolerance and reduce food intake, 
increasing the production of  SCFAs and of  butyrate that 
stimulate the intestinal production of  GLP-1[119].

Moreover, the administration of  probiotics contain-
ing Lactobacillus strains alters gut microbial composition, 
promoting the expansion of  the host’s own Bifidobacteria 
population, improving the metabolic functions and re-
ducing the pro-inflammatory activity[120].

Recently, the role of  probiotics as therapeutic strat-

egy for the treatment of  hepatic steatosis and NAFLD 
is emerging[121]. The putative mechanism involved are the 
improvement of  gut microbial homeostasis of  gut bar-
rier function and integrity of  the modulation of  endo-
toxemia and of  pro-inflammatory response[121], as well as 
the improvement of  hepatic response against oxidative 
damage[110].

However, although encouraging results emerge from 
meta-analysis evaluating the role of  probiotics for the 
treatment of  NAFLD[122] and the results of  most studies 
seem to be promising, they have to be considered with 
caution. Indeed, the available evidences suggesting the 
employ of  probiotics for the treatment of  obesity are 
still weak[123] and, therefore, the therapeutic use of  pro-
biotics for the treatment of  metabolic disorders has not 
yet been recommended[124].

Prebiotics
Prebiotics are defined as non-digestible polysaccharides 
that promote “the selective stimulation of  growth and/
or activity(ies) of  one or a limited number of  microbial 
genus(era)/species in the gut microbiota that confer(s) 
health benefit to the host”[125].

The most studied prebiotics are the inulin and vari-
ous types of  fructo-oligosaccharides, which enhance the 
growth of  beneficial bacteria such as Bifidobacteria or Lac-
tobacilli.

Table 4 illustrates studies[105,126-131] conducted on ani-
mal models, employing several types of  prebiotics, such 
as oligofructose, arabinoxylan and inulin and their re-
lated effects on the metabolic syndrome.

Prebiotics contribute to modify gut microbial com-
position, enhancing the growth of  Bifidobacteria[105,130,131], 
Bacteroides[129-131], Prevotella and Roseburia[130] and promoting 
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Studied animals Probiotic Dose Duration of 
treatment (wk)

Effects Ref.

C57BL/6J mice Bifidobacterium breve B-3 109 CFU   8 ↓body weight, epididymal fat, serum cholesterol, glucose, 
insulin and HOMA index

[99]

↑expression of FIAF, adiponectin
C57BL-6 mice Bifidobacterium pseudocatenula-

tum CECT 7765
  7 ↓serum cholesterol, triglycerides, glucose, insulin resistance, 

leptin, IL-6, monocyte chemotactic protein-1, liver steatosis, 
adipose tissue

[100]

↑glucose tolerance
Improvement of immune system functionality

HFD-fed rats Bifidobacterium longum Improvement of HFD induced metabolic disorders trough ↓
endotoxin levels and intestinal inflammation, ↑expression of 

Reg Ⅰ genes

[101]

HFD-rats, standard 
diets fed rats

Bifidobacterium adolescentis 12 ↓visceral fat, liver steatosis [102]
↑insulin sensitivity

Sprague-Dawley rats B. pseudocatenulatum SPM 1204, 
B. longum SPM 1205, and B. 

longum SPM 1207

108-109 
CFU

  7 ↓body and fat weights, serum cholesterol, triglycerides, 
glucose, leptin, AST, ALT and lipase levels

[103]

Sprague-Dawley rats Bifidobacteria L66-5, L75-4, 
M13-4 and FS31-12, originated 
from normal human intestines

108 CFU   6 B. M13-4 strain ↑body weight [104]
B. L66-5 strain ↓body weight

All strains ↓serum and liver triglycerides, serum and liver 
cholesterol

CFU: Colony-forming units; IL-6: Interleukin-6; HFD: High-fat diet; Reg Ⅰ genes: Intestinal regenerating family genes; AST: Aspartate aminotransferase; 
ALT: Alanine aminotransferase; FIAF: Fasting-induced adipose factor; HFD: High-fat diet.
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Table 3  Studies conducted on humans showing effects of probiotics on metabolic disorders

Table 2  Studies conducted on animal models showing effects of probiotics containing Lactobacillus  strains on metabolic disorders

the relative decrease of  Firmicutes[129,131].
Moreover, they contribute to reduce body weight, 

body fat and adipocyte size by modulating food intake 
and appetite, by promoting the production of  GLP-1, 
peptide YY and the decrease of  ghrelin, and, at the same 
time, by decreasing fatty acid storage[126,127,130,131].

Furthermore, the reduction of  intestinal low grade in-
flammation promoted by the improvement of  gut barrier 
integrity[128,130] and the decrease of  pro-inflammatory[105] 
cytokines release, lead to an improvement of  glucose tol-
erance and insulin sensitivity.

Similar effects have been observed in studies con-
ducted on human subjects[132-136] as reported in Table 5.

A recent meta-analysis, exploring the beneficial ef-
fects of  prebiotics on subjects with metabolic syndrome, 
reported a statistically significant reduction of  post pran-
dial glucose and insulin levels[137]. On the other hand, data 
regarding effects on body weight, total energy intake, sati-

ety, GLP-1 and peptide YY production and inflammatory 
pattern seem to be controversial[137].

CONCLUSION
Available clinical and experimental evidence suggests 
that gut microbiota is a potential pathogenetic factor for 
the development of  metabolic syndrome. The overall 
expression of  its detrimental effects seems to be influ-
enced by complex interactions involving diet, lifestyle, 
environmental factors, such as antibiotic therapies, ge-
netic predisposition, as well as a complex cross-talk be-
tween intestinal microbes and the host’s immune system.

Administration of  probiotics and prebiotics has been 
widely used in order to manipulate gut microbiota. How-
ever, although several studies reported encouraging 
results, solid clinical evidence recommending their thera-
peutic use for metabolic diseases has not emerged, and 
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Studied subjects Probiotic Duration of 
treatment

Effects Ref.

C57BL/6J mice Lactobacillus rhamnosus PL60 8 wk ↓body weight gain, white adipose tissue, hepatic steatosis [106]
C57BL/6J mice Lactobacillus plantarum PL62 8 wk ↓body weight, visceral adipose tissue, serum glucose levels [107]
Sprague-Dawley rats Lactobacillus gasseri SBT2055 4 wk ↓adipocyte size, leptin levels [108]

No significant changes in serum glucose and lipids levels, and 
liver lipids levels

Zucker diabetic fatty rats Lactobacillus fermentum NCIMB 5221 8 wk ↓fasting insulin levels, insulin resistance, serum triglycerides 
and LDL cholesterol levels, atherosclerosis

[109]

↑HDL cholesterol levels
Male Kunming mice L. plantarum CAI6, L. plantarum SC4 28 d ↓serum total and LDL cholesterol levels, LDL/HDL cholesterol 

ratio, triglycerides levels, hepatic steatosis
[110]

↑serum HDL cholesterol, hepatic anti-oxidant Nrf-2 mediated 
response

C57BL/6J mice Lactobacillus rhamnosus GG 13 wk ↓liver and mesenteric adipose tissue, weight gain [111]
↑glucose tolerance, gluconeogenesis, fatty acids oxidation

Apoe-/- mice Lactobacillus reuteri ATCC PTA 4659 
(ATCC), DSM 17938 (DSM), L6798

12 wk ↓body weight gain, insulin levels, hepatic steatosis [112]
↑fatty acids oxidation

C57BL/6 mice Lactobacillus plantarum strain No. 14 11 wk ↓adipocyte size, white adipose tissue, serum leptin and total 
cholesterol levels

[113]

C57B/6J mice Lactobacillus paracasei ssp paracasei F19 10 d ↓body weight [114]
↑triglyceride load of the lipoprotein VLDL, angiopoietin-like 4 

protein that ↓fatty storage
GF and NMF mice Lactobacillus paracasei ssp paracasei F19 

or Lactobacillus acidophilus NCFB 1748
10 d ↑adipsin, adiponectin, fatty acids oxidation [115]

Improvement of efficacy of intestinal immunological barrier
↓resistine like β

LDL: Low-density lipoprotein; HDL: High-density lipoprotein; VLDL: Very low-density lipoprotein.

Studied subjects Probiotics Duration of 
treatment

Effects Ref.

Overweight humans Lactobacillus gasseri 
SBT2055

12 wk ↓body weight, visceral and subcutaneous fat area, 
BMI, waist and hip circumference

[116]

↑serum adiponectin
Subjects with increased abdominal adiposity Lactobacillus gasseri 

SBT2055
12 wk ↓body weight, visceral fat area, BMI, waist and hip 

circumference, body fat mass
[117]

Women affected by postmenopausal metabolic 
syndrome

Lactobacillus plantarum 90 d ↓serum glucose and homocysteine levels [118]

BMI: Body mass index.
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Table 5  Studies conducted on humans showing effects of prebiotics on metabolic disorders

Table 4  Studies conducted on animal models showing effects of prebiotics on metabolic disorders

knowledge about the long term efficacy of  this treatment 
is still lacking. Therefore, additional studies and random-
ized controlled trials using probiotics and prebiotics, are 
needed to further understand their clinical impact on gut 
microbiota manipulation.
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Studied subjects Prebiotic Duration of treatment Effects Ref.

Wistar rats OFS 50 d ↓Body weight, food intake, fat mass, serum triglycerides, ghrelin [126]
↑GLP-1

Wistar rats OFS   6 wk ↓Food intake, serum glucose and insulin [127]
↑GLP-1, glucose tolerance

HFD fed mice OFS 13 wk ↑Bifidobacterium, glucose tolerance [105]
↓Pro-inflammatory cytokines, endotoxemia

C57B/6J mice OFS   4 wk ↓LPS, hepatic inflammatory and oxidative stress markers, intestinal permeability [128]
↑GLP-2
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