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Chapter 4 Solutions

E o VE, [r=KVE,|r thus V K/r must be unitless, and so K has
units of (length)’z. The only quantity unaccounted for is A and so we
conclude that K = A7, and I,/ o< K* o< A7,

The degree of Rayleigh scattering is proportional to 1/4*. But A, =1.454,
and so 1//1;1 =(1/1.454,)" hence violet is scattered (1.45)* = 4.42 times
more intensely than yellow. The ratio of yellow to violet is 22.6%.

The sinusoids represent the field, in this case the E-field of the
disturbance. The wavefront is a surface of constant phase and it meets
each sinusoid at the same point (same phase) in its development. The
outward radial lines are rays and they are everywhere perpendicular to the
wavefronts.

(a) On the left-hand side are the inertial, drag force, and elastic force

terms; on the right-hand side is the electric driving force.

(b) x, (-~ + W} +iyw) = (q,E,/m,)exp(ic), forming the absolute square of

both sides yields x;[(w] — @°)’ + Y’ @’ 1= (q,E,/m,)* and x, follows by

division and taking the square root. (c) As for ¢, divide the imaginary

parts of both sides of the first equation above, namely x,yw = (q,E, /m,)sin &,

by the real parts, x, (@] — @*) = (q,E,/m,)cos to obtain & = tan™'[yw/(w] — @")].
aranges continuously from O to 7z/2 to 7.

(a) The phase angle is retarded by an amount (nAy27/A)—Ay2z/A or
(n—1)Ayw/c. Thus E, =E,expioft—(n— DAy/c—y/c] or

E, = E,expl—iw(n—1)Ay/c]exp ia(t - y/c). (b) Since " =1+ x for
small x, if n=1 or Ay <« 1, exp[—iw(n—1DAy/c]=1-iw(n—-1)Ay/c
and since exp(—iz/2)=—i, E, = E, + @(n—1)AyY(E, [c)exp(-iz/2).

sin58° = x/(5.0 m), x =4.2 m.

The statue is 16 m from the point of incidence, and since the ray-triangles
are similar,4m: 16 mas3m: Yand Y=12 m.

At the first mirror, 6, = 6,. For the second, 8/ =90—-6. =90—-6, and 6/ =6/, so 6/ =90-6..




Chapter 4 Solutions
410 00 = 1/_” - UL
sing, sind,
1/n.
sin 6 :L ;—nismﬁ
o0 00
1
sind, :L ;:”r sind,
oQ 0Q

4.11
4.12

4.13

4.14

4.15

4.16

n,sin@, = n,sing,

n,sin6, =n,sing, sin30°=1.52sin6,, 6, =sin"'(1/3.04), so 6, =19°13".

[J‘.FHHSVCTSE = mUl Sln 01
= ml)/. sin 0{
i s BP
where “m” is the presumed mass. But v, = 2 v, = So
t t

(s,)sin6, = (BP)sind,

sin@, = Esin o,
SO

BP
The factor — corresponds to n,,.
So

n,sin@, = n, sing,

sing, = sing = %smo =0.333

n,

0, =19.5°
0,=0 -6 =30.0°-19.47°=10.5°
The slope of the curve is n, =n,/n,. Slope ~0.75/1.00, so that n, =1.33.

This suggests that the dense medium is water.

0 = sin"'[(sin 45°)/2.42] = 17°, the angular deviation is 45° — 17° = 28°,

0, = sin™ [(n,/n,)sin6]= sin”'[(8/9)sin45°] = 39°. For a ray incident in

the glass at this angle, 6, = sin'l[(ng /n,)sin39°] = sin'[(9/8) sin 39°] = 45°.
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4.17

4.18

4.19
4.20
4.21

4.22

4.23

4.24

4.25

Chapter 4 Solutions

@) n, =n,/n,=(c/v,)/(c/v,)=v,/v, =VA[VA, = A /A, Therefore

A =A3/4=9cm. (b) sin€, =n,sinb,, 6, =sin"'[(3/4)sin45°] = 32°.

A, = A, /n, =600/1.5 = 400 nm, color depends on frequency, which is the number of peaks that arrive
per sec. This doesn’t change when going into a new medium. Thus it is still orange.

1.00 sin 55° =n sin 40°; n =1.27 or 1.3.

1.33 sin 35° = 1.00 sin &; 6, = 50°.

For 6:=0, 10, 20, 30, 40, 50, 60, 70, 80, 90 degrees, 6,=0, 6.7, 13.3, 19.6, 25.2, 30.7, 35.1, 38.6, 40.6,
41.8 degrees respectively.

Consider one ray on each side of the beam, with a perpendicular separation D. The width of the beam on
the interface is D/cos 6. Likewise, the width of the beam at the interface is D’/cos 6,, where D’ is the
perpendicular separation (width) of the rays in the glass, and D/cos &, = D’/cos 6,. (4.4) n; sin ;= n,
sin g, so

cos@, =(1-sin’ 9"

=(1-sin’ o, /n;)”2

. 2 172
D[l_smza)
’ nt

D' =
cos o,

SO

(4.4) n;sin@, =n, sing, so sin(60.0°) = n, sin g, Diameter of emerging beam (D) is related to the

difference in horizontal displacement of red and violet light (%) by D cos(60.0°) = h (See Problem 4.19).
Red:

sin6,,, = sin(60.0°)/n,_, = (/3/2)/(1.505), 6, =35.1%

red

tan Geq = Meg/10.0 cm S0 Aeq = (10.0 cm) tan(35.1°) =7.04 cm.
Violet:

sin@,,,, =sin(60.0%/n ., = (3/2)/(1.545); 0, =34.1%

violet

hyye = (10.0 cm)tan (34.1°) = 6.77 cm. D = h/cos(60.0°) =

(h, —h,;,. )/cos(60.0°) = (7.04 —6.77)/(0.5) = 0.54 cm .

violet

=L:>S[ =2cm
3cm 1.5

8em+2cm=10cm
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4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

1.00 sin 35° = 1.50 sin 6,;; 6, = 22.48° and
cos 22.48° =(2.00 cm)/L; L=2.16 cm or 2.2 cm.

sin ;= n sin /2; since sin 2¢ = 2sina cos &, sin 6, = 2sin (8, /2)cos(6,/2)
and so setting these two expressions equal we get
1.70 sin(@, /2) = 2sin(6, /2) cos(b, /2); cos 8, /2 = 0.85;
31.79° = 6,/2; 6: = 63.6°.

The glass will change the depth of the object from dy to ds, where

d, /d, =1.00/1.55; but dg = 1.00 mm; hence, d4 = 0.645 mm and the
camera must be raised 1.00 mm — 0.645 mm = 0.355 mm.

d,, ld,, =1.50/1.33; dg; = 1.00 m; dsy = 1.1278 m; dgy = da; + 0.20 m;
d,, ldy, =1.00/1.50; dys = 1.3278(1.00/1.50) = 0.885 m.

The number of waves per unit length along AC on the interface equals
(B_C//ll. )/(B_C sind)) = (E/ﬁt )/(E sing)). Snell’s Law follows on
multiplying both sides by c/v.
With the origin in the plane of incidence, z = 0; with the origin on the
interface y=0so (k, -7) — k, x

(k. -F+e)—>k x+e,

(k- T+e)—>kx+e,
and as € =¢, =0, Eq. (4.19) becomes k;, = k. = k, or
k;sing, =k, sin@ =k, sind,. Since k =27/4

sing, sind,

A A

1 1

which is the condition derived in Problem (4.26) for wave front continuity.

Let zbe the time for the wave to move along a ray from b, to b,, from a,

to a,, and from ¢, to a;. Thus a,a, =bb, =,z and a,a, =V,T.

sing, =bb,/ab, =vTab,, sinb =aa,/ab, =v,Tab,,

sind, =a,a,/a,b, =vTab,, sinf,/sinf, =v,/v, =n,/n, =n, and 6, =06..

n sin@, =n sin@), n,(k, xii,) = n, (k, xii,), where k,, k, are unit
propagation vectors. Thus n, (lgt Xi,)—n, (Igl. xu,)=0,

(ntlgr - nilg,.)xﬁn =0. Let n,lgt —n,.lg,. =T =T4,. T is often referred to as
the astigmatic constant; I is the difference between the projections of ntlgt

and nk, on 4,; in other words, take the dot product T+,
I'=n,cos8 —n,cosb,.
Since 6, =6, k, =k, and k, =—k,,, and since (k, -0t = lgl.y,

k,—k =20k -i,)a,.
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4.35

4.36

4.37

4.38

4.39

4.40

441

Chapter 4 Solutions

Since SB'>SB and B'P > BP, the shortest path corresponds to B
coincident with B in the plane of incidence.

(Refer to Figure 4.35.) Let SP = a, distance along interface (S — B) =x,

distance of S and P from interface = h.

SB  BP
t=—+—
(2 (2
B (hz +x2)l/2 N (hz +(a_x)2)l/2
(2 v,
Minimize #(x) w.r.t. x.
dt X —(a—x)

—= +
dx 1),.(/'12 +x2)1/2 U,.(hz +(a_x)2)1/2
sing, =sing, or 6, =0,

The mirrors are set as two sides of the acute triangle. The front of the

laser is placed along the third side. The inscribed triangle is found by
adjusting the position and the angle of the laser beam until the incoming
and reflected beams meet on the third side of the triangle. This follows from
format’s principle since the alignment relies on the law of reflection.

n sind =n,sing, 6 =6/, n,sing =n sing,n sinf, =n,sinf and
6, = 6. cosf, =d/AB, sin(6,—6) = a/ AB, sin(6, —6,) = (a/d)cos6,,
dsin(6, —0,)/ cos8, = a.

The left and right beams will be parallel if 6, (Left) = 6, (Right) in the final
medium (a). Since all interfaces are parallel, the transmitted angle into a
medium equals the incident angle at the next medium.

At each interface (4.5) sin &, = n,; sin 6.
Left: sin@, =n,, sin6, =n, (n,sind,,)=n,n,(n,, sind,)

=n, n,n, (n,sing )=sind, .

Right: sin8, =n,, sin6, =n, (1, sind,)=n,, (n, sind,)

ta

=n,n, (n,sing,)=sind,.
For each beam, 8, = 6.

Rather than propagating from point S to point P in a straight line, the ray traverses a path that crosses
the plate at a sharper angle. Although in so doing the path lengths in air are slightly increased, the
decrease in time spent within the plate more than compensates. This being the case, we might expect
the displacement a to increase with n,,. As n,, gets larger for a given 6, 6, decreases, @, — 0, increases,

and from the results of Problem 4.34, a clearly increases.

(a) In the case of a single thick piece of plexiglass, when looking down, one sees the text from the
sheet underneath. Along the vertical surfaces, one sees the text from the page that is reflected off of

the plexiglass — air interface. (b) When pressed lightly together, there is a very thin airgap between the
two pieces of plexiglass. As a result, looking down through each, one sees the text beneath. However,
along the vertical surfaces of each of the two pieces of plexiglass, one sees the text from the page that
is reflected off of each of the plexiglass — air interfaces. This image is from total internal reflection due
to the shallow angle at which the light from the text is incident on the vertical plexiglass-air interface.
(c) In the case of two pieces pressed lightly together with castor oil between the two pieces, one sees an
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image which is the same as in photgraph a (the case of a single, thick piece of plexiglass). This occurs
because the index of refraction of castor oil is very nearly the same as that of plexiglass. As a result, the
light from the text incident on the vertical plexiglass-castor oil interface does not undergo total internal
reflection, but instead is transmitted through the interface (as if the interface wasn’t even there).

4.42 From Eq. (4.40), 1 =(1.52c0s30°-cos 19°13")/(cos19°13"+1.52 cos 30°),
where from Problem 4.8, = 19°13’. Similarly,
t, = 2¢c0s30°/(cos 19°13"+1.52 cos30°), 1, =0.165, 1, =0.766.

4.43 Starting with Eq. (4.34), divide top and bottom by »; and replace n,; with
sind,/sin g, to get

sin@, cos g, —sin @, cos G,

ro=
1 . . ’
sind, cosd, +sind, cos,

which is equivalent to Eq. (4.42). Equation (4.44) follows in exactly the
same way. To find r, start the same way with Eq. (4.40) and get

_ sing, cosd, —sin b, cos G,

r= .
" sin6, cosd +sin 6, cos b,

There are several routes that can be taken now; one is to rewrite noas

sin@, cos 6, —sin 6, cos @, cos @, cosd, —sinb, sinb,

r=
" sin@ cos, +sinf cos, cos, cosH, +sin b, sin 6,

and so

. sin(6, —6,)cos(6, +6,) tan(d,—6,)
" sin(@,+6,)cos(6,—0) tan(d +6,)

We call find L which has the same denominator, in a similar way.

4.44 From Snell’s Law 6, = 13.99°; from Eq. (4.43),
r, =tan8.01°/tan35.99° = 0.194;
using Eq. (4.42),
r, =—sin8.01°/5in35.99° = —0.237;
[E, ], =H#lE,] =1.94 V/m;
[E, ], =rlE, ] =-474 V/m.

4.45 For small angles Snell’s Law becomes 16, = n@, : from Eq. (4.42) using the
identity sin(a £ ) = sinarcos f £ cosarsin  and using cosé, =cosf, =1
__6-6)__©6-,0)__n-D

r = ; = .
6.+6) 6 +:6) (n+1)

2n. cos 6,
4.46 t = - .
n,cosd, +n, coso,

2n, cos0 2n,

[t 1y = =
’ n,cos0+n,cosO n, +n,
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4.47

4.48

4.49

4.50

. 2n, cos 6.
" n cos@ +n. cosb,
2n, cos0 2n,
(160 =

n,cosO+n,cosO0 n, +n,
Thus, [ﬁ]a,:o =[t"]a:0.

Starting in air (n, = 1) and going into glass (n, =1.5):

2 .
i 2044
n+n, 25
Starting in glass (n, =1.5) and going into air (n, =1):
2n, .
=2 30 4,
n,+n, 2.5
_ n,cosf, —n, coso,
n,cos@, +n, coso,
] n,cos0—n,cos0 n, —n,
r _ = =
97 ncosO+n cosO  n +n,
A—"
O 4,
Air-to-Glass:
0.5
rlps, =——=-02
UiJga0 2.5
2n, 2
[t ], =——=—>=038
PO p4n 25

t, +(-r)=08+02=1

Glass-to-Air:

0.5
rl,_,=——=02
[l]ﬁ"“ 2.5

2n. 3
t 1, = L =—=1.2
[l]ﬁ’_o n+n, 2.5

t+(-r)=12-02=1

From (4.47), R=r> =(n—1/n+1)" = (1.522-1/1.522+1)" =0.043.

T=1-R=0.957.

T=1-R=1-r=1-(n-1/n+1> =1-(1.33-1/1.33+1)> = 0.98.

From (4.55), I, =TI, = (0.98)(500 W/m>) = 490 W/m".

Chapter 4 Solutions
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n,cos@, —n,cosd, n,cosl, —cosb,

451 »n= =
n,cos@, +n,cosd  cos@ +n,cosH,

Using Snell’s Law:
n,sin6, =n,sind,
sin® 6, =n; sin’ 6,
cos’ @ =1-sin’ 6,

_ M _win2
n,cost, =n,/1-sin” 6,

. . 1 .
Using 1-sin® §, =1-—sin’ §,[0,1],

ti

2 s.2
n,cos@ =./n; —sin” g,

2 2
n,cos@ ——/n; —sin” 6
r = ti
I 1 >
n, cos@, +—/n; —sin” 6,
ti
2 2 s 2
n, cost, —4/n,; —sin” 6,
;o=

- 2 2 2
n, cosd, + \/nn, —sin” @,
Now, looking at r, :

n,cosd, —n, cos o,

—

€
n,cos@, +n, cosf,
cos® —n, cosb,

r=
cos@, +n, cos0,

2 s .2
cos@, —4/n,; —sin” 6,
ro=

- 2 -2
cos b, +\/n". —sin” 6,

152 n’ cos@, —ln; —sin’ 6,
. r=

=, 2.2
n,; cos o, +\/nn.—sm o,

= 1.6% c0s30°—+/1.6> —sin* 30°
1.6% cos30°++/1.6% —sin” 30°
- 2.217-+231 _
2217++231
_ cosd, —\Jn; —sin’ 6,
nT cos, +4/n; —sin’ 6,
B c0s30°—+/1.6> —sin” 30° _ —0.654

= =-0.274

r, =
N c0830°++/1.6% —sin? 30° 2.386

0.187
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4.53

4.54

4.55

4.56

4.57

4.58

Chapter 4 Solutions

R, =17 =0.03497

R, =r] =0.0751

T, =1-R, =0.965
T =1-R, =0925

1 1
T= E(TH +7,) = E(0.965 +0.925) =0.945
R=1-T=0.055

Half of the unpolarized light s its E-field perpendicular to the
plane of incidence (7, =500 W/m”), then:

I,, =0.8x500 W/m® = 400 W/m®
R =1-T, =02
I,, =0.2x500 W/m?® =100 W/m’

Half of the unpolarized light s its E-field perpendicular to the
plane of incidence (I, =1000 W/m?), then:

300

1., =300 W/m?,then R, =——=0.3
kL / * 1000
IRH =200 W/m?, then RH =&=0.2
1000
T, =1-R =07
T,=1-R =038

T =%(TL +7)=0.75

1,.=2000 Wm® =1, +1, +1, +I,

=300 W/m’ + 200 W/m” + (0.7)(1000 W/m®) + (0.8)(1000 W/m’)
=300 W/m” + 200 W/m” + 700 W/m” + 800 W/m” = 2000 W/m’
From (4.47),
R=r>=(n,—n/n, +n)’ =(1.376-1.33/1.376 +1.33)> = 0.000289.
T=1-R=0.999711.
From (4.55),
1, =TI =(0.999711)(400 W/m?) = 399.884 = 400 W/m".

4/3-1

r=n,—n,/n +n,. Air-water: r = 1= 1/7=0.14. Air-crown glass:

e 3/2-1

3/2+1
I./I, =R =r’. Air-water: R = (1/7)° = 0.02. Air-crown glass:
R=(1/5)" =0.04.

=1/5=0.20. More reflectance for glass. From (4.54) and (4.56)
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4.59

4.60

4.61

4.62

sinx =x—x/3!+x°/5!—-- and so sin(a* B) = (a* B)[1-(a+ F)*/6]
using Snell’s Law 6, (1 -0’ /6+..)= (@./n)1 —9,2 /6+...). Use 16, =nb,
and the fact that when x is very small (1+x)"' =1-x we have

0, =(0./n) (1-67/6)(1+ 6 /6n” ) dropping terms higher than the third
power in 8, we get 6, =(6,/n) [1—(n> —=1)§7 /6n°] and so

2_
010 =0l1+1[1-"=Lg ||
i t i n 6”12 1

Using Eq. (4.42) and the power series representation of the sine, where
terms higher than the third power in &, are dropped,

n—1+ %

2
i 12 1 o 1V3
I D]{”‘lj{uﬂ_f]
1 2
| 1
ni1- 2 oy VY "
6n

cos(6. +8,)/cos(6. — 6 ) =1-267 /n multiplying by the ratio of the sines
from the previous problem, viz., [(n—1)/(n+1)](1 - 6’,.2 /n) and dropping
higher order terms yields the desired equation.
From Snell’s Law nsin 8, =1sin90° =1 and so with Eq. (4.42) in mind,
sin(a £ ) =sina cos f + cosasin
and
sin(90°x 8,) = sin90°cos 6, £ cos90°sinb,;
then
sin(90°+£6,) =1cos 0,

using sin® @ +cos” @ =1 and Snell’s Law

cos@, =4/1—sin’ 6, =sin(90°£ 0 ) =+/1-(1/n)’

and so r, — —1 at glancing incidence.

Compute dr, /d6; at 6, =90°% we’ll use d@,/d6, =0 and then prove it;
taking the derivative of Eq. (4.42) we get

dr [d6, =—cos(6, —0,)/sin(6, +0,)
+sin(6, - 0)cos(8, +6,)/sin’ (6, +6,)
and for 6. = 90° this becomes
dr, /d6, = —sin @,/ cos, —sin 8, cos @,/ cos’ 6, =2tan g,

and using Snell’s Law, i.e., sin8, = 1/ n when 6, = 90°, and the fact that

cos@, =4/1—sin’ 4,

dr, /dO =2tan@ = 2sinf /cosO =2/ncosO =2/\n" —1:

this is the rise over the run at the end of the curve where 6, = 90°. Thus if

«, is the angle made ith the vertical tancr, =+/n” —1/2.
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4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

[E, ], +[E,], =[E,],; tangential field in incident medium equals that in
transmitting medium, [E,/E ], —[E /E ], =1t —r =1.
Alternatively, from Eqgs. (4.42) and (4.44),

sin(g, —6,) +2sin 6, cos G, -1
sin(g, +6,)

sin@, cos @, —cos ), sind, +2sin 0, cos G, -1

sin@, cos &, +cos, sin g,

n,sin6, =n,sin6@, so,sind, = (n,/n,)sind, = (1.00/1.52)sin(30°) = 0.33
6, =sin"'(0.33) =19.2°.

(Eq. 4.44) 1, = 2sin6, cos 6, /sin(6, +6,) = 2sin(19.2°) cos(30°)/ sin(49.2°) = 0.75.

(Eq. 4.42) r, =—sin(6, —0,)/sin(6, + 6,) = —sin(10.8°)/sin(49.2°) =
-0.25. t, +(-r,)=0.75+(0.25) =1.00.

Let 6, =6, = 7/2-6,. Reflected beam is polarized if r, or r, equal zero.
(4.43)

r=tan(6,-6,)/tan (6, +6,) =tan(z/2 -6, - 0,) / tan(/2 -6, + 6,)

=tan(7/2 -26,)/ tan(rr/2).
But tan(7z/2) is infinite, so 7, =0.

0, +6 =90°whend, =0

p’

tan@, =n, /n, =152, 6, =56°40"

n, sin Hp =n,sin@, =n, cos Hp,

At 6,, 1, =0.So from (4.38) (n,/u,)cos 6, —(n; /1, )cos 6, = 0. Recall (4.4)

n, sing, =n, sin6,. (3.59) n=,/eu/e,u, and cos® @ =1-sin> 6. Approach:

solve fortan8, =sind,/cosd, where 8, = 6,.

tan@, =n,/n, = n,/n,, tan@, =n,/n,, tan 6, =1/tan@,.
sin@,/cos @, = cos 19; /sin 0;. Therefore sin 8, sin 0; —cos 8, cos 0; =0,
cos(8, + 6’;) =0,500, + 49; =90°.

From Eq. (4.94),tany, =r [E,], /r, Eoi]\l = (r_/r)tany, and from
Egs. (4.42) and (4.43)

cos(8,-06,)
tan V.= ———FFFF tan V-
cos(d, +6.)
E 2
or 2 _ 2 2 2 _ 2 2
(456) R = (E . j Eor - Eor|| +Eorl' Eoi - Eoi\l +E0U.'

E E
“4.34) r E( ”’J - (4.38) r, E(iJ .
1 E, ) I E, H

Chapter 4 Solutions
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_E, +E,
E. +E.,
_ (B, IE,)
1+(E, /E,,)
(E,y /E )’
(E, IE,) +1
2 2

T I

- 1 n I
- 2 2
1+1/tan" A, tan”y, +1

r 02 2
=R sin" ¥, + R cos” ¥,

(4 57) T — nt COSQI EOI ’
' n,cosf \ E,

2
E
as above, [E‘" j = ti sin’ ¥+t cos’ 7:, and using (4.63, 4.64),
n cosd
T =] .
L] [”i COSHJ L

4.71  Note that 6, =41.8°. Note that R, increases steadily, while R has a minimum at 6, # 0.

T =T, sin’ y,+T, cos’ y,.

2
_n,cosb, t]

4.72 =

coso,
from Eq. (4.45)
_(siné, cos, 4sin” 6, cos’ 6,
‘[ jsin%aw,)cosz(aw,)
7= sin 26 sin 26,
' sin?(6, +6,)cos* (6, +6))

sing, cos g,

T, =n,t; cos, /n, cos6,. From Eq. (4.44) and Snell’s Law,

sing,cosd, )\ sin®(6,+6,) | sin*(6,+6,)

B (sin&i cos 0, ](4sin2 0 cos’ o, J _sin 20.sin 20,

4.73  Use (4.62) and (4.43). R, = r”2 = tan’ 6.-6)/ tan” (Q + Hr) =
[sin*(6, - 6,)/ cos® (6, = 0,)] X [cos* (6, +6,)/sin” (6, + ,)]. Note that R and
T, have now the same denominator.
Use (4.61) and (4.42). R, =r] =sin’(6, —0)/sin’ (0, + 6,). Note that R
and 7, have the same denominator.

4.74 If @, is the incident radiant flux or power and T is the transmittance
across the first air-glass boundary, the transmitted flux is then 7®,. From

Eq. (4.68) at normal incidence the transmittance from glass to air is also 7.
Thus a flux 7 ®, T emerges from the first slide, and @, 7*" from the last

one. Since T =1-R, T, = (1-R)*" from Eq. (4.67).
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4.75

4.76

4.77

4.78

4.79

4.80

4.81

R=(0.5/2.5) =4%,T =96%, T, = (0.96)° =~ 78.3%.
T=I)/, =, T=¢* T=(T). T,=(1-R™T)".

At 6,=0,R=R =R =[(n,—-n)/(n, +n,.)]2. As n, —1, n, > n, and
clearlyR—0. At 6, =0, T =T, =T, 4nn,/(n,+n,)’ and since n, - n,,
lim, 7 =4n’/(2n,)* =1. From Problem 4.61 and the fact that as

n; —l1

n, — n, Snell’s Law says that 8, — 6,, we have

lim7, = sin’ 26, /sin” 26, =1, lim1 T =1.

n; —1

From Eq. (4.43) and the fact that R, =’ and 6, — 6, lim, _, R, =0.

434) r, = n,cosf, —n, cos g,

n,cosd, +n, coso,
cosf, —n, cosO,

cos@ +n, cosd,

cos, —n,+f1—sin’ 6,

cos @, +n,/1-sin’ 6,

cosf, —[n. —sin’ 6,
- 2 2

cos 0, +\/”n- +sin” 6,

n,cos® —n, coso,

=
" n cos@ +n, cosb,

n, cos®, —/1—sin’ 6,

n, cos@, +4/1—sin’ 6,

2 2 2
_ 1, €086, —[n; —sin” 6,

2 2 s 2
n,; cos g, +\/nn. —sin” 6,

For 6, > 6., Eq. (4.70) can be written

. 12
cos b, —z(sm2 0, —nfl)

ro=

. S\127
cos 0, +z(sm 9,-_",,-)

2 .2 2
+ €08" @ +sin” 0, —n;
r

=1.

i

cos’ @, +sin’ 6, —n,
Similarly rr =1.

6, =sin'(1/1.5) = 42°,

Light incident from glass to air. &, increases as 6, increases, if n; > n,, then n;/n, > 1,

since sin@, <1, then there exists a @. such that sing, = n,/n, This max 6, =6..
(4.4) n;sin@, = n,sing, so, sin@, =(n,/n,)sind..
Maximum 6, <90° as 8, = 90°, sin¢, — 1 so, sinf, =n,/n, =sind..

1.00/2.417 =sind,; 6. = 24° diamond refracts light back out and so looks brilliant.

Chapter 4 Solutions
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4.82

4.83

4.84

4.85

4.86

4.87

4.88

4.89

4.90

491

$in48.0° = (1.00/n); n =1.35.
0, =45°— 0,

) n
sing, =—, where n, =1
n
1

1
sin45°

=1.41

n=

Light entering at glancing incidence is transmitted at the critical angle
and those rays limit the cone of light reaching the fish; sin &, =1/1.333;

6, = 49° and the cone-angle is twice this or 98°.
sin€, =n,/n; 6, =59.1°.

From Eq. (4.73) we see that the exponential will be in the form k(x — vr),
provided that we factor outk, siné, /n,, leaving the second term as

wn,t/k, sin @, which must be v,z. Hence wn, /(277/4,)n, sin6, = v,, and so

v, =c/n;sinf, =v,/sind..

From the defining equation, £ = k,[(sin” &, /n)—1]"* =3.702x10° m™",
and since yB =1, y=2.7x107 cm.

The penetration depth (9) is related to the attenuation coefficient (£) by & =1/8.
One first calculates the attenuation coefficient:

) 1”
2 .
B= || sin” 6, -1
10 nt

2 1 3 2 12
p=—"" (—j sin? 60— 1
500 nm |\ 2

B=125Tx107[2.25%0.75—1]">
B=1.257x107 x0.8292 = 1.04x 10°

6=9.6%x10"m
sin(@,) = n
ni
1.33
sin(@.) =——
©) 2.42

6. =sin™'(0.55)=33.3°

sin(@,) = n
ni
. 1.46
sin(@.) =——
@) 2.41

6. =sin™ (0.61) =37.3°

The beam scatters off the wet paper and is mostly transmitted until the
critical angle is attained, at which point the light is reflected back toward

the source. tan6. = (R/2)/d, and so n, =1/n, = sin[tan”" (R/2d)].
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4.92
4.93

4.94

4.95

4.96

4.97

Chapter 4 Solutions

1.00029 sin 88.7° = n sin 90°, n = 1.00003.

Can be used as a mixer to get various proportions of the two incident
waves in the emitted beams. This could be done by adjusting the gaps.
[For some further remarks, see H. A. Daw and J. R. Izatt, J. Opt. Soc.
Am. 55,201 (1965).]

Light traverses the base of the prism as an evanescent wave, which
propagates along the adjustable coupling gap. Energy moves into the
dielectric film when the evanescent wave meets certain requirements. The
film acts like a waveguide, which will support characteristic vibration
configurations or modes. Each mode has associated with it a given speed
and polarization. The evanescent wave will couple into the film when it
matches a mode configuration.

From Fig. 4.62 the obvious choice is silver. Note that in the vicinity of
300 nm, n, = n, = 0.6, in which case Eq. (4.83) yields R = 0.18. Just

above 300 nm, »; increases rapidly, while ng decreases quite strongly, with
the result that R = 1 across the visible and then some.

RED RN R
CYAN
RN B
MAGENTA =
3
- R = |R -
YELLOW & Y
- G G -
- R R -
WHITE - G G - Y
RN B
RED - R R - BLACK
— G —> G
CYAN GREEN
- B
- R R -
WHITE N G z [6 [ z G | GREEN
s
N %
>
- R R -
YELLOW GREEN
N G G N G
GREEN - G G — G GREEN
MAGENTA - R R - BLACK
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RN B
4.98
Graph # Color
1 Magenta
2 Orange
3 Light-Grey
4 Red
5 Plum-Red
6 Yellow-Green
7 Purple

4.99

4.100

4.101

P 2sind, cos b,
' sin(@, +8,)cos(6, - 6,)

v 2sin g, cos b,
' sin(@, +86,)cos(8, - 6,)
o sin 26, cos 26,

[ . 2 =T,
sin” (6, +6,)cos (6, - 6,)
from Eq. (4.100). Similarly 7,7 =T,.

, | tan(d, —6,) ’ _ | —tan(6, —6) ’
tan(6, +6,) - tan(6, +6,)

Ul
2

2 _
=1 =R,

n_ tan(d, —6,)
tan(6, +6,)

(4.84) E,1,(6)11(6,)+E,ir.(8,)5(6,) = E,,.

(4.85) E,1,(6)1,(6)+E,1,(6)r(6,) =0 where 0, =6, = 49; and

1(6,) = 0. From Problem (4.66), 6, = 6,. From (4.84),
1,0)(6))+0=1;1,(6,)t/(6,) = 1. From (4.85), 1.(8,)1,(6,)+0 =0

Since 7,(6,) # 0, 1,(8,) =0. From (4.100), 7, =1, , when T =1, there is
no reflected wave, as T+ R = 1.

From Eq. (4.45)

tl\/(H;)tH(HP) =

2sin@, cos 9; 2sin 0; cosd,
sin(@, +6)cos(@, —0,) || sin(@, +8,)cos(8, - 6,)

sin 26 sin26, ,
=——>————since 6, +6, =90°

cos (6’p —HP)

sin’ 20, ) ) L sin® 26,

=————"—— since sin 26, =sin26,, 2—’ =1.

cos (6, -6)) cos” (26, —90°)
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