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Chapter 13 Solutions 
 
 
13.1 T  673 K, area of each face is A  102 m2,   5.67  108 W m2 K4,  

then 0.97AIe  0.97 AT4  110 W. 

13.2 0.97Ie  0.97  4 4 2( ) 76.9 W/mET T  with T  306 K and Te  293 K is the temperature of the 

environment. Then 0.97AIe  108 W for the radiated power. 

13.3    4 2 1/ 422.8 10 W/m , ( / ) 1420 K.e eI T I  

13.4  4 ,E T  so the energy radiated increases by a factor of 104. 

13.5 T  306 K, 3 6
max 2.8978 10 m / 9.45 10 m 9.5 mK T        (in the infrared). 

13.6 If the blackbody is at T  293 K, then 3
max 2.8978 10 m K/T 9.9 m     (in the IR). 

13.7 T  4.0  104 K, 3 15
max max/ /2.8978 10 m K 4.1 10 Hzc cT        (in the UV). 

13.8 T  2.8978  103 m 3 7
maxK/ 2.8978 10 mK/4.65 10 m 6230 K.       

13.9 T  2.8978  103 m K/max  4300 K. 

13.10 We have for the total radiated power per unit area of the blackbody 
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 by putting  / ,Bx hc k T     2/ .Bd hcdx k Tx  The value of the integral  

over x is     4 4(4) (4) 3! /90 /15.  Therefore the Stefan-Boltzmann law follows, 
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13.11 From Eq (13.4): 
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13.12 25/ 1.99 10 J m/ .E hc      Since 1 eV  1.602  1019 J and 1 nm  10–9 m, this  

gives E  1240 eV nm/. Therefore the energy of a 600 nm photon is 2.1 eV. 

13.13 (min)  300 nm, 19/ 1240 eV nm/300 nm 4.14 eV 6.63 10 J.E h hc         
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13.14 If the P  100 W light bulb has an efficiency of 2.5%,   then the radiated power is / ,P Nh t   

where N is the number of photons, v is their frequency, and t  1 ms. In terms of the wavelength  

  550 nm, this gives / / .N Pt h Pt hc      The solid angle subtended by the d  3 cm diameter 

aperture at distance r = 100 s is: aperature area/r2   d2/ 4r2. Making the assumption that the light bulb 

emits isotropically, this is the fraction of photon that passes through the aperature, 

    2 2 2 2 8/4 /4 4.9 10N d r Pt d r hc  photons. 

13.15 3 2 2/ (1.4 10 / )(1 )(1 )Nhv Nhc W m m s    gives N  49  1020. 

13.16 The number of Ar atoms present in the chamber is 17/ 2.69 10 .BN pV k T    Taking 1% of this 

number and using the given excited-state lifetime yields 8 230.01 /1.4 10 s 1.9 10N     transitions per 

second. 

13.17 With energy density 
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 and B12  B21, the ratio of interest is    /
21 21( )/ 1/( 1).Bh k TB A e  

13.18 21 194.14 10 J, 3.2 10 J, / 77.3.B Bk T E E k T       Since exp( / ) 1,BE k T  the ratio 

341/(exp( / ) 1) exp( / ) 2.7 10 ,B BE k T E k T      

 extremely low. 

13.19 19 194.14 10 J, 3.2 10 J, / 0.773.B Bk T E E k T       Then  1/(exp( / ) 1) 0.86,BE k T  much higher 

than in the previous problem. Stimulated emission is quite likely at this high temperature (as at the 

surface of a hotter star). 

13.20 This statement gives the time rate of change of the population in from level 2 as it drops down to level 1. 

In thermal equilibrium, the rate of excitation to level 2 must equal the rate of downward transitions to 

level 1: 

2 1dN dN

dt dt
  
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13.21 Each photon may be said to be the result of a stimulated emission event. 

 194.499 10 J
hc

E hc


     
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# 2.22 10

4.499 10 J
of events  photons/sec. 
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13.22     ( )// 1 ( )/j i BE E k T

j i j i BN N e E E k T  for   .j i BE E k T  

 Therefore as ,T  / ,j iN N  tends to 1. 

13.23          T  3.0 K, kBT  4.14  1023 J, 
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 and the ratio  1/(exp( / ) 1) 46,BE k T  so stimulated emission is very likely, if not dominant.  

(The number of significant figures is important in such a case.) 

13.24 From the example, 7 32.59 10 J/m .TE    
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2.59 10 J/m
1.13 10 W/m
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13.25    
   5 5

1 1
1.06 s

7.8 10 1.6 10jiA
 

13.26 


   
         

5
81 10

1.63 10 s
259 2.83 2.00 2.26 6.09 6.39 33.9 3.45 13.9 2.55jiA

 

13.27 42.44 / 5.15 10D      rad, 25.15 10s r      m or the diameter of the spot on the wall is 5.1 cm. 

13.28 The volume of the crystal is 2 7( /4) 9.8 10V D L    m3. Therefore the mass of Cr2O3 present is  

0.05  102(3.7  103)9.8  107  1.81  106 Kg. 

 The mass of one Cr2O3 molecule is 152 amu or 2.52  1025 Kg. Therefore approximately  

7.17  1018 Cr2O3 molecules. are present. Assuming that each contributes two Cr3+ ions to lasing,  

Nions  1.4  1019 ions participate in the lasing action, at E  2.87  1019 J. Then Etot  Nions E  4.0 J; 

the corresponding power is Etot/t  4.0 J/5.0  106s  8  106 W = 800 kW. 

13.29 3 1 19 15/ / 1.0 10 J s /(1.96)(1.602 10 J 3.2 10N t P E           transitions per second. 

13.30 2 3 2 3 5 3(5 10 ) (0.2) m 1.5708 10 mV r h         

 # of photons  (# of ions) (V) (efficiency)  (4.0  1019 ions/cm3)(15.708 cm3)(0.02) 

   1.2566  1019 photons 

  192.834 10 J
hc

E hc


     

 (1.2566  1019 photons)(2.834  1019 J/photon)  3.56 J 

13.31 2 5
0 0 / 8.0 10 nm.c         

13.32 8/2 6 10 Hz,c L     using c  when n  1. 
  



Chapter 13 Solutions 123 

13.33 
8

83 10 m/s
1.5 10 Hz
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c

L
       
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13.35 The condition 91.4 10 /2c L     for n  1 gives   /2 11 cm.L c  

13.36 1 1

1 2

1 1 1
ln 10 cm ln(6.25) 40.5 cm

2 2(0.03 cm)thg
L R R

              
    

 

13.37     2 1/2 2
0 0 0 0( /2) ( /2)( / ) ,I E n E  where     2 1/2

0 0 0 0, 2( / ) / ,E I n    1/2
0 0( / ) 376.730 ,  so 

 1/2
0 27.4( / ) .E I n  

13.38 32.44 / 2.6 10 rad.D      

13.39 The three crossed gratings form a type of triangular lattice. The diffraction spots will appear along the 

directions of the dual lattice, which are directions connecting the centroids of the original lattice. As 

usual, there will be a central spot of highest irradiance (intensity) and the irradiance decreases with 

distance from this central spot. Reciprocals of multiples of lattice constants of the original lattice are 

proportional to the spatial frequencies present in the diffraction pattern. (Strictly speaking, the lattice 

should have infinite extent in order to consider it a mathematically periodic structure.) 

13.40 In this case, the four crossed gratings form a sort of rectangular lattice, whose dual lattice is again 
rectangular. Therefore the diffraction spots will be located along horizontal and vertical lines. The 
central spot has the highest irradiance and the irradiance of the others decreases with distance from the 
center. A horizontal slit filter will keep the vertical lined grating the same in the altered image, but blur 
the horizontal lines. 

13.41 The horizontal grating gives a row of diffraction spots, with the central spot of highest irradiance. The 

details in the picture image are contained in many high spatial frequency components. The picture can 

be enhanced by using a filter which blocks out the diffraction pattern of the horizontal grating. 

13.42 The circular grating present will generate a central spot of highest irradiance, together with successive 

rings. In order to enhance the picture, a spatial filter which blocks out these contributions should be 

used. 

13.43 The filter is a long slit, perpendicular to the observed image. 

13.44 From the geometry,    : sint i Of f k k and  1 sin ,k k  hence     sin /2Ok  and 

    sin /2 ,Ik  therefore   / /O Ik k  and   ( / ) ( / ).I O O t ik k k f f  When i tf f  the image will 

be larger than the object, the spatial periods in the image will also be larger, and the spatial frequencies 

in the image will be smaller than in the object. 
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13.45 a  (1/50) cm: a sin   m,  sin ,  hence   5000 m and the distance between orders on the 

transform plane is f  5000 f  2.7 mm. 

13.46 (a) As in Figure 11.10, the transform of the cosine function will be a pair of -functions, at  
fx  1/d, where d is the spatial period of the cosine plus a zero-order term at x  0. To pass 
only the first order terms, we need a filter with holes at these positions, for the specific 
wavelength, as given by x/f ≃ sin 1  (1/d); x  f/d  [(2.0 m)(5  107 m)/(1  105 m)]  
0.1 m, above and below center. (b) Any “DC” components, and all higher order components, 
are removed. A smoothly varying cosine function should be seen in the image. (c) A filter with 
a hole in the center would pass only the “DC” term, resulting in a lower intensity, uniform 
image. 

13.47 Each point on the diffraction pattern corresponds to a single spatial frequency, and if we consider the 

diffracted wave to be made up of plane waves, it also corresponds to a single-plane wave direction.  

Such waves, by themselves, carry no information about the periodicity of the object and produce a  

more or less uniform image. The periodicity of the source arises in the image when the component  

plane waves interfere. 

13.49 The relative field amplitudes are 1.00, 0.60, and 0.60; hence 
        1 0.60cos( ) 0.60cos( ) 1 1.2cos .E ky ky ky  This is a cosine  

oscillating about a line equal to 1.0. It varies from +2.2 to –0.2. The square  

of this will correspond to the irradiance, arid it will be a series of tall peaks  

with a relative height of (2.2)2, between each pair of which there will be a  

short peak proportional to (0.2)2; notice the similarity with Fig. 11.32. 

13.50 a Sin   , here   50 0.20 cm;f f  hence   0.20/50(100)  400 nm. The magnification  

is 1.0 when tile focal lengths are equal, hence the spacing is again 50 wires/cm. 

13.51 The random (dots will add considerable “noise” to the pattern. The spatial frequency  

is 1/(0.1 mm)  10 mm1. A filter that is the transform of the regular pattern will  

remove the random dots. 

13.52 The array of top hats corresponds to the pixels, so that each “selects” the amplitude (density) of the 

picture within its radius. The transform will look like a regular array of dots of varying amplitude.  

As in Figure 13.39, filtering out the higher frequency components will yield a continuous image. 

13.53 The pinhole blocks the high-frequency components, which correspond to the rapid spatial variations in 

the beam. 

13.54 The randomly, but more or less uniformly, distributed particles in the milk will tend to block the 

“regular” part of the beam, and thus enhance the relative intensity of the speckle. 


