

A Primer
for

Model-Based
Systems Engineering

2nd Edition

David Long
and

 Zane Scott

Copyright © 2011 Vitech Corporation. All rights reserved.

ISBN 978-1-105-58810-5 (paperback edition)

Permission to reproduce and use this document or parts thereof and
to prepare derivative works from this document is granted, provided
that both attribution to Vitech Corporation and this copyright notice
are included with all reproductions and derivative works.

Product names mentioned herein are used for identification purposes
only, and may be trademarks of their respective companies.

Publication Date: October 2011

DEDICATION

We dedicate this edition of the Vitech MBSE Primer to the

memory of our friend and mentor, Jim Long. He blazed the

trail in this discipline from his days as a TRW engineer to his

years as our Chief Methodologist. His stories of his many

experiences along the way formed a light bright enough to

illuminate the path forward for us and the many others whose

lives he touched. He always encouraged us to be more than

we thought possible. In a letter to Robert Hooke, Isaac

Newton wrote, “If I have seen further it is only by standing on

the shoulders of giants.” Jim is surely the giant on whose

shoulders we have stood to see the way forward. This is for

him.

Vitech Corporation Research and Education Council

THIS PAGE INTENTIONALLY BLANK

CONTENTS

INTRODUCTION .. i

THE PROBLEM: A GEOSPATIAL LIBRARY .. v

WHAT IS A SYSTEM? .. 1

SYSTEMS THINKING .. 4

APPLYING SYSTEMS THINKING TO SYSTEMS DESIGN ... 7

WHAT IS SYSTEMS ENGINEERING? ... 11

MULTIDISCIPLINARY APPROACH ... 13

PROBLEM CLASSES ... 13

THE DESIGN SPACE: THREE SYSTEMS ... 16

THE DESIGN SPACE: BOUNDARIES... 20

THE PROCESS .. 21

DOMAINS ... 24

COMMUNICATION .. 29

WHAT IS A MODEL? ... 31

FOUR ELEMENTS OF A MODEL ... 32

CHARACTERISTICS OF A MODEL .. 33

LANGUAGE: THE SYSTEMS MODEL IS LANGUAGE-BASED 34

LANGUAGE OF BEHAVIOR .. 39

MANAGING COMPLEXITY WITH LANGUAGE .. 42

STRUCTURE: THE MODEL EXPRESSES SYSTEM RELATIONSHIPS 44

ARGUMENT: THE MODEL IS USED TO “PROVE” THE CONCEPT OF THE DESIGN ... 53

PRESENTATION: THE MODEL MUST BE “VIEWABLE” 54

WHAT IS MODEL-BASED SYSTEMS ENGINEERING? 65

REQUIREMENTS FOR A SYSTEMS ENGINEERING PROCESS 68

MBSE MODEL AND SYSTEM DEFINITION LANGUAGE 74

DEVELOPING LAYER 1 OF OUR SOLUTION... 76

PROCEEDING WITH LAYER 2 ... 85

ARCHITECTURE DESIGN AT LAYER N .. 95

VERIFICATION AND VALIDATION ... 97

SUMMARY .. 103

AFTERWORD ... 105

AUTHORS .. 107

THIS PAGE INTENTIONALLY BLANK

A Primer for Model-Based Systems Engineering

i

INTRODUCTION

This is the 2nd edition of Vitech’s model-based systems

engineering primer. In this second treatment of the subject,

we have covered the same subject matter as before but

augmented this time with what we have learned since

releasing the 1st edition. We strive to be a “learning

organization” and to leverage that learning for the benefit of

our customers and community. With this edition we hope to

carry that principle forward.

There are notable differences in this edition. First, we have

reorganized the material. Instead of the topical organization of

the 1st edition, we have approached the description of model-

based systems engineering (MBSE) from a “building blocks”

perspective suggested by its name. We ask first “What Is a

System?” From there we tackle “What Is Systems

Engineering?” Then we discuss “What Is a Model?” and finally

arrive at the question “What Is Model-Based Systems

Engineering?” We hope that this building approach will make

it easier to put the concepts into a logical framework for

understanding and use.

We have also tied the concept discussions more closely to

practical illustrations. We have largely drawn these from the

example system design included with this primer. This has

been done in response to many helpful suggestions from our

readers, and we think it makes the concepts much clearer and

easily understood.

One of the most common flaws in any undertaking is a

departure from the fundamental principles of the disciplines

involved in the process. This can be due to inattention bred by

familiarity or a failure to recognize and reinforce “the basics.”

Whether the enterprise is a football game or a systems design

A Primer for Model-Based Systems Engineering

ii

project, the fundamentals of “blocking and tackling” are

critical to success. Absent or poorly executed, they can doom

the venture. In the case of a floundering effort, they are the

key to getting back on track.

The importance of knowing and executing the basics is the

driving force behind this primer. It is the reason for not

beginning with a collection of essays on more advanced topics.

Revisiting the “blocking and tackling” aspects of MBSE is the

foundation of our effort to advance the cause of sound

systems design.

This primer addresses the basic concepts of model-based

systems engineering. It covers the Model, Language, Behavior,

Process, Architecture, and Verification and Validation. It is a

call to consider the foundational principles behind those

concepts. It is not designed to present novel insights into

MBSE so much as to provide a guided tour of the touchstones

of systems design. It is a guide to the new MBSE acolyte and a

reminder to the experienced practitioner.

Why such a basic approach? Without this grounding, it can

become easy to lose the sense of relationship between

techniques and the design itself. Reading and pondering the

sections on Models and Language bring into focus the

difference between representations of the model and the

model itself. A map may be an extensive, informative, and

important representation of the underlying terrain, but it is

simply that—a representation. Likewise, a set of diagrams may

be useful, clear, and detailed, but they are not the model of

the system itself. Without returning to the concepts of model,

language, process, and behavior, we can easily become

mistakenly convinced that the process of drafting a “full set”

of representations is the same thing as constructing a model.

It is through understanding the basics that we understand the

distinctions.

A Primer for Model-Based Systems Engineering

iii

In other ways as well, the failure to be aware and alert to the

basic principles of MBSE can hinder the integrity of a system-

design effort. Just as a football team returns again and again

to their roots in basic skills, we can all profit from

reacquainting ourselves with these basic principles.

This primer is offered to the end that it will function as a call

back to the basic concepts of our discipline. It lays the

groundwork for improvements and enhancements already

being planned. As it stands, it is a look at the foundational

concepts of MBSE designed to benefit the newcomer and

experienced practitioner alike.

Finally, for whom is this primer intended? Of course the

obvious answer is that it is intended to be an introduction to

these concepts for those who may be new to the world of

model-based systems engineering. It is written in a way that

can be understood by any intelligent and curious reader—

even if that reader is not an engineer. Project managers,

acquisitions professionals, and business-process consultants

can all use this primer to guide them into the MBSE concepts

in an organized way.

In addition, this primer is intended to provide an organized

presentation of these concepts for the systems engineering

practitioner who may need a reference framework for them.

Often we become familiar with the concepts we use in the

way that we customarily use them. This is as true in the

systems engineering discipline as in any other. Like a gradually

fragmenting hard drive, our thinking becomes

compartmentalized in ways that reflect how much and when

we use the concepts we have learned over time.

With this primer we hope to provide the seasoned practitioner

a framework in which to refresh the concepts and see the

relationships. Any experienced systems engineer can take

A Primer for Model-Based Systems Engineering

iv

these and expand them with additional detail and application

anecdotes. It is our hope that this basic discussion can provide

a “rack” in which to place that experience and, thereby, make

it more useful in practice.

It is our hope that you find this primer valuable. We welcome

your comments and suggestions about improving it. Much of

what we have learned about how it should be organized and

presented has come from thoughtful contributions from the

readers of the 1st edition.

Vitech Corporation

October 2011

A Primer for Model-Based Systems Engineering

v

THE PROBLEM: A GEOSPATIAL

LIBRARY

Throughout this primer, we will consider examples drawn

from the following sample system design problem. In accord

with our ultimate destination, a layered approach to model-

based systems engineering (MBSE), we will begin our

description of the system at a very high level.

In this example, we present the need for the system as a

discrete design problem. The underlying need is for a system

that will allow a set of image collectors (in our case, satellites)

to collect images for a set of customers and provide those

images to the customers. This high-level system description

could be represented as follows:

This drawing depicts the customer making a request of the

management system for an image to be produced by the

collector. The management system tasks the collector to

produce the image, the collector gathers it and sends it back

A Primer for Model-Based Systems Engineering

vi

to the management system, whereupon it is provided back to

the customer. The customer, the management system, and

the collector are all shown separately.

In this problem, the system to be designed is the management

system. It will interface with the customer and the collector,

but the design and function of those systems are outside the

scope of the problem. They simply impose conditions which

their respective interfaces must meet.

It is obvious that the customer in this system must be able to

make a request (place an order) for an image. The collector

network, however, is a sensitive set of government satellites.

The images produced can’t be distributed to just anyone who

decides to request them. A customer qualification process is

needed to certify the eligibility to make requests.

These considerations are initially presented to the design

team in a concept of operations (CONOPS) document. The

system documentation is later expanded to include a source

document which incorporates an engineering standards

document by reference.

As the designers further explore the capability to accept

customer requests, it becomes clear that customers need to

be able to place orders in person, on the phone, by hardcopies

delivered by messengers, by fax, and over the web. The

capability to accommodate all five of these formats elaborates

on the highest level requirement that the system “accept

information requests from certified customers.”

As the system design discussions unfold, it becomes apparent

to the system stakeholders that a great deal of inefficiency will

result if the system is unable to catalogue and store images

that are taken. If another customer wants the same image,

unless there is a searchable image library, the collector(s) will

A Primer for Model-Based Systems Engineering

vii

have to be retasked, and the work associated with gathering

and processing that image will be duplicated. Therefore, the

stakeholder has asked that the design include an image library

capability.

There are also performance and resource limitations to be

considered. The system will have only 25 people per shift to

operate all functions. Performance standards will also include

responding to customer requests within 24 hours. These

standards are set out in the source document as

requirements. In addition, the source document requires that

the system must be available around the clock every day of

the year. Availability is defined as having 10 minutes or less

down time each month.

We will use this system design as a source of examples and

discussions throughout the primer. From it we will illustrate

the basic concepts of model-based systems design.

A Primer for Model-Based Systems Engineering

THIS PAGE INTENTIONALLY BLANK

A Primer for Model-Based Systems Engineering

 1

WHAT IS A SYSTEM?

Although the term system is defined in a variety of ways in the

systems engineering community, most definitions are similar

to the one used in the U.S. Department of Defense

Architecture Framework (DoDAF)—“any organized assembly

of resources and procedures united and regulated by

interaction or interdependence to accomplish a set of specific

functions.” (Department of Defense Dictionary of Military and

Associated Terms, its.bldrdoc.gov/fs-1037/dir-036/_5255.htm).

In her book Thinking in Systems: A Primer (Chelsea Green

Publishing, 2008), Donella Meadows puts it somewhat more

succinctly by saying “A system is an interconnected set of

elements that is coherently organized in a way that achieves

something.” She goes on to point out that “A system is more

than the sum of its parts. It may exhibit adaptive, dynamic,

goal-seeking, self-preserving, and sometimes evolutionary

behavior.”

The idea that a system is “more than the sum of its parts” is

picked up in the International Council on Systems Engineering

(INCOSE) definition of a system. INCOSE defines a system as “a

construct or collection of different entities that together

produce results not obtainable by the entities alone” (“A

Consensus of the INCOSE Fellows”, www.incose.org/practice/

fellowsconsensus.aspx).

There are some clear commonalities among these three

definitions. First, any system must be made up of what

Meadows refers to as “elements” (called an “assembly of

resources and procedures” in the DoDAF definition and

“entities” by INCOSE). These are the parts of the system that

together form the whole.

http://www.incose.org/practice/fellowsconsensus.aspx
http://www.incose.org/practice/fellowsconsensus.aspx

A Primer for Model-Based Systems Engineering

2

In addition, a system must tie the parts together with

relationships. What Meadows calls “interconnect(ion)” and

“coherently organized” is for INCOSE a “construct” and for

DoDAF an “organized assembly . . . united and regulated by

interaction or interdependence.” The concept of relationships

is the second common characteristic of these definitions.

Finally, the system must have a purpose for which the

elements are assembled. DoDAF calls this organizing purpose

“to accomplish a set of specific functions.” INCOSE sees it as

the ability to “produce results not obtainable by the entities

alone.” For Meadows the system is “organized in a way that

achieves something.” In each definition the elements of the

system are related to each other in ways that promote the

accomplishment of a specific purpose that is beyond the

capability of any of the parts acting alone.

It should be noted at this point that these aspects of a system

are often construed narrowly in practice, causing our view of

systems to be constrained or limited. In reality, systems exist

wherever these three are present: parts, relationships, and a

purpose. This primer will be intentionally broad in its view of

where those aspects are present. This will enable us to see

systems in places where heretofore we might not have

expected them.

Some examples of systems include:

 A set of things working together as parts of a mechanism

or an interconnecting network.

 A set of organs in the body with a common structure or

function.

 A group of related hardware units or software programs

or both, especially when dedicated to a single application.

 A major range of strata that corresponds to a period in

time, subdivided into series.

A Primer for Model-Based Systems Engineering

 3

 A group of celestial objects connected by their mutual

attractive forces, especially moving in orbits about a

center.

The entities or elements of a system constructed by humans

can include people, hardware, software, facilities, policies, and

documents. For any given system, this list is limited only by

the set of things required to produce its system-level results.

These results include system-level qualities, properties,

characteristics, functions, behavior, and performance. The

value added by the system as a whole, beyond that

contributed independently by the parts, is primarily created by

the relationships among the parts. In other words, the “value-

add” of the system emerges in the synergy created when the

parts come together.

The sample problem included with this primer is that of a

Geospatial Library tasked with connecting a set of satellite

imaging collectors with its customers. It is composed of parts.

At the highest level, it has a Command Center Subsystem that

manages the collection, storage, and retrieval of imagery

products as well as a Workstation Subsystem that manages

the translation of various incoming imagery requests into an

internal common imagery collection request.

The system parts have relationships that define their

interaction and the system’s function. For example, when a

customer request cannot be serviced from the system’s

current inventory, the Command Center Subsystem makes a

specific collection request to a specific sensor to satisfy the

customer's need. The products generated from this request

are collected, added to the Geospatial Library inventory, and

combined into a package for shipment to the customer by the

Workstation Subsystem. Together, the parts of the system

have allowed the system to take a specific customer request,

A Primer for Model-Based Systems Engineering

4

obtain the images necessary to satisfy that request, and

provide the images to the customer in response.

This fulfills the system’s purpose—servicing the needs of the

customers and collectors in facilitating the exchange of

requests for images and the images themselves. At a very high

level this illustrates the presence of the parts, relationships,

and purpose in the sample system.

Systems Thinking

In order to create systems, it is necessary to engage in

“systems thinking.” Peter Senge’s book The Fifth Discipline

(Doubleday/Currency, 1990) introduced systems thinking into

popular culture. However, it remains largely unappreciated

and is honored mainly in the breach rather than the

observance. Part of this is because systems thinking is

practiced using too narrow a definition of “systems,” and this

narrowness limits the practice of systems thinking.

For a broad understanding of what is meant by “systems

thinking,” we will turn to one of the preeminent systems

thinkers, Russell Ackoff. Notice his use of the three aspects of

the systems definition (parts, relationships, and purpose) in

defining systems thinking: “systems thinking looks at

relationships (rather than unrelated objects), connectedness,

process (rather than structure), the whole (rather than just its

parts), the patterns (rather than the contents) of a system,

and context” (R. Ackoff with H. Addison and A. Carey, Systems

Thinking for Curious Managers, Triarchy Press, 2010).

Ackoff goes on to state, “Thinking systemically also requires

several shifts in perception, which lead in turn to different

ways to teach, and different ways to organize society.” This

statement is significant in two ways. First, Ackoff is observing

A Primer for Model-Based Systems Engineering

 5

that the move to systems thinking requires changing the way

we think. In addition, he is showing that he sees systems (and

systems thinking) quite broadly.

Taking his latter suggestion first, Ackoff is interested in the

application of systems thinking beyond the classic boundaries

of systems engineering. Coming from a business and process

orientation (as opposed to an engineering orientation), Ackoff

sees the concepts of systems and systems thinking as broadly

applicable to business and even social process design. In his

book Redesigning Society (R. Ackoff and S. Rovin, Stanford

Business Books, 2003), he focuses on the systems aspects of

public policy decision making. He is truly committed to the

idea of seeing systems wherever the three aspects are

present.

Perhaps his most important insight has to do with the “shifts

in perception” or changes in thinking involved in thinking

systemically. A major shift in thinking comes from moving

away from the exclusively analytic approach that has

characterized our thinking since the Enlightenment. This

analytic approach, according to Ackoff, “is a three-step

process: (1) take the thing or event to be understood apart; (2)

explain the behavior or properties of the parts taken

separately; and (3) aggregate the explanations of the parts

into an understanding of the whole, the thing to be explained”

(Ackoff and Rovin, Redesigning Society). Such “analytic

thinking” takes our focus off of the system and orients it to the

parts individually. This analytic, parts-oriented approach leads

too often to ill-fated attempts to improve system performance

by improving the parts of the system. Not only are such

attempts typically fruitless, but they can actually damage

overall system performance or even destroy the system.

What is needed is a different way of thinking, a way of

approaching problems from a systems perspective. Ackoff calls

A Primer for Model-Based Systems Engineering

6

this new approach “synthetic thinking.” According to Ackoff,

“Synthetic thinking is also a three-step process, each the

opposite of the corresponding step of analysis: (1) identify one

or more systems that contain the system to be explained; (2)

explain the behavior of the containing system (or systems);

and (3) disaggregate the understanding of the containing

system into the role or function of the system to be explained”

(Ackoff and Rovin, Redesigning Society). The critical idea here

is that we begin not from a decomposition of the system into

its parts but from the point of view of the system in its

context.

In the book Systems Thinking for Curious Managers, Ackoff

points out that “Managers should never accept the output of a

technologically-based support system unless they understand

exactly what the system does and why. Many managers who

are unwilling to accept advice or support from subordinates

whose activities they do not fully understand, are nevertheless

willing to accept support from computer-based systems of

whose operations they are completely ignorant. Management

information systems are usually designed by technologists

who understand neither management nor the difference

between data and information. Combine such ignorance with

a management that does not understand the system the

technologists have designed, and one has a recipe for disaster

or, if lucky, large expenditures that bring no return” (Ackoff,

Russell; Addison, Herbert; Carey, Andrew; Gharajedaghi,

Jamshid (2010). Systems Thinking for Curious Managers: With

40 New Management f-Laws).

The point here is that systems must be understood in the

context of what they can do and the world in which they will

do it. It is not enough to see the system as a sum of the

operations of the component functions. It must been seen as a

functioning whole. This is the systems viewpoint.

A Primer for Model-Based Systems Engineering

 7

This viewpoint allows us to engage the system without losing

sight of the context and purpose of the system as a whole.

Effective systems thinking combines analytic and synthetic

thinking. It is common to see analytic thinking without its

synthetic sibling. Too often this results in the loss of systems

perspective. At its worst, this becomes component

engineering.

The loss of the systems perspective can be quite costly. When

the consequences of a limited or missing systems view emerge

during the design process—as when different design paths

result in mutually exclusive constraints—the penalty is

expensive rework. Cost and schedule suffer together as the

system is reengineered to correct the problems.

Sometimes the missing perspective doesn’t levy its price until

the system is built. This is the failure that Ackoff calls out—the

failure to “understand exactly what the system does and

why.” This leads easily to unintended consequences as the

system interacts with its environment in unanticipated and

unhelpful ways.

Applying Systems Thinking to Systems Design

A system begins with an idea that must be translated into

reality. The theoretical idea of a system must link to the

engineered system “reality” and vice versa (bidirectional

linkage). The designers must also find a way to clearly show

when and how the theory explains reality and how reality

confirms their theory.

The system design must take into account the system

properties. Within the boundary of a system, there are three

kinds of properties:

A Primer for Model-Based Systems Engineering

8

Entities—These are the parts (things or substances) that make

up a system. These parts may be atoms or molecules; larger

bodies of matter like sand grains, raindrops, plants, or

animals; or even components like motors, planes, missiles,

etc.

Attributes—Attributes are characteristics of the entities that

may be perceived and measured such as quantity, size, color,

volume, temperature, reliability, maintainability, and mass.

Relationships—Relationships are the associations that occur

between entities and attributes. These associations are based

on cause and effect.

In order to explain the design, the engineers must use some

form of expression. When taken together, the properties of

the system—the entities, attributes, and relationships—form a

system “language.” This language is fundamental to being able

to describe and communicate the system among the

engineering team as well as to other stakeholders.

Using this language, the system can be represented

hierarchically, allowing it to be understood as decomposable

into meaningful subunits. These subunits are conventionally

named:

 a system is composed of subsystems;

 subsystems in turn are composed of assemblies;

 assemblies are composed of subassemblies, and

 subassemblies are composed of parts.

It is important to note that what may be considered a “part” in

the context of a particular system may be a complete

“system” in its own right. This all depends upon the point from

which the system is viewed and the resulting system boundary

decisions.

A Primer for Model-Based Systems Engineering

 9

Often the terms used in describing this hierarchy are not well

specified; some engineers use the term sub-subsystem, others

use the terms component and subcomponent in the hierarchy.

Variant usage only contributes to confusion. In order to avoid

such usage confusion, the term component is used here as an

abstract term representing the physical or logical entity that

performs a specific function or functions.

The parts of a system interact to produce the performance of

the whole system. It is intuitively obvious that all parts of the

system must be functioning as designed in order for the

system to function properly. What is not so obvious is that

improving the function of one of the parts, be that a

subsystem or component or whatever it may be labeled, will

not necessarily improve the functioning of the whole. This is

because of the effects of interaction within the system. For

example, improving the resolution of the images gathered by

the collectors in the sample problem will not improve the

product for the customer if the image inventory cannot

process and deliver them. Any improvement must be

considered from a perspective that looks across the system as

a whole.

The system results at the customer level depend upon the

performance of the entire system. While the components

must be understood from the perspective of whether or not

they can perform the behavior allocated to them by the

system design, it is ultimately the performance of the system

that matters. This must account not only for the capability to

meet the needs of the stakeholders that drove the system

creation but also for any extraneous consequences of system

performance, particularly unintended or unplanned

consequences. Understanding and practicing this is the very

foundation of systems thinking.

A Primer for Model-Based Systems Engineering

THIS PAGE INTENTIONALLY BLANK

A Primer for Model-Based Systems Engineering

11

WHAT IS SYSTEMS ENGINEERING?

According to INCOSE the responsibility of systems engineering

is “creating and executing an interdisciplinary process to

ensure that the customer and stakeholder's needs are

satisfied in a high quality, trustworthy, cost efficient and

schedule compliant manner throughout a system's entire life

cycle” (“A Consensus of the INCOSE Fellows,”

http://incose.org/practice/fellowsconsensus.aspx). Boiled

down to its essence, this means that the systems engineer is

required to create and maintain a system that meets the

customers’ needs. That can be accomplished only when the

focus of the systems engineer is on the whole system and the

system’s external interfaces.

Systems engineering is concerned with the design, building,

and use of systems composed of concrete entities such as

engines, machines, and structures. It is equally concerned with

business systems, which are composed of processes. Engaging

in systems engineering requires an organized means of

thinking about those systems in their operational contexts.

This way of thinking is the heart of systems engineering.

Systems engineering begins by identifying the needs of the

users and the stakeholders to assure that the right problem is

being addressed by the system. The systems engineer crafts

those needs into a definition of the system, identifies the

functions that meet those needs, allocates those functions to

the system entities (components) and finally confirms that the

system performs as designed and satisfies the needs of the

user.

This is both a technical and a management process. The

technical process addresses the analytical, design, and

implementation efforts necessary to transform the

A Primer for Model-Based Systems Engineering

12

operational need into a system of the proper size and

configuration for its purpose. Along the way, it produces the

documentation necessary to implement, operate, and

maintain the system.

The management process supports the technical process by

planning, assessing risks, integrating the various engineering

specialties and design groups, maintaining configuration

control, and continuously auditing the effort to ensure that

cost, schedule, and technical performance objectives are

satisfied. Together, the management and technical processes

create the systems that will meet the customers’ needs.

To be effective in all these areas, systems engineering must,

therefore, provide an organized, repeatable, iterative, and

convergent approach to developing complex systems. The

approach must be “organized,” because without an organized

approach the details of the system under development will be

overlooked, confused, and misunderstood. The approach must

be “repeatable” so that it will apply to other system

development efforts in a way that creates reasonable

assurances of success. It should be both iterative and

convergent, which means the engineering processes repeat at

each level of system design and ensure the convergence of the

development process to a solution.

The success of the development process rests on the ability of

the systems engineer to maintain a system focus. We talked

about systems thinking in the discussion of the essential

characteristics of a system. The systems engineer must keep

the vision of the entire system in mind while moving through

the process of designing the system that will form the solution

to meet the needs of the stakeholders. Losing this focus will

cause the design to fail to meet those needs in one or perhaps

many ways.

A Primer for Model-Based Systems Engineering

13

Multidisciplinary Approach

The discipline of systems engineering brings together

branches of engineering and science in planning and

developing solutions for the stakeholders’ needs. By adopting

a systems view of the problem and the possible solutions,

systems engineers can draw on the different disciplines to

design a solution that most effectively meets the needs of the

stakeholders. The power of systems engineering comes from

using this multidisciplinary approach to problem solving to

satisfy the needs of stakeholders through creating or

improving a system.

Every approach has its advantages and problems. While the

multidisciplinary nature of the systems engineering team

leverages the differing experience and expertise of the various

disciplines, it also creates potential problems resulting from

the variety of specialized vocabulary and ways of

communicating that are customary in those disciplines. It is

the job of the systems engineer to provide the coordination

and communication that will allow the power of a

multidisciplinary approach to benefit the problem-solving

effort without being impeded by the potential

miscommunication and friction between the disciplines.

Problem Classes

Systems engineering can be applied to three classes of

problems: top-down or “clean-sheet” problems, middle-out or

system-improvement problems, and reverse-engineering or

system-replacement problems. The classic problems are the

top-down designs. Often the other two problem classes are

not even considered in discussions of systems engineering.

A Primer for Model-Based Systems Engineering

14

However, all three are significant and can benefit from the

discipline and rigor of systems engineering.

Top-down engineering problems are the best known among

the three problem classes. In these situations the engineering

team is faced with designing an unprecedented system

solution to stakeholder problems. These designs are also

commonly called “greenfield” or “clean-sheet” development

efforts. Such systems have many unknowns. Solving these

unknowns often involves doing research, developing new

materials, new components, and new manufacturing methods

to provide all that is necessary to implement the solution.

The initial definition of a top-down problem is usually to be

found in a document or set of documents setting out the high-

level requirements for the system. The design process begins

with an analysis of these requirements. From this analysis

emerges a high-level description of the system which is then

used in designing the solution system.

Experience is now suggesting that the top-down problems that

have heretofore held center stage are becoming more the

exception than the rule. This is due to the increasing

complexity of our world of interconnected systems and

technology. It is becoming rare that stakeholders truly have

the freedom to design a system in isolation, creating a

completely new solution. Most often the new solution must

incorporate or interface with existing technology/systems, and

these legacy components or interfaces must be accounted for

in the new design. Confronting this problem class is known as

“middle-out” engineering.

Middle-out engineering begins with modeling the “as is” state

of all or a portion of a system. This provides an understanding

of the existing “solution” and the supporting processes and

technology. From there the engineer can begin to see what

A Primer for Model-Based Systems Engineering

15

can and cannot be changed and where the opportunities for

improvement or for meeting new requirements lie. This is the

platform for designing an improved or “to be” set of solutions

to customer-identified problems using the derived system-

level requirements and the customer-developed problem

statement(s).

This approach has been quite successful in process

improvement and system-of-system settings. It is becoming

clear that this problem class will be more and more the

subject of system design needs. Systems engineers will need

to become comfortable working in this arena in order to meet

the needs of their customers.

Bottom-up or reverse engineering applies to upgrading or

replacing legacy systems. Legacy systems may have been in

operation for many years. They may have had extensive

enhancements and fixes added over the life of the system.

These are usually implemented without adequate

documentation. If documentation exists, it typically contains a

variety of omissions and errors.

The focus of the reverse engineering effort is to recover the

original system-level requirements of the system as built and

modified. Once the system-level requirements are recovered,

these requirements and the newly specified requirements that

drive the redesign are used to design and implement a

replacement system that will offer both new and existing

capabilities on a more sustainable platform.

The complete systems engineering process needs to support

all three problem classes. The systems engineering process

possesses the characteristics and strengths necessary to

provide solutions for any problems in these classes that have

realizable solutions. Since these problem classes have

different initial conditions, the starting points are different.

A Primer for Model-Based Systems Engineering

16

However, the approach to developing a system to solve a

problem is essentially the same across all three problem types.

Systems engineering addresses all of them.

The Design Space: Three Systems

Figure 1

Every system design or improvement effort takes place in the

context of three systems (Figure 1.) The most obvious is the

system being designed. In the example problem, it is the

system that will manage the images requested by the

customers, taking them from inventory or procuring them

from the collectors and sending them to the requesting

customers.

The system being designed will function in the context of a

larger system. In the example problem, the customers and the

collectors reside outside the system to be designed. The

customers interact with the system by requesting images and

receiving the images requested. The system is created to

“solve” their problem/need for images. The image collectors

A Primer for Model-Based Systems Engineering

17

interact with the system by accepting tasking from the system

and returning images in response. Both customers and

collectors are part of the greater contextual system in which

the system under design “lives and works.” This contextual

system is the second of the three systems.

The third and final system is the system that is used to design

the system and bring it into being. This system is critical

because it drives the quality and ultimate success of the

design. This is the system that must understand the other two

systems and must at the same time be “self-aware.” It is only

through this self-awareness that the design can take on its full

measure of intentionality and manage the considerations

manifested in the other two systems.

In one of the more interesting and helpful variants of the

design space discussion, James Martin posits seven systems.

He titles his article “The Seven Samurai of Systems

Engineering: Dealing with the Complexity of 7 Interrelated

Systems” as an allusion to the Japanese movie The Seven

Samurai, in which seven samurai warriors fight to save a small

Japanese village (http://www.incose.org/wma/library/

docs/Seven_Samurai-Martin-paper-v040316a.pdf). Martin

suggests that, properly employed, the seven systems he sees

in the design space can become the key to design success.

Martin’s systems are the Context System, the Intervention

System, the Realization System, the Deployed System, the

Collaborating System, the Sustainment System, and the

Competing System. He summarizes their interactions as

follows:

1. Context System contains a Problem.

2. Intervention System is intended to address Problem.

3. Realization System brings Intervening System into being.

4. Intervening System is a constituent of Realization System.

A Primer for Model-Based Systems Engineering

18

5. Realization System needs to understand Context System.

6. Realization System needs to understand the Modified

Context System.

7. Realization System may need to develop or modify the

Sustainment System.

8. Intervention System becomes Deployed System.

9. Context System becomes the Modified Context System.

10. Deployed System is contained in Context System.

Deployed System collaborates with one or more

Collaborating Systems.

11. Deployed System is sustained by Sustainment System.

12. Deployed System may cause new Problem.

13. Competing Systems may address the original Problem.

14. Competing Systems compete with Deployed System for

resources and for the attention of users and operators.

Looking at the relationships and systems posited by Martin

shows a clear mapping back to the simpler three-system

model. The Context System in both Martin’s model and the

three-system model contains the problem from the outset and

will contain the Deployed System once it is designed.

Collaborating and Competing Systems also reside there. When

the solution is deployed into the context, it will change the

Context System. Understanding all of this is critical for the

systems engineers to successfully create an acceptable design

solution.

The whole issue of unintended consequences is an example of

the failure to completely understand the Context System. Take

as an example the introduction of nutria (a large South

American rodent) as an “answer” to the need to produce

quality fur more quickly and inexpensively. The following

advertisement (Figure 2) frames the problem and solution that

led to importing large numbers of nutria into the United

States.

A Primer for Model-Based Systems Engineering

19

Figure 2

In the advertisement, nutria are touted as being productive

(their fur next to mink in price); prolific (producing 15 to 20

young per year); easy to raise; inexpensive (costing only 1 ½

cents per day for food), as well as climate tolerant and disease

resistant. However, it fails to address what turned out to be a

major problem. The nutria reproduced rapidly and shortly

“breached containment,” escaping into the wild. Their

reproduction rate, climate tolerance, and disease resistance

made them formidable competitors in the wild. Soon they

were driving out indigenous species and defoliating the

habitats. Significant damage is being done to the areas where

they have established themselves.

The “systems engineers” at companies like Cabana Nutria, Inc.

understood the problem and addressed it directly. What they

failed to understand and address was the Context System

beyond the problem space. An effective solution to the

problem created a much bigger problem as an unintended and

unforeseen consequence of its application.

A Primer for Model-Based Systems Engineering

20

Even more insidious is the failure to account for the design

system, what Martin calls the Realization System. Inattention

to this system can cause a failure of discipline and rigor. It

cannot be said too often in the world of systems engineering

that we don’t know what we don’t know. A failure to use a

disciplined or convergent process will lead to errors that will

be completely transparent to those who make them. They are

transparent precisely because of the failure to use the

discipline that would allow the designer to catch them.

Without a rigorous, disciplined system for design, there is no

way to be sure that the design considers all aspects of the

Context System.

The metaphor of three systems is simple, but its message is

clear—systems design must consider not only the system

being designed but its context and its method of design as

well. Failure to take any of the three into account is a recipe

for failure.

The Design Space: Boundaries

Once the systems engineer grasps the concept of the three

systems, she must come to grips with the boundary between

the system being designed and the system it will live in. The

former is within the “control” of the design process, and the

latter is simply present and must be adapted to.

The sample problem has an excellent illustration of the

possibilities in the boundary question. The problem could

present itself as an organization with an existing system of

collectors desiring to develop a management system for its

images that will increase the efficiency with which it can

provide those images to customers (boundary 1 in Figure 3.)

The same problem might arise when an organization has seen

inefficiency between collector systems and their customers

A Primer for Model-Based Systems Engineering

21

and recognized the business opportunity to bridge that gap by

providing a way to reduce the inefficiency (boundary 2 below.)

A third possibility might exist if the customer recognized that

he could reduce his costs and wait time by managing the

images already produced and seeking to engage the collectors

for “new” images (boundary 3 below.)

In each case the system boundary is drawn differently for the

design process.

Figure 3

In each of these three cases, the degree of vertical integration

helps determine the system boundaries. It is clear that it is

very important to have a well-defined view of those

boundaries, because no matter which boundary case applies

to the situation confronting the design team, it is important to

understand the nature of the problem in connecting the

customers to the Geospatial Library and through it to the

collectors. The design of those connections turns on the

location of those boundaries.

The Process

The first task of the systems engineer is to develop a clear

statement of the problem, setting out what issue or issues are

being addressed by the proposed system. This involves

working with others (especially system stakeholders and

subject-matter experts) to identify the stated requirements

that govern what would characterize an acceptable solution.

A Primer for Model-Based Systems Engineering

22

The systems engineer must provide design focus and facilitate

proper and effective communication between the various

subject-matter experts and the stakeholders. The systems

engineer must have a broad knowledge base in order to

understand the various disciplines involved in developing the

system, to participate in and evaluate system-level design

decisions, and to resolve system issues. Often some system

requirements conflict with each other. When this happens,

the systems engineer must resolve these conflicts in a way

that does not lose sight of the system’s purpose. The goal of

the engineer is to develop a system that maximizes the

strengths and benefits of the system while minimizing its flaws

and weaknesses.

For illustrative purposes, we will present the systems

engineering effort from a top-down perspective. Figure 4

illustrates the process of working across the domains.

Figure 4

Once the problem is clearly defined, the process steps follow

the flow in Figure 4. The originating requirements (which

identify what the system will provide) are extracted from the

source documentation, market studies, or other expressions

of the system definition and analyzed. This analysis identifies

numerous aspects of the desired system. Analyzing the

A Primer for Model-Based Systems Engineering

23

requirements allows the systems engineer to define the

system boundaries and identify what is inside and outside

those boundaries. The definition of these boundaries—an

often overlooked step—is critical to properly implementing

the system. Any change in the system boundaries will affect

the complexity and character of the way in which the system

interacts and interfaces with the environment.

Specifying the functional requirements and the interactions of

the system with the external entities is essential and leads

directly to developing a clear picture of the system. It is critical

that the functional requirements (the “what”) are understood

before attempting to define the implementation (the “how”)

of the system. Therefore, this analysis is repeated throughout

the system design process to test the rigor and integrity of the

system.

The “how” of the system is embodied in the functional

behavior. This behavior is designed to meet the requirements

as they have been laid out. Every requirement is the basis of

one or more behaviors, and every behavior is based on one or

more requirements. This is the backbone of the bidirectional

traceability that will ultimately guarantee that the system

design meets the system requirements.

In parallel with the functional behavior definition, what must

be built to perform the needed behavior is derived through

decomposing the system into components. The systems

engineer then analyzes the constraints and allocates system

behavior to the physical components. This leads to the

specification of each system component. As a result of this

allocation, the identification and definition of all interfaces

between the physical parts of the system—including

hardware, software, and people—can take place. These design

decisions create the physical architecture of the system.

A Primer for Model-Based Systems Engineering

24

Once the physical architecture has been created and the

behavior allocated to it, the system must be tested.

Verification and validation are both aspects of that testing.

The system is verified against the performance standards and

specifications, and the design is validated against the

requirements. In this way the engineering team can be certain

that the design is indeed what is called for in satisfying the

customers’ needs.

It should be emphasized that these activities are performed

concurrently or in sequence but not independently. The

activities in one area influence, and are influenced, by the

other activities.

This look at the systems engineering process uses a

description that best fits top-down systems design. With

suitable approach variations, the systems engineer can

address reverse (or bottom-up) and middle-out systems

engineering perspectives as well. For example, in conducting

reverse engineering, the engineer would begin with the

existing physical description and work from the physical

representation and interfaces to ultimately derive the original

system’s requirements. Once these are obtained, the

engineering process would proceed to incorporate the desired

changes and enhancements as in a top-down design.

Domains

As described above, the work on the design proceeds in four

domains: requirements, functional behavior, architecture, and

verification and validation. Often these domains are treated as

discrete efforts. In the classic approach, work in the domains

proceeds in order, with the goal of finishing each one in turn.

In this instance the process we have described moves

sequentially through these domains.

A Primer for Model-Based Systems Engineering

25

Requirements
The problem-solving process generally begins with an

exploration of the stakeholders’ needs. This is a very high-level

inquiry and results in a general statement of the system

functionality. For example, in the sample problem it might be

as simple as “We need some way to manage and deliver

images from the Collectors to the Customers.” Even at this

very general point, it is possible to map the context system at

a gross level.

Figure 5

As the requirements process progresses, the requirements are

made more specific. It is important to the systems engineering

process that this increase in specificity goes hand-in-hand with

the development of some increasingly granular concept of

system behavior. That is because the requirements become

the basis for behavior which is then allocated to architecture.

Along the way there will be effects of behavior and/or

architecture on each other and on the requirements. Attempts

to drive the requirements completely to ground before

proceeding to the behavior mapping or allocation to

architecture make coping with those effects both costly and

time consuming.

As the design is driven further and further into the details, the

requirements develop specificity. As an example, consider the

relatively high-level requirement that the system in the

sample problem “provide continuous real-time support to the

customers and the collection systems.” The next level

A Primer for Model-Based Systems Engineering

26

question becomes “What is continuous real-time support?”

The requirement is refined to answer that question by

defining it as “The system shall be unavailable no more than a

total of 10 minutes per month.” Each of the requirements is

the basis of behavior that increases in specificity with the

requirements.

Behavior
System behavior is concerned with two fundamental system

characteristics: what the system must do in order to answer

the customer’s need and how well the system must perform

these functions. In the example above what the system must

“do” is be available to customers and collectors. The standard

of performance (the “how well” it must perform) in this case is

to the level of no more than 10 minutes of unavailability a

month.

Describing behavior to meet requirements is constructing the

system logic or the logical model. Often this is done in one

step with the architecture design. The systems engineer

attempts to allocate the requirements directly to the

capability of an architectural component or components.

Recognizing this as “doing” behavior in one step with

architecture is probably being excessively charitable to that

process. It is more appropriate to acknowledge that it simply

skips the behavioral or logical step.

Separating the logical model from the physical model offers

distinct advantages to the systems engineering team. The

primary advantage is that the team does not have to assign

behavior to components prematurely, something which

complicates the system design effort. Separating these

simplifies the design effort and enhances the likelihood of

finding the best balance of functionality, performance, and

component composition. Once the behavior is in place, it

A Primer for Model-Based Systems Engineering

27

becomes appropriate to consider the architecture to which it

is to be allocated.

Architecture
System architecture/synthesis is concerned with what physical

structure offers the best balance—considering manufacturing,

testing, support, and other factors—in answering the

customer’s need for the system. At its heart is the realizability

of the system and its physical complexity. (Is it

manufacturable, maintainable, and supportable?)

These aspects of the system strongly correlate with the

system’s behavior and the resulting partitioning and allocation

of behavior to subordinate physical components.

Architecture/synthesis tends to follow behavior in

development (form follows function) rather than the other

way around, because behavior more fully captures the

features of what the system does. There is, however, an

important “but.”

Many systems have significant architectural constraints, which

limit the systems engineer’s choices regarding architectural

composition. These constrain system behavior and therefore

lead the way instead of following. They may even reach a level

where it becomes clear that choices need to be made

between competing requirements which impose mutually

exclusive physical constraints. Such constraints are

encountered at the point of architectural design and need to

be translated back into the behavior (and sometimes even the

requirements) domain (e.g., an aircraft whose specified

operational range requires it to carry such a large load of fuel

that it is too large for the short-field operations called for in

the initial requirements).

A Primer for Model-Based Systems Engineering

28

Verification and Validation
At the conclusion of the systems development phase of the

system life cycle, the customer must accept or reject the

delivered system. Depending upon the situation, the customer

may choose one or more methods to determine whether the

system fulfills the requirements of the development contract.

The goal in any case is to assure that the design process has

converged on a complete and workable solution to the entire

problem posed to the design team. The process for doing this

is known as verification and validation. Verification and

validation are the two aspects of answering the acceptance

question. Both of these aspects need to be considered

throughout the design and development processes. Program

management and engineering management teams need to

plan and address the measures that will lead to achieving

customer acceptance.

Verification is a “quality” process used to evaluate whether or

not a product, service, or system complies with particular

regulations, specifications, or conditions. Verification may

occur anywhere in the system’s life cycle. Verification is often

an internal process, but external and independent

verifications can also occur.

While validation is the process of establishing necessary and

sufficient evidence that a product, service, or system satisfies

its established requirements, formal validation often includes

the confirmation of fitness for use from the viewpoints of

customers, end users, and other product stakeholders as an

acceptance criterion. The ultimate validation question

becomes: “Does this system, as built, satisfy the needs which

drove the instigation of the design project?”

NOTE: More and more systems engineering teams think of the

process of measuring the efficacy of the system design as Test

A Primer for Model-Based Systems Engineering

29

and Evaluation (T&E). This concept arises from the software

development world and seeks to document the scope,

content, and methodology for test activities. It is embodied in

a test plan which describes the test activities of the subsystem

integration test, the system test, the user acceptance test, and

the security test in progressively higher levels of detail as the

system is developed. (As we shall see, this makes T&E a

natural fit with the layered MBSE approach.) Although T&E is

different from classic V&V, they are similar enough that for

the purposes of this primer we will treat them as the same.

Communication

It is easy to see that these four domains cover a variety of

disciplines. From gathering the requirements from an often

diverse community of system users and owners to specifying

technical architectures that will cover complex capabilities,

the systems engineering team must be able to communicate

the problem and the potential solutions in ways that will be

universally understood.

In the sample problem, the customers who use the images will

be experts at interpreting the information in the images,

visualizing terrain and recognizing infrastructure and human

activity. They will understand what images they need and

what those images should contain. They will not necessarily be

familiar with the technology necessary to allow them to

phone, fax, deliver, or directly request the images they need.

The designers of the library will understand how to use the

image data and metadata to organize, store, and retrieve the

images but will not know the technical details of the

alternative ways in which the images can be brought into the

library from the collectors’ information stream. Bridging these

A Primer for Model-Based Systems Engineering

30

gaps and many others is the job of the systems engineering

team.

This requires careful and nuanced communication. There must

be attention to language, and a common understanding of the

use of language must be developed across the design and the

disciplines involved in creating it. This coordination and

communication challenge makes the effective practice of

systems engineering a challenge in both the management and

technical arenas.

The successful systems engineering team must maintain a

systems view while moving through the four domains.

Stakeholder needs are the source of system requirements.

Those requirements become the basis of system behavior.

That behavior is allocated to the physical architecture, which is

then judged back against the requirements. Along the way,

the team must craft that solution which best fits the context

for it and do so using a disciplined and effective design

process.

A Primer for Model-Based Systems Engineering

31

WHAT IS A MODEL?

Models are common to human experience as aids for

understanding the way the world works. Everyone has

experience with some form of model and therefore has some

preconceived notions of what constitutes a “good” model.

Children’s toys are simple models of the world around them.

Toy cars, trains, and dolls all typically characterize forms,

playing on the child’s ability to link imagination (an abstract

representation) to a real object. In this sense the word model

means a physical representation of an abstract idea.

Models span a spectrum running from form to function. On

one end are tangible, visible models like a child’s plastic toy

airplane. It mimics, or models, the physical appearance of the

object (the full-sized airplane) that it represents. It doesn’t

fly—or if it does it doesn’t do so in the way the actual object

does. It models the form of the plane but not the function.

On the other end of the spectrum are model forms existing

only as sets of equations or simulations implementing the

equations. Rather than visually representing the reality behind

them, these models allow us to examine such things as the

behavior of the object being modeled. One common

characteristic of such models is that they capture or

emphasize only certain properties of interest in the modeled

object, while the fidelity of the model to the actual object is

intentionally reduced or limited in other ways.

In the world of engineering design, models connect the idea

behind a design solution with its implementation as a real

system. These models attempt to represent the entities of the

engineering problem (opportunities) and their relationships to

each other and connect them to the proposed solution or

A Primer for Model-Based Systems Engineering

32

existing mechanism that addresses the problem. The model

used in this way is the centerpiece of MBSE.

Four Elements of a Model

There are four elements of such a model: language, structure,

argumentation, and presentation.

Language—The model is seen in terms of language. The

system definition language (SDL) expresses and represents the

model clearly, so that understanding and insight can arise. This

is critical to successful system design. The system definition

language must be clear and unambiguous in order to depict

the model accurately and understandably.

Structure—The model must have structure. This allows the

model to capture system behavior by clearly describing the

relationships of the system’s entities to each other.

Argumentation—The purpose of the model is to represent the

system design in such a way that the design team can

demonstrate that the system accomplishes the purposes for

which it is designed. Therefore the model must be capable of

making the critical “argument” that the system fulfills the

stakeholders’ requirements.

Presentation—Not only must the system be capable of

making that argument, but it must include some mechanism

of showing or “presenting” the argument in a way that can be

seen and understood.

These elements, language, structure, argumentation, and

presentation, give the MBSE model what it needs to serve the

purpose of testing the system design solution against the

requirements in a way that proves its fitness and presents that

A Primer for Model-Based Systems Engineering

33

proof for all to see. This is the distinguishing value of the

model.

Characteristics of a Model

There are four characteristics common to successful system

models. These are order, the power to demonstrate and

persuade, integrity and consistency, and the ability to provide

insight into both the problem and its potential solutions.

Order—Order allows the design team to attack the problem in

a coherent and consistent manner leading to a viable solution.

The model provides the order that becomes the framework

for this effort.

Power to Demonstrate and Persuade—By representing the

relevant behaviors in proper relationship to the system

entities, the model allows the designer to see and

demonstrate the necessary system behavior. This becomes

persuasive in making the case that a given solution answers

the needs that drive the design of the system.

Integrity and Consistency—Ambiguity and inconsistency in

the system design lead to design flaws which, in turn, harm

the credibility of the argument that the system design meets

the needs it was designed to meet. The model must,

therefore, provide the integrity and consistency that lead to a

sound solution.

Insight—The model provides insight into the system problem

facing the design team as well as the potential design

solutions. By the model’s representation of system behaviors

and relationships, the design team is able to gain insight into

the comparative advantages of different approaches to solving

the design problem at hand.

A Primer for Model-Based Systems Engineering

34

Caveat: A Set of Views Is NOT a Model
Various graphical and textual views derived from the true

systems model are sometimes treated as if they were

themselves models. However, these are, at most, viewable

projections of the underlying model. That is, they contain

some subset of entities, attributes, and relationships

presented so that the engineer, reader, or reviewer gains

insight into a particular aspect or aspects of the system design.

Graphical or textual views, in themselves, are not sufficient to

constitute a model. They are, rather, expressions of the model

being represented.

To be a true model, the system model needs to manage the

depth, breadth, and associated boundary conditions of the

system. This is not possible with a view or even a set of views.

Views are a valuable tool for understanding, analyzing, and

communicating the model. Some sets of views even offer a

broad understanding of many system aspects. But the views

themselves are not a model.

Language: The Systems Model Is Language-

Based

The relationship between the language expressing the model

and the meaning conveyed in the model is critically important.

Language is critical to disciplined systems design. The

ambiguity and lack of clarity that are so often present in

design efforts can have crippling results which can render a

system design useless. The need for a clear, unambiguous

systems definition language is only enlarged by the presence

of a diversity of disciplinary experts required to assist in a

complete design. The language will include both the symbolic

representation of system concepts and the graphic views and

representations that are used to convey the functions and

A Primer for Model-Based Systems Engineering

35

behaviors embodied in the system. After choosing a particular

reference entity of a given class, the use of the definition

language enables the engineering team to ask the right

question at the right time. A tremendous advantage for

resolving issues, this avoids unnecessary or inappropriate

work. A common language that can give full expression to the

system in its entirety is essential to a successful design and to

making the case to the stakeholders that the design actually

meets the requirements posed in the problem that drives the

design.

The model must be much more than one or more graphical

representations. It must take on the difficult tasks of

representing the system’s relationships in a way that assures

traceability and the consistency of boundary conditions across

the domains. The model is therefore captured in a language in

a way that allows the engineer to determine and

communicate the system characteristics. These characteristics

drive the way the system’s components interact within the

system and with the system’s external environment.

Another aspect of a system as a whole is that it cannot be

divided into independent parts without losing some of its

essential characteristics. Thus, a system’s essential defining

properties are the products of the interactions of its parts, not

the sum of the actions of the parts considered separately. This

means that a successful system language must be able to

capture these essential interactions in a way that accurately

depicts this synergy.

Sometimes there are kinds of behavior and properties that the

system must exclude. These exclusions are as much a part of

the system definition as those that are included. Safety and

security properties fall into this realm. The system must not be

unsafe to users. It must not be vulnerable to specific threats.

The model must be clear in expressing whether or not these

A Primer for Model-Based Systems Engineering

36

system properties will or will not be present. This is

particularly true because the properties of individual

components are not necessarily present in the system.

Graphics by themselves have only a limited ability to convey

these characteristics and assurances. This is one of the

fundamental reasons for needing an expression of the model

that extends beyond mere graphic representations.

A model is an integrated expression of the system using the

system definition language (SDL). It comprises source or

originating properties (e.g., context, purpose, environment,

and other constraints), physical properties (e.g., size, weight,

power), behavioral properties (e.g., events, time sequencing

of observables, execution conditions, performance), relevant

analytical and test information, and the relationships between

these system entities.

Other characteristics are necessary for a successful systems

language such as the system definition language. It must be

relatively easy for a diverse population to understand it, while

at the same time it must be able to deal with the necessary

levels of abstraction. Not everyone possesses the knowledge

to understand every nuance of the system model. Therefore,

the SDL language needs to use a basic vocabulary without a

multiplicity of meanings.

With SDL, the specialty language of domain experts is avoided;

yet domain experts can easily relate the SDL to their domain

of expertise. The mapping in Figure 7 (page 38) represents the

relationship of the parts of speech from common language to

model-based systems engineering SDL.

A Primer for Model-Based Systems Engineering

37

Figure 6

As stated earlier, the model concept and the SDL are

interdependent. The language must possess a minimum set of

nouns sufficient to identify the objects typically encountered

in performing systems engineering. It must include such noun

classes as Component, Function, and Requirement. Each noun

class possesses a set of adjectives (attributes) that refines and

adds depth to each particular class instance. An examination

of Figure 7 shows the noun classes associated within the

operational and system portions of a DoDAF architecture.

In the case of DoDAF, the Architecture class acts as a key

element. It brings the physical natures of the operational and

system sides together. Thus, in a physical sense, it is clear that

a particular Architecture entity provides the context for

understanding how a set of operational entities and a

corresponding set of system entities relate.

Individual relations constitute the verb forms of the SDL. Thus,

once the set of noun classes is constituted, the relationships

among them lead to the identification of the set of

relationship pairs (verbs) needed in the SDL.

English

Equivalent

System Definition

Language
MBSE Example

Noun Entity
Requirement: Place Orders

Function: Collect Images

Verb Relationship Requirement is the basis of Function

Adjective Attribute Description

Adverb Relationship Attribute
Function consumes Resource

Amount of Resource being consumed

N/A Structure

Activity Diagram

Enhanced Functional Flow Block

Diagram

A Primer for Model-Based Systems Engineering

38

Fi
gu

re
 7

A Primer for Model-Based Systems Engineering

39

The directional lines in Figure 7 illustrate some of the primary

SDL relations. These relations are directional. This means that

in forming a “sentence,” the noun class at the arrow’s tail is

the subject of the sentence and the noun class at the arrow’s

head is the direct object (e.g., Architecture is “composed of” a

Component). Such a sentence expresses a “relationship.”

The types of problems encountered determine the types of

nouns, verbs, adjectives, and adverbs needed in the SDL. The

solvable problems need language entities to define both the

problem and solution. The fundamental structure of the SDL

does not change, but vocabulary (nouns, verbs, adjectives, and

adverbs) should be tailored to the domain. The definition of

the system definition language structure and vocabulary is

critical to having a successful system design.

Language of Behavior

The need for a language to express the system design applies

to all aspects of the design. This includes the representation of

behavior. The language of behavior is graphical. It must reflect

the time-dependent and time-independent aspects of system

behavior, the sequencing of functions, resource management,

interfaces, and control behavior.

The criteria necessary for showing behavior graphically require

that the graphical language (notation) possesses certain

characteristics. These characteristics are:

A Primer for Model-Based Systems Engineering

40

1. The ability to capture process flow and control

2. The ability to capture observables

3. Understandability

4. Executability

5. The ability to preserve behavior across:

a. Decomposition

b. Aggregation

c. Allocation

The system definition language functions and items are both

decomposable. Items represent the inputs and outputs of

functions—the observables. Any system may be described in

terms of “black boxes.” A black-box view just addresses the

inputs and outputs to the system, including their sequencing

and timing. Such a system is also decomposable into a set of

black boxes.

It is important that any decomposition (or aggregation) not

lose the behavioral effects of the layer from which it is based.

For example, the behavioral consequences of a trigger (an

input that enables the function to begin) should be preserved

into the next layer upon decomposition and not be “lost.”

Preservation of behavior is, therefore, an important property

of both the graphical language and the system definition

language.

For example, in the Geospatial Library design, one of the high-

level system requirements calls for the system to “accept

requests from certified customers.” As the design is fleshed

out, it becomes apparent that customers need to make

requests in a variety of media formats. The requirement to

accept requests from certified customers must encompass

these formats, so it becomes a requirement to “accept

requests from certified customers via any of the following

media: (1) hardcopy forms, (2) verbal, (3) phone-verbal, (4)

phone–electronic file, and (5) PC diskette–electronic file.”

A Primer for Model-Based Systems Engineering

41

Although the behavior “accept request” has been

decomposed into the several differing behaviors necessary to

accept the various request formats, this decomposition cannot

change the trigger-response behavioral consequences of

accepting the customer request.

Behavior preservation under both decomposition and

aggregation allows the logical design to be consistent through

each design layer. If the logical model cannot remain

consistent within each layer as well as across the layers, the

system definition language is critically flawed. Preservation of

behavior under allocation is necessary for the logical model

both as a whole and across the layers. A simulation of the

integrated logical model should give identical results to a

simulation of the allocated model.

Figure 8

Because the process must be traceable, all observables must

be preserved whether under decomposition or aggregation.

Inputs and outputs, input and output sequencing, and the

number of and conditions for exits and performance all need

preservation. For example, as is illustrated in Figure 8 above,

when Behavior (BEH) is decomposed from one layer to the

next (BEH becomes B1–B4) the functional equivalence (B1–B4

= BEH) must be preserved. Performance characteristics under

A Primer for Model-Based Systems Engineering

42

decomposition need to be carefully managed. Performance

measures may change at different levels of decomposition and

performance characteristics, especially time performance

values, may need decomposition as well.

Managing Complexity with Language

Separating the functional/behavioral domain from the

architecture/synthesis domain is one of several means of

managing complexity in model-based systems engineering.

The logical model is one that, over time, changes little, if at all;

while the physical model changes rapidly due to technological

and other advances. Using the principle of allocation, many

alternative physical configurations may be tried to find the

best balance among a diverse set of criteria. Later in the

system life cycle, if the physical structure needs to change, it

becomes relatively easy using the model to discover what

functions are affected by a physical change and vice versa.

Conversely, if a requirement change occurs, then its impact on

the functional model and physical models is also easily

discovered because of the traceability afforded by the system

definition language.

There are a number of diagrams currently used to support the

behavioral domain in systems engineering. The more

prevalent views are shown in Figure 9. Several structure

diagrams capture the logical sequencing of functions, events,

and control flow. These are the Functional Flow Block Diagram

(FFBD), the Enhanced Functional Flow Block Diagram (EFFBD),

and the Activity Diagram.

A Primer for Model-Based Systems Engineering

43

Figure 9

Functional flow block diagrams represent one limit on the

behavior spectrum. They show control but no data or data

flows. At the other end of the behavior spectrum, data flow

diagrams, N2 charts, and sequence diagrams show only data

or data flow but no control. However, the behavior diagrams

reveal both control and data. These diagram formats span the

full spectrum of behavior.

Though limited in content, data-oriented views do serve a

valuable purpose. Most uses of diagrams on the data side of

the behavior spectrum have found their use in instances

where an entity, particularly a human, provides the control

and the actions are event-driven, with limited need to

communicate across events. In such cases, the results may be

captured in databases, and dashboards are used for

presentation.

A Primer for Model-Based Systems Engineering

44

State diagrams are yet another type of graphical

representation that may be encountered. States represent a

quiescent node in the sequence of system events. A control-

like triggering event causes a state change, where the

transition from one state to another captures the

transformational change of something in the system and its

rest at the new state. These state flows are equivalent to the

control flows within a behavior diagram with the quiescent

points in the system corresponding to where a branch

function awaits a trigger.

With a rich set of possible representations available, the key is

to select the diagram type best suited for the analytical or

communication need. However, it is essential that the views

be derived from an authoritative underlying model lest they—

and the system—become inconsistent.

Graphical views can be generated from the model using the

relationships and attributes to define the diagram’s structure.

This allows members of the engineering team and others to

grasp the logical system design. The graphical language used

in model-based systems engineering permits simulation

through a discrete event simulator. The simulator, integrated

with the system repository, minimizes logical inconsistencies

in the model. This improves the consistency and quality of any

specifications, design documents, or other artifacts generated

from the system model.

Structure: The Model Expresses System

Relationships

The meaningful set of relationships in the model must be

expressible in both global and local contexts. The global

context contains the system and its externals. The local

A Primer for Model-Based Systems Engineering

45

context includes a subordinate system component and its

more localized externals. These localized externals are

typically other system components (system components are

external to each other but internal to the system). However,

particular instances may include one or more of the system’s

externals as an external to a component.

Control Constructs
Behavior structure diagrams provide the means to develop the

logic of what a system or other entity does. This logical

representation is not unique, but it serves to generate the

inputs and outputs that an observer external to the system

sees over some observation period. The time relationships and

sequencing of these inputs and outputs are part of the

system’s requirement structure.

A structure diagram contains at least one branch. A branch is

the diagrammatic language entity that organizes functions and

other control constructs into a logical order. This provides the

sequencing for functional execution. The control constructs

for control of that sequencing, execution path selection, and

decision logic are determined by the placement of the

functions on this branch. Sub-branching occurs through the

several types of control structures.

The branching is the basic representation of the behavioral

logic. It occurs due to the action of a variety of control

constructs. The following list summarizes each construct and

its effect on behavior.

A Primer for Model-Based Systems Engineering

46

 Sequence—The left-to-right ordering of the functions on

the enablement branch defines the sequence of

execution, unless modified by a control structure. In

Figure 10 below, information requests must be made

before products can be accepted.

[customers]

[system]

<<optional>> <<optional>>

t1.Make
Information

Request

t1.Accept
Products

t1.Accept &
Format Request

t1.Get Product
From Inventory

t1.Provide
Product To
Customer

t1.Information
Request

t1.Collection
Products

t1.Formatted
Request

t1.Inventory Product

act Thread 1 - Product In Inventory

Figure 10

A Primer for Model-Based Systems Engineering

47

 Concurrency (or AND) construct—When the process

reaches the first AND node, it will split and enable the first

functions on each of the parallel branches in the AND

construct. The process will not proceed past the second or

terminating AND node of the concurrency construct until

all functions on all branches have completed execution.

AND

1

Function A

2

Function B

AND

Figure 11

 Select (or OR) construct—One branch is chosen out of the

possible enablement branches and all other possible

branches (and the functions and constructs on them) will

be excluded (an exclusive OR). The selection of the branch

may occur by some event occurring, scheduling scheme,

or business rule satisfied. Once all of the behavior logic

and functions have completed execution on the chosen

branch, control passes on to the next function or construct

after the second or terminating OR node.

OR

1

Function A

2

Function B

OR

Figure 12

A Primer for Model-Based Systems Engineering

48

 Multiple Exit Function—Logic or business rules inside the

function possessing multiple exits will choose one of the

possible exit paths, each representing a unique

enablement branch. The choice of one branch of a

multiple exit function behaves similarly to a Select (or OR)

construct, hence the terminating OR node.

Exit Y

Exit X

1

Function A

2

Function B

3

Function C

OR

Figure 13

 Iterate (IT)—The collection of functions and constructs

between the IT nodes of the construct will repeat for a

specified number of times, repeat across a specified set of

objects, or repeat at a specified frequency.

Domain Set

IT

1

Function A
IT

Figure 14

A Primer for Model-Based Systems Engineering

49

 Loop (LP)—The collection of functions and constructs

between the LP nodes will repeat until some exit condition

occurs.

Exit Y

Exit X

Loop Condition

LP

1

Function A

LE

OR LP

Figure 15

 Loop Exit—A loop exit specifies that control (vis-à-vis the

imaginary enablement token) is to be passed on to the

branch immediately after the second or terminating LP

node. It occurs on one of the branches of an OR construct

within an LP node.

 Replicate—Specifies a set of behaviors between the RP

nodes that is instantiated in multiple and independent

cases. This is analogous to placing multiple identical

branches on an AND construct.

Domain Set
With coordination

RP

1

Function A

2

Function B
RP

Figure 16

 Exit—Specifies the identity of a node corresponding to a

parent-level exit condition for the entity on which the

diagram has been opened. Thus, the Exit node identifies

the desired path on the parent graph to be taken as a

A Primer for Model-Based Systems Engineering

50

result of reaching the exit node on the child behavior

diagram. The Exit node, therefore, represents the mapping

between internally represented exit behavior and the

externally represented exit branches for the parent

function.

Behavior is represented in activity or functional flow diagrams.

Both functional flow block diagrams—FFBDs and EFFBDs—and

activity diagrams are read from left to right. One helpful aid is

to follow an imaginary “enablement token” that starts on the

far left of the diagram. At an initial AND branch symbol the

imaginary token splits to follow each parallel branch. It will

move from left to right along the horizontal “enabled

branches” and enables, or allows, a function to execute when

the token reaches it. At the terminating AND branch symbol,

all the subordinate imaginary tokens are rejoined before the

token continues its journey.

At an initial OR branch symbol, the imaginary token advances

along only one branch (an exclusive OR). The selection of

which branch to follow is based on some event occurring

(perhaps as scheduled) or upon a business rule being satisfied.

Once all the branch functions have executed, the imaginary

token continues its journey.

In Figure 17, the product requested is NOT in inventory, so the

token takes the lower branch (Not in Inventory). It proceeds

through Prioritize Request and Determine Collector Mix to the

AND branching. There it divides to both Notify User of

Estimated Schedule and Task Collectors in parallel. The token

then moves to Accept and Format Collector Products and Put

Product in Inventory. It then proceeds to Get Product from

Inventory and divides again at the AND branching to both

Provide Product to Customer and Evaluate Products vs.

Request. The Product is OK, so the process continues on the

lower of the OR branches and reunites to finish the process.

A Primer for Model-Based Systems Engineering

51

Fi
gu

re
 1

7

N
o
t

In
 I

n
v
e
n
to

ry

In
 I

n
v
e
n
to

ry

O
K

D
e
fi
ci

e
n
ci

e
s

2
.1 C
h
e
ck

 P
ro

d
u
ct

In
v
e
n
to

ry

2
.2

P
ri
o
ri
ti
ze

R
e
q
u
e
st

2
.3

D
e
te

rm
in

e
C

o
lle

ct
o
r

M
ix

A
N

D

2
.4 N
o
ti
fy

 U
se

r
O

f
E
st

im
a
te

d
S
ch

e
d
u
le

2
.5 T
a
sk

 C
o
lle

ct
o
rs

A
N

D

2
.6 A

cc
e
p
t

A
n
d

F
o
rm

a
t

C
o
lle

ct
o
r

P
ro

d
u
ct

s

2
.7 P
u
t

P
ro

d
u
ct

 I
n

In
v
e
n
to

ry

O
R

2
.8 G

e
t

P
ro

d
u
ct

F
ro

m
 I

n
v
e
n
to

ry
A

N
D

1
.3

P
ro

v
id

e
P
ro

d
u
ct

 T
o

C
u
st

o
m

e
r

1
.4

E
v
a
lu

a
te

P
ro

d
u
ct

s
v
s.

R
e
q
u
e
st

1
.5

R
e
p
o
rt

D
e
fi
ci

e
n
ci

e
s

A
n
d

R
e
co

m
m

e
n
d
a
ti
o
n
s

O
R

A
N

D

A Primer for Model-Based Systems Engineering

52

Branches are the way functional behavior is specified using an

EFFBD or activity diagram. Each of the different control

constructs has a unique effect on the flow of the enablement

token, which is how control constructs specify the control

logic.

These constructs serve as building blocks for the basic system

logic. However, there are two other modeling concepts that

affect functional behavior. These two modeling concepts are

the triggering of functions and provisioning of resources.

Triggers and resources are terms used in the system definition

language. Triggering is the determination of when a function

may execute on a branch once that branch is enabled.

Enablement in this sense means that all prior functions have

completed execution. A triggered function must wait for one

or more incoming, or triggering, items to be received before it

may execute. This is important when functions are allocated

to different components. Triggers serve as a means of

execution control under allocation. It is the means by which a

functionally allocated component knows when to begin

operation. (Triggering is often highlighted in sequence

diagrams, showing interactions between components but

without the clear specification of control.)

Resources also affect function execution. For example, if a

function exists to fire a missile, the firing (function) is

ineffective if there is no missile (resources) to fire. Modeling

resources accounts for a function becoming resource-starved

(no missile to fire) or having diminished performance where

its necessary resources are absent or degraded.

The activity diagram and enhanced functional flow block

diagram span the behavior spectrum and communicate the

logical steps that yield a given class of output for a given class

of input. The ordering of functions, which either perform or

A Primer for Model-Based Systems Engineering

53

contribute to the transformation, is important; just as word

ordering in an English sentence is important. Changing the

order of the functions, in general, changes the outcome; just

as changing the triggering events changes the ordering of the

outcomes. The result is that the graphical language is a special

case of the more general system definition language.

Argument: The Model Is Used to “Prove” the

Concept of the Design

The engineering team may consider different allocation

schemes to address any given engineering issue. Each

alternative offering will have certain benefits. The systems

engineering team examines, analyzes, and tests these

different allocations, as necessary, to achieve the best fit of

the benefits to the system. The allocation is measured with

consideration to a number of factors, including the system

requirements, the number and complexity of interfaces, and

life cycle costs, just to name a few. This analysis allows the

team to verify and select the alternative that offers the best

balance of performance, functionality, and usability in

satisfying the customer’s need. From that analysis, the

engineering team can create the picture needed as the basis

for verification and validation.

Bidirectional relationship sentences are used to reveal the

system’s interdependencies. (For example, A decomposes B,

implying that B is decomposed by A.) Such sentences advance

the model’s description and definition. Model advancement

means that the system unfolds in detail as the story-line

progresses.

In contrast to the world of document-based engineering, the

model’s reverse path allows the systems engineering team

A Primer for Model-Based Systems Engineering

54

and other stakeholders to unravel how the team reached a

particular point in the design effort. Horizontal linkages reveal

interrelated entities at the same complexity level. Vertical

linkages reveal relationships among various layers of

abstraction. The ability to express these system relationships

meaningfully allows the systems engineering team to manage

the complexity of the design and to identify and evaluate

impacts on other system entities. Document-based

approaches do not allow this (e.g., we cannot easily read a

book in reverse). This gives the model-based approach a

significant advantage over document-based approaches.

This advantage results because, with models, the system

design is advanced through levels of increasing detail and

demonstrates within itself how and why the system design will

satisfy the stakeholders’ needs. Therefore, a model is much

more than a graphic, a series of graphics, a set of tables,

simulation results, or even a collection of such things.

Presentation: The Model Must Be “Viewable”

This is the aspect of the model that places particular value on

graphical views. It is one thing to describe the model

abstractly and quite another to make the description real. For

most of us, this means some way to visualize the model in

three-dimensional space. Graphical views are helpful in

prompting that visualization.

All views are filtered for relevance to their purpose. No one

view contains the entire set of information. In fact, an attempt

to do that would rob the view of its power to make a

particular “statement” about the model by cluttering it up

with information not relevant to its purpose.

A Primer for Model-Based Systems Engineering

55

Graphical Representations
The combination of the system design and the graphical

languages allows the model repository to generate a variety of

graphical views. Each view enhances and/or emphasizes some

system characteristics and suppresses others, giving the

engineering team a means of gaining different insights into

the system and its design. The functional flow block diagram

(FFBD) represents one limit of the behavior spectrum—where

only the control or logical structure of some portion of the

functional model is presented.

Figure 18 on page 56 shows a functional flow block diagram. In

this instance, there are two primary branches arranged as

concurrencies (a 2-branch AND construct). Each branch acts

independently of the other and may be activated by triggers,

but triggers are unseen in this view. Both branches need to

complete before exiting the behavior logic (the terminating

AND on the far right of the diagram). Rectangular icons

represent functions on this diagram. Also in this diagram are

two functions employing multiple exits. This is because some

decision occurs within these two functions.

A Primer for Model-Based Systems Engineering

56

Fi
gu

re
 1

8

C
o
m

m
a
n
d
 C

e
n
te

r

N
o
t

In
 I

n
v
e
n
to

ry

In
 I

n
v
e
n
to

ry

#
 o

f
re

q
u
e
st

s

W
o
rk

st
a
ti
o
n

ki
ll

F
a
ile

d
0
.1

O
K

0
.9

O
K

D
e
fi
ci

e
n
ci

e
s

#
 o

f
re

q
u
e
st

s

A
N

D

IT

1
.1 A

cc
e
p
t

A
n
d

F
o
rm

a
t

R
e
q
u
e
st

1
.2

C
h
e
ck

C
e
rt

if
ic

a
ti
o
n

R
e
sp

o
n
se

A
N

D

1
.3

P
ro

v
id

e
P
ro

d
u
ct

 T
o

C
u
st

o
m

e
r

1
.4

E
v
a
lu

a
te

P
ro

d
u
ct

s
v
s.

R
e
q
u
e
st

1
.5

R
e
p
o
rt

D
e
fi
ci

e
n
ci

e
s

A
n
d

R
e
co

m
m

e
n
d
a
ti
o
n
s

O
R

A
N

D

1
.6

N
o
ti
fy

C
u
st

o
m

e
r

o
f

R
e
je

ct
io

n

1
.7 G

e
n
e
ra

te
P
e
rf

o
rm

a
n
ce

R
e
p
o
rt

O
R

IT

IT

2
.1

C
h
e
ck

P
ro

d
u
ct

In
v
e
n
to

ry

2
.2

P
ri
o
ri
ti
ze

R
e
q
u
e
st

2
.3 D

e
te

rm
in

e
C

o
lle

ct
o
r

M
ix

A
N

D

2
.4 N

o
ti
fy

 U
se

r
O

f
E
st

im
a
te

d
S
ch

e
d
u
le

2
.5

T
a
sk

C
o
lle

ct
o
rs

A
N

D

2
.6

A
cc

e
p
t

A
n
d

F
o
rm

a
t

C
o
lle

ct
o
r

P
ro

d
u
ct

s

2
.7 P
u
t

P
ro

d
u
ct

In
 I

n
v
e
n
to

ry

O
R

2
.8 G
e
t

P
ro

d
u
ct

F
ro

m
In

v
e
n
to

ry

IT

A
N

D

ff
b
d
 P

ro
ce

ss
 R

e
q
u
e
st

s

A Primer for Model-Based Systems Engineering

57

The view depicted in Figure 19 is a sequence diagram. For

simplicity’s sake, it shows thread 1 – the behavior that occurs

if we assume the product is available in the inventory. (The

corresponding activity diagram is shown in Figure 10 on page

46.) The sequence diagram focuses on interactions, clearly

showing the triggering between functions (e.g., “Information

Request” and “Collection Products”) allocated to different

components. In this view, time progresses down instead of

across the diagram.

Figure 19

par

Customers

t1.Make Information Request

t1.Accept Products

Geospatial Library

t1.Accept & Format Request

t1.Get Product From Inventory

t1.Provide Product To Customer

t1.Collection Products

t1.Information Request

seq Thread 1 - Product In Inventory

A Primer for Model-Based Systems Engineering

58

Figure 20 shows an activity diagram. In this instance, we see

the same logic flow as in the functional flow block diagram

(Figure 18), but with Items (inputs, outputs, and triggers)

added. For example, note that the trigger “information

request” appears above the function “Accept Request” in the

upper left of the workstation branch in the activity diagram

but not in the FFBD. This information is shown on the

enhanced functional flow block diagram (EFFBD) shown in

Figure 21 (page 60) as well.

In the activity diagram the trigger items point to the

corresponding functions without an <<optional>> tag. In the

EFFBD the trigger items and their inputs to functions possess a

double-headed arrow. These icon characteristics indicate that

the item is a trigger and influences the execution of the logical

model. The first function on the top branch of the first AND

construct (Accept and Format Request) has a triggering item

(information request), but this item’s icon does not have any

line indicating its origin. Graphically, this means that this

particular item was output from a function beyond the current

graphic boundary. In this case it came from the Customer,

who is not shown within the boundary of the diagram.

Upon execution, this Function outputs an item (formatted

request.) This in turn becomes the trigger for the Check

Product Inventory function on the lower AND branch. This

shows that the execution of these two branches is not

independent, as might appear from observing the functional

flow block diagram alone. Clearly, the execution of the logical

model depends highly upon triggering items.

A Primer for Model-Based Systems Engineering

59

Fi
gu

re
 2

0

[W
o
rk

st
a
ti
o
n
]

<
<

ki
ll>

>

[F
a
ile

d
]

{
p
ro

b
a
b
ili
ty

 =
 0

.1
 }

[O
K
]

{
p
ro

b
a
b
ili
ty

 =
 0

.9
 }

[O
K
]

[D
e
fi
ci

e
n
ci

e
s]

<
<

o
p
ti
o
n
a
l>

>

[#
 o

f
re

q
u
e
st

s]

[C
o
m

m
a
n
d
 C

e
n
te

r]

[N
o
t

In
 I

n
v
e
n
to

ry
]

<
<

o
p
ti
o
n
a
l>

>

<
<

o
p
ti
o
n
a
l>

>

<
<

o
p
ti
o
n
a
l>

>

[I
n
 I

n
v
e
n
to

ry
]

[#
 o

f
re

q
u
e
st

s]

A
cc

e
p
t

A
n
d

F
o
rm

a
t

R
e
q
u
e
st

W
o
rk

st
a
ti
o
n

C
h
e
ck

C
e
rt

if
ic

a
ti
o
n

R
e
sp

o
n
se

W
o
rk

st
a
ti
o
n

P
ro

v
id

e
 P

ro
d
u
ct

T
o
 C

u
st

o
m

e
r

W
o
rk

st
a
ti
o
n

E
v
a
lu

a
te

P
ro

d
u
ct

s
v
s.

R
e
q
u
e
st

W
o
rk

st
a
ti
o
n

R
e
p
o
rt

D
e
fi
ci

e
n
ci

e
s

A
n
d

R
e
co

m
m

e
n
d
a
ti
o
n
s

W
o
rk

st
a
ti
o
n

N
o
ti
fy

 C
u
st

o
m

e
r

o
f

R
e
je

ct
io

n

W
o
rk

st
a
ti
o
n

G
e
n
e
ra

te
P
e
rf

o
rm

a
n
ce

R
e
p
o
rt

W
o
rk

st
a
ti
o
n

C
h
e
ck

 P
ro

d
u
ct

In
v
e
n
to

ry

C
o
m

m
a
n
d
 C

e
n
te

r

P
ri
o
ri
ti
ze

 R
e
q
u
e
st

C
o
m

m
a
n
d
 C

e
n
te

r

D
e
te

rm
in

e
C

o
lle

ct
o
r

M
ix

C
o
m

m
a
n
d
 C

e
n
te

r

N
o
ti
fy

 U
se

r
O

f
E
st

im
a
te

d
S
ch

e
d
u
le

C
o
m

m
a
n
d
 C

e
n
te

r

T
a
sk

 C
o
lle

ct
o
rs

C
o
m

m
a
n
d
 C

e
n
te

r

A
cc

e
p
t

A
n
d

F
o
rm

a
t

C
o
lle

ct
o
r

P
ro

d
u
ct

s

C
o
m

m
a
n
d
 C

e
n
te

r

P
u
t

P
ro

d
u
ct

 I
n

In
v
e
n
to

ry

C
o
m

m
a
n
d
 C

e
n
te

r

G
e
t

P
ro

d
u
ct

 F
ro

m
In

v
e
n
to

ry

C
o
m

m
a
n
d
 C

e
n
te

r

fo
rm

a
tt

e
d

re
q
u
e
st

ce
rt

if
ic

a
ti
o
n

re
q
u
e
st

in
fo

rm
a
ti
o
n

re
q
u
e
st

co
lle

ct
io

n
p
ro

d
u
ct

s

in
v
e
n
to

ry
p
ro

d
u
ct

d
e
fi
ci

e
n
cy

re
p
o
rt

ce
rt

if
ic

a
ti
o
n

re
je

ct
io

n
 n

o
ti
fi
ca

ti
o
n

ce
rt

if
ic

a
ti
o
n

re
p
o
rt

ce
rt

if
ic

a
ti
o
n

re
sp

o
n
se

p
ri
o
ri
ty

 o
f

re
q
u
e
st

co
lle

ct
o
r

m
ix

e
st

im
a
te

d
d
e
liv

e
ry

 s
ch

e
d
u
le

co
lle

ct
o
r

ta
sk

in
g

co
lle

ct
o
r

d
a
ta

in
v
e
n
to

ry
re

q
u
e
st

a
ct

 P
ro

ce
ss

 R
e
q
u
e
st

s

A Primer for Model-Based Systems Engineering

60

Fi
gu

re
 2

1

C
o
m

m
a
n
d
 C

e
n
te

r

N
o
t

In
 I

n
v
e
n
to

ry

In
 I

n
v
e
n
to

ry

#
 o

f
re

q
u
e
st

s

W
o
rk

st
a
ti
o
n

ki
ll

F
a
ile

d
0
.1

O
K

0
.9

O
K

D
e
fi
ci

e
n
ci

e
s

#
 o

f
re

q
u
e
st

s

A
N

D

IT

1
.1

A
cc

e
p
t

A
n
d

F
o
rm

a
t

R
e
q
u
e
st

W
o
rk

st
a
ti
o
n

1
.2

C
h
e
ck

C
e
rt

if
ic

a
ti
o
n

R
e
sp

o
n
se

W
o
rk

st
a
ti
o
n

A
N

D

1
.3 P
ro

v
id

e
 P

ro
d
u
ct

T
o
 C

u
st

o
m

e
r

W
o
rk

st
a
ti
o
n

1
.4

E
v
a
lu

a
te

P
ro

d
u
ct

s
v
s.

R
e
q
u
e
st

W
o
rk

st
a
ti
o
n

1
.5

R
e
p
o
rt

D
e
fi
ci

e
n
ci

e
s

A
n
d

R
e
co

m
m

e
n
d
a
ti
o
n
s

W
o
rk

st
a
ti
o
n

O
R

A
N

D

1
.6 N
o
ti
fy

 C
u
st

o
m

e
r

o
f

R
e
je

ct
io

n

W
o
rk

st
a
ti
o
n

1
.7

G
e
n
e
ra

te
P
e
rf

o
rm

a
n
ce

R
e
p
o
rt

W
o
rk

st
a
ti
o
n

O
R

IT

IT

2
.1 C

h
e
ck

 P
ro

d
u
ct

In
v
e
n
to

ry

C
o
m

m
a
n
d
 C

e
n
te

r

2
.2 P
ri
o
ri
ti
ze

 R
e
q
u
e
st

C
o
m

m
a
n
d
 C

e
n
te

r

2
.3

D
e
te

rm
in

e
C

o
lle

ct
o
r

M
ix

C
o
m

m
a
n
d
 C

e
n
te

r

A
N

D

2
.4 N

o
ti
fy

 U
se

r
O

f
E
st

im
a
te

d
S
ch

e
d
u
le

C
o
m

m
a
n
d
 C

e
n
te

r

2
.5 T

a
sk

 C
o
lle

ct
o
rs

C
o
m

m
a
n
d
 C

e
n
te

r

A
N

D

2
.6

A
cc

e
p
t

A
n
d

F
o
rm

a
t

C
o
lle

ct
o
r

P
ro

d
u
ct

s

C
o
m

m
a
n
d
 C

e
n
te

r

2
.7 P

u
t

P
ro

d
u
ct

 I
n

In
v
e
n
to

ry

C
o
m

m
a
n
d
 C

e
n
te

r

O
R

2
.8 G
e
t

P
ro

d
u
ct

 F
ro

m
In

v
e
n
to

ry

C
o
m

m
a
n
d
 C

e
n
te

r

IT

A
N

D

fo
rm

a
tt

e
d

re
q
u
e
st

ce
rt

if
ic

a
ti
o
n

re
q
u
e
st

in
fo

rm
a
ti
o
n

re
q
u
e
st

co
lle

ct
io

n
p
ro

d
u
ct

s

in
v
e
n
to

ry
p
ro

d
u
ct

d
e
fi
ci

e
n
cy

re
p
o
rt

ce
rt

if
ic

a
ti
o
n
 r

e
je

ct
io

n
n
o
ti
fi
ca

ti
o
n

ce
rt

if
ic

a
ti
o
n

re
p
o
rt

ce
rt

if
ic

a
ti
o
n

re
sp

o
n
se

p
ri
o
ri
ty

 o
f

re
q
u
e
st

co
lle

ct
o
r

m
ix

e
st

im
a
te

d
d
e
liv

e
ry

 s
ch

e
d
u
le

co
lle

ct
o
r

ta
sk

in
g

co
lle

ct
o
r

d
a
ta

in
v
e
n
to

ry
re

q
u
e
st

e
ff

b
d
 P

ro
ce

ss
 R

e
q
u
e
st

s

A Primer for Model-Based Systems Engineering

61

Another important property of both the enhanced and

functional flow block diagrams is that time is a component of

the view. Each function has a duration and the input and

output items are the primary observables. Therefore, their

sequencing in time may be seen using the model repository’s

discrete event simulator.

Because the functions in an enhanced or functional flow block

diagram are the decomposition of a higher-level function, they

may also be represented by a functional hierarchy diagram.

Figure 22 (page 62) shows the functional hierarchy for the

behavior diagrams shown in the diagrams above. The

hierarchy diagram shows the depth of the functional

structure, starting from a source function for the hierarchy. In

addition, by selecting from a set of valid relationships for the

class of the starting entity, a hierarchy diagram reveals the

relationship paths and depth of the model for the selected

relationship set. This diagram is helpful for revealing

unfinished portions of the model as well as any miswiring of

the model.

A Primer for Model-Based Systems Engineering

62

Fi
gu

re
 2

2

P
ro

ce
ss

 R
e
q
u
e
st

s

1
.1

A
cc

e
p
t

A
n
d

F
o
rm

a
t

R
e
q
u
e
st

1
.2

C
h
e
ck

C
e
rt

if
ic

a
ti
o
n

R
e
sp

o
n
se

1
.3 P
ro

v
id

e
 P

ro
d
u
ct

T
o
 C

u
st

o
m

e
r 1
.4

E
v
a
lu

a
te

P
ro

d
u
ct

s
v
s.

R
e
q
u
e
st

1
.5

R
e
p
o
rt

D
e
fi
ci

e
n
ci

e
s

A
n
d

R
e
co

m
m

e
n
d
a
ti
o
n
s

1
.6 N
o
ti
fy

 C
u
st

o
m

e
r

o
f

R
e
je

ct
io

n1
.7

G
e
n
e
ra

te
P
e
rf

o
rm

a
n
ce

R
e
p
o
rt

2
.1 C

h
e
ck

 P
ro

d
u
ct

In
v
e
n
to

ry

2
.2 P
ri
o
ri
ti
ze

 R
e
q
u
e
st

2
.3

D
e
te

rm
in

e
C

o
lle

ct
o
r

M
ix2

.4 N
o
ti
fy

 U
se

r
O

f
E
st

im
a
te

d
S
ch

e
d
u
le

2
.5 T

a
sk

 C
o
lle

ct
o
rs2
.6

A
cc

e
p
t

A
n
d

F
o
rm

a
t

C
o
lle

ct
o
r

P
ro

d
u
ct

s 2
.7 P

u
t

P
ro

d
u
ct

 I
n

In
v
e
n
to

ry

2
.8 G
e
t

P
ro

d
u
ct

 F
ro

m
In

v
e
n
to

ry

h
ie

r
P
ro

ce
ss

 R
e
q
u
e
st

s

A Primer for Model-Based Systems Engineering

63

Another diagram helpful for analysis in both the

functional/behavior and architecture/synthesis domains is the

N2 (N-squared) Diagram. The N2 diagram simply places the

functions of a behavior diagram along the principal diagonal

and the respective inputs/triggers and outputs in the off-

diagonal cells. Figure 23 (page 64) shows an N2 diagram.

Horizontally oriented line segments between functions and

items represent outputs, and vertically directed line segments

between functions and items represent inputs or triggers. Any

items appearing in the top row of the diagram represent items

arising from an external function or functions.

Correspondingly, any items appearing in the far-right column

represent outputs going to external functions. Two aspects of

this diagram are of interest to the engineering team. The first

is that time is not considered, and the second is that

functional interfaces are discerned. This diagram emphasizes

data and provides insight into allocation and interfaces.

The use of a model provides a disciplined framework in which

to construct the system. This is the case in the architectural

domain as well. Just as behavior is described and represented

graphically, so is physical architecture.

By looking at the model, the engineering team can “see”

behaviors and architectures and test them against the system

requirements. Although the various representations are

powerful tools for understanding and communicating the

model, they are not the model itself. They act as filters and

containers for the information that the model embodies. But it

is the language, structure, presentation, and argument that

combine to make the model the tool of choice in the field of

system design.

A Primer for Model-Based Systems Engineering

64

t1.Make Information
Request

t1.Accept Products

t1.Collection
Products

t1.Information
Request

t1.Accept & Format
Request

t1.Formatted
Request

t1.Get Product From
Inventory

t1.Inventory
Product

t1.Provide Product To
Customer

n2 Thread 1 - Product In Inventory

Figure 23

A Primer for Model-Based Systems Engineering

65

WHAT IS MODEL-BASED SYSTEMS

ENGINEERING?

Model-based systems engineering (MBSE) is fundamentally a

thought process. It provides the framework to allow the

systems engineering team to be effective and consistent right

from the start of any project. At the same time, it is flexible

enough to allow the “thought” process to adapt to special

constraints or circumstances present in the problem.

There are major advantages arising from using models as the

basis of systems engineering. Models thoroughly consider the

entire engineering problem, use a consistent language to

describe the problem and the solution, produce a coherently

designed solution, and comprehensively and verifiably answer

all the system requirements posed by the problem. These

traits of model-based systems engineering are significant

advantages when seeking a solution to the systems design

problem at hand.

The MBSE approach that is the subject of this primer is based

on a “layered” process of analyzing and solving systems design

problems. Developed by Jim Long, Marge Dyer, and Mack

Alford, along with a succession of colleagues and associates, it

has developed in a way that has now been named STRATA™

by Vitech Corporation. The name calls out the central principle

of the method—Strategic Layers—because the method is built

around handling the problem in layers of increasing

granularity in order to converge strategically on the solution.

Beginning at the highest, most general level, the problem

statement (system-level requirements set) is analyzed and

translated into functional behaviors that the system must

perform to fulfill the requirements. These behaviors are

A Primer for Model-Based Systems Engineering

66

allocated to physical components (collectively an architecture)

that provide the means for performance. The architecture is

then tested to see that its performance answers the

requirements.

As the system is developed in increasing detail, or

“granularity,” a layered structure takes shape. The engineering

process follows these layers, drilling deeper and deeper into

the system design. Every iteration of the systems engineering

process increases the level of specificity, removes ambiguity,

and resolves unknowns. The domains (Requirements,

Functional Behavior, Architecture, and Validation and

Verification) are all addressed in context at the level of

increased detail as each successive layer is peeled back.

Instead of driving the work in each domain to completion (as

in the traditional approach), layered MBSE works through

each domain in each layer. The two methods are compared

below in a simplified visualization.

Figure 24

The visualization is simplified in both cases because it does not

show any iteration between domains in the traditional

approach nor does it show the iteration between layers in the

MBSE methodology. In the traditional systems engineering

approach, the iteration among the domains usually takes the

form of rework and revisiting domains. This is expensive and

always unplanned. The idea is to finish each domain and move

on to the next without needing to return.

A Primer for Model-Based Systems Engineering

67

In MBSE the iteration can be confined to an adjacent layer and

is easily achieved without interfering with the intended design

progress. This represents a huge advantage over the

traditional approach. Revisiting the domains often means

restarting the design process (or a significant portion of it) in

order to account for the changes made in that domain during

the revisit. This causes reopening the design and reworking

areas that have already been covered. None of that is

necessary with the planned and incremental iterations that

are part of the workflow in the layered MBSE method.

The layer-by-layer approach of MBSE assures that the domains

are considered in context. One of the critical system design

mistakes is losing the system context. This happens as a

natural outgrowth of thinking about the design analytically—

that is, by tearing it apart into its components and focusing at

that level. The work of the late Russell Ackoff, a University of

Pennsylvania business professor and pioneering “systems

thinker,” reminds us that we must also think “synthetically,”

holding the entire system in view and considering it as a

whole. Because a system is, at its root, more than the simple

sum of its parts, we cannot afford to lose the systems view or

we lose the essence of the system itself. (See, e.g., R. Ackoff

with H. Addison and A. Carey, Systems Thinking for Curious

Managers, Triarchy Press, 2010.)

Approaches that involve “deep dives” into one area (e.g.,

requirements) run the substantial risk of obscuring the

systemic risks incurred when the complex relationships

between domains are not fully considered. The central power

of the MBSE approach lies in its careful and complete

consideration of the system design in an orderly and

systematic fashion. This can happen only through the orderly

process and excellent communication which must be the

hallmarks of an effective systems engineering process.

A Primer for Model-Based Systems Engineering

68

This approach to solving the problem in layers is the heart of

MBSE. With this approach (addressing all domains in each

layer), there comes an assurance that all aspects of the

engineering problem at hand are addressed completely and

consistently. The layers and their interrelationships also

provide a solution that can be easily verified and validated

against the needs that created the problem. By stripping away

the layers as we might “peel an onion,” we can be assured

that we have indeed addressed the problem in a meaningful

and productive way.

As the layers are peeled away, the process converges on the

solution. The discipline and rigor of the MBSE process assure

that, like the peeled onion, the design never finds that the

next layer is larger than the last. The process instead

converges on the solution naturally as a product of the MBSE

process.

Requirements for a Systems Engineering

Process

In order for such a solution-seeking process to be effective, it

must satisfy some fundamental requirements. MBSE answers

these requirements quite well.

Requirement 1: The process must consistently
lead to the development of successful systems.
MBSE is a coherent and comprehensive means of consistently

arriving at a realizable system effectively and efficiently. By

engineering the system horizontally in layers and completing

all the systems engineering activities at one layer before

decomposing/elaborating in the next layer, the MBSE

engineering team advances the design from layer to layer. In

A Primer for Model-Based Systems Engineering

69

this way, MBSE converges layer by layer on a system solution

that successfully meets the needs behind the development

process.

As the work progresses through the layers, the engineering

activities performed in each domain change emphases. In

layer 1, work focuses on the requirements domain along with

verification and validation, if done properly. Work in layer 2

emphasizes the functional/behavior domain. Succeeding

layers are a balance between the functional/behavior and

architecture/synthesis domains. Refinements in system

control, error handling, and resource management are added

at each succeeding layer.

Preliminary specifications are available at the conclusion of

each layer’s activities. Therefore, the MBSE modeling process

yields meaningful draft specifications throughout

development, a distinct advantage over conventional

approaches. Doing systems engineering in layers makes the

MBSE process virtually fail-safe. Should external constraints

force the process to stop at any given layer, the draft solution

is complete to the level of the last layer finished.

A convergent process like STRATA uses this disciplined,

ordered process to make the best choices under the given

conditions. This is not to say that any particular decision is not

flawed. But where flaws exist, any correction of them can

occur without dire programmatic consequences. In addition,

by framing and developing the solutions in layers, STRATA

ensures that assumptions, boundaries, interfaces, functions,

and architectures are convergent, consistent, and complete.

The convergent process is the means of avoiding catastrophic

rework and an unlimited cycle of fixing flaws. With MBSE, the

means of resolving issues is not unduly costly or time

consuming. This is because measures exist to allow the

A Primer for Model-Based Systems Engineering

70

systems engineering team to know when each design stage is

complete, to see the direction for design advancement, to

manage the impacts around resolving flaws, and to mitigate

the consequences of uncovered design issues.

Requirement 2: The process must manage system
complexity well.
As problems and their solutions become more complex, it is

correspondingly more difficult to ensure that solutions are

consistently and completely defined. Applying MBSE principles

as an engineering and management process approach

provides a powerful way of describing problems and their

solutions. Because this description process is rigorous and

complete, systems engineers are able to manage the problem

complexity in a complete and disciplined manner.

As will be shown below, the integrated nature of the layered

model is the key to managing complexity. It “automates” the

tracking of the relationships and tracing paths that would

otherwise need to be maintained and followed by hand. What

would, absent the model’s integrated structure, be an arduous

task of ferreting out the information from multiple sources

becomes the simple task of looking to the model, where the

information has already been entered and maintained over

time. Freed from the ministerial task of repetitively finding

and recording information from a variety of repositories, the

design team is enabled to leverage the power of the MBSE

model to manage levels of complexity simply not possible with

more fragmented and labor-driven approaches.

A Primer for Model-Based Systems Engineering

71

Requirement 3: The process must lead to
effective solutions to a broad range of customer
needs.
The MBSE approach provides a process that converges on a

complete solution across a broad range of customer needs.

MBSE is adaptable to the particular engineering problem type

at hand, and the process advances the system design without

performance disruption—even in the midst of unknowns.

Engineering, operational, and social choices can be considered

in advancing the design. In addition, the system can include

the ability to have a nondisruptive means of accommodating

on-going source requirement changes.

Requirement 4: The process must accommodate
the three main problem classes (engineering
unprecedented systems, reverse engineering, and
middle-out engineering).
Because it is adaptable to the layers it finds in the problem

definition, MBSE is useful in situations that require top-down

engineering, reverse engineering, and middle-out engineering.

In each instance, the engineering process begins where the

needs exist and moves through the layers of the problem to

the ultimate solution. Once the ultimate solution is reached, it

is necessary to “prove” that the solution addresses the needs

that drove the development project. MBSE makes this process

manageable by proceeding through and documenting the

development project in a way that is conducive to tracing the

sufficiency of the system offered as a solution.

STRATA iterates through the primary concurrent systems

engineering activities at each layer. The degree of effort within

each domain varies according to the nature of the problem,

the level being worked, and the boundary conditions affecting

A Primer for Model-Based Systems Engineering

72

the design and process. But, as is illustrated in the gears

shown in Figure 25, work in any domain influences the others.

In a typical top-down design problem, the requirements

domain tends to dominate the work at the first layer. In a

reverse engineering (bottom-up) effort, however, the

synthesis/architecture domain would tend to dominate the

work at the first layer. Work advances across the domains

(horizontally) in the layer while considering how the design

should advance to the next layer. But note that the major

thrust is to advance the work as indicated by the down arrows

in Figure 25.

Figure 25

Within each layer, the engineer must resolve ambiguities and

make decisions on items that are “to be determined.” In

resolving such issues, the design decisions made at the

previous adjacent layer may be brought into question and

need to be revisited. The narrow arrows in Figure 25 indicate

this adjustment in the process. This provides the engineering

team the opportunity to make design corrections and

A Primer for Model-Based Systems Engineering

73

refinements as a result of new insights, discoveries, or design

decisions.

A key STRATA concept is that the engineering team should

only have to iterate between adjacent layers. This allows the

process to converge on a solution. Completeness and

convergence are essential principles of STRATA. Therefore, a

layer should be completed before advancing to the next layer

(preserving completeness), and iteration back more than one

layer becomes unnecessary. Should something be introduced

into the problem (e.g., an external change) that necessitates

revisiting earlier layers, the engineering team would be

alerted to the creation of a major problem involving schedule

and cost impacts resulting from having to reengineer the

solution back through the layers to reach the point of process

progress at which the issue arises.

Because it converges on the ultimate solution layer by layer,

STRATA is truly a convergent process. This leads to it being

“fail-safe.” A truly convergent process always leads to a

solution for any problem set that has a realizable solution,

even given the constraints of cost and schedule. However, if

circumstances (such as a redirection of resources) disrupt the

process, the convergent process produces a draft system and

other specifications at whatever process layer it encounters

the disruption. This means that an abbreviated process does

not result in a complete waste of the effort invested up to the

time of interruption. The solution at that point is complete to

the level of granularity represented in the last layer

completed.

The system design process proceeds from a conceptual to a

detailed description by moving downward with increasing

detail or granularity from one layer to the next. Each of the

iterations analyzes a layer within the system design process.

Beginning with the basic, high-level user requirements serves

A Primer for Model-Based Systems Engineering

74

to define broad system characteristics and objectives. Clarity is

brought to these high-level expressions until the process has

defined the system to a point of sufficient granularity to allow

the system’s physical implementation to begin.

Most systems engineering processes are not convergent

precisely because they have difficulty managing process

interdependencies and consistency across engineering

domains under the constraints of satisfying cost and schedule.

In those approaches, these factors tend to be treated

disjointedly. By contrast, the STRATA approach enhances the

project discipline by proceeding layer by layer across all

domains, causing all factors to be addressed both

systematically and systemically. The engineering team and

project management, therefore, have better insight into the

trade-offs needed to advance the design effort. This allows the

domains to advance together, preserving completeness.

In addition, the engineering team can work consistently at the

correct level within the design process. There are some

necessary exceptions, such as risk reduction and addressing

long-lead issues. For these issues, deep-dive studies are

appropriate to ensure system success. Ultimately, however,

the complete solution unfolds in increasing levels of detail and

intermediary results are available for early review and

validation.

MBSE Model and System Definition Language

Whether based on MBSE or not, all system design efforts

develop their own language over time because of the

necessity to communicate certain ideas clearly. The problem is

that these ad hoc approaches rarely achieve the fundamental

goals of clear communication. They take time to develop and,

because the development is unplanned and ad hoc, this

A Primer for Model-Based Systems Engineering

75

impedes system design progress while the language is

established. MBSE avoids this situation because the language

is developed in advance and eliminates confusion from the

project’s start.

The engineer uses a formal specification language to

characterize the various design entities (requirements,

functions, components, etc.) in a repository. Using this

language and a repository allows the engineer to construct a

systems “model.” By capturing all the system information in

the repository and correcting all errors, the engineer builds

the repository to contain the system model from which the

design team will produce the system, segment, and interface

specifications.

Using the language constructs of the system definition

language, the systems engineer can develop a model that

illuminates both the physical architecture and the functional

behavior of the system. The functions and the interactions of

the system with the external entities enable the system to

process the inputs into the outputs needed to satisfy the

needs that drive the system. This discussion of the MBSE

process now turns to the concepts of system function and

behavior, and the development of system threads. Threads

are sequences of behavior that trace defined paths through

the system. Collectively these threads integrate to define the

system behavior.

There are substantial benefits to maintaining system models

throughout the system life cycle. In the development stage,

the development team must characterize the system problem.

This is an effort to define both the system context

representation and the system boundary. The system

boundary definition specifies the system of interest, as well as

all external entities interfacing with the system. Thus, the

A Primer for Model-Based Systems Engineering

76

development team identifies the system-level functional

interfaces between the system and those external entities.

When working with top-down problems, the engineering team

draws from the source documents (requirements, concept of

operations, and other documentation) to identify what the

system is and what it does at its most abstract level. This

functional context model consists of the “root function” for

the system and corresponding root functions for each of the

external entities encountered. Thus, this diagram identifies all

system-level stimuli and responses for the system.

The system boundary also identifies the limits of system

development. The engineering team is responsible for

everything within the boundary, handling all inputs, and

developing all system outputs. In addition, they must manage

all the system interfaces with external systems. Even though

this high-level process appears overly simple, its purpose is to

identify the principal inputs and outputs transiting the system

boundary and to discover whether any external systems are

missing. In many cases, this activity is not done at all or not

done well.

With the originating requirements in hand, the engineer

proceeds to layer 1.

Developing Layer 1 of Our Solution

Layer 1: Requirements
Work in the requirements domain begins at the highest level

with relatively general statements from the system owners

and stakeholders. These may take the form of a Concept of

Operations (CONOPS), a Request for Proposal (RFP), internal

customer documents, or all of these and more. From these

A Primer for Model-Based Systems Engineering

77

descriptions of the system and its purpose, the requirements

will begin to emerge.

As the design progresses through the layers, the requirements

will be interpreted and refined into more and more particular

statements. The more particular requirements are the

“children” of their more general “parent” requirements.

Take, for example, the requirement in the sample problem

that the system “accept information requests from certified

customers.” As the design proceeds, it becomes apparent that

customers need to be able to make requests for images in

several different media/formats. For instance, they need to be

able to make a verbal request by phone. The system must be

able to accept and process such a request. The initial

requirement for accepting customer requests (the parent) is

refined by the more specific requirement that the system

“accept requests via telephone” (the child).

Layer 1: Functional Behavior
Once the requirements have been collected and analyzed at

the level of the current layer, the next step in the design

process is to design the functional behavior to implement the

requirements. Like the other domains, the behavioral (logical)

design advances in layers from the more abstract toward the

more specific and complete functional representations. This is

done concurrently with corresponding efforts in the

requirements domain and the architecture/synthesis domain.

The model interrelationships among these domains must be

maintained to ensure completeness and convergence. This

also minimizes the likelihood of having major rework because

of decisions made at an inappropriate level in another

domain.

A Primer for Model-Based Systems Engineering

78

Concurrently, an analysis of input/output transactions occurs

in the requirements domain and in the architecture/synthesis

domain to characterize broad classes of input/output

transactions based upon the system boundary determinations

that have been made. This identifies the stimulus-response

characteristics of the system. The objective is to derive the

possible threads to analyze in layer 2, which is a discovery

process. System threads are generated for several reasons:

1. To make sure that every system input (stimulus) is

properly addressed.

2. To assure that the system logic is fully developed.

3. To break the problem into solvable pieces.

In particular, the processing required for each class of system

stimulus/input should identify a thread. This also enables the

design team to identify system-level functions. Some of the

questions addressed in this discovery process are:

1. Which inputs or input sequences lead to which outputs or

output sequences?

2. Are there outputs or output sequences for which there is

not an external input (stimulus)?

3. Are there inputs or input sequences for which there are

not external outputs (responses)?

When the source documents lack sufficient information to

determine these threads, the engineering team may suggest

possible stimulus-response possibilities and engage the

customer in approving these or identifying additional threads.

The work products within the functional/behavior domain are

sometimes collectively referred to as the “functional

architecture” of the system.

A Primer for Model-Based Systems Engineering

79

Layer 1: Architecture
Source documents serve to define the top-level architecture

and functional context. Its purpose is to assure the

identification of all the externals and environmental entities.

Thereafter, the context aids in discovering all the principal

input and output classes transiting the system boundary. This

identifies the primary system-level interfaces. Each layer

advances the completeness of the design and influences the

work in the other domains. Conversely, the work in the other

domains influences the physicality of each layer. Handling this

interdependence is foundational for finding balance in the

system design. MBSE does this in a disciplined, orderly

fashion.

Just as the functional/behavior domain is a part of each layer

of the STRATA, so is the architecture/synthesis domain.

Developed in concert with the analytical work on the

requirements domain, it is influenced by allocation decisions

made in the behavioral domain. The objectives of the

architectural model are determined by the current level of the

system model. For example, layer 1 architectural model

objectives are to identify the system and the external

counterparts with which it must interact. Accordingly, layer 2

architectural model objectives seek to discover physical

partitioning strategies for the system. Subsequent layer-by-

layer objectives investigate, refine, and evaluate the strengths

and weaknesses of each partitioning strategy employed. They

seek to maintain the relationships among all the other

domains—preserving each layer’s boundary conditions and

maintaining the evidentiary path for system acceptance.

Architectural Language
There is a clear need for a language to express the system’s

architectural design. The language of architecture/synthesis is

A Primer for Model-Based Systems Engineering

80

both graphical and textual. The graphical language used to

support architecture/synthesis in model-based systems

engineering is abstract and represents the hierarchical

structure of the physical design and the interface relationships

among internal and external components. (These are

expressed in physical hierarchy diagrams and physical block

diagrams.)

Just as in the behavioral domain, it is preferable for these

architecture/synthesis graphical views to be generated from

the model. This avoids having to exhaustively review all

diagrams to determine what model changes affect current

views, making long-term model support less labor intensive

and, therefore, more manageable. Showing physical structure

graphically requires that the graphical language (notation)

possesses certain characteristics. These are similar to behavior

characteristics. The language must:

1. Be understandable (allowing for information hiding/

abstraction)

2. Preserve physical hierarchy (supporting decomposition

and aggregation)

3. Support behavior (decomposition, aggregation, and

allocation)

4. Support behavior executability

Therefore, in the system definition language (SDL),

components are decomposable; that is, they have parent-child

relationships. The SDL must provide for the connectivity of

links and interfaces to express how components physically

relate while under the condition of preserving behavior

(observables and exit criteria).

Matching physicality with behavior is an important property of

the system definition language. Physical decomposition must

preserve behavior under decomposition and aggregation. This

A Primer for Model-Based Systems Engineering

81

is necessary to allow the logical design and the physical design

to be consistent through each design layer. Modeling

inconsistencies within each layer and between layers indicate

system design flaws. These flaws may well be critical and,

consequently, the system design itself may be seriously

flawed. A process such as MBSE that enables system designers

to easily identify these inconsistencies is, therefore, critical to

producing a successful design.

Behavior preservation under allocation is necessary for

maintaining consistency with the integrated logical model. The

process should result in the same system behavior when the

partitioned behavior is allocated to system components as

was presented in the behavioral model itself. A simulation of

the integrated logical model and a simulation of the allocated

model should give identical results.

Because of the need for process documentation, all

observables need to be preserved under both decomposition

and aggregation. Just as in the behavioral domain, inputs and

outputs, input and output sequencing, number of and

conditions for exits, and performance must all be preserved.

Performance characteristics under decomposition need to be

carefully managed. Performance measures may change at

different levels of decomposition and performance

characteristics—especially time performance values—may

need decomposition as well.

The preservation of system behavior across decomposition is

much less likely to occur when the systems engineering

approach tends to focus on components/objects first, because

one implicitly rather than explicitly allocates functionality to

the components regardless of the true needs of the system or

the system’s users. Implicit behavioral allocation makes it

likely that physical decomposition may not always preserve

the conditions necessary for logical and functional consistency

A Primer for Model-Based Systems Engineering

82

throughout the system design. This is the price of the loss of

the “systems view” that so often afflicts component-driven

engineering efforts.

user

C

Physical Context

Context

C.1

Customers

Human

C.2

Collectors

External System

C.3

Certification
Authority

Service

SYS.1

Geospatial Library

System

SYS.1.1

Workstation

Subsystem

SYS.1.2

Command Center

Subsystem

bdd Physical Context

Figure 26

A representative physical hierarchy diagram is shown in Figure

26 along with the physical block diagram variations of Figures

27 and 28. The physical hierarchy diagram shows,

organizationally, the system’s physical architecture from the

most abstract to the concrete representational aspects. It is

the concrete, or lower-level, physical components that are

actually specified and built. In Figure 27, the system and its

context is revealed at layer 1 of the hierarchy. Layer 2, in this

example, reveals the two concrete components that the

system comprises (in this case, the Geospatial Library).

A Primer for Model-Based Systems Engineering

83

C
o
m

m
a
n
d
 L

in
k

C
e
rt

if
ic

a
ti

o
n
 R

e
sp

o
n
se

 L
in

k

R
e
q
u
e
st

 L
in

k

C
e
rt

if
ic

a
ti

o
n
 R

e
q
u
e
st

 L
in

k

R
e
tu

rn
 L

in
k

S
ta

tu
s

L
in

k

C
o
ll
e
ct

o
r

P
ro

d
u
ct

 L
in

k

C.1

Customers

Human

C.2

Collectors

External System

C.3

Certification Authority

Service

SYS.1

Geospatial Library

System

pbd Physical Context

Figure 27

Certification
Response Link

GL Internal
Link

Command Link

Collector
Product Link

S
ta

tu
s

L
in

k

Certification
Request Link

R
e
tu

rn
 L

in
k

R
e
q
u
e
st

 L
in

k

SYS.1.1

Command Center

Subsystem

SYS.1.2

Workstation

Subsystem

C.1

Customers

Human

C.2

Collectors

External System

C.3

Certification Authority

Service

pbd Geospatial Library

Figure 28

Correspondingly, the physical block diagrams present the

physical interrelationships among the components. Figure 27

reveals the interconnections with the entities external to the

system being developed. Figure 28 provides a view of the

interrelationships among the external entities and between

the system entities.

A Primer for Model-Based Systems Engineering

84

Architecture Design at Layer 1
In the development stage, the system representation is

characterized and presented to the development team. The

fundamental effort at layer 1 is to define and express the

system’s context and system boundary. The system’s

boundary definition identifies the system of interest and all

external entities interfacing with it.

The systems engineering team uses the source documents

(requirements, concept of operations, and other

documentation) to identify what the system is and what it

does at its most abstract level. The physical context view,

which is analogous to the functional context view, consists of

the system and the external entities encountered as well as

the stimuli and responses crossing the system boundary.

The system boundary identifies the limits and focus of our

system development. The engineering team is responsible for

designing everything within the boundary, handling all inputs,

and developing all system outputs. Even though this system

context diagram appears overly simple, its purpose is to

identify the principal inputs and outputs transiting the system

boundary and to discover whether any external systems are

missing; yet in many cases, this activity is not done at all or not

done well.

From an architectural point of view, the task at layer 1 is to

use the context diagram to show both the physical entities of

the system as well as those external entities that will interact

with the system. In doing this, the top-level architecture

follows the top-level behavior.

Care should be taken with the definition of the system

boundary. The boundary should be drawn to cast the net

neither too broadly nor too tightly. An improperly selected

system boundary either adds unnecessary entities to the

A Primer for Model-Based Systems Engineering

85

system design (too broad) or, even more detrimentally,

excludes necessary entities from the system design (too tight).

Excluding necessary entities adds more ambiguity to the

design effort and creates more difficulty in resolving those

ambiguities. An improperly selected system boundary affects

the tasks associated with the requirements, behavior, and

architecture/synthesis domains.

Proceeding with Layer 2

The layer 2 objective for system behavior is to develop the

integrated logical view of the system. The integrated logical

view is the integration of the system threads for idealized

system behavior; that is, the system behavior without

addressing faults, errors, resource management, and so on.

The approach is to model the behavior of the threads

identified during the work on layer 1. After completing these

threads, the systems engineering team builds the integrated

model. The integrated model incorporates the functional

aspects and insights from each thread into the integrated

model.

The goal in establishing the system behavior is to provide a

specification of what the system must do to meet the

functional requirements without inferring or assuming any

particular technical solution (the physical structure and make-

up of the system). Maintaining this separation (between the

behavior and a particular solution) requires a surprising

amount of discipline. Though this separation may not always

need to be total and absolute, care must be taken that

assumptions about the physical architecture are not made so

prematurely that it creates artificial constraints on the system

design.

A Primer for Model-Based Systems Engineering

86

Thread Development
Generating a thread begins with selecting one of the classes of

system input (this input is a stimulus for the system). The next

step is to create the sequence of system functions necessary

to respond completely to that input. This sequence normally

results in the creation of one or more system outputs. Some

threads may not terminate as a system output, but may enter

data in an internal database or change the state of the system.

At the same time, the appropriate source functional

requirements are associated with these thread functions.

When the thread development is complete, all the functional

requirements should have been addressed in one or more of

the threads. If that is not the case, then something is missing

from an existing thread or another thread needs to be

developed.

As an example, consider a thread from our example system

providing products to users from an existing inventory in

response to customer orders. Figure 29 shows an enhanced

functional flow block diagram of this thread. This could also be

shown just as easily in an activity diagram like the one in

Figure 30.

Figure 29 postulates a sequence of functions that responds to

a customer request and is limited to the case where the

product already is present in the system’s inventory (thread 1,

labeled t1 in the diagrams). The thread’s flow is from left to

right, as shown by the directional arrows on the branch. The

stimulus for this thread is the information request, which is

placed by the customer (t1.1 Make Information Request). The

system performs the next three functions, and the customer

performs the last function (t1.2 Accept Products).

A Primer for Model-Based Systems Engineering

87

system

customers

AND

t.1.1

t1.Make
Information

Request

t.1.2

t1.Accept
Products

t.1.3

t1.Accept &
Format Request

t.1.4

t1.Get Product
From Inventory

t.1.5

t1.Provide
Product To
Customer

AND
t1.Information

Request
t1.Collection

Products

t1.Formatted
Request

t1.Inventory
Product

effbd Thread 1 - Product In Inventory

Figure 29

[customers]

[system]

<<optional>> <<optional>>

t1.Make
Information

Request

t1.Accept
Products

t1.Accept &
Format Request

t1.Get Product
From Inventory

t1.Provide
Product To
Customer

t1.Information
Request

t1.Collection
Products

t1.Formatted
Request

t1.Inventory Product

act Thread 1 - Product In Inventory

Figure 30

A second thread (thread 2, labeled t2 in Figure 31 on page 88)

considers the case created when the product requested is not

in inventory. In that instance, it is necessary to identify the

needed product and procure that product from an external

system.

A Primer for Model-Based Systems Engineering

88

Fi
gu

re
 3

1

[c
u
st

o
m

e
rs

]

[s
y
st

e
m

]

<
<

o
p
ti
o
n
a
l>

>
<

<
o
p
ti
o
n
a
l>

>

<
<

o
p
ti
o
n
a
l>

>

<
<

o
p
ti
o
n
a
l>

>
<

<
o
p
ti
o
n
a
l>

>

[c
o
lle

ct
o
rs

]

<
<

o
p
ti
o
n
a
l>

>

t2
.M

a
ke

In
fo

rm
a
ti
o
n

R
e
q
u
e
st

t2
.

R
e
ce

iv
e

E
st

im
a
te

d
S
ch

e
d
u
le

t2
.A

cc
e
p
t

P
ro

d
u
ct

s

t2
.A

cc
e
p
t

&
F
o
rm

a
t

R
e
q
u
e
st

t2
.P

ri
o
ri
ti
ze

R
e
q
u
e
st

t2
.D

e
te

rm
in

e
C

o
lle

ct
o
r

M
ix

t2
.N

o
ti
fy

C
u
st

o
m

e
r

o
f

E
st

im
a
te

d
D

e
liv

e
ry

t2
.T

a
sk

 C
o
lle

ct
o
rs

t2
.A

d
d
 P

ro
d
u
ct

T
o
 I

n
v
e
n
to

ry

t2
.P

ro
v
id

e
P
ro

d
u
ct

 T
o

C
u
st

o
m

e
r

t2
.C

o
lle

ct
 D

a
ta

t2
.P

ro
ce

ss
 a

n
d

P
ro

v
id

e
 C

o
lle

ct
e
d

D
a
ta

t2
.I

n
fo

rm
a
ti
o
n

R
e
q
u
e
st

t2
.E

st
im

a
te

d
D

e
liv

e
ry

 S
ch

e
d
u
le

t2
.C

o
lle

ct
io

n
P
ro

d
u
ct

s

t2
.F

o
rm

a
tt

e
d

R
e
q
u
e
st

t2
.P

ri
o
ri
ty

O
f

R
e
q
u
e
st

t2
.C

o
lle

ct
o
r

M
ix

t2
.C

o
lle

ct
o
r

T
a
sk

in
g

t2
.I

n
v
e
n
to

ry
P
ro

d
u
ct

t2
.C

o
lle

ct
o
r

D
a
ta

t2
.U

n
p
ro

ce
ss

e
d
 D

a
ta

a
ct

 T
h
re

a
d
 2

 -
 P

ro
d
u
ct

 N
o
t

In
 I

n
v
e
n
to

ry

A Primer for Model-Based Systems Engineering

89

Figure 31 is more complex and shows logic that requires the

functional involvement of the system with two external

entities. The functions performed by the customer are on the

top branch and include making the initial request, receiving

the estimate regarding the anticipated delivery date for the

customer's order of products, and accepting the products on

delivery.

The functions performed by the collectors are on the bottom

branch and include collecting the data in response to the

tasking from the system, as well as processing and providing

the collected images back to the system for placement into

the system inventory. The system performs the remaining

functions.

These two threads cover the two possibilities that result when

a customer makes a request. Once the system accepts the

request, it either does or does not have the image in

inventory. If it does, the functional behavior follows thread

one and the image is retrieved and provided to the customer.

That case is covered by Thread 1. If the system inventory does

not include the requested image, the system must task a

collector to procure it, add the image to the inventory, and

provide the image to the customer. That case is represented

by Thread 2. Together, they represent the operation of the

Geospatial Library.

After generating the system threads for every class of system

input, it is necessary to check to see whether every system

output identified in either the system context diagram or the

system requirements has been addressed. If not, there must

be threads that have not yet been identified or outputs that

are the result of internal triggers (e.g., a requirement for

periodic system health and status data). These internal

triggers must be identified and threads generated for each

case. These threads form the basis for creating the integrated

A Primer for Model-Based Systems Engineering

90

logical model and should be saved for later reference to help,

for example, formulate system test threads.

Once the systems engineering team completes the system

threads, they develop the integrated logic to make the logical

model more compact and understandable, and to take

advantage of commonalities among the threads. At this point,

the logical model represents the system’s idealized behavior.

Subsequent work adds complexity to address error conditions,

resource management, failure recovery, security, and other

needs. Each layer advances the completeness of the design

and influences the work in the other domains. In the same

way, the work in the other domains influences the

functionality of each layer. Designing with this in mind is

fundamental to finding balance in the system design.

A Primer for Model-Based Systems Engineering

91

Thread Integration
Once the set of system threads is complete, they must be

integrated and any commonality of functionality among them

accounted for. Systems engineers must also account for the

logical interaction and logical control for that combination of

threads.

It is tempting to integrate these threads by keeping them in

their original form and representing them in a multibranched

parallel construct. This strategy actually makes it difficult to

define and/or understand system function interactions as an

integrated whole. Rather than simply aggregating the threads

together, it is helpful to integrate their behaviors into a

synthetic whole.

The objective is to integrate the threads in a manner that

minimizes the size and complexity of the final integration. This

is done by minimizing the duplication of functions and logic

streams. The set of system threads identifies how the system

responds to each input independent of all other inputs. This is

an effective strategy for managing complexity. However, the

individual threads do not account for commonality of

functional process, nor do they account for thread

interactions.

One common integration problem is that different individuals

generate the different threads. That means that similar

functions may be described as having different names,

different boundaries, and different inputs and outputs. The

resolution of these differences must be a part of integrating

the threads into a single, common architecture.

While some differences are differences in name only, others

are functionally real. Functions with differing inputs and

outputs are actually different functions. Likewise, functions

A Primer for Model-Based Systems Engineering

92

with different exit conditions are different functions. This

must be taken into account when defining the unique system

functions during the integration of the threads.

The integration process defines the means of control over the

integrated whole. This activity may prove to be a challenge,

but it is essential in order to gain an efficient and

understandable set of system logic. It is usually easier to

integrate the threads by looking for common entities.

Examples might be inputs from the same external system,

inputs through the same input channel, or inputs requiring the

same initial functional processing. This integration activity is a

creative challenge dependent on the insight gained during

thread development, and there is no standard formula or

process for it.

The resulting integrated behavior diagram contains the

threads involved in the integration. Each of them can be seen

as an identifiable path. Figure 32 is an enhanced function flow

block diagram (EFFBD) resulting from the integration of the

individual threads into a single integrated behavior diagram.

This depicts the functional architecture of the system. It

consists of the structured sequences and logic of system

functions, including the inputs, outputs, and triggers which

relate to the functions. When integrated with the enhanced

EFFBD for all of the external systems, the resulting logical

model becomes executable.

A Primer for Model-Based Systems Engineering

93

Fi
gu

re
 3

2

C
o
lle

ct
io

n
s

C
u
st

o
m

e
rs

S
y
st

e
m

ki
ll

O
K

0
.9

N
o
t

In
 I

n
v
e
n
to

ry

In
 I

n
v
e
n
to

ry

O
K

D
e
fi
ci

e
n
ci

e
s

F
a
ile

d
0
.1

C
e
rt

if
ic

a
ti
o
n
 A

u
th

o
ri
ty

A
N

D

A
N

D

C
.1

.1

M
a
ke

 I
n
fo

rm
a
ti
o
n

R
e
q
u
e
st

C
.1

.2

R
e
ce

iv
e

E
st

im
a
te

d
S
ch

e
d
u
le

C
.1

.3

A
cc

e
p
t

P
ro

d
u
ct

s

C
.1

.4

R
e
ce

iv
e
 N

o
ti
fi
ca

ti
o
n

o
f

C
u
st

o
m

e
r

o
f

C
e
rt

if
ic

a
ti
o
n

R
e
je

ct
io

n

A
N

D

C
.3

.1

V
a
lid

a
te

C
u
st

o
m

e
r

C
e
rt

if
ic

a
ti
o
n

1
.1

A
cc

e
p
t

A
n
d

F
o
rm

a
t

R
e
q
u
e
st

1
.2

C
h
e
ck

C
e
rt

if
ic

a
ti
o
n

R
e
sp

o
n
se

1
.6 N
o
ti
fy

 C
u
st

o
m

e
r

o
f

R
e
je

ct
io

n

1
.7

G
e
n
e
ra

te
P
e
rf

o
rm

a
n
ce

R
e
p
o
rt

2
.1 C

h
e
ck

 P
ro

d
u
ct

In
v
e
n
to

ry

2
.2 P
ri
o
ri
ti
ze

 R
e
q
u
e
st

2
.3

D
e
te

rm
in

e
C

o
lle

ct
o
r

M
ix

A
N

D

2
.4 N

o
ti
fy

 U
se

r
O

f
E
st

im
a
te

d
S
ch

e
d
u
le

2
.5 T

a
sk

 C
o
lle

ct
o
rs

A
N

D

2
.6

A
cc

e
p
t

A
n
d

F
o
rm

a
t

C
o
lle

ct
o
r

P
ro

d
u
ct

s

2
.7 P

u
t

P
ro

d
u
ct

 I
n

In
v
e
n
to

ry

O
R

2
.8 G
e
t

P
ro

d
u
ct

 F
ro

m
In

v
e
n
to

ry
A

N
D

1
.3 P
ro

v
id

e
 P

ro
d
u
ct

T
o
 C

u
st

o
m

e
r

1
.4

E
v
a
lu

a
te

P
ro

d
u
ct

s
v
s.

R
e
q
u
e
st

1
.5

R
e
p
o
rt

D
e
fi
ci

e
n
ci

e
s

A
n
d

R
e
co

m
m

e
n
d
a
ti
o
n
s

O
R

A
N

D

O
R

C
.2

.1 C
o
lle

ct
 D

a
ta

C
.2

.2 P
ro

ce
ss

 a
n
d

P
ro

v
id

e
 C

o
lle

ct
o
r

D
a
ta

A
N

D

in
fo

rm
a
ti
o
n

re
q
u
e
st

e
st

im
a
te

d
d
e
liv

e
ry

sc
h
e
d
u
le

co
lle

ct
io

n
p
ro

d
u
ct

s

ce
rt

if
ic

a
ti
o
n

re
je

ct
io

n
n
o
ti
fi
ca

ti
o
n

ce
rt

if
ic

a
ti
o
n

re
sp

o
n
se

ce
rt

if
ic

a
ti
o
n

re
q
u
e
st

fo
rm

a
tt

e
d

re
q
u
e
st

ce
rt

if
ic

a
ti
o
n

re
p
o
rt

p
ri
o
ri
ty

 o
f

re
q
u
e
st

co
lle

ct
o
r

m
ix

co
lle

ct
o
r

ta
sk

in
g

co
lle

ct
o
r

d
a
ta

in
v
e
n
to

ry
re

q
u
e
st

in
v
e
n
to

ry
p
ro

d
u
ct

d
e
fi
ci

e
n
cy

re
p
o
rt

u
n
p
ro

ce
ss

e
d

d
a
ta

e
ff

b
d
 G

e
o
sp

a
ti
a
l L

ib
ra

ry
 C

o
n
te

x
t

F
u
n
ct

io
n
 -

 L
e
v
e
l 2

A Primer for Model-Based Systems Engineering

94

As the functional design progresses, additional detail is added

to address other functional support needs. These needs are

error handling, fault recovery, input overload, resource

management, and the additional control logic to manage the

additional functional logic.

At each layer of the model, satisfaction of the layer’s

completion criteria has to occur before advancing to the next

layer. Part of those completion criteria involves assuring that

the functional model’s boundary conditions with the other

domains are met. That is, source functional requirements are

traceable to the derived lower-level functions, which in

themselves are derived functional requirements. In addition,

these same lower-level functions must be properly allocated

to the components of the physical architecture.

Architecture Design at Layer 2
The architecture/synthesis objectives for layer 2 are to

develop and apply an effective partitioning strategy for the

physical components in response to the behavior model.

Partitioning requires finding a balance between functional

groups and the components to which these functional groups

are assigned or allocated. System partitioning serves to find a

balanced set of physical components that are relatively easy

to construct, and integrates them into a useful and usable

system for the system’s stakeholders.

The work in layer 2’s behavioral domain, the integrated logic

model, is a reasonable starting point for this process, because

at this point the integrated logic model usually possesses

more structure than the current physical model coming out of

layer 1. If there are any physical architecture constraints, such

as using existing components or contractual required

configuration items, then they affect the process.

A Primer for Model-Based Systems Engineering

95

In those instances, the architectural constraints become fixed

points in the physical hierarchy and must influence the

integrated logic to assure that the behavior of the affected

components is easily recognizable and allocatable within the

integrated logic model. The allocation is an iterative process

affecting the integrated logic in an effort to find a balanced set

of functions to allocate to a corresponding set of components.

Work in the behavioral domain influences the system’s

component set and vice versa until a balance is found.

Effective partitioning requires criteria for evaluating the

various partitioning strategies and the results of applying

those strategies. Among the primary potential partitioning

strategy evaluation criteria are interface complexity, testing

complexity, and performance partitioning among subordinate

components. Secondary criteria include technology risk, future

performance requirements, and future technology insertion. It

is not necessary to use all these criteria, but there should be

defined criteria. Once these factors have been reasonably

met, the physical architecture is reviewed by the specialty

engineering teams to assess the feasibility of building a system

based upon the proposed system partition.

Architecture Design at Layer N

As the layered design progresses, additional functional detail

is added to the behavioral model. Other functional support

needs, such as error handling, fault recovery, input overload,

resource management, and the additional control logic to

manage the additional functional logic, are addressed. As a

consequence, the architecture/synthesis effort needs to

readdress the physical partitioning of the system to

accommodate the added functionality and its refinements.

A Primer for Model-Based Systems Engineering

96

The same evaluation criteria are applied to each alternative

partitioning approach to reveal the better physical

architecture. Alternative architecture partitions are brought

forward only when the architecture cannot be clearly rejected

based on the acceptance criteria.

At each layer of the model, satisfaction of the layer’s

completion criteria must occur before advancing to the next

layer. Some completion criteria assure that the

architecture/synthesis partition’s boundary conditions meet

the constraints of the other domains. That means that source

functional requirements are traceable to the derived lower-

level functions, which are themselves derived from functional

requirements.

In turn, these same lower-level functions must be properly

allocated to the components of the physical architecture. Each

evidentiary artifact is revisited to capture the current design

factors contributing to satisfying the system’s acceptance

criteria. If necessary, additional evidentiary artifacts are

generated or captured. This assures that the design process is

completed.

The physical design advances in layers from the more abstract

toward the more specific component representations. This

occurs concurrently (layer-by-layer) with corresponding efforts

in the requirements domain and the behavioral domain. The

model interrelationships among these domains must be

maintained to ensure completeness and convergence. Doing

so also minimizes the likelihood of having major rework

because of decisions made at too low a level or in another

domain.

As work progresses from layer to layer, trial behavioral

allocations are evaluated and architectural design decisions

made based on the results. By proceeding from layer to layer

A Primer for Model-Based Systems Engineering

97

in a logical fashion, STRATA produces an increasingly more

detailed model of the system, with a sound behavioral

allocation at each layer. Because the model is constructed

with fully documented relationships, each layer produces a

model which can be tested and simulated in order to prove

the integrity of the allocation against the requirements.

Verification and Validation

Verification and validation is not a single, culminating event

leading to system acceptance. There are a number of

intermediate steps occurring across the layers of the model.

As the system design progresses, evidence is gathered from

the engineering activities within each layer. That evidence

becomes the trail needed for constructing the argument for

the ultimate system acceptance as well as for verifying that

the work meets the requirements and objectives of the

system along the way.

For every layer of the model, at least one design review occurs

to gain consensus that the layer’s model is complete and

consistent to that point. This validates that layer’s model and

design and allows the systems engineering team to move on

to develop the next layer.

The relative ease or difficulty in gaining system acceptance

depends heavily upon the system integrity maintained

throughout development. In this sense, system “integrity”

means that all the intermediate and final work items are

traceable throughout the process, and decisions made along

the way are rational and defensible (with respect both to

engineering and management processes).

Some of the intermediate work items become evidence of the

system integrity in that they support the conclusion that the

A Primer for Model-Based Systems Engineering

98

system satisfies all the expressed needs. Thus, the evidence

needed to complete a formal verification and validation

process is developed and preserved throughout the

development process. Ultimately, the customer should be

confident that the system possesses no fatal flaws or

exploitable vulnerabilities and that it has supportable

components. In short, the system must be usable and useful

for the purposes for which it was intended. The design

Verification and Validation domain is where the integrity

assurance activities occur.

As we have seen, each layer of the STRATA model involves its

own allocation activities. These establish how the

functional/behavioral, architecture/synthesis, and

requirements domains interrelate. Allocation is the activity

that apportions entities in one domain to entities in another

domain.

Formal verification and validation processes demonstrate that

the delivered system meets the customer’s needs and satisfies

the design contract. The basis of formal verification and

validation is demonstrating that the delivered system satisfies

the needs driving the project, is useful, is usable, and answers

the agreed-upon requirements.

Formal Verification and Validation
In traditional systems engineering approaches, requirements

reviews most often occur without adequate allocation to the

physical or logical representations. Because the model-based

approach addresses the allocation systematically, it leads to a

better-grounded method for validating the system design.

One aspect of the review is the validation of the requirements.

Validating requirements ensures that the set of requirements

is correct, complete, consistent, and traced appropriately to

A Primer for Model-Based Systems Engineering

99

model entities. As the layers of the model develop,

requirements are added through design decisions, derivation,

and layer-specific requirements found in the source

documents. The validation review progressively encompasses

more requirements at each layer and builds upon the

conclusions of previous reviews. This progressive process

leads to both a better understanding of and greater

confidence in the validation process.

Simulating the logical model as a part of the process enables

evaluation of “dynamic” model consistency. Executing the

model through simulation uncovers dynamic flaws that are

resolved through correcting and refining the logical model

and, in turn, results in requirement changes. Capturing these

requirement changes and the reasons for these changes

maintains the model’s integrity.

Verification shows that all the requirements produced through

the system design process are indeed satisfied within the

physical instantiation of the system and its components.

Proper verification depends on the trail of artifacts developed

throughout the design process as well as those resulting from

the operational simulations of the system. The discipline,

consistency, and convergence of the MBSE processes provide

a trail for the verification and validation processes to follow.

This justifies a high level of confidence in the decision to

accept the system.

System Acceptance: Requirements Verification
Requirements verification requires a strategy for showing that

the implementation of the design achieves the design’s

objectives and meets the acceptance criteria. The strategies

for verifying constraint, functional, and performance

requirements are generally different. For example, the

strategy for showing the satisfaction of maintainability

A Primer for Model-Based Systems Engineering

100

requirements differs from that for showing the satisfaction of

weight requirements. The requirements for executing those

strategies are called verification requirements. These

requirements shape the system acceptance testing, which

serves as the means for verifying constraint, functional, and

performance requirements.

Ideally, there should be a minimal set of verification

requirements. The smaller the number of verification

requirements, the fewer tests, inspections, analyses, and

other verification activities necessary to show that the

implemented system does what the design claims it should do.

The system model’s leaf-level requirements trace to

verification requirements, and the verification requirements

trace to a verification method appropriate to prove that each

lower-level requirement is satisfied by the implemented

system. Verification requirement methods may also trace to

tests, test plans, and so on. For functional requirements, the

integrated logical model and even threads assist in deriving a

suitable set of test cases. Capturing the test results in the

system model layer by layer helps build the evidence needed

for ultimate system acceptance.

Defects uncovered during testing need resolution. The

verification method which discovered the defect points to the

verification requirement. From the verification requirements,

tracing back to a set of lower-level requirements helps identify

what system entities contribute to the uncovered defect.

Analyzing these areas leads to finding the defect‘s cause and

its resolution. After correction, repeated testing reveals

whether the system deficiency is resolved.

It is easy to see the value of an integrated model where all of

these linkages are maintained within the model itself. That

integration both eases the workload in making the accurate

and complete tracings required across the domains and

A Primer for Model-Based Systems Engineering

101

improves the quality of the result. The integration and

linkages provide an assurance of completeness for the analysis

and testing.

System Acceptance: Validation
Operational testing is the typical approach for validating the

system for acceptance. The objective is to demonstrate that

the system is the “right” solution—one that is usable, useful,

and fulfills the customer’s needs. The validation process builds

on the verification tests supporting the system acceptance

decision. Operational testing invokes various quality criteria

along with measures of effectiveness and performance to

assess how well the system fulfills its purpose. Testing

approaches may include such measures as stress testing, load

testing, and failure modes. As in system-acceptance

verification testing, the verification requirements and

methods continue to show traceability, making them evidence

for acceptance when such tests are satisfactorily concluded.

Verification and validation of requirements, system design,

and system development are continuing processes in model-

based systems engineering. Verification and validation take

place at each layer of the model. Artifacts generated under

the aegis of verification and validation become part of the

documentation that leads to final system sign-off by the

customer.

In its system definition language, tools, and processes, model-

based systems engineering incorporates the structure to

develop systems that fulfill all the objectives of the customer.

The MBSE processes eliminate inconsistencies, errors, and

omissions early in the design and development stages. The

chain of artifacts that will ultimately make the case for system

acceptance is generated link by link at each layer. By reducing

the likelihood of failing to uncover catastrophic defects until

A Primer for Model-Based Systems Engineering

102

late in the development process, MBSE reduces inherent

program risks. This is a direct result of the consistent and

convergent nature of the MBSE processes.

The convergent nature of MBSE naturally supports the needs

of the verification and validation processes. Having used MBSE

affords the assurance, through verification and validation, that

the system does indeed fulfill the purposes for which it was

designed and, in so doing, completely satisfies all of the

system requirements.

A Primer for Model-Based Systems Engineering

103

SUMMARY

There is not unanimity around the definition of model-based

systems engineering in the marketplace, and most uses of the

term model-based systems engineering are not as broad as

what is addressed here. By intentionally adopting a “broad”

definition of a system, we have tried to show that the

approach can be used across the widest possible spectrum of

systems to be analyzed or constructed. Clearly, from the

definitions and discussion, the aim of a system model is to be

able to analyze and gain insight into real systems, whether

human-made or not. With human-made or “engineered”

systems, the aim is to find a realizable solution to a stated

need using effective engineering and management processes.

The same iterative approach that is used to define and design

a new system (the top-down engineering approach) can be

used to analyze and improve an existing system (middle-out or

reverse engineering). In those cases, the existing system

becomes a set of requirements and constraints for the design.

In any case, applying an iterative, convergent (layer-by-layer)

systems engineering process reduces ambiguity by resolving

open and uncovered issues and mitigating risks. Systems

engineers and stakeholders collaborate with other team

members to make decisions that advance the design to

completion. When the design is complete, validation and

verification can take the form of “walking through the design,”

verifying that all the requirements are valid and can be

verified, all the functions are present that are necessary to

meet the requirements, all appropriate analytical and

simulation activities have been performed, and all

components needed to perform the functions at this level are

defined. In other words, the engineers and stakeholders can

verify that the layer-by-layer process has converged on an

A Primer for Model-Based Systems Engineering

104

engineering solution that satisfies all of the requirements for

the system being designed.

This represents a huge advantage over the more traditional

document-driven approaches. Where they are slow to

respond and do not necessarily converge on a solution,

layered, iterative MBSE offers an advancing design at every

stage. By maintaining the systems view throughout the

problem-solving process, MBSE also offers a significant

advantage over the more agile approaches to engineering

design. With a foot in both worlds (disciplined system view

and responsive design), MBSE positions the design team for

success.

A Primer for Model-Based Systems Engineering

105

AFTERWORD

The MBSE approach offers the system owner significant

advantages in designing a new system or improving an existing

one. Because the design proceeds in an orderly, logical and

convergent manner, it reaches a solution that answers the

owners’ needs with a high degree of confidence. Because it

proceeds to “peel the onion” layer by layer, it offers a

complete solution, consistent with each layer’s constraints, at

any point in the process. If resources or other contingencies

interrupt or halt the development program, the solution is

usable and the resources expended to that point are not

completely lost. Because the model uses a clear, unambiguous

language to describe the problem space and the solution set,

the design process can use the expertise of a diverse set of

contributors without the typical problems of confused and

inefficient communications marring the outcome. In short, the

system stakeholders can have confidence that the MBSE

design process will converge on a solution that is useful and

usable in meeting their needs.

THIS PAGE INTENTIONALLY BLANK

A Primer for Model-Based Systems Engineering

107

AUTHORS

David Long founded Vitech Corporation in 1992 to
develop and commercialize CORE®, a leading
systems engineering software environment used
globally. He continues to lead Vitech in delivering
innovative solutions and empowering organizations
to develop and deploy next-generation systems.

For over twenty years, David has focused on
enabling, applying, and advancing model-based

systems engineering (MBSE) to help transform the state of the
systems engineering practice. He has played a key technical
and management role in refining and extending MBSE to
expand the analysis and communication toolkit available to
systems practitioners. David is a frequent presenter at
industry events worldwide delivering keynotes and tutorials
spanning introductory systems engineering, the advanced
application of MBSE, and the future of systems engineering.

Zane Scott manages Vitech's Professional Services
and Training organization. For the past twenty-five
years, Zane has built a skill set which enables him to
provide insight and guidance to individuals and
companies as they improve organizational
processes and methodologies. Zane has also taught
systems engineering methodology in the practical
process context in a variety of settings.

Zane brings a unique perspective to Vitech and its customers.
With a professional background in the litigation field, Zane is
also a trained negotiator, labor management facilitator and
mediator. He has practiced tactical negotiation and
interventional mediation and taught communications, conflict
management and leadership skills at both the university and
the professional level. Before joining Vitech, Zane worked as a
senior consultant and process analyst assisting government
and industry clients in implementing and managing
organizational change.

Vitech Corporation

2270 Kraft Drive, Suite 1600
Blacksburg, Virginia 24060

540.951.3322 FAX: 540.951.8222
www.vitechcorp.com

community.vitechcorp.com

http://community.vitechcorp.com/home/
http://community.vitechcorp.com/home/

