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Série Temporal:

Uma série temporal é qualquer conjunto de observa¢des ordenadas no

tempo.

Example 1.1 Johnson & Johnson Quarterly Earnings

Figure 1.1 shows|quarterly earnings per shareil for the U.S. company Johnson &
Johnson, furnished by Professor Paul Griffin (personal communication) of the
Graduate School of Management, University of California, Davis. There are 84
quarters (21 years) measured from the first quarter of 1960 to the last quarter of
1980. Modeling such series begins by observing the primary patterns in the time
history. In this case, note the gradually increasing underlying trend and the rather
regular variation superimposed on the trend that seems to repeat over quarters.
Methods for analyzing data such as these are explored in Chapter 2 and Chapter 6.
To plot the data using the R statistical package, type the following:'!

library(astsa) # SEE THE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")

15

10
|

Quarterly Earnings per Share
5
I

0
]

| |
1960 1965 1970 1975 1980

Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-1 to 1980-1V.



Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.2. The data are the
global mean land—ocean temperature index from 1880 to 2015, with the base period
1951-1980. In particular, the data are deviations, measured in degrees centigrade,
from the 1951-1980 average, and are an update of Hansen et al. (2006). We note an
apparent upward trend in the series during the latter part of the twentieth century
that has been used as an argument for the global warming hypothesis. Note also
the leveling off at about 1935 and then another rather sharp upward trend at about

1970. The question of interest for global warming proponents and opponents is
whether the overall trend is natural or whether it is caused by some human-induced
interface. Problem 2.8 examines 634 years of glacial sediment data that might be
taken as a long-term temperature proxy. Such percentage changes in temperature
do not seem to be unusual over a time period of 100 years. Again, the question of
trend is of more interest than particular periodicities. The R code for this example
is similar to the code in Example 1.1:

n_n

plot(globtemp, type="o0", ylab="Global Temperature Deviations")
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Fig. 1.2. Yearly average global temperature deviations (1880-2015) in degrees centigrade.



Example 1.3 Speech Data
Figure 1.3 shows a small .1 second (1000 point) sample of recorded speech for
the phrase aaa--- hhh, and we note the repetitive nature of the signal and the
rather regular periodicities. One current problem of great interest iS computer
recognition of speech, which would require converting this particular signal into
the recorded phrase aaa - -- hhh. Spectral analysis can be used in this context to
produce a signature of this phrase that can be compared with signatures of various
library syllables to look for a match. One can immediately notice the rather regular
repetition of small wavelets. The separation between the packets is known as the

[pitch_period]and represents the response of the vocal tract filter to a periodic
sequence of pulses stimulated by the opening and closing of the glottis. In R, you
can reproduce Figure 1.3 using plot(speech).
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Fig. 1.3. Speech recording of the syllable aaa - -- hhh sampled at 10,000 points per second
with n = 1020 points.



Example 1.4 Dow Jones Industrial Average
As an example of financial time series data, Figure 1.4 shows the|daily returns
(or percent change) of the Dow Jones Industrial Average (DJIA) from April 20,
2006 to April 20, 2016. It is easy to spot the financial crisis of 2008 in the figure.
The data shown in Figure 1.4 are typical of return data. The mean of the series
appears to be stable with an average return of approximately zero, however, highly
volatile (variable) periods tend to be clustered together. A problem in the analysis
of these type of financial data is to forecast the volatility of future returns. Models
such as ARCH and GARCH models (Engle, 1982: Bollerslev, 1986) and stochastic
volatility models (Harvey, Ruiz and Shephard, 1994) have been developed to handle
these problems. We will discuss these models and the analysis of financial data in
Chapter 5 and Chapter 6. The data were obtained using the Technical Trading Rules
(TTR) package to download the data from Yahoo™ and then plot it. We then used
the fact that if x, is the actual value of the DJIA and r, = (x, —x;_1)/x,—; is the return,
then 1 +r, = x,/x,—; and log(1 + r;) = log(x,/x,—1) = log(x;) — log(x,—1) = r, 12

The data set is also available in astsa, but xts must be loaded.

# library(TTR)

# djia = getYahooData("*DJI", start=20060420, end=20160420, freq="daily")

library(xts)

djiar = diff(log(djia$Close))[-1] # approximate returns

won

plot(djiar, main="DJIA Returns", type="n")
lines(djiar)
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Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to
April 20, 2016.



Example 1.5 El Niio and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern Oscillation
Index (SOI) and associated Recruitment (number of new fish) furnished byDr. Roy
Mendelssohn of the Pacific Environmental Fisheries Group (personal communica-
tion). Both series are for a period of 453 months ranging over the years 1950—-1987.
The SOI measures changes in air pressure, related to sea surface temperatures in
the central Pacific Ocean. The central Pacific warms every three to seven years due
to the El Nifo effect, which has been blamed for various global extreme weather
events. Both series in Figure 1.5 exhibit repetitive behavior, with regularly repeating
cycles that are easily visible. This periodic behavior is of interest because under-
lying processes of interest may be regular and the rate or frequency of oscillation
characterizing the behavior of the underlying series would help to identify them.
The series show two basic oscillations types, an obvious annual cycle (hot in the
summer, cold in the winter), and a slower frequency that seems to repeat about
every 4 years. The study of the kinds of cycles and their strengths is the subject of
Chapter 4. The two series are also related; it is easy to imagine the fish population is
dependent on the ocean temperature. This possibility suggests trying some version
of regression analysis as a procedure for relating the two series. Transfer function

modeling, as considered in Chapter 5, can also be applied in this case. The following
R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics

plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.



Example 1.6 fMRI Imaging

A fundamental problem in classical statistics occurs when we are given a collection
of independent series or vectors of series, generated under varying experimental
conditions or treatment configurations. Such a set of series is shown in Figure 1.6,
where we observe data collected from various locations in the brain via functional
magnetic resonance imaging (fMRI). In this example, were given pe-
riodic brushing on the hand. The stimulus was applied for 32 seconds and then
stopped for 32 seconds; thus, the signal period is 64 seconds. The sampling rate
was one observation every 2 seconds for 256 seconds (n = 128). For this example,
we averaged the results over subjects (these were evoked responses, and all subjects
were in phase). The series shown in Figure 1.6 are consecutive measures of blood
oxygenation-level dependent (BoLD) signal intensity, which measures areas of acti-
vation in the brain. Notice that the periodicities appear strongly in the motor cortex

series and less strongly in the thalamus and cerebellum. The fact that one has serie
from different areas of the brain suggests testing whether the areas are respondin
differently to the brush stimulus. Analysis of variance techniques accomplish this i
classical statistics, and we show in Chapter 7 how these classical techniques exten
to the time series case, leading to a spectral analysis of variance. The following ]
commands can be used to plot the data:

par(mfrow=c(2,1))

ts.plot(fmril[,2:5], col=1:4, ylab="BOLD", main="Cortex")
ts.plot(fmril[,6:9], col=1:4, ylab="BOLD", main="Thalamus & Cerebellum")
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128
points, one observation taken every 2 seconds.



Example 1.7 Earthquakes and Explosions
As a final example, the series in Figure 1.7 represent two phases or arrivals along
the surface, denoted by P (¢ = 1,...,1024) and S (r = 1025, ...,2048), at a seismic
recording station. The recording instruments in Scandinavia are observing earth-
quakes and mining explosions with one of each shown in Figure 1.7. The general
problem of interest is in distinguishing or discriminating between waveforms gen-
erated by earthquakes and those generated by explosions. Features that may be
important are the rough amplitude ratios of the first phase P to the second phase
S. which tend to be smaller for earthquakes than for explosions. In the case of the

two events in Figure 1.7, the ratio of maximum amplitudes appears to be somewhat
less than .5 for the earthquake and about 1 for the explosion. Otherwise, note a
subtle difference exists in the periodic nature of the S phase for the earthquake. We
can again think about spectral analysis of variance for testing the equality of the
periodic components of earthquakes and explosions. We would also like to be able
to classify future P and S components from events of unknown origin, leading to
the time series discriminant analysis developed in Chapter 7.
To plot the data as in this example, use the following commands in R:

par(mfrow=c(2,1))
plot(EQ5, main="Earthquake™)
plot (EXP6, main="Explosion")
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Fig. 1.7. Arrival phases from an earthquake (top) and explosion (bottom) at 40 points per
second.



Objetivo da anadlise de séries temporais
* Investigar o mecanismo gerador da série temporal;
* Fazer previsOes de valores futuros da série;

* Descrever apenas o comportamento da série: existéncia de
tendéncia, ciclos e variagdes sazonais;

* Procurar periodicidades relevantes nos dados.
Ferramentas

* Descrever o comportamento da série: graficos e testes para
avaliar tendéncias, ciclos, variagcdes sazonais;

* Inferéncias estatisticas;
* Modelagem do fendbmeno estudado;
* Previsoes.
Tipos de Séries Temporais
. Discreta: X(t), t=1,2, ..., n
- Valores semanais do numero de casos de Aids em Sao Paulo;
- Taxa de mortalidade (mensais, anuais);
- Gastos com a saude (mensais, anuais).
. Continua: X(t),

- Valores do eletrocardiograma;
- Medicdes de temperatura e umidade.



