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E;sink,x = E,(exp(ik,x) —exp(—ik,x))/2i;

_E [t . [t _—
Fly==¢ [JlLexp(l(k +h,)x)dx— [ explitk—k, )x)dx}

B ik, sin(k + kp )L N ik, sin(k — kp )L

C (k+k) (k—k,)

F(k)=iE L[sinc(k — kp )L —sinc(k + kp )L].

(11.5) F(k) = [ f(x)expikn)dx = fL sin® k, exp(ik, x)dx
Lo, 2 (L. 3
=J:Lsm kpxcoskpxdxﬂjism kpxdx
= intk A 0=k sin*k L
_ism px|_L+ =(2/ p)(sm ) ).

P

cos? ,t =1/2+(1/2)cos2m,t =1/2 +(1/4)(exp(2iw, 1) + exp(-2iw,1)).
=17 explionydr + L[ exp(i di+ [ expi d
F(w) = EJ—T explionds + j_Texp(l(a) +20,0)dr+- j_Texp(z(w— 20,))dt

1 . 1 .
=—sinol + ———sin(w+20,)T +

sin(w—-2w )T
w 2(w+2w,) r

2w-2w)

P

F(w)=T sincwT +(T/2)sinc(w+ 2a)p )T +(T/2)sinc(w— 2(0,, )T.
Show that F~'{F(K)} = f(x), where

f(x)=1, F(K)=2725(K).
(11.4) f(x)=(1/27) jz F(K)exp(—iKx)dK

= (1/27) ji 278 (K ) exp(—iKx)dK = exp(0) = 1.

f(x)=AcosK x= %(exp(iKox) +exp(—iK,x))

F (K) = %I: (exp(iK,x) + exp(—iK x)) exp(iKx) dx = %[5([( -K,))+3(K+K,)]

A K, K,
‘5{‘5(“%)”@*%)}

E(w) = f(EO exp(—t /27 )exp(—iw,t))exp(iwt) dt
E(@) = E, [exp(~* /22" —i(w—,) 1) dt

E(w) = E, (277’ exp(—+l(i(w—-,))*27°])
E(w) = E,(27°7)* exp(- L (0 -, )’ 27%)

E(w) =27E,rexp(-* (0 - w,)* [2)
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2z

117 E@)= —r (E,zexp(=7* (0 —,)* /2)) exp(—ior) dw
2w
E
E(t)=—"2
RN

Using the integral identity from problem 11.6:

I_w exp(-5 @ + (77w, —iw-"T ) dw

/_\
a|.§]

j: exp(—ax® +bx+c)dx = j exp(L(b*/a) +¢)
T

rq

E(t) =

12
4 1R 2 2 N
=90 | == L I S I N
E(t)_ \/E(sz exp( 272 272 2 2 a)O)

E;z (27)" .
\/ﬂ T—z exp(—;—lwot)

11.8  F(k) = j Flx)e ™ dx = j F(x)coskx dx + j F(x)isinkx dx
= IfR(x)coskx dx +If,(x)sinkx dx+_[f,(x)coskx dx+IfR(x)sinkx dx

E(t)=

If f(x) is real, then f; (x)—0:
= ij(x)coskx dx+IfR(x)Sinkx dx

If f(x) is even:
F(k) = j fo(x)coskx dx

11.9  Flaf(x)+bh(x)] = aF(k)+bH (k).

11.11 F(K)= Lsinc’kL/2. F(0)=L,F(+2x/L)=0.
or, F(f,)=Lsinc’(mf.L),wherek =27xf..

1112 F(K) = j‘: F(x)exp(ikx)dx, (11.5). Letx — x/a;

F(K')= IZ f(x/a)exp(ik'(x/a)) d(x/a).
So, K’ — Ka, and F{f(x/a)} = F(Ka). If, a=—1, F{f(-x)} = F(-K).

1113 F(K)=F{f(x)} = ji F(x)exp(ikx)dx, (11.5) (a function of K).
Ff(o)}) = FIF(K)) = [~ F(K)explikr) dK.
(11.4) f(x)=(1/27) j"; F(K)exp(—iKx)dK,

50, 27f(=x) = [ F(K)exp(iKx)dK = F{F{f(x)}} # f(x).

(27_72[) exp(+ (T2, —inN/(z*[2)° - w})
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11.14

11.15

11.16

11.17

11.18

11.19

11.20
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oo
153

F{rect|(x - X, )/a|} = I_ {rect|(x - X, )/a|} exp(iKx) dx =J._]f/22 exp(iKx) dx

1/2
X .
F{rect —‘} =asinc(zf a)
a
Now apply the shift theorem by x:
F{rect|(x - X, )/a|} =asinc (7 f a)exp(—i27 f x,) = asinc (Ka/2)exp(-iKXx,)
where, K =27 f,.
Ff{rect | x|} =sinc(K/2), from Problem 11.10, F{F{f(x)}} =27 f(-x).

1
=—exp(iKx
X p(iKx)

= .L(exp(iK/Z) —exp(—iK /2)) = %sin(K/Z) =sinc(K/2)

-1/2

So, F{(1/2m) F{f(-x)} = f(x), let

f(x)=rect Ix|, F{rectlxl}=sinc (K/2);
F{(1/27) F{rect 1x1}} = F{(1/27)sinc (K /2)} = f(x) = rect | x|,

since sinc (—x) = sinc (x).

FUF(f(x0)))=1/27) r; exp(—iKx)dK j"; F(x') exp(iKx") dx’
= ji dx'( j " exp(iK (x' - x)) dK) f(x')
= I: O(x—x") f(xNdx" = f(x),

since the integral is zero except at x = x”.

F{f(x—x)}= I: f(x—x,) exp(iKx) dx. Change variables, x'=x—x,

d' =dx. F{f(x)}= j: F(x)exp(iK(x+ x,)) dx’ = exp(iKx, ) j: F(x")exp(iKx')dx'. So

that F{f(x—x,)} differs from F{f(x)} by only the phase factor exp(iKx, ).

j"; FOORX —x)dx =— j:” F(X = xXYh(x")dx' = ji h(xX)f(X - x)dx’
where X' =X —x, dx=—dx. f*h=h*f or
F(f*h)=F(f)-F(h)=F(h)-F(f)=F(h*f).
[ =myar =jU(u)h(u—t)du] dt

= f(u)[ [ h(u—z)dz]dm[ [ f(u)du}[ | h(r)dr}

g(X) is the area under the product function f(x)4(X — x). The shape of g(X) reflects the overlap between
fand hA: It is non-zero in regions where the two functions overlap; it is maximum at the coordinate X'
where the two functions have their largest overlap. Since f'and / are symmetrical about X = 0, their
product (and thus g) will be symmetrical and have its maximum at X = 0. The width of g(X) is the sum
of the widths of the functions f(x) and /(x): Thus the width is 3. The peak value is 0.75.
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11.22 A point on the edge of f(x, y), for example, at (x = d, y = 0), is spread out into a square 2/ on a side
centered on X = d. Thus it extends no farther than X = d + /, and so the convolution must be zero

at X=d + [ and beyond.
11.23:

—d—>

J\

-3d/i4 -di4 0 di4 3d/4

< d2->

1124 f(x—x,)*h(x)= r f(x—x,)h(X - x)dx, and setting x — Xo = ¢ this

becomes [~ f(@)h(X —a—x,)dar =g (X - x,).

11.25 The convolution is asymmetric because the sawtooth function itself is asymmetric (i.e., the shape of the
convolution reflects the overlap between the two sawtooth functions). The convolution begins at zero
because there is no overlap at positions x < 0. The width of the convolution is the sum of the widths of
the functions; it is twice the width of the sawtooth function and is thus 2.
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11.26 The width of g(X) is the sum of the widths of the functions f{x) whose width is 2, and /(x) whose width
is 4: Thus the width is 6.

1 -

-4 3 2 1 0 1 2 3 4
1 -

-4 3 2 1 0 1 2 3 4
1

-4 3 2 1 0 1 2 3 4
1

-4 3 2 1 ] 1 2 3 4

1127 g(X)= j:f(x)h(x —x)dx, (11.52)
= j‘: S(ORX - x) dx = h(X —0) j‘: 8(x) dx, (see Section 11.2.3),

=h(X), since J: O(x)dx=1.

11.28 For the solution to this problem, please refer to the textbook.



Chapter 11 Solutions 111

1129 F{f(x)cosK, x} = F{f(x)(1/2)(exp(iK,x)+exp(~iK,x))}
=( 1/2)[ j " F)expli(K + K, )x)dx + JZ f(x)exp(i(K —K,)x) dx]
=(1/2)[F(K +K,)+ F(K - K,)].
F{f(x)sinK,x} = F{f(x)(1/2i)(exp(iK,x) - exp(—iK x))}
= (1/2i)[ j " f(0)exp(i(K — K,)x)dx - j: f(x)exp(i(K +K,)x) dx}
=(1/2i)[F(K-K,)-F(K+K,)].

11.31 The solution is symmetrical because f(x) = 4(—x). The peak occurs when there is maximum overlap of
f(x) and A(x) (i.e., at 0). The width of g(X) is the sum of the widths of the functions f(x) and % (x) whose
widths are 1: Thus the width is 2. The graphical convolution is seen below.

-1.5 -1 -0.5 o 0.5 1 15
1 \

-1.5 -1 -0.5 o 0.5 1 15
1 \

-1.5 -1 -0.5 /] 0.5 1 15
1 \

-1.5 -1 -0.5 ] 0.5 1 15
1 m

-1.5 -1 -0.5 1] 0.5 1 15
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11.32 We see that f(x) is the convolution of a rect-function with two Jfunctions, and from the convolution
theorem,

F(k)=F{(rect(x)*[0(x—a)+I(x+a)])}
= Flrect(x)]- F{[0(x—a)+O(x +a)]}
= a sinc (ka/2)-(exp(ikx) +exp(—ika)) = a sinc (ka/2)-2 cos ka.
1133 f(0)*h(x)=[0(x+3)+0(x=2)+0(x=3)]*h(x) =h(x+3)+h(x—2)+ h(x=5).

11.34
- d >

1135 F{rect|x/(d/2)|} = %sinc [%j = F(k)
F{me S(x— nd)} =" _exp(iknd) = H(K); G(K)=H(K)F(K);
F(K)= F{f(x)} is zero atknd = nz or kd = 7.

11.36 For the solution to this problem, please refer to the textbook.
11.37 A(y,2) = A(-y, —2).

E(Y,Z, 1) [[ Ay, ) explith, y+k,2)) dy dz.
Change Y to —Y, Zto —Z, y to —y, z to —z, then ky goes to —ky and k, to —k;.
E(Y, Z, 1) [[ A=y, ~2)exp(i(k,y + k,2))dy dz.

Therefore E(-Y, —Z) = E(Y, Z).
11.38 From Eq. (11.63),

E(Y,Z)= HA(y, 2)exp(ik(Yy + Zz)/R) dydz.
E'(Y,Z)= ”A(ay, Bz)exp(ik(Yy + Zz)/R) dydz;

now let y' =ay, z'=pz:
4 1 4 ’ . 4 ’ 4 ’
E(Y.Z) =7 [[A(.2)el(Y f@)y +(ZIBZVR) dy’ dz
or E'(Y,Z)=1/ef)EY e, Z]B).

— lim—— _TTAsin(a)t+€)Asin(a)t—a)r+€)dt

1= 2T

1139 C,

-S| 1
= lim — —cos(wt)——cosLQwt — wt +2¢) | dt,
T—w T J-T| 2 2

since cosa—cos 8 =-2sin[(1/2)(a + B)]sin[(1/2)(ex - B)].
Thus C,= (A% /2)cos (7).
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1140 E(ko) = [ A, cos(ma/byexplik,2)dz
= Ay [ cos (z/b)cos(k,2) dz +iA, [ cos (zz/b)sin(k,2) dz

E(k,)= A, cos bk, ! + ! )
2 |\ n/b-k, w/b+k,
11.41 The width of g(X) is the sum of the widths of the functions f(x) and / (x) whose widths are 1: Thus the
width is 2. The peak will be at x = 1.
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11.42

11.43

11.44

11.45

11.46

11.47
11.48

11.50
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¢y (¥)= [ cos(hu+e)cos(ku+ & + kx) du
Here x was replaced with u + x. Using the identity:
cosAcosB = %(cos(A +B)+cos(A-B))

¢ (x)= %j: [cos (2ku +2¢ + kx) + cos (kx)] du = %cos Jex

The width of the autocorrelation function is twice the width of the function, thus the width of ¢y (x) is
4x,. The function is an even function which starts at —2x, and ends at 2x,.

-2x

-2X, -X, 0 X, 2X,

Symmetry is a fundamental property of autocorrelation. The maximum overlap occurs at the when
X=x=0, thus the correlation function c;(x) will be symmetric about the origin. The width of the
correlation function is twice that of the original function. Since it is symmetrical about the origin,

it will stretch from —1 to 1.
(From 11.52). h(X) = f(x)®g(x)= ji F(x)g(X - x)dx, so,

FO* g(=x)=h'(x) = [~ F(x)g(X +x) dx, which is the form of (11.86),
so f(x)*g(—x) = f(x) O g(x).

The width of the correlation function is twice that of the original function. The width of each individual
peak is twice the width of each individual square pulse.

The autocorrelation is periodic.

There will be three spots in the autocorrelation function. The first results from the overlap of only one
spot from each pair (the original pair and its duplicate). Because f{x, ) is symmetrical, mirroring it has
no effect. Thus one just sweeps one circle over the other and records the product at each displacement.
The resulting irradiance can be seen in Fig. 11.37b. The second spot will be separated from the first by
the same distance as that between the two original spots. This second spot will be brighter than the first
because it results from the overlap of both spots from each pair. The resulting irradiance pattern is the
same as that for the first except it will be brighter (i.e., it can be seen in Fig. 11.37b). The third spot will
be identical to the first spot, and will be located the same distance from the bright spot as the first spot is
from the bright spot. The width of the autocorrelation function is twice the width of the original pattern.

f(1)=g®)Oh(t) = Acos(w,t) O e(=iw,1).

F(w)=G(w) H(w), G(w)=(A12)2x/(w+w,)+27/(0-w,));
H(w)=2r/w-w,,
so, F(w)=27"Al(w-,)Qulw’ — ).



