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HIGHLIGHTS 
 Over the last 40 years the amount of irrigation water used by cotton in the United States has decreased while yields have

increased leading to a large increase in crop water productivity (CWP).
 Many factors have contributed to improved CWP, such as improvements in water delivery systems.
 Irrigation scheduling technologies have also contributed to improved CWP; however, farmer adoption of advanced sched-

uling technologies is still limited and there is significant room for improvement.
 Increased yields from improved cultivars without an increase in water requirements has also been important for CWP.
 Continued developments in sensor technologies and improved crop simulation models are two examples of future strat-

egies that should allow the U.S. cotton industry to continue an upward trend in CWP.

ABSTRACT. Over the last 40 years the amount of irrigation water used by cotton in the United States has decreased while 
yields have increased. Factors contributing to higher water productivity and decreased irrigation water use include migra-
tion of cotton out of the far western U.S. states to the east where more water requirements are met by rainfall; improved 
irrigation delivery systems with considerable variation in types and adoption rates across the U.S.; improved irrigation 
scheduling tools; improved genetics and knowledge of cotton physiology, and improved crop models that can help evaluate 
new irrigation strategies rapidly and inexpensively. The considerable progress over the last 40 years along with the promise 

of emerging technologies suggest that this progress will con-
tinue. 

Keywords. Cotton, Crop water productivity, Irrigation, Sus-
tainability, Water use efficiency. 

here is little debate that competition for water re-
sources is increasing between agricultural, indus-
trial, metropolitan, and domestic users. 
Furthermore, there are critical aquifers and river 
systems that are over allocated and water with-

drawals exceed sustainable levels. Therefore, the need to op-
timize, and reduce where possible, agricultural water use 
will continue into the foreseeable future. Competing de-
mands for water resources have occurred since irrigation be-
came common practice in regions of the United States (U.S.) 
resulting in a long history of agricultural water management 
research. 

One key focus of water management research over the 
last forty years has been to increase cotton’s water produc-
tivity. The term “crop water productivity” (CWP) is defined 
as the ratio of the crop yield with economic value to seasonal 
evapotranspiration, as shown in equation 1: 

   1   CWP Y ET   (1)

where 
Y  =  yield (kg ha-1), and 
ET  =  evapotranspiration used in producing Y (m3 ha-1). 
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For cotton, both the fiber and seed are of economic value; 
however, in many cases only fiber yield is reported when 
considering CWP and that convention will be followed in 
this paper. The CWP term is a common metric for comparing 
crop production subject to different conditions (e.g., 
irrigation rates, genetic varieties, climate, seasons, etc.) and 
combines three possible water sources (i.e., irrigation, 
precipitation, soil water depletion) to a single metric (Bos, 
1980; Howell, 2001). Thus CWP applies to both irrigated 
and non-irrigated crop production. Irrigation crop water 
productivity (ICWP) can be defined as: 

   1    i dICWP Y Y IR   (2) 

 
where 
Yi  =  irrigated yield (kg ha-1), 
Yd  =  non-irrigated yield (kg ha-1), and 
IR  =  irrigation water applied (m3 ha-1). 

The ICWP term is a measure of yield gained due to irri-
gation that otherwise would not have been attained in a non-
irrigated production system, and has been an important met-
ric for examining the role of irrigation, separate from precip-
itation or soil water extraction, in irrigated crop production 
studies (Bos, 1980). CWP and ICWP have units of mass per 
volume of water (e.g., kg m-3). Therefore, they are not true 
efficiency terms because they are not unitless (Howell, 2001, 
Howell and Lamm, 2007), and for this reason, CWP is gain-
ing ground in replacing the term “water use efficiency” (e.g., 
Zwart and Bastiaanssen, 2004). Data required to calculate 
CWP and ICWP have been documented in many crop pro-
duction studies, including cotton, so that factors that influ-
ence the conversion of water to biomass are readily 
compared and elucidated. 

U.S. cotton growers have an established history of in-
creasing crop water productivity as evidenced by yield in-
creasing (USDA-NASS Quick Stats, accessed September 
25, 2019) and irrigation water used for cotton decreasing 
(USDC (1984, 1990); USDA-NASS (1994,1999, 2004, 
2010, 2014, 2019)) as illustrated in figure 1. 

Part of the decline in U.S. irrigation water use can be at-
tributed to a migration of cotton from the far western states 
(California and Arizona) to areas eastward where rainfall 
meets more of the crop water demand, due to water costs in 
the west, and the successful eradication of the boll weevil in 
the east (figs. 2 and 3). However, that is not the only factor 
resulting in increased CWP. California and Arizona remain 
the highest yielding states of the U.S. Cotton Belt and aver-
age U.S. yields still increased as the cotton area moved to 
less productive regions while irrigation water used continued 
to decline. The four cotton growing regions in the U.S. will 
be defined as: 
1. Far West (FW): California, Arizona, New Mexico 
2. Southwest (SW): Texas, Oklahoma, Kansas 
3. Midsouth (MS): Missouri, Arkansas, Mississippi, Ten-

nessee, Louisiana 
4. Southeast (SE): Alabama, Virginia, North Carolina, 

South Carolina, Georgia, Florida 
The objectives of this article were to examine how: 1) im-

proved water delivery systems; 2) better irrigation schedul-
ing technologies; and 3) other agronomic factors have 
contributed to the increase in the CWP of U.S. cotton. The 
final objective was to review what technological innovations 
are needed to continue improving cotton’s CWP. 

ADVANCES IN WATER DELIVERY 

SYSTEMS 
A significant factor contributing to U.S. cotton’s in-

creased CWP has been improved water delivery systems, in-
cluding the conversion or replacement from gravity-based 
(furrow and basin) to sprinkler and microirrigation systems 
(fig. 4). The adoption of new delivery systems has a strong 
regional component (table 1), so this section looks at trends 
in irrigation system changes over the last 40 years in terms 
of the four cotton production regions in the U.S. (FW, SW, 
MS, SE; fig. 3). Pressurized irrigation systems, such as cen-
ter pivot, lateral move, and microirrigation, often increase 
application efficiency, energy efficiency, and nutrient use ef-
ficiency compared with surface (gravity flow) irrigation sys-
tems. Pressurized systems are well suited to automation, and 
thus improve management options both spatially and tempo-
rally. They offer flexibility to apply water in relatively small 
amounts (depths) with relatively flexible timing. Fertigation 
and other chemigation technologies allow the user greater 
flexibility, improving crop response to water, nutrients, and 
agrichemicals. 

FAR WEST (FW) 
Cotton production has declined steadily in the Far West 

U.S. due to declining water resources and competition from 
more valuable crops such as almonds and processing toma-
toes in California (Geisseler and Horwath, 2016). Essen-
tially, all Far West cotton production requires irrigation due 
to the arid climate Most of the cotton growing area in the 
region receives water through canal systems and that has a 
significant impact on water delivery methods. Surface irri-
gation (both furrow through siphon tubes and level basin) 

Figure 1. U.S. average cotton yield (USDA-NASS, QuickStats, accessed
September 25, 2019, five-year running average from 1980 to 2019) and
average annual irrigation water use by cotton [USDC (1984; 1990);
USDA-NASS (1994, 1999, 2004, 2010, 2014, 2019)]. 
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remains the most common irrigation method (table 1), sup-
ported by heavy tillage practices and cotton planting on 
raised beds between irrigation furrows. This production sys-
tem remains popular because of existing infrastructure for 
delivery of Colorado River water to growers through irriga-
tion district canals. Early efforts to improve irrigation man-
agement for these systems sought to optimize timings for the 
first post-plant irrigation event (Steger et al., 1998) and the 
final irrigation event of the season (Unruh and Silvertooth, 
1997; Tronstad et al., 2003). Both Radin et al. (1992) and 
Hunsaker et al. (1998) reported higher cotton yield and water 
productivity by applying smaller amounts of surface irriga-
tion more frequently. 

Smith et al. (2005) found irrigation application efficien-
cies ranged from 17% to 100% in surface irrigated cotton 
fields in Australia, where the efficiency differences were 
largely attributed to management and design of the surface 
systems. Soil type also has a significant impact on efficiency 
that can be achieved with surface irrigation, where deeper 
and greater water holding capacity soils are better suited to 
surface irrigation systems (Negri and Brooks, 1990). Im-
provements in the design of surface irrigation systems have 
been facilitated by the wide availability of precision grading 
systems to precisely control the slope in surface irrigated 
cotton fields of the Far West cotton growing region (Frisvold 
et al., 2018). Other key factors in improving the application 
efficiency of surface irrigation in the Far West has been bet-
ter water flow measurements in farm level canals and the use 
of large flow inlets for basin irrigation systems. Computer-
aided design and the ability to use feedback control of water 
inflow rates has also contributed to better application effi-
ciency for surface irrigated systems (Clemmens, 1992; Bau-
tista et al., 2009). 

SOUTHWEST (SW) 
The Southwest U.S. consistently contains the greatest 

area planted to cotton in the United States, with Texas hav-
ing the largest area in 2018 (table 1). Low pressure center 
pivot sprinkler irrigation systems dominate much of the 
Southern High Plains. Low Energy Precision Application 
(LEPA) was developed in the Texas High Plains approxi-
mately 40 years ago (Bordovsky, 2019), and together with 
variations on the technology, are used on over 75% of the 
irrigated area in the region (Amosson et al., 2015). In 1978, 
the LEPA irrigation concept was inspired and developed out 
of the need to address two critical issues: the impending de-
pletion of available irrigation water from the Ogallala Aqui-
fer (McGuire, 2017) and the quadrupling of natural gas 

 

Figure 2. U.S. cotton growing states and regions overlaying 30-year average rainfall from 1971-2000 (USDA-NRCS, 2012a). 

Figure 3. Trends in U.S. cotton planted area by region from 1980 to
2019 (USDA-NASS Quickstats, accessed 24 October 2019). 
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prices in the mid-1970s (EIA, 2018). At the time, lighter tex-
tured soils were irrigated by high-pressure “hand-moved” 
and some center pivot systems; however, surface (furrow) 
irrigation was the predominant method of irrigation in the 
southwest U.S. Rather than spraying water into the air at 
moderate to high pressures, the LEPA method used a tower/ 
truss system to apply water directly to a fraction of the soil 
surface at low pressure using a system that continually 
moved through the field, requiring one of several comple-
mentary cultural practices (e.g., furrow dikes; Schneider and 
Howell, 2000) to store applied water until infiltration oc-
curred. A properly managed LEPA system reduced many of 
the regional negative effects of surface and sprinkler sys-
tems, such as runoff, excessive evaporation, and high water 
distribution pressure while increasing irrigation productivity 
by up to 30% over gravity methods and sprinkler methods 
(Lyle and Bordovsky, 1983; Bordovsky, 2019). 

Because the LEPA system was developed as an irrigation 
management concept that required furrow dikes, circular 
center pivot rows, and minimal slopes, derivatives of the 
LEPA method were developed to allow more flexibility 
while addressing typical water losses. These systems in-
cluded LESA (low elevation spray application), LPIC (low 
pressure in-canopy), and MESA (mid-elevation spray appli-
cation) (Lamm et al., 2019). In the southwest U.S, LESA and 
LPIC have become the most commonly used systems for 
cotton irrigation (Colaizzi et al., 2009), and they are illus-
trated in figure 5. 

 

Figure 4. Percent of cotton area under pressurized and gravity-based irrigation systems - data from USDC (1984, 1990) and USDA-NASS (1994, 
1999, 2004, 2010, 2014, 2019). 

Table 1. Harvested area, percent irrigated, and percent of irrigation 
system type in 2018 for cotton by state (USDA-NASS, 2019). 

State  
or  

Region 

Harvested  
Area  
(ha) 

Percent of  
Harvested  

Area  
Irrigated 

Percent  
Sprinkler  

Irrigation[a] 

Percent  
Surface  

(Gravity)  
Irrigation 

Arizona 70,243 100% na 95% 
California 104,049 99% na 92% 
New Mexico 25,425 82% 50% 50% 
Total FW[b] 199,717 97% 7% 89% 
     
Kansas 61,538 27% 100% 0% 
Oklahoma 222,672 21% 57% 43% 
Texas 1,768,219 37% 83% na 
Total SW[b] 2,052,429 35% 81% 5% 
     
Arkansas 194,332 80% 11% 89% 
Louisiana 76,518 18% na na 
Mississippi 248,988 34% 39% 61% 
Missouri 130,364 65% 9% 91% 
Tennessee 143,725 7% na na 
Total MS 793,927 44% 18% 82% 
     
Alabama 201,215 11% 89% 11% 
Florida 37,652 0% na na 
Georgia 528,340 36% 100% 0% 
North Carolina 168,016 3% 100% 0% 
South Carolina 111,336 14% 100% 0% 
Virginia 39,271 0% 100% 0% 
Total SE 1,085,830 21% 99% 1% 
     
United States[b] 4,131,903 36% 60% 37% 
[a]  “na” – either data not available or too small a sample size to report. 
[b] FW and SW regions do not sum to 100% as microirrigation is not 

shown in the table and those two regions do have cotton produced with 
microirrigation. 
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The prevalence of sprinklers in the SW (more than 80% 
of the irrigated area, table 1) make it a prime region for po-
tential adoption of variable rate irrigation (VRI) as suggested 
by O’Shaughnessy et al. (2013). Despite this potential, and 
despite VRI hardware being commercially available since 
2004, adoption has been low due to several factors as re-
viewed by O’Shaughnessy et al. (2019). One gap identified 
as inhibiting adoption is lack of commercially available de-
cision support tools needed to manage VRI, but these are be-
ing rapidly developed. One such effort is an Irrigation 
Scheduling and Supervisory Control And Data Acquisition 
(ISSCADA) system (Evett et al., 2014). The system is suit-
able for both moving (e.g., center pivot) and non-moving 
(microirrigation) systems, but most development has fo-
cused on center pivot applications, including generating pre-
scription maps for cotton (O’Shaughnessy et al., 2015). 

The continued declines in available water and docu-
mented greater application efficiencies of subsurface drip ir-
rigation (SDI) have resulted in a rapid adoption rate of it for 
cotton production in Texas, Oklahoma, and New Mexico. 
Adoption of SDI has increased greatly in recent years, from 
an estimated 8,000 to 10,000 ha in 2000 to over 180,000 ha 
in 2019 in the Texas High Plains alone (HPWD, 2019). The 
rapid adoption has occurred despite several issues, including 
greater initial costs, poor germination during drought condi-
tions, and the need for rodent control (Lamm, 2009; Lamm 
et al., 2012). Solutions to these issues would likely further 
increase the adoption of SDI. This rapid growth is attributed 
to several factors, including limited and declining irrigation 
well capacities, government cost-share programs, availabil-
ity of experienced irrigation dealers and designers, a critical 
mass of progressive cotton producers, and collaboration 
among and between irrigation research and extension pro-
grams, the irrigation industry, and crop producers. An exten-
sive review of cotton research with SDI was presented by 
Lamm (2016). 

Studies in Texas have shown that SDI can result in 15% 
to 30% greater cotton yield, along with better fiber quality, 
greater CWP, and in some cases, less seasonal water use, 
compared with MESA, LESA, and LEPA (Bordovsky and 

Lyle, 1998; Bordovsky, 2001; Colaizzi et al., 2010; Bor-
dovsky, 2019). Based on results from pairs of large weighing 
lysimeters at Bushland, Texas, water losses due to evapora-
tion were reduced by 50 to 125 mm using SDI compared to 
sprinkler irrigation (Evett et al., 2019). An additional factor 
important for cotton production is that SDI maintains 
warmer soil temperatures near the surface compared with 
sprinkler applicators (Colaizzi et al., 2010). This is due to 
reduced evaporative cooling for SDI, which applies water 
below the soil surface, compared with methods where water 
is applied to the surface. This is critical for cotton establish-
ment early in the season, especially when air and soil tem-
peratures are below optimal for cotton growth. Although this 
is not a great concern in the traditional cotton producing re-
gions with abundant heat units, it is a primary constraint, in 
addition to water, for thermally limited climates (e.g., north-
west Texas and Kansas) as discussed by Colaizzi et al. 
(2009). 

The concept of mobile drip irrigation (MDI) appears to 
have originated with Rawlins et al. (1974) and was later de-
scribed in Howell and Phene (1983) and Phene et al. (1985). 
An MDI system was recently commercialized as a retrofit to 
existing center pivot and lateral move irrigation systems. 
The MDI system applies water through specially designed 
surface driplines that are pulled through fields by the irriga-
tion machine (Kisekka et al., 2017; O’Shaughnessy and Co-
laizzi, 2017). Similar to the LEPA method, which applies 
water on the soil surface between crop rows, MDI reduces 
water losses due to spray evaporation, evaporation from a 
wetted canopy, and wind drift resulting in increased effi-
ciency. One advantage MDI may have over LEPA or LESA 
is its potential use on topography of greater slope without 
using furrow dikes, due to its extended wetting pattern. Stud-
ies in Texas and Kansas have shown that MDI results in im-
proved CWP compared with LEPA or LESA for corn in 
years with average to below average precipitation, but not 
for years with above average precipitation (Kisekka et al., 
2017; O’Shaughnessy and Colaizzi, 2017). Additional stud-
ies are clearly needed to test MDI vs. LEPA or LESA for 
cotton, particularly in drought conditions. 

MIDSOUTH (MS) 
The Midsouth is a highly productive agricultural area 

dominated by the Mississippi Delta region, which extends 
into most of the states. Most of the Delta consists of deep 
alluvial soils, high annual precipitation, and long, frost-free 
cropping seasons (Snipes et al., 2005). While annual rainfall 
is abundant, the majority falls outside of the growing season 
and is highly variable from year to year. This variability re-
sults in the need for irrigation to meet crop water require-
ments to maintain yields and profitability, but not on a 
consistent year-to-year basis. In some years, rainfall patterns 
are such that no irrigation is needed, making it difficult for 
producers to prepare seasonal irrigation strategies in ad-
vance. 

Irrigation in the Midsouth is accomplished predominantly 
via gravity flow (furrow) and center pivot methods (Kebede 
et al., 2014). Furrow irrigation accounts for 70% to 80% of 
the irrigated area, with the remaining area serviced by center 
pivot systems (table 1). Water is commonly supplied by on-

Figure 5. Illustration of the low energy precision application (LEPA),
low elevation spray application (LESA), low pressure in-canopy
(LPIC), and spray application concepts in tall and short crops (from
Howell, 2006). 
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farm wells and pumped from the shallow Mississippi River 
Valley Alluvial Aquifer. Furrow irrigation in this region typ-
ically consists of delivering water to the field using roll-flat 
polyethylene tubing (polypipe), with holes punched in the 
polypipe to deliver water to each furrow. The technology is 
simple, inexpensive, and easy to manage, and the preferred 
option when irrigations may be infrequent and supplemen-
tary rather than always a part of annual production opera-
tions. 

Furrow irrigation application efficiencies are often low, 
resulting from nonuniform distribution of water across the 
field and down the furrows. Excessive water applied at the 
top of field near the polypipe results in saturated soils and 
deep percolation losses. Irrigation is often terminated when 
water reaches the bottom end of the furrows, to minimize 
runoff and wasting of water, resulting in insufficient appli-
cation at the bottom part of the field. Various tools and meth-
ods employed in other regions have been demonstrated and 
promoted to increase the efficiency of furrow irrigations. 
Massey (2010) and Ray (2013) have demonstrated how the 
efficiency of furrow irrigation can be improved, especially 
for irregularly shaped or sloped fields, using computerized-
hole selection software such as Pipe Hole and the Universal 
Crown Evaluation Tool (PHAUCET, USDA-NRCS, 
2012b), or Pipe Planner (Delta Plastics, 2019). Researchers 
in Arkansas, Mississippi, and Louisiana reported savings of 
approximately 20% in water, fuel, and irrigation water using 
computerized-hole selection in regular-shaped fields, and 
savings of water as much as 50% in irregular-shaped fields 
(Massey, 2011; Ray, 2013; Krutz, 2013). 

Furrow irrigation efficiencies in the Midsouth can also 
potentially be improved using surge-flow valves (Krutz, 
2013). In conventional furrow irrigation, water is applied 
continuously at a constant rate throughout the entire irriga-
tion cycle, overirrigating part of the field while underirrigat-
ing other parts. Surge-flow valves regulate the application of 
water by intermittent and variable (pulsed) application, 
which modifies soil infiltration characteristics to distribute 
water more uniformly across the field and reduces water 
losses by deep percolation and runoff. 

An opportunity for improvement in the MS is increased 
use of flow measurement devices to more precisely monitor 
irrigation water use. Daystar et al. (2017) found that only 
about 59% of cotton producers reported using such devices, 
as they often assume the original design flow remains con-
stant. McDougall et al. (2014) monitored irrigation wells in 

central and eastern Arkansas and found pumping rates often 
did not match the original tests, and there was seasonal fluc-
tuation in flow rates due to changes in water table depth. 

Due to the abundant rainfall in the MS, farm ponds are 
commonly used to store rainfall runoff in the region. There 
are now studies to see if shallow groundwater recharge can 
be accomplished with “leaky” farm ponds and reservoirs 
(Yaeger et al., 2017). On-farm storage of rainfall runoff for 
subsequent irrigation will be even more critical in the future 
if climate models predicting more intense and less frequent 
rainfall events are accurate. 

SOUTHEAST (SE) 
Center pivot irrigation is the predominant type of irriga-

tion utilized for row crop production in the southeast (ta-
ble 1). Like the Southwest, VRI for pivots has been 
evaluated in the SE (Perry et al., 2002; Perry and Pocknee, 
2003) (fig. 6). VRI is now widely commercialized and of-
fered by most of the world’s center pivot manufacturers, and 
VRI can be installed retroactively on most existing pivots. 
Application amounts are determined from a prescription 
map. For the system developed at the University of Georgia, 
each group of sprinklers represents a grid with a 1° to 10° 
arc in which the irrigation water application amount can be 
set as a percentage of the normal application amount rate 
ranging from 0% to 200% of normal (fig. 7). 

The prescription map for water application is usually de-
veloped jointly by the farmer and VRI dealer on desktop 
software and then downloaded to the VRI control panel on 
the pivot. The field is divided into irrigation management 
zones (IMZs), and application rates are assigned to each of 
the IMZs using whatever information is available. Although 
VRI is a great leap forward in improving water use effi-
ciency, the system could be greatly enhanced by having real-
time information on crop water needs to drive irrigation ap-
plication rates. One approach for creating dynamic prescrip-
tion maps is to use soil water sensors to estimate the amount 
of irrigation water needed in each IMZ. 

VRI adoption is still limited in the southeast due to cost 
of technology, reliability of technology, management time 
required for the technology, the needed clarification on how 
to develop the VRI maps, the lack of easily recognizable re-
turn on investment of the technology, and the greater need 
for intense management (O’Shaughnessy et al., 2019). The 
irrigation companies that offer VRI are considering dynamic 
VRI solutions but the cost and the other problems associated 

Figure 6. Variable rate irrigation enabled pivot at the University of Georgia’s Stripling Irrigation Research Park applying different irrigation 
rates over research plots. 
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with using large numbers of soil water or plant sensors is 
inhibiting this approach. As a result, irrigation companies are 
exploring sensor-free, model-based solutions to dynamic 
VRI. 

IMPROVEMENTS IN IRRIGATION 

SCHEDULING TECHNOLOGIES 
Irrigation scheduling is defined as the process of deter-

mining when to irrigate and how much water to apply, based 
upon measurements or estimates of soil moisture or water 
used by the plant (ASABE Standards, 2015). Improvements 
in irrigation scheduling technologies have also played a role 
in improvements in U.S. cotton’s improved CWP. In 2015, 
250 of the 924 U.S. growers who responded to the survey 
reported irrigating cotton (Daystar et al., 2017). Of those 
who irrigated, 37% reported using an evapotranspiration-
based scheduler and 26% said they used a sensor for irriga-
tion scheduling. These responses are consistent with growers 
for other commodities where progress has been slow in in-
creasing adoption of advanced irrigation scheduling meth-
ods (Lamm and Rogers, 2015). The following sections will 
review evapotranspiration- and sensor-based methods for ir-
rigation scheduling in cotton, both in terms of what has al-
ready been applied at the farm level and current research to 

improve those methods. Additionally, the use of crop simu-
lation models to aid in irrigation decisions will also be con-
sidered. 

EVAPOTRANSPIRATION-BASED SCHEDULING TOOLS 
Since the early 2000’s, a great deal of water management 

research for cotton has focused on developing tools for evap-
otranspiration estimation and irrigation scheduling, based on 
the Food and Agriculture Organization of the United Nations, 
Irrigation and Drainage Paper No. 56 (FAO-56; Allen et al., 
1998). The method uses a reference crop evapotranspiration 
commonly calculated from measured weather data at a loca-
tion of interest, although Straatmann et al. (2018) investigated 
using atmometers in Missouri. A crop coefficient is used to 
estimate crop water use as shown in equation 3: 

   c o cET ET x K  (3) 

where 
ETc  = daily crop water use (mm day-1), 
ETo  =  short grass reference ET calculated using the  
  Penman-Monteith equation (mm day-1), and 
Kc  =  a crop coefficient (unitless). 

To make irrigation scheduling with the FAO 56 approach 
more accessible, several universities have developed tools to 
help producers implement the method, typically using locally 

Figure 7. Variable rate irrigation prescription map for a 48-ha field in Georgia. Rectangular zones represent discrete areas that receive unique
application rates. Colored areas represent irrigation management zones, and yellow circles show location of soil water sensors. 
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available weather networks (e.g., Martin and Slack, 2005; 
Henggeler et al., 2010; Straatmann et al., 2018; Vellidis et al., 
2016). Equation 3 is used to estimate crop water use and then 
a soil water balance is computed at a daily time step. Water 
inputs are typically from rainfall and irrigation events. In ad-
dition to water removals from crop water use, some irrigation 
schedulers include an estimate of rainfall runoff and percola-
tion of soil water below the crop’s rootzone. Once plant avail-
able water is predicted to be depleted to a predefined 
threshold, irrigation is recommended. Thresholds of 40% to 
50% of plant available soil water are often used for cotton 
(Hunsaker et al. 2005; Farahani et al., 2008). 

Allen et al. (1998) reported Kc estimates for cotton, many 
cereal and other crops grown across the world; however, the 
applicability of those values in computing crop irrigation 
water requirements across soils, climates, and locations was 
found to introduce substantial errors in computed irrigation 
schedules (Howell et al., 2004; Farahani et al., 2008; Farg 
et al., 2012; Irmak et al., 2013; Payero and Irmak, 2013). For 
example, in a lysimetric study with cotton in a Mediterra-
nean region of northern Syria, Farahani et al. (2008) found 
the Allen et al. (1998) tabulated values to be 24% greater 
than what they computed. Therefore, several crop coeffi-
cients have been developed for U.S. cotton by region as dis-
cussed in the follow sections. 

Far West Crop Coefficients 
Taghvaeian et al. (2012) found that tabulated Kc values of 

FAO-56 and those utilized by the U.S. Bureau of Reclamation 
for estimating deliveries to irrigation districts assumed a 
shorter growing season and failed to capture the impacts of a 
heavy preseason irrigation event adopted by local producers 
in recent years in Southern California. In south central Ari-
zona, Hunsaker et al. (2005, 2015) developed an evapotran-
spiration-based soil water balance tool following the FAO-56 
dual crop coefficient method, which used normalized differ-
ence vegetation indices (NDVI) from multispectral remote 
sensing to estimate FAO-56 basal crop coefficients, and dis-
cussed the successes and limitations of this approach for cot-
ton irrigation scheduling. Furthermore, Thorp et al. (2018) 
quantified cotton canopy cover with multispectral data from 
an unmanned aerial system. He then used the data to derive 
basal crop coefficients for FAO-56 cotton water use estima-
tion and demonstrated how the methodology could facilitate 
selection of cultivars with favorable water use characteristics 
in a cotton breeding program. While remote sensing tech-
niques for crop coefficient estimation require further develop-
ment, the Hunsaker et al. (2005) implementation of the FAO-
56 soil water balance model with standard FAO-56 crop coef-
ficients is still a primary tool for irrigation management deci-
sions in cotton research. An example is the Arizona Irrigation 
Scheduling System (AZSCHED, https://cals.arizona.edu/ 
crop/irrigation/azsched/azsched.html) discussed by Martin 
and Slack (2005). 

Southwest Crop Coefficients 
Howell et al. (2004) developed single crop coefficients 

(i.e., where soil evaporation and plant transpiration were 
combined in one coefficient) for upland cotton under dry-
land, deficit, and full irrigation (i.e., meeting full crop water 
requirements) by MESA at Bushland, Texas. The location 

was a semiarid climate with strong regional advection and 
was considered very marginal for cotton production because 
of limited heat units and relatively short growing seasons. 
The crop coefficients were developed from measurements of 
actual crop ET by large weighing lysimeters (Marek et al., 
1988; Howell et al., 1995; Marek et al., 2014), and used the 
ASCE Standardized Penman-Monteith equation for a short 
reference crop (ASCE-EWRI, 2005). Weighing lysimeters 
were also used by Ko et al. (2009) in a semiarid climate in 
southern Texas (Uvalde) to develop Kc values for cotton. 
Their values ranged from 0.2 to 1.5 and tended to be greater 
early and late season relative to those reported by Howell 
et al. (2004). An example of a grower oriented tool to assist 
with irrigation scheduling in the SW is the Texas ET Net-
work (https://texaset.tamu.edu/). 

Midsouth Crop Coefficients 
Anapalli et al. (2019, 2020) quantified ETc from irrigated 

cotton (cv. Delta Pine Land 1522) in a Tunica clay soil, in 
the Lower Mississippi Delta in 2017 and 2018, using eddy 
covariance (EC) technology (fig. 8). In the experiment, a 
sonic 3-D anemometer and an open-path infrared gas ana-
lyzer were used for measuring water flux data in the constant 
flux layer above the cotton canopy. Measured ETc was used 
to quantify Kc for reference crop ET computed from weather 
data (Anapalli et al., 2020). The Kc can be used for develop-
ing a location (soil and weather) specific irrigation schedul-
ing system for cotton. Two-year average Kc values ranged 
from 0.36 to 0.99. Fisher (2012) also developed Kc values 
for cotton in the same region using small weighing lysime-
ters and reported Kc varying between 0.2 and 0.6 during the 
early growth stage and between 1.1 and 1.3 during the peak 
growth stage. The Crop Water Use Application (CWUA) 
from the University of Missouri (http://ag3.agebb.mis-
souri.edu/horizonpoint/cropwater/) and the Arkansas Irriga-
tion Scheduler (www.irrigweb.uaex.edu) are examples of 
ET-based irrigation scheduler in the MS. ET-based irrigation 
scheduling might benefit from a more regional, rather than 
local approach in the MS. The size of the region and similar 
conditions throughout the MS suggest that one system could 

Figure 8. Eddy covariance system installed in a Mississippi cotton field 
to measure net ecosystem exchange of CO2 and water from Anapalli 
et al. (2019). 
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be used by all farmers in the region; however, many funding 
sources are resistant to sharing resources among states, 
thereby inhibiting multi-state collaboration. 

Southeast Crop Coefficients 
Vellidis et al. (2016) developed Kc values using a soil wa-

ter balance approach and accumulated heat units for central 
and southern Georgia (fig. 9). That Kc curve was derived to 
support the SmartIrrigation Cotton App (hereafter referred 
to as Cotton App), which is a recently developed weather-
based irrigation scheduling tool that operates on a 
smartphone platform. It is one of several similar apps in-
cluded in the SmartIrrigation App Suite developed jointly by 
the University of Georgia and the University of Florida 
(www.smartirrigationapps.org). The app can download 
weather data from local weather station networks, incorpo-
rate rainfall data from grower managed rain gages, and inte-
grate data from the national weather service (FRET, 
https://www.weather.gov/cae/fretinfo.html). The Cotton 
App has consistently outperformed calendar-based schedul-
ing methods in yield, irrigation water applied, and ICWP, 
and its performance has been comparable to sensor-based 
scheduling methods (Vellidis et al., 2016). 

Challenges to ET-Based Irrigation Scheduling 
A continuing challenge for scheduling methods that rely 

on a crop coefficient is determining a Kc that is valid for both 
the local environment and the cotton variety grown. Since 
the introduction of biotechnology to cotton varieties in the 
mid-1990s, the numbers of varieties available for farmers 
have increased and they often have different season lengths 
(e.g., Wiggins et al., 2013). The differences in canopy devel-
opment rates and season lengths between varieties can have 
a large impact on the estimated Kc if changes in Kc are esti-
mated from days after planting or growing degree days. An-
other challenge is that publicly available weather data are not 
always appropriate for agricultural purposes due to differing 
values associated with non-agriculturally based siting (e.g., 
airports) that can lead to erroneous calculated ETc rates (Ma-
rek et al., 2010). An additional challenge is accurately esti-
mating effective rainfall, particularly from intense rainfall 

events where a large percentage of the rainfall is lost as field 
runoff. 

SENSOR-BASED TOOLS 
Sensors that measure properties of the soil and of the crop 

have been used for scheduling cotton irrigation for years, 
starting with water-based tensiometers more than 40 years 
ago. Sensor-based tools for monitoring water resources and 
scheduling irrigation range from simple manual hand tools, 
methods with periodic sampling, and automated electronic-
sensing systems for continuous, season-long monitoring. 
While manual methods involving soil probes or augers pro-
vide access to real, tangible conditions in the soil and root 
zone, they require time and effort to visit and sample the 
fields, as well as some experience in interpreting the look 
and feel of the soil to adequately evaluate water conditions 
and determine whether sufficient water is available to the 
crop. The ability to remotely monitor both soil and crop sen-
sors via affordable cellular networks has greatly increased 
cotton grower interest in these tools. 

Soil Sensors 
A popular approach tor irrigation scheduling is to use the 

sensors measuring soil water and apply water when there is 
a soil water deficit that would be anticipated to cause plant 
water stress. Various types of soil water sensing devices 
have been developed and are commercially available. Some 
of these are capable of wirelessly transferring the data col-
lected from their sensors. Neutron probes have been shown 
to be one of the most reliable tools for measuring soil water 
content (Evett et al., 2008), but their use is limited by cost 
and special requirements associated with handling its radio-
active source. Electromagnetic sensors, such as electrical ca-
pacitance and resistance type sensors, and time-domain 
reflectometry (TDR) devices have been developed and 
adopted to measure soil water for irrigation scheduling 
(Fares and Alva, 2000; Seyfried and Murdock, 2001; Dukes 
and Scholberg, 2004; Evett and Parkin, 2005;  Miranda et al., 
2005; Vellidis et al., 2008; Schwartz et al., 2016; O’Shaugh-
nessy and Sui, 2018; Sui et al., 2018). Researchers have 
shown that soil water sensors can effectively be used for ir-
rigation scheduling. However, procedures for proper instal-
lation, calibration, and maintenance of soil water sensing 
devices are critical for the success of the sensor-based irri-
gation scheduling (Yoder et al., 1997; Leib et al., 2003; Evett 
et al., 2006; Sui et al., 2012). 

Researchers have evaluated the use of electronic monitor-
ing systems for irrigation scheduling under a variety of en-
vironmental, cropping, and cultural conditions (Phene et al., 
1989; Jones, 2006; Gutiérrez et al., 2013; Haule and Mi-
chael, 2014; Soulis et al., 2015; Payero et al., 2017; Fisher 
et al., 2018, 2020). Work undertaken explicitly for cotton 
production has also been reported (Bockhold et al., 2001; 
Thomson et al., 2002; Bellamy et al., 2009; Leib et al., 2015; 
O’Shaughnessy et al., 2015; Meeks et al., 2017). Many of 
these efforts have dealt with development of the electronic 
systems, field implementation issues, wireless and cellular 
data transmission, and methods to interpret sensor data and 
develop scheduling strategies. Three example case studies of 
using soil water monitoring (SWM) systems for irrigation 

Figure 9. Crop coefficient (Kc) curve used by the SmartIrrigation Cot-
ton App (Vellidis et al., 2016). Phenological stages are driven by grow-
ing degree days (GDDs, ºC using a based temperature of 15.6 °C) and
shown in red font. 
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scheduling specifically for cotton will be discussed to 
demonstrate the progress that has been made. 

Oklahoma Case Study for SWM Systems 
Sensor-based irrigation scheduling studies at Oklahoma 

State University have been focused on two factors that ap-
pear to contribute to poor adoption rates. The first factor is 
the accuracy and reliability of soil water sensors under field 
conditions. A significant portion of irrigated cotton in Okla-
homa is in areas characterized by greater levels of soil salin-
ity and clay content, which have negative effects on sensor 
accuracy and reliability. An experiment conducted in south-
west Oklahoma showed that under elevated soil electrical 
conductivity (EC of 7.0 dS m-1) and clay content (39%), the 
error of five widely-used soil water sensors ranged from -
0.05 to 0.23 m3 m-3 (Datta et al., 2018). These errors were 
from 1.1 to 20 times larger than the errors of the same sen-
sors under reduced soil EC (1.2 dS m-1) and clay content 
(13%). In the case of one sensor, the data gap was 21% under 
greater salinity and clay, compared to less than 1% under re-
duced salinity and clay content (Datta et al., 2018). These 
findings are consistent with the recommendation of some 
previous literature that site-specific calibrations must be 
conducted to achieve accuracy levels required for imple-
menting effective irrigation scheduling. Site-specific cali-
bration, however, significantly adds to the complexity and 
cost of utilizing soil water sensors. Errors in estimating the 
lower and upper thresholds of soil water for irrigation sched-
uling (wilting point and field capacity) could add to the er-
rors in sensor readings and further impact day-to-day 
irrigation scheduling. 

A second factor that may impact adoption of sensor tech-
nologies is the feasibility of integrating sensors with existing 
on- and off-farm irrigation management regimes. For in-
stance, cotton producers who receive water from an open ca-
nal network on a fixed rotation do not have the flexibility of 
those who pump from private irrigation wells in deciding 
when and how much water to apply. In situations like this, 
investing in sensor technologies may not appear to be justi-

fied. However, there may still be opportunities for use of af-
fordable sensing technologies to improve irrigation manage-
ment under less flexible conditions. In another study at 
Oklahoma State University, the effects of irrigation termina-
tion date on cotton yield and water conservation was evalu-
ated during a three-year period. The irrigation termination 
date can be controlled by producers even if they have no con-
trol over irrigation intervals during the growing season. The 
results showed that a significant amount of water can be 
saved by terminating irrigations earlier and soil water sen-
sors were found to be effective in optimizing the timing of 
irrigation termination. The impact on cotton yield and fiber 
quality was variable, depending on the late-season precipita-
tion (Masasi et al., 2019). 

Mississippi Case Study for SWM Systems 
A practical method for sensor-based irrigation scheduling 

in cotton was developed and used in the Mississippi Delta 
(Sui, 2018). Soil water sensors were installed in a cotton 
field and soil volumetric water content (VWC) was automat-
ically measured by the sensors at a time interval of one hour 
during the cotton growing season. Weights assigned to the 
measurements at depths of 15, 30, and 61 cm were 0.45, 
0.35, and 0.2, respectively, based on the root distribution ob-
served in the soil profile (fig. 10). Irrigation events were trig-
gered when the percentage of plant available water (PAW) 
dropped to approximately 50%. An innovative spring-
mounted antenna allowed in-season cultural practices (Sui, 
2018). 

Tennessee Case Study for SWM Systems 
The Tennessee Cooperative Extension Service began a 

series of irrigation experiments aimed at improving cotton 
yield in the loess hills of West Tennessee, which is near the 
northern limit of cotton production. One of the primary ob-
jectives was to provide research-based recommendations for 
irrigation management tools such as matric potential sensors 
and water balances. Growth stage specific irrigation thresh-
olds were established for both deep silt loam soils (Gwath-
mey et al., 2011; Zhou et al., 2016) and soils with reduced 

 

Figure 10. Sensor-measured soil volumetric water contents at three depths and the weighted average. 
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water holding capacity (Grant et al., 2017a, b; Wiggins et al., 
2014). As expected, the reduced water holding capacity soils 
typically required irrigation earlier. Results from these stud-
ies have been used for irrigation scheduling demonstrations 
on producer fields in cooperation with extension agents and 
crop consultants. Additionally, sensor and water balance ir-
rigation scheduling has also been presented at many work-
shops. The most complete summary of cotton irrigation 
recommendations resides in a University of Tennessee UT-
Extension publication entitled, “The Basics of Cotton Irriga-
tion in Tennessee” (Leib et al., 2018). As of 2019, four Ten-
nessee crop consultants were providing irrigation scheduling 
service to 77 row crop producers on 8,340 ha. 

Starting in 2015, irrigation recommendations were incor-
porated into the Management of Irrigation Systems in Ten-
nessee (MOIST+) spreadsheet that automatically processed 
field specific matric potential and water balance (evapotran-
spiration & rainfall) data in real time using dataloggers 
equipped with cellular modems. The process of interpreting 
sensors and testing MOIST+ with producers has required 
moving beyond clearly defined soil types to address the re-
ality of soil variability found in producers’ fields. Often, sen-
sor stations were placed at multiple locations in a field due 
to soil differences and decisions were made to either irrigate 
the field as a whole or according to several pie-shaped zones 
within the field (Leib et al., 2015). Irrigation zones (areas of 
the field receiving the same rate of water) were delineated 
using the data sources available to producers such as satellite 
imagery, yield maps, electrical conductivity and soil water 
properties from intense soil sampling (Haghverdi et al., 
2016; Haghverdi and Leib, 2018; Haghverdi et al., 2018, 
2019). 

Crop-Based Sensor Approaches 
In addition to inferring crop condition based on soil water 

availability from sensors, direct measures of crop conditions 
have been used. The most widely studied crop-based ap-
proaches that have had on-farm use for irrigation scheduling 
are methods that rely on canopy temperature (Tanner, 1963; 
Wiegand and Namken, 1966; Jackson, 1982; Gardner et al., 
1992a, b). The temperature of the plant canopy is related to 
the consumption of energy since a water-evaporating surface 
is generally cooler than a non-evaporating surface. Thus, the 
canopy temperature of a well-watered crop will, in general, 
be less than the canopy temperature of crop experiencing a 
water deficit. The canopy structure of cotton makes canopy 
temperature monitoring relatively straightforward. Irrigated 
cotton often “closes” its canopy which reduces the contribu-
tion of soil background to canopy temperature scenes. There 
is typically a period of 40 days after planting when the reli-
able measurement of canopy temperature is difficult due to 
the impact of soil background in the field of view of the sen-
sors; however, some correction is possible using spectral in-
dices (Colaizzi et al., 2003). 

A large portion of research to use canopy temperature for 
irrigation scheduling has been conducted on cotton (Wanjura 
et al., 1988, 1990; Colaizzi et al., 2003, 2016; Peters and 
Evett, 2008; O’Shaughnessy and Evett, 2010; O’Shaugh-
nessy et al., 2011, 2015). Several algorithms that use canopy 

temperature have been developed and applied to cotton, in-
cluding the crop water stress index (CWSI; Jackson, 1982), 
water deficit index (WDI; Moran et al., 1994), time-temper-
ature threshold (TTT; Wanjura et al., 1988, 1995), and a var-
iant that combines the CWSI and TTT, termed the integrated 
crop water stress index (iCWSI; O’Shaughnessy et al., 
2015). 

The Crop Water Stress Index (CWSI) Approach 
The CWSI is a means of associating measured canopy 

temperatures with crop water status (Jackson et al., 1981). 
The CWSI approach treats the crop canopy as an evaporating 
surface that consumes water in proportion to its size and en-
vironmental demand. The temperature of the canopy is de-
fined by upper and lower bounds that describe both 
transpiring and non-transpiring conditions. Frequent in-sea-
son comparisons of the crop canopy temperature with the es-
timated temperature of a “well-watered” crop canopy are the 
basis of CWSI approaches (Idso, 1982). Advantages of the 
CWSI method include; a strong basis in physics, simple in-
strumentation, and capability for automation. Weaknesses 
include the need for biological scalers (e.g. canopy re-
sistance) and information on local agronomic factors. A mid-
day CWSI of 0.2 has been used as a threshold to trigger irri-
gation for cotton (Reginato, 1983). 

Temperature-Time Threshold Method 
In the late 1980’s the Temperature-Time Threshold 

method (TTT) for irrigation management by canopy temper-
ature was developed (Upchurch et al., 1996; Wanjura et al., 
2006). The TTT method is also sometimes referred to as the 
BIOTIC (Biologically Identified Optimal Temperature In-
teractive Console) approach. The BIOTIC temperature-
based method is based on the concept that a plant has an op-
timal temperature for metabolism and that timely irrigation 
results in canopy temperatures that are conducive to the 
growth and development of the plant. In use, the BIOTIC 
approach continuously compares canopy temperature to a 
fixed species-specific biologically-based estimate of the op-
timum temperature of the crop. Canopy temperature values 
in excess of this “threshold temperature” are used to assess 
the water status of the crop. When canopy temperatures ex-
ceed the temperature threshold, plant water status may be 
less than optimal. Several methods are available to estimate 
the biological optimum of a given crop species and when an 
irrigation system cannot be triggered immediately when the 
temperature exceeds that threshold, an accumulated time 
above the temperature threshold can be used to trigger irri-
gation (Upchurch et al., 1996; Mahan et al., 2005). A tem-
perature threshold of 28°C is typically used for irrigation 
scheduling in cotton and an accumulated time threshold of 4 
hours was found to decrease irrigation without yield loss 
when compared to time thresholds of 2 and 2.5 h (Wanjura 
et al., 1995). 

The Future of Canopy Temperature-Based Irrigation 
Management. 

While both the CWSI or BIOTIC irrigation approaches 
show potential to improve irrigation management, they are 
not currently widely used in production agriculture. Given 
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that canopy temperature measurement approaches have been 
well-researched, their lack of adoption in agricultural pro-
duction is partly due to the lack of affordable and commer-
cially-available systems. Based on several years of 
experience, field IRT systems would ideally be as follows: 
1) rugged, 2) capable of near continuous monitoring, 3) ca-
pable of capturing >90% of data during a season, 4) con-
nected wirelessly for data transmission, and 5) capable of a 
season of data collection without battery changes. It is antic-
ipated that precision in irrigation scheduling will be im-
proved when both canopy and soil water sensors can be 
integration with crop and weather forecast models (Hol-
loway-Phillips et al., 2008), and it is still to be determined if 
such an integration could be made to provide a return on in-
vestment to a cotton farmer. 

Obstacles to Adoption of Sensor-Based Irrigation 
Methods 

A rough comparison of U.S. cotton water and yield values 
to what is currently achieved in other cotton production set-
tings suggests that there is still opportunity for improvement. 
Current data suggest that average CWP in U.S. cotton is ap-
proximately 0.23 kg m-3 (Zwart and Bastiaanssen, 2004). 
Recent discussions with representatives of an Australian ir-
rigation management company (J Mahan, USDA-ARS, Lub-
bock, Tex., personal communication) suggest that CWP in 

well-watered Australian production, aided by soil water sen-
sors, is generally in the range from 0.25 to 0.35 kg m-3. While 
there are many differences between the U.S. and AU produc-
tion systems, these numbers suggest that there is still room 
for improvement in U.S. cotton irrigation management. In-
creased use of sensor-based irrigation methods in U.S. cot-
ton may help to improve the water use and yield 
relationships. 

The development of sensors capable of monitoring soil 
and crop water status in near-real time over the course of a 
growing season has expanded over the past few decades, of-
fering the promise of improved irrigation management. Sen-
sor-based irrigation scheduling adoption is still small based 
on data from USDA irrigation management survey data as 
shown in figure 11 (USDC, 1990; USDA-NASS, 
1994;1999; 2004; 2010; 2014; 2019). Clearly the national 
data on approximately 81,000 ha of irrigated land includes a 
wide range of crops and regions but it is apparent that the 
vast majority of irrigation decisions are still made on the ba-
sis of visual “crop conditions” and the “feel of the soil”. 
These two methods have been used since the advent of crop 
irrigation. The total irrigation management that involves sci-
ence-based decisions (e.g., sensors and other technologies) 
remains small at approximately 17.5% (i.e., soil probes for 
9%, plant sensors for 1%, and ET for 7%). 

 

Figure 11. Use of irrigation scheduling methods over time (USDC, 1990; USDA-NASS, 1994;1999; 2004; 2010; 2014; 2019). 

0

10

20

30

40

50

60

70

80

90

100

1988 2003 2008 2013 2018

P
e
rc
e
n
t 
U
si
n
g 
Sc
h
e
d
u
lin

g 
M
et
h
o
d

Year

Crop condition Soil feel Soil probe

Plant sensor Consultant ET

Delivery schedule User calendar Simulation model

Neighbor Other



 

36(4): 457-478  469 

Given the numerous studies that have found ET-based 
and sensor-based irrigation scheduling methods are accurate, 
there have been other factors limiting the adoption of these 
technologies. In some cases, it is lack of time for a farm man-
ager to digest data from sensors deployed in multiple fields 
even if delivered to their office wirelessly (Midgley, 2019). 
Other factors include the costs of the sensors and lack of 
studies that document return on investment; and the fact that 
the timeliness of other farm operations (e.g., pest control) 
take precedence over irrigation events (Evans et al., 2013). 
In light of the lagging adoption, the focus needs to shift from 
the accuracies of the various methods to how accurate irri-
gation scheduling can increase yield and return on invest-
ment. 

CROP SIMULATION MODELING TO IMPROVE IRRIGATION 

DECISIONS 
Crop growth models have been increasingly used to sug-

gest efficient irrigation management strategies for increasing 
CWP in cotton production systems. After a thorough evalua-
tion based on measured data, crop models serve as useful tools 
for simulating numerous hypothetical irrigation experiments 
inexpensively and quickly and assist in on-farm irrigation de-
cision making. In a study at Halfway in the Texas High Plains 
(THP) region, Ale et al. (2020) used the CROPGRO-Cotton 
module in the Decision Support System Agrotechnology 
Transfer (DSSAT) Cropping System Model (CSM) to suggest 
optimum irrigation termination periods for cotton in dry, nor-
mal, and wet years.. While early irrigation termination causes 
yield loss, late termination results in wastage of irrigation wa-
ter without any yield increase, delayed harvest, and increased 
pest management costs. Long-term simulations (1978-2016) 
with multiple irrigation termination dates found that the first 
or second week of September was ideal for terminating irriga-
tion for cotton with full and deficit irrigation in normal years. 
Ideal irrigation termination periods in wet or dry years were 
found to be a week earlier or later than those in normal years, 
respectively. Vories et al. (2011) also evaluated the optimal 
time for irrigation termination in cotton using data collected 
across the MS and found that for locations north of 34°N lati-
tude, the amount of time accumulated after the plant had five 
nodes after white flower has potential to define when to end 
the irrigation season. 

In another THP cotton modeling study, Himanshu et al. 
(2019) suggested efficient crop-growth-stage-based irriga-
tion strategies for the Southern High Plains region under 
nine different climate variability classes and eight different 
levels of irrigation water availability using the DSSAT-
CSM-CROPGRO-Cotton model. They found the peak 
bloom growth stage to be the most sensitive stage to water 
stress, and imposing water deficit during this stage resulted 
in the smallest ICWP and seed cotton yield. They have also 
found that imposing water deficit in the initial or final 
growth stages had little effect on seed cotton yield. 

Crop growth models are also very useful for assessing the 
impacts of projected changes in climate on seed cotton yield 
and irrigation water use, and thereby assist in developing ef-
ficient crop and irrigation management strategies under pro-
jected future climate scenarios. They are also useful for 
identifying potential adaptation strategies and cultivar traits 

that can maintain seed cotton yields while efficiently utiliz-
ing irrigation water. Adhikari et al. (2016) simulated the im-
pacts of climate change on cotton irrigation water use and 
yield in the THP, using the future climate data projected by 
three Global Climate Models and found yields would be sus-
tained or increased due to forecasted increased CO2. How-
ever, assuming the irrigation water availability would 
decrease by 40% in 2050 as predicted for the region, cotton 
yields would decrease a similar amount (37% to 39%). 

The DSSAT-CSM CROPGRO-Cotton model was also 
evaluated using data from five cotton growing seasons at 
Maricopa, Arizona (Thorp et al., 2014) and was developed 
as an in-season decision tool for irrigation scheduling during 
the 2014 and 2015 Arizona cotton growing seasons (Thorp 
et al., 2017). These experiences, in part, led DeJonge and 
Thorp (2017) to incorporate a new evapotranspiration option 
in the DSSAT-CSM, based on current advances in standard-
ized evapotranspiration methods, including the ASCE 
Standardized Reference Evapotranspiration Equation (Wal-
ter et al., 2005) combined with the FAO-56 dual crop coef-
ficient procedure (Allen et al., 1998). With the updated 
evapotranspiration methods, the CSM-CROPGRO-Cotton 
model could match or exceed the accuracy and capability of 
an FAO-56 spreadsheet tool for cotton water use quantifica-
tion and irrigation scheduling (Thorp et al., 2017). A similar 
standardized evapotranspiration option was added to the 
Cotton2K model, which led to significantly better evapo-
transpiration simulations(Thorp et al., 2019). 

After updating the evapotranspiration methods in CSM-
CROPGRO-Cotton, the model was used to schedule irriga-
tion for cotton field studies with different irrigation rates and 
timings during the 2016, 2017, and 2018 growing seasons in 
Maricopa, Arizona (Thorp et al., 2020). While the studies 
demonstrated that model recommendations were reasonable 
for achieving greater yield with adequate water use effi-
ciency, results also suggested that opportunities exist to im-
prove cotton production outcomes by fine-tuning irrigation 
recommendations from this model. CSM-CROPGRO-Cot-
ton was also used to evaluate the long-term effects of site-
specific irrigation management on Arizona cotton produc-
tion variables (Thorp, 2020). Cotton yield, irrigation require-
ments, water use efficiency, and marginal net return with 
site-specific irrigation were often not different from that for 
conventional uniform irrigation (p > 0.05), primarily be-
cause the soil water holding capacities for most soils at the 
study site were enough to sustain cotton production at full 
potential with weekly uniform irrigation management. The 
findings from this simulation study and a related field study 
(Thorp et al., 2020) suggested that future irrigation manage-
ment research for Arizona cotton should focus on improving 
methodologies for temporal irrigation scheduling (using cot-
ton simulation models) rather than methodologies for spatial 
irrigation applications. 

AGRONOMIC AND GENETIC ADVANCES 
It is important to acknowledge that independent of ad-

vances in irrigation technologies, cotton has become more 
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productive due to improved agronomic management and ge-
netic improvements. Identification of key growth stages 
where cotton is less drought tolerant has allowed better use 
of water when well capacities are limited. 

GROWTH STAGE RESPONSE TO IRRIGATION 
Optimizing irrigation strategies for specific fields, grow-

ing conditions, and application methods can significantly 
improve CWP. In the SW, early season evaporation losses 
can be greater (Lamm et al., 2019) and irrigation capacities 
are significantly less than cotton water requirements (Bor-
dovsky et al., 2015). The prevailing strategy, carried forward 
from surface irrigation days, has been to “bank” irrigation 
water in the soil profile at preplant and during the early 
growing season to reduce cotton water stress later in the sea-
son. Irrigation timing experiments using the LEPA method 
have shown that eliminating irrigation during the period 
from germination to cumulative growing degree day of 550 
(°C, base 15.6 °C) used 20% less seasonal irrigation with 
less than 2% yield loss compared to corresponding treat-
ments irrigated at capacities of 3.2 and 6.4 mm d-1 through-
out the typical irrigation period (Bordovsky et al., 2015). 
This was attributed to reduced early season evaporation 
losses and reduced early season plant growth that could not 
be supported with available irrigation late in the season. 
Meeks et al. (2017) also found that cotton yields were less 
sensitive to water stress prior to flower bloom in a humid 
environment. However, this does not mean cotton is com-
pletely insensitive to early season water stress. For example, 
Vories et al. (2007) showed that delaying the first irrigation 
and allowing early season stress can result in a yield loss. A 
similar SDI timing experiment (Bordovsky, 2020) included 
preplant irrigations of approximately 50 and 100 mm and 
early season irrigation capacities of 0.0, 2.5, and 5.1 mm d-1 
resulting in six treatments plus a “preplant only” check. 
Based on the 5-year study, the greatest return on investment 
was in treatments with no or limited preplant and early sea-
son irrigations (fig. 12). 

GENETIC GAINS 
Increases to cotton’s genetic yield potential has also been 

an important factor in cotton’s increased CWP over the last 
40 years. As indicated by equation 1, an increase in yield 
without an increase in water use increases CWP. Liu et al. 
(2013) estimated the rate of lint yield increase in Australia at 
7.0 kg ha-1 yr-1 from 1980 to 1994 and 18.3 kg ha-1 yr-1 from 
1995 to 2009. In their analysis, productivity increases were 
due to genetics (48%), management (28%) and genetics × 
management (24%). For U.S. cotton, Campbell et al. (2014) 
showed that on-farm lint yields increased at a rate of 13.3 kg 
ha-1 yr-1 from 1981 to 2012 (fig. 13) and at a much greater 
rate from 1996 to 2012 (22.4 kg ha-1 yr-1) that corresponded 
with the widespread adoption of transgenic trait technologies 
and production systems. The field level data were closely 
mirrored by results from regional cotton variety trials con-
ducted under more rigid protocols where Campbell et al. 
(2014) demonstrated significant genetic gains at a rate of 
21.6 kg ha-1 yr-1 from 1996 to 2012. Collectively, these 
studies demonstrate that recent gains (1996 to present) in 
productivity increases are occurring rapidly in large portion 

to private and public sector investments in genetic 
improvement. Recent productivity increases also provide 
evidence that the yield stagnation observed from 1970 to 
1985 (Meredith and Bridge, 1984) has been addressed. 
Further, these recent estimates of genetic gain suggest that a 
yield plateau, which was feared in the 1980s, has not been 
reached thus far and future genetic gains should continue to 
increase on-farm productivity. 

ADDITIONAL AGRONOMIC FACTORS IMPACTING 

COTTON’S CWP 
Improved agronomic practices have also led to cotton’s im-

prove CWP over the last forty years, including improved insect 
pest control. Many cotton pests damage fruiting structures, de-
creasing yield without altering or in some cases, increasing wa-
ter use (Holman and Oosterhuis, 1999). An important 
contributor to improved cotton productivity from the 1980s to 
early 2000s was the impact of the boll weevil eradication pro-
gram; by 2002 most states had eliminated the boll weevil from 
their borders (Hardee and Harris, 2003) and only a small area 
of southern Texas is currently impacted by the boll weevil. 
Transgenic technologies have improved control of the boll-
worm and the adoption of integrated pest management has re-
duced damage from arthropods (Luttrell et al., 2015). 

Other aspects of agronomic management have improved 
with 80% of U.S. cotton producers reporting the use of soil 
sampling for fertilizer management in 2015 (slight increase 
from 75% in 2008) and 46% using grid-based soil sampling 
for site specific management in 2015 (Daystar et al., 2017). 
Overall, use of precision technologies (inclusive of auto-
steer, yield monitors, and grid sampling) increased from 
60% in 2008 to 84% in 2015 (Daystar et al., 2017). In 1990, 
only 13% of U.S. cotton area were managed using conserva-
tion tillage practices (CTIC, 2020) compared to estimated 
65% in 2015 (Daystar et al., 2017). Based on an analysis by 
Morison et al. (2008), it can be inferred that all of these ag-
ronomic management improvements have been partly re-
sponsible for cotton’s increased CWP. 

 

Figure 12. Irrigation water values of preplant and vegetative period ir-
rigation timing treatments using subsurface drip irrigation at Texas
A&M AgriLife Research, Halfway, Tex., 2014-2018 (Bordovsky, 2020).
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FUTURE STRATEGIES TO FURTHER 

INCREASE CWP 
The American Cotton Producers of the National Cotton 

Council have set a 2025 goal to increase ICWP 18% when 
compared to 0.21 kg m-3 in 2015 (NCC, 2018). Figure 14 
shows that goal is in line with historic trends and as outlined 
in this article. Many advances have contributed to that trend, 

and technological advances and grower adoption of those ad-
vances must continue to meet the stated goal. Harmel et al. 
(2020) outlined several actions that are needed to improve 
global water security, and those that could be directly ap-
plied to cotton are listed in table 2. 

Additional opportunities for improved cotton CWP have 
also been identified from the studies reviewed in this  article. 
Whenever surface irrigation systems are used, computer-
aided design for both basin and furrow irrigation is highly 
recommended. There needs to be an increased use of flow 
meters and other flow measurement devices to ensure the 
water a farmer assumes is applied to the field is what is de-
livered by the irrigation system. The lack of VRI adoption 
for center pivots is partly due to lack of commercially avail-
able tools to manage irrigation zones. Irrigation system man-
ufacturers are adding more tools to their systems that should 
enable a great number of farmers to adopt VRI technology. 
It should be noted that Thorp et al. (2020) found VRI will 
not always be a necessary technology. Such a statement 
should extend to all water delivery methods, as the ideal 
method will vary based on water source (e.g., canal versus 
well), soil conditions, climate, and economic benefits. The 
increase of new irrigation systems in the SW demonstrates 
cotton growers will adopt new technologies when there are 
clear economic benefits. There have been examples of part-
nerships with the USDA-NRCS to cost share improvements 
for both irrigation systems and management tools and such 
programs should be continued and expanded in the future. 

 

Figure 13. Farm level lint yield versus time (Campbell et al., 2014). 

Figure 14. Trends in U.S. ICWP vs. time based on Field to Market
(2016) data and the 2025 goal for yield by the American Cotton Pro-
ducers of the National Cotton Council (NCC, 2018). 
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There are many options for evapotranspiration-based irri-

gation scheduling tools, and many are available specific to 
conditions and data available on a state-by-state basis. Ef-
forts should continue to improve the accuracy of these tools 
and increase their ease of use. Wireless data systems are in-
creasing the adoption of soil water sensors and continued ef-
forts are needed to educate growers on their use. Canopy 
temperature approaches particularly in the FW and SW, 
should be reevaluated as new and more affordable sensors 
become available. The ability of crop simulation models to 
accurately predict cotton yield responses to irrigation sched-
ules should continue to be used to evaluate irrigation strate-
gies across U.S. cotton regions using long-term weather 
records. Work to find the most effective methods to combine 
sensor-based data with simulation models to automate con-
trol of irrigation systems should continue. 

CONCLUSIONS 
CWP of U.S. Cotton has increased considerably during 

last 40 years. Several factors contributed to this increase, that 
often varied by region. Across all regions, improved irriga-
tion delivery systems increased application efficiency and 
reduced irrigation water use. Improved irrigation scheduling 
has also resulted in increased CWP particularly with a num-
ber of evapotranspiration-based irrigation schedulers that 
have been made widely available across the U.S. The use of 
soil water sensors for irrigation scheduling is increasing, as 
affordable wireless data delivery is making the sensor data 
easily available to growers. An increase in cotton yields 
without increased water use can also be attributed to im-
proved cotton genetics and overall improved agronomic 
management tools. An improved understanding of cotton 
physiological responses to water stress has also resulted in a 
knowledge of the critical growth stages to prevent water 
stress when the irrigation water supply is limited, and it has 
led to improved cotton growth simulation models to allow 
accurate simulation of different irrigation strategies. 

Given declining water resources and increased climate 
variability, the increase in CWP must continue. On-farm 
storage of rainfall runoff and tail water should be increased 
wherever possible, and the work to consider shallow ground 

water recharge to expand water storage capacity without sac-
rificing land area needs to continue. Where center pivots are 
in use, farmers should give serious consideration to adding 
variable rate control systems when there is considerable var-
iation in soil water holding capacity, topography, or both in 
their fields. The increased use of sensors for real-time feed-
back should also continue, and there may be a time in the 
near future where we need to reevaluate the use of canopy 
temperature for irrigation management as the costs of the 
hardware decline and new ways to deploy thermal sensors 
are devised. Ultimately, integrating sensor-based data, mod-
els, and weather forecasts will lead to very robust irrigation 
scheduling decisions. There are also indications that genetic 
gains for cotton will continue, and gene editing could bring 
additional improvements in cotton productivity without a 
significant increase in any inputs, including water. 
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