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122 I=1,cos’ a+I,cos’(a+7/2)
Use cos(a+7/2)=cosacosm/2—sinxsinz/2 =—-sina

I=1I,cos’ a+1,sin* a=1I,
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Starting with the result from problem 12.3,
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Using Eq. (12.3):
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At low pressures, the intensity emitted from the lamp is low, the bandwidth is narrow, and the coherence
length is large. The fringes will initially display a high contrast, although they’ll be fairly faint. As the
pressure builds, the coherence length will decrease, the contrast will drop off, and the fringes might even
vanish entirely.

Over a long time interval, E, X E, averages to zero. So, {(E, +E, )2>T = (Elz>T +<E22)T.

The net irradiance becomes more uniform as more waves are added. There will be a less distinct pattern,
which corresponds to a smaller coherence length. The irradiance will become constant as the bandwidth
goes to infinity.
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12.11 Each sine function in the signal produces a cosinusoidal autocorrelation function with its own

wavelength and amplitude. All of these are in phase at the zero delay point corresponding to 7= 0.
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Beyond that origin the cosines soon fall out of phase, producing a jumble where destructive interference

is more likely. (The same sort of thing happens when, say, a square pulse is synthesized out of

sinusoids—everywhere beyond the pulse all the contributions cancel.) As the number of components
increases and the signal becomes more complex—resembling random noise—the autocorrelation

narrows, ultimately becoming a &-spike at 7 =0.
1212 (12.1) v=(,, ~ 1)/, +1,.)=2|sinc(azw/sA)|/2 (from 12.8,
12.9), =[sinc(5x 10~ 77/1x10™)| = sinc(77/2) = 0.64.

12.13 The irradiance at Y, arising from a point source is 41, cos’(5/2) = 21,(1+cos ). For a differential

source element of width dy at point S’, y from the axis, the OPD to P at Y via the two slits is
A=(S'S, +8P)—(5S, +5,P =(S'S, —§'S,) +(S,P—S,P = ay/l +aY s from Section 9.3. The

contribution to the irradiance from dy is then dI o< (1+coskA)dy, I o< fbljz (I+coskA)dy,

It><b+i sin £+a—b —sin ﬂ—% Ie<b
ka s 21 s 2

+(d/ka) [sin(kaY/s) cos(kab/21) + cos(kaY /s)sin(kab/2l)
—sin(kaY /s)cos(kab/2l) + cos(kaY [s) sin(kab/Zl)] ,

I o< b+ (21/ka)sin(kab/2l)cos(ka [s).

1214 o=, ~ L) +10), Lo =1 +1+2LL |7,
Lo =1 +L-2JLL|7,|. v=4JLL|7,|/24, +1,).
12.15 When S’S,0'-SS,0" = 4/2, 34/2, 51/2, ..., the irradiance due to S’ is
given by I’ = 41, cos®(6'/2) = 21 ,(1+cos&”), while the irradiance due to
S”is I” =41, cos’(6"/2) = 41, cos’ (&' + m)/2 =21 ,(1—cos ). Hence I'+1"=4lI,.

12.16 Fringes disappear when w = sA/a so, a = A(s/w), from Figure 12.3,

1/b=slw, a=Al/b)=(5893x10"m)(1 m)/(1x10*m)
=5.893x10" m.

1217 d = 1'22’10

s

For small angles, 6, =0.1 mm /I m =10"*rad

4~ 1.22(5.00%107 m)

=6.1x107 m
¢ 107 rad
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12.18 1,(1)=Al,(¢)+(I,); hence

(L (r+2) L) = ([(1)+ AL G+ |[(L) + AL ®) ])

since (I 1> is independent of time.

(I (t+7) 1,(0)) = (1)1, ) + (AL (t+ DAL (1))
if we recall that (AI] (t)) =0. Eq. (12.34) follows by comparison with Eq. (12.32).

12.20 From Eq. (12.22), v =2/(101)I /(101 + ) =2+/10/11=0.57.

12.21 Fringes disappear when w = sd/a, so, a = A(s/w), from Figure 12.3,
I/b =s/w where [ = (mean) distance to sun; b = diameter of sun.

a=A1/b)=[(5.50x10" m)(1.50 x 10" m)]/2(6.96x10* m)=5.93x10"° m.

1222 v =sinc (@j -0
1A

arb
— =7
A
ab _,
A
ge Z _ (I m)(5.00x 107 m)
b 0.1x107° m

sinc (a—”bj =09
A

Since sinc(zz/4) =0.9,

=5mm

12.23 v=

arb 7
A 4
b _ 1A (m)(5.50x107" m)

- =6.875%10™ m = 0.69 mm
4a 4(2.0x10™ m)

12.24 Using the van Cittert-Zernike theorem, we can find 7,,(0) from the diffraction pattern over the
apertures, and that will yield the visibility on the observation plane: v = |}712 (O)| ﬂiincﬂ|.
From Table 1, sin u/u=0.85 when u =0.97, hence 7by/IA=0.97, and if y = P,P, =0.50 mm, then

b=0.97(IA/my) = 0.97(1.5 m)(500 x 10~ m)/z(0.50 x 10~ m)
=0.46 mm.

1225 (1223) v=17,(0).

(12.1) v= (I, — I/ +1,5) = 2|sinc (azw/sA)| /2 (from 12.8, 12.9),
v=0.90 = |sinc (azw/sA) = |sinc (azz(1.0x107° m)/(10.0 m)(5.00x 107 m))| = [sinc(2007za)|;

sinx = x—x?/31,

so sinc(x) = 1—x%/31;0.90 = 1-[(2007za)*/6]; a =1.23 x 10~ m.
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12.26

12.27

12.28

12.29

12.30

v= |Sinc (aﬁb/l/l)|; as shown in Figure 12.6, v is a minimum when
(amb/IA) = mm,(m #0). b/l =sin(a, — ;) = (a, —¢,) for small angle,
so minimum v when [a(e, —o,)7/A)=mz;, a(a, —e,) = mA.

From the van Cittert-Zernike theorem, the degree of coherence can be obtained from the Fourier
transform of the source function, which itself is a series of &-functions corresponding to a diffraction
grating with spacing @, where a sin 6,, = mA. The coherence function is therefore also a series of

Sfunctions. Hence the PP, , the slit separation d, must correspond to the location of the first-order
diffraction fringe of the source if v is to be maximum. af, = A, and so

d =16, = Al/a=(500x10"m)(2.0 m)/(500 x 10 °m) = 2.0 mm.

RA _
h=032 go =0.321/6,

Use =93x10"rad, A =550 nm

h=0.32(5.5x10"m)/(9.3x107)
=1.89x10°m

From example 12.1, 6, =0.0093 rad, 4, =5.00x10"m

i . 7
h=03020 = 39200107 m
V) 0.0093 rad

s

=1.7x10°m =0.017 mm

Compare this to the result in the example ~0.05 mm.

Two stars:

From Eq. (12.29), one star:



