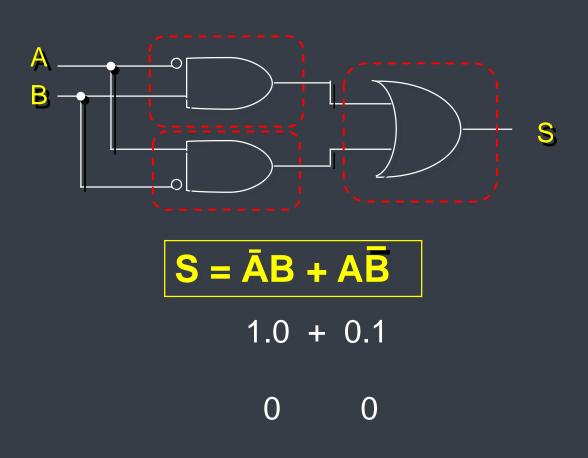


SEL 414 - Sistemas Digitais

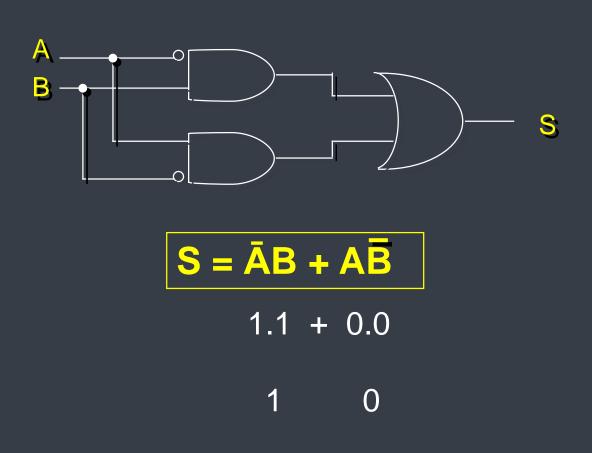
FUNÇÕES LÓGICAS

Prof. Homero Schiabel

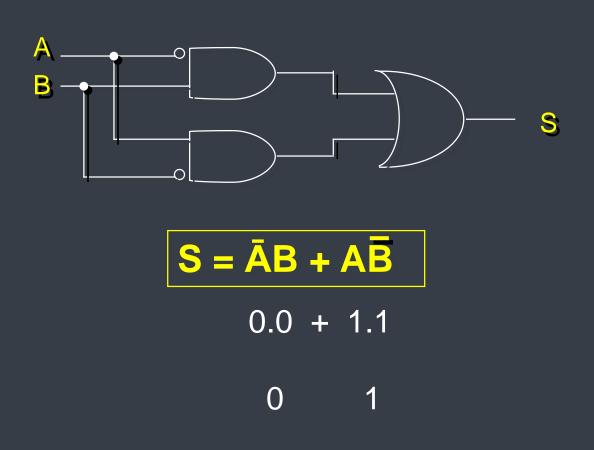

SEL414 - Funções Lógicas

$$S_1 = A + B$$

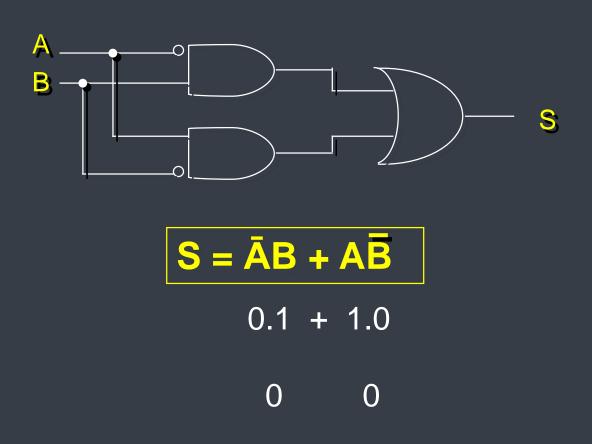
$$S_2 = \overline{B} C$$


$$S = (A + B)(\overline{B} C)$$

$$S = \overline{A}B + A\overline{B}$$

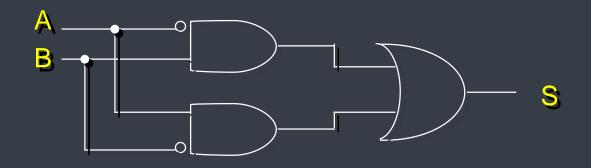

A	В	S
0	0	0

$$S = \bar{A}B + A\bar{B}$$


Α	В	S
0	0	0
0	1	1

$$S = \overline{A}B + A\overline{B}$$

Α	В	S
0	0	0
0	1	1
1	0	1



$$S = \bar{A}B + A\bar{B}$$

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

FUNÇÃO OU-EXCLUSIVO ("X-OR")

S = 1 quando $A \neq B \Rightarrow S = 1$ apenas quando $A \bigcirc U B = 1$

$$S = \bar{A}B + A\bar{B}$$

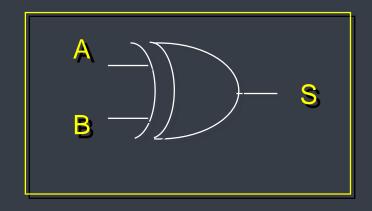


TABELA DA VERDADE

Α	В	S	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

 $S = A \oplus B$

FUNÇÃO OU-EXCLUSIVO ("X-OR")

S = 1 quando $A \neq B \Rightarrow S = 1$ apenas quando $A \bigcirc U B = 1$

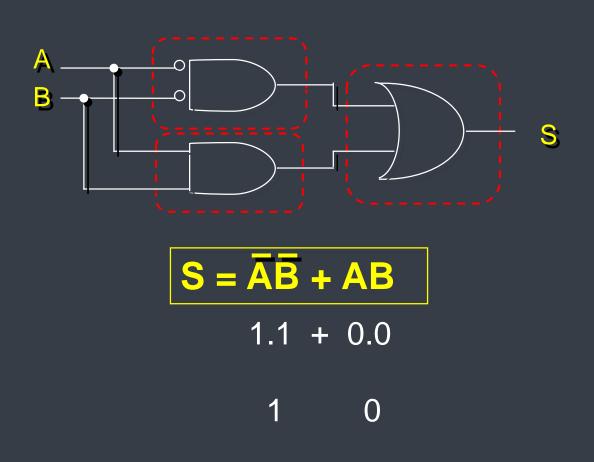
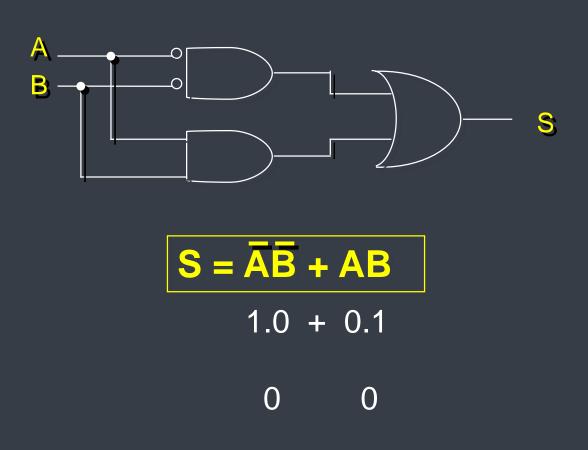
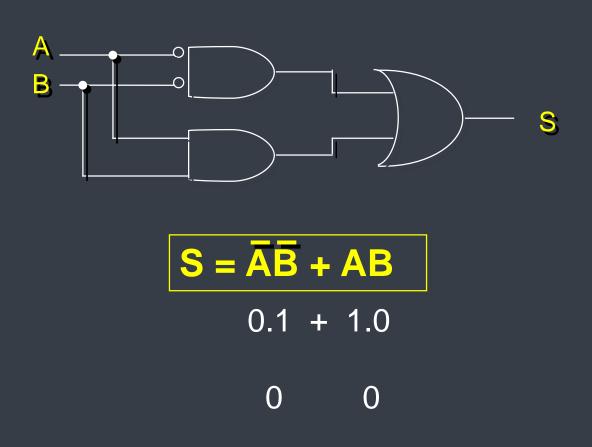

$$S = \overline{A}B + A\overline{B}$$

TABELA DA VERDADE

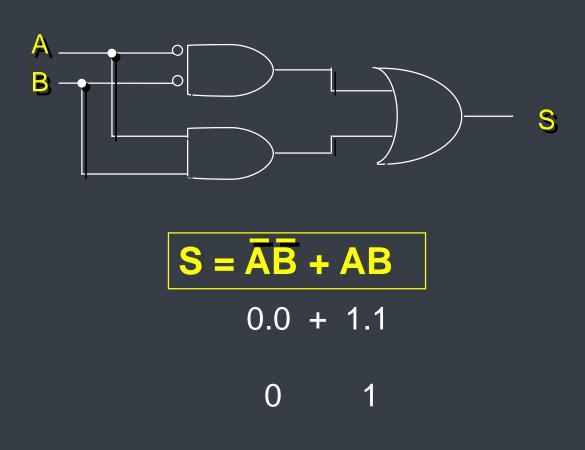

Α	В	S	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

 $S = A \oplus B$



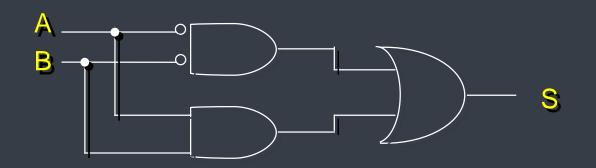
Α	В	S
0	0	1

$$S = \overline{A}\overline{B} + AB$$


Α	В	S
0	0	1
0	1	0

$$S = \overline{A}\overline{B} + AB$$

Α	В	S
0	0	1
0	1	0
1	0	0

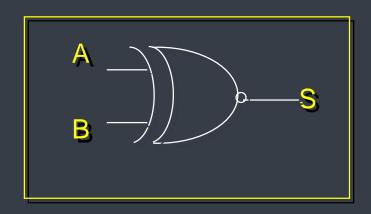


$$S = \overline{A}\overline{B} + AB$$

Α	В	S
0	0	1
0	1	0
1	0	0
1	0	1

FUNÇÃO COINCIDÊNCIA ("X-NOR")

S = 1 somente quando A = B



Α	В	S	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

FUNÇÃO COINCIDÊNCIA ("X-NOR")

S = 1 somente quando A = B

Α	В	S	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

SEL414 - Funções Lógicas

A P B = A O B

A	В	A \oplus B	A • B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

SEL 414 - Sistemas Digitais

SISTEMAS COMBINATÓRIOS

Prof. Homero Schiabel

1. MONTAGEM

I. Sistema (expressão) -> Tabela da Verdade

ABC	S ₁	S ₂	S
000	0	1	0
001	0	1	0
010	1	1	1
011	1	0	0
100	1	1	1
101	1	1	1
110	1	1	1
111	1	0	0

$$S = (A + B)(\overline{B} C)$$

1. MONTAGEM

II. Tabela → Expressão e Sistema

ABC	S	• $A = 0 B = 1 C = 0$
000	0	
001	0	• $A = 1 B = 0 C = 0$
010	1	S = 1 para • $A = 1 B = 0 C = 1$
0 1 1	0	
100	1	• A = 1 B = 1 C = 0
101	1	
110	1	
111	0	$S = (A + B)(\overline{B} C) $!!

$$S = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$

2.1. POSTULADOS

(a) Complemento

 \bar{A} = complemento de A

•
$$A = 0 \Rightarrow \bar{A} = 1$$

•
$$A = 1 \Rightarrow \bar{A} = 0$$

2.1. POSTULADOS

(b) Adição

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \bar{A} = 1$$

2.1. POSTULADOS

(c) Multiplicação

$$0.0 = 0$$

$$0.1 = 0$$

$$1.0 = 0$$

$$1.1 = 1$$

$$A \cdot 0 = 0$$

$$A.1 = A$$

$$A \cdot A = A$$

$$A \cdot A = A$$

$$A \cdot \bar{A} = 0$$

2.2. PROPRIEDADES

•
$$A + B = B + A$$

(c) Distributiva
$$\Rightarrow$$
 A. (B+C) = AB + AC

2.3. TEOREMAS DE De Morgan

$$\overline{A} \overline{B} = \overline{A} + \overline{B}$$

Α	В	AB	 A+B
0	0 1	1 1	1
1	0	1	1
1	1	0	0

$$\overline{A + B} = \overline{A} \overline{B}$$

Α	В	A+B	AB
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

2.4. OUTRAS IDENTIDADES

(a)
$$A + AB = A$$
 Lei da Absorção

$$A + AB = A(1 + B) = A.1 = A$$

2.4. OUTRAS IDENTIDADES

(a)
$$A + AB = A$$
 Lei da Absorção

(b)
$$A + \overline{A}B = A + B$$

$$\overline{A + A B} = \overline{A \cdot (A + B)} = \overline{A \cdot (A + B)} = \overline{A \cdot (A + B)}$$

2.4. OUTRAS IDENTIDADES

(a)
$$A + AB = A$$
 Lei da Absorção

(b)
$$A + \overline{A}B = A + B$$

(c)
$$(A + B) (A + C) = A + B C$$

1

$$A.A+A.C+A.B+B.C = A (1+C+B)+B.C = A + BC$$

3.1.
$$S = ABC + A\overline{C} + A\overline{B}$$

3.2.
$$S = AB + AB\overline{C}D + ABC\overline{D}$$

3.3.
$$S = [\overline{(A + B) C}] + [\overline{D (C + B)}]$$

3.1.
$$S = ABC + A\overline{C} + A\overline{B}$$

$$S = A (BC + \overline{C} + \overline{B}) = A . 1 = A$$

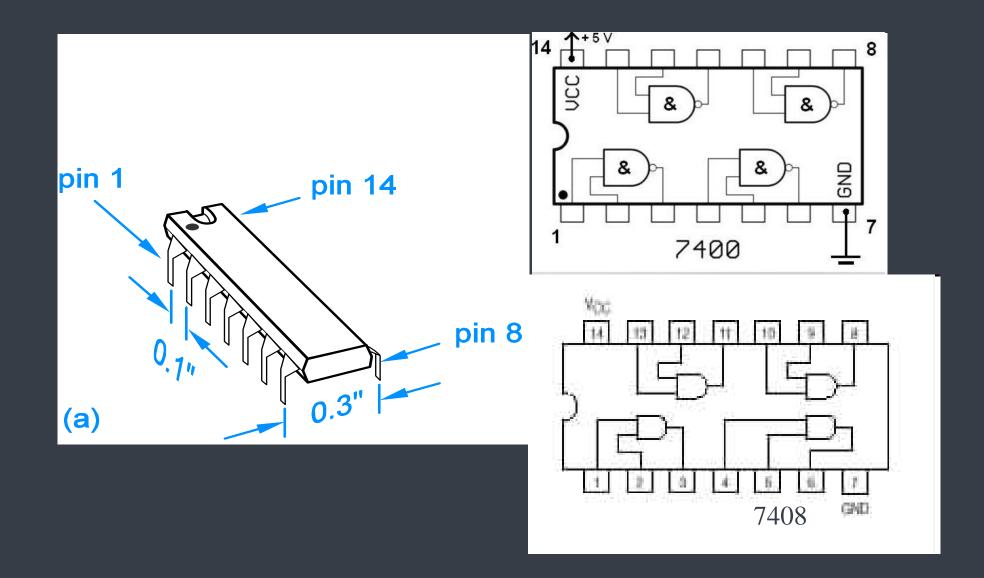
$$A \longrightarrow S$$

$$A \longrightarrow S$$

$$A \longrightarrow S$$

$$A \longrightarrow S$$

3.2.
$$S = AB + AB\overline{C}D + AB\overline{C}D$$


$$S = AB (1 + \overline{CD} + C\overline{D}) = AB$$

$$C \oplus D$$

3.3.
$$S = \overline{(A + B) C} + \overline{(D (C + B))}$$

 $S = \overline{(A + B) C} + \overline{(D (C + B))} = \overline{(A + B)} + \overline{C} + \overline{D} + \overline{(C + B)}$
 $= \overline{A} \cdot \overline{B} + \overline{C} + \overline{D} + \overline{C} \cdot \overline{B} = \overline{A} \cdot \overline{B} + \overline{C} + \overline{D} \implies 1$

CIRCUITO INTEGRADO (CI) ou "CHIP"

