

PME-3210 - Mecânica dos Sólidos I

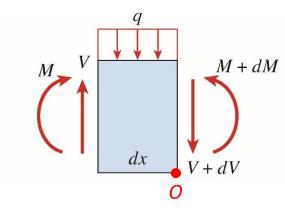
Aula #18

Prof. Dr. Clóvis de Arruda Martins

06/06/23

4.4 Relações entre cargas, forças cortantes e momentos fletores

a) Carga distribuída



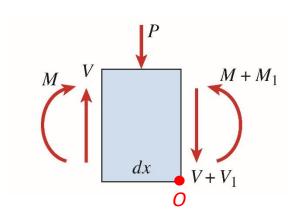
$$\Sigma F_v = 0 \implies V - q dx - (V + dV) = 0$$

$$\Rightarrow \frac{dV}{dx} = -q$$

$$\Sigma M_O = 0 \implies -M - q dx \frac{dx}{2} - V dx + M + dM = 0$$

$$\Rightarrow \frac{dM}{dx} = V$$

b) Carga concentrada:



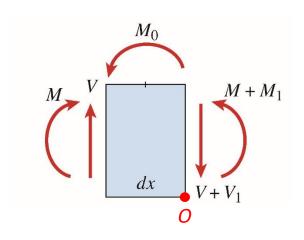
$$\Sigma F_v = 0 \implies V - P - (V + V_1) = 0$$
$$\Rightarrow V_1 = -P$$

$$\Sigma M_{O} = 0 \Rightarrow -M + P \frac{dx}{2} - V dx + (M + M_{1}) = 0$$

$$\Rightarrow M_{1} = -P \frac{dx}{2} + V dx$$

$$dx \to 0 \Rightarrow M_{1} = 0$$

c) Momento:



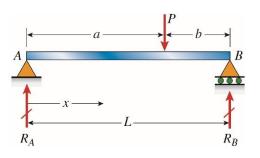
$$\Sigma F_v = 0 \implies \mathbf{V} - (\mathbf{V} + V_1) = 0$$
$$\Rightarrow V_1 = 0$$

$$\Sigma M_O = 0 \implies -M + M_0 - V dx + M + M_1 = 0$$

$$\Rightarrow M_1 = -M_0 + V dx$$

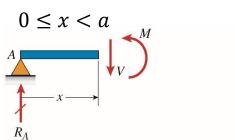
$$dx \to 0 \implies M_1 = -M_0$$

4.5 Diagramas de força cortante e momento fletor



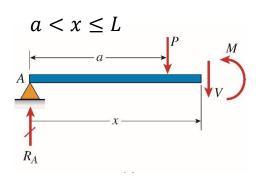
$$\Sigma F_v = 0 \quad \Rightarrow R_A + R_B - P = 0$$

$$\Sigma M_B = 0 \quad \Rightarrow -R_A \ L + Pb = 0 \quad \Rightarrow R_A = \frac{Pb}{L} \quad \Rightarrow R_B = \frac{Pa}{L}$$



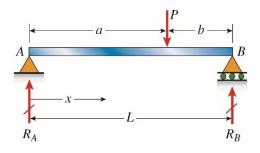
$$\Sigma F_v = 0 \quad \Rightarrow V = R_A = \frac{Pb}{L}$$

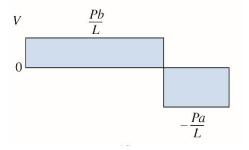
$$\Sigma M_A = 0 \quad \Rightarrow M - Vx = 0 \Rightarrow M = \frac{Pbx}{L}$$

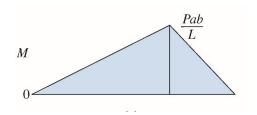


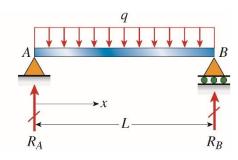
$$\Sigma F_v = 0 \quad \Rightarrow V = R_A - P \Rightarrow V = -\frac{Pa}{L}$$

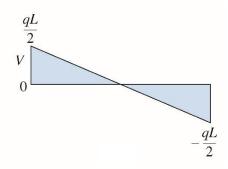
$$\Sigma M_A = 0 \quad \Rightarrow M - Vx - Pa = 0 \Rightarrow M = \frac{Pa}{L}(L - x)$$

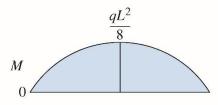




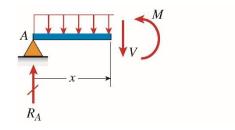








$$R_A = R_B = \frac{qL}{2}$$



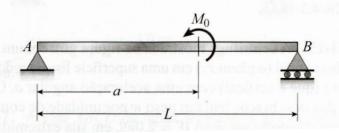
$$\Sigma F_v = 0 \implies V = R_A - qx$$

$$\Rightarrow V = \frac{qL}{2} - qx$$

$$\Sigma M_A = 0 \Rightarrow M - Vx - qx \frac{x}{2} = 0$$
$$\Rightarrow M = \frac{qLx}{2} - \frac{qx^2}{2}$$

4.5-2 Uma viga simples AB está submetida a um momento M_0 no sentido anti-horário atuando a uma distância a do apoio esquerdo (veja a figura).

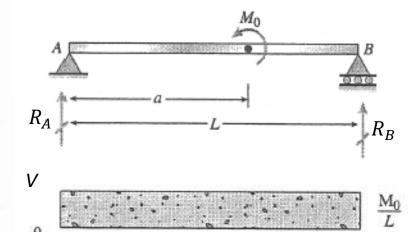
Desenhe os diagramas de momento fletor e de força cortante para essa viga.



$$\Sigma F_y = 0 \implies R_A + R_B = 0$$

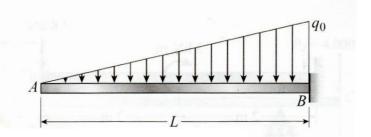
$$\Sigma M_B = 0 \Rightarrow -R_A L + M_0 = 0$$

$$\Rightarrow R_A = \frac{M_0}{L} \Rightarrow R_B = -\frac{M_0}{L}$$

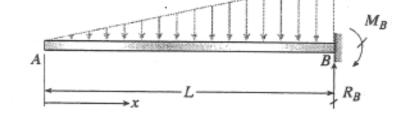


$$\begin{array}{c|c}
M \\
0 \\
-M_0(1-\frac{a}{L})
\end{array}$$

4.5-10 Desenhe os diagramas de momento fletor e de força cortante para a viga AB, com uma extremidade engastada e a outra livre, submetida a um carregamento linearmente variável de intensidade máxima q_0 (veja a figura).

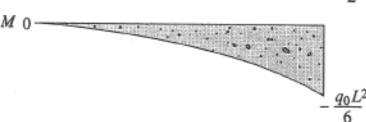


$$q(x) = q_0 \frac{x}{L}$$

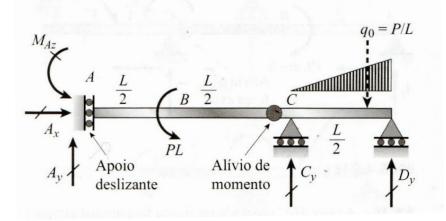


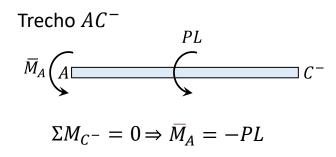
$$V(x) = -q_0 \frac{x^2}{2L}$$

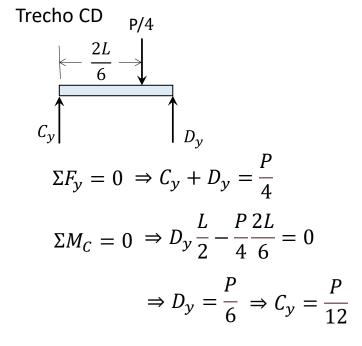
$$M(x) = -q_0 \frac{x^3}{6L}$$

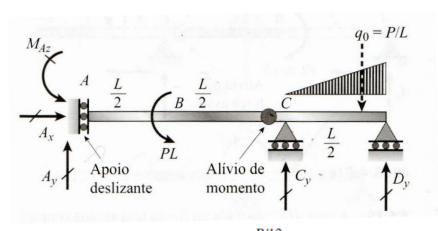


4.5.24 As vigas ABC e CD são sustentadas em A, C e D e unidas por uma articulação (ou *alívio de momento*) logo à esquerda de C. O apoio em A é um apoio deslizante (logo, a reação é $A_y = 0$ para o carregamento ilustrado abaixo). Encontre todas as reações de apoio, depois trace os diagramas de momento (M) e de força cortante (V). *Identifique* os valores críticos de V e M e também a *distância* dos pontos em que V e/ou M são zero.







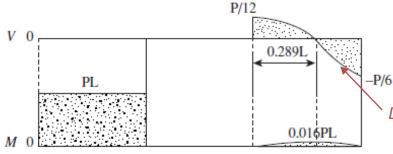


Trecho CD

$$q(x) = q_0 2 \frac{x}{L} = 2P \frac{x}{L^2}$$

$$\Rightarrow V(x) = \frac{P}{12} - P\left(\frac{x}{L}\right)^2$$

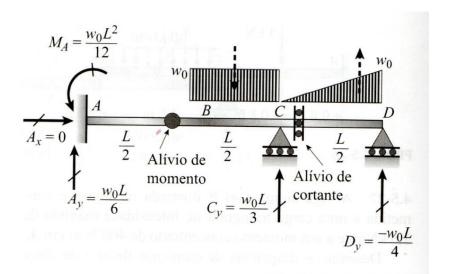
$$\Rightarrow M(x) = \frac{Px}{12} - \frac{Px^3}{3L^2}$$



Deveria ser uma curva do 2º grau

4.5-34 A viga composta a seguir tem um *alívio de momento* interno logo à esquerda de B e um *alívio de cortanțe* logo à direita de C. As reações foram calculadas em A, C e D e são exibidas na figura.

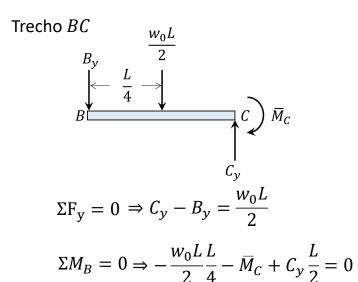
Primeiro, confirme as expressões de reação usando a estática e, então, trace os diagramas de momento (M) e de força cortante (V). *Identifique* todos os valores críticos de V e M e também a *distância* dos pontos em que V e/ou M é zero.

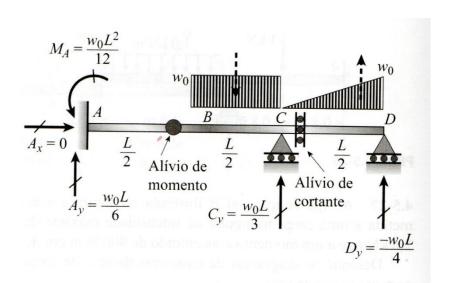


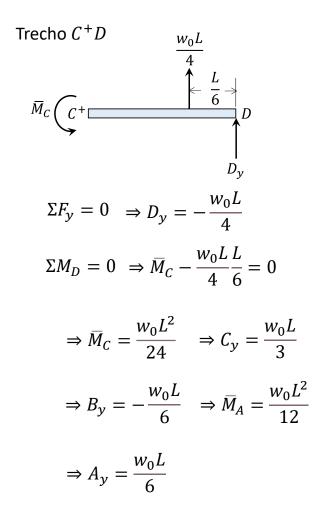
Trecho AB

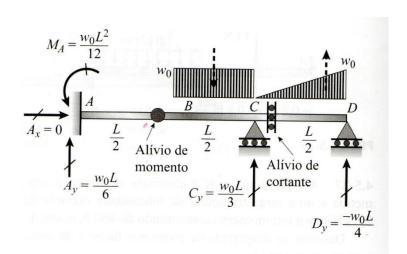
$$\Sigma F_y = 0 \Rightarrow A_y + B_y = 0$$

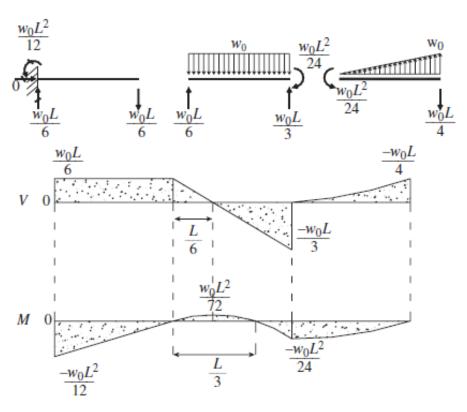
$$\Sigma M_A = 0 \Rightarrow \overline{M}_A + B_y \frac{L}{2} = 0$$











Referência:

Gere, J.M., Goodno, B.J. Mecânica dos Materiais – Tradução da 7ª edição norteamericana. Cengage Learning, 2010, 860p, Capítulo 4.