
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221268623

Visually effective goal models using KAOS

Conference Paper · November 2007

DOI: 10.1007/978-3-540-76292-8_32 · Source: DBLP

CITATIONS

16
READS

1,971

2 authors:

Some of the authors of this publication are also working on these related projects:

Smart-Contract Based Security Pattern Catalogue for Secure Enterprise Collaborations View project

Entreprise Modelling View project

Raimundas Matulevičius

University of Tartu

155 PUBLICATIONS 1,549 CITATIONS

SEE PROFILE

Patrick Heymans

University of Namur

204 PUBLICATIONS 6,404 CITATIONS

SEE PROFILE

All content following this page was uploaded by Raimundas Matulevičius on 04 September 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221268623_Visually_effective_goal_models_using_KAOS?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221268623_Visually_effective_goal_models_using_KAOS?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Smart-Contract-Based-Security-Pattern-Catalogue-for-Secure-Enterprise-Collaborations?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Entreprise-Modelling?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimundas-Matulevicius?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimundas-Matulevicius?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Tartu?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimundas-Matulevicius?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Heymans?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Heymans?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Namur-FUNDP?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Heymans?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raimundas-Matulevicius?enrichId=rgreq-777bc684ff6d0ea0195303e84a3db969-XXX&enrichSource=Y292ZXJQYWdlOzIyMTI2ODYyMztBUzoxMzc2NjA2MTQwNTM4ODhAMTQwOTgzMjI1NjUzOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

FUNDP – PRECISE

University of Namur

Institut d’Informatique

Rue Grandgagnage, 21

B – 5000 NAMUR, Belgium

TECHNICAL REPORT

Visually Effective Goal Models using KAOS

Raimundas Matulevičius and Parick Heymans

May-July, 2007

Visually Effective Goal Models using KAOS

Raimundas Matulevičius and Patrick Heymans

PReCISE Research Center, Computer Science Department, University of Namur,
rue Grandgagnage 21,5000 Namur, Belgium

{rma, phe @ info.fundp.ac.be}

Abstract. Goal modelling languages are visual modelling languages. To communicate effectively ideas
with a visual modelling language, one should follow some of basic principles. One is modularity, i.e.
organising diagrams in manageable modules to avoid confusing the reader with overly complex diagrams.
Another is emphasis, i.e. visually drawing the attention to the most important pieces of information. In
this paper, we evaluate how the goal modelling language KAOS and its supporting tool, Objectiver, help
modellers respect nine visual modelling principles. From our observations, we formulate
recommendations for modellers, language designers and tool developers.

1 Introduction

Goal modelling languages (GMLs) are visual modelling languages used primarily during the early stages –
a.k.a. Requirements Engineering (RE) – of information system (IS) development. RE seeks to identify the
requirements that the future IS has to fulfil and the constraints under which it has to operate. As of today,
failing to understand the stakeholders’ requirements is still the primary reason of project failure.

In this context, GMLs appear to be useful means to facilitate the identification, structuring and validation
of requirements. GMLs introduce new abstractions, most notably the notion of goal, to supplement other
more traditional abstractions used in data and process modelling. Goal models make the purpose and
rationale of the new IS explicit, thereby preventing the development team to waste time on detailed technical
descriptions if the goals are not yet clear, and allowing them to justify each detailed requirement by reference
to goals.

Over time, several GMLs have been proposed, together with their supporting methods and tools. Those
languages include i* [24], TROPOS [5], NFR [6], KAOS [12, 23], GBRAM [2], and Lightswitch [21].
Various applications [1, 14] and evaluations [3, 10, 11, 15, 22] of GMLs were also reported. Following [13],
we situate qualitative assessments of GMLs along three dimensions: syntax, semantics and pragmatics (see
Fig. 1).

In this paper, as in [3] and [8], we examine the link between the syntax of GMLs – which constructs they
propose and how these can be combined – and their semantics– how models are understood by their
audience. However, whereas [3] and [8] deal with the abstract syntax (metamodel) of GMLs, we concentrate
on their concrete, or surface, syntax. More precisely, we investigate the relationship between the visual
display of goal models and how humans understand them.

Fig. 1. Classification of GML research

Good practices for the definition and usage of visual modelling languages have been a subject of research for
several decades now (see e.g. [4, 7, 19, 20]). In this work, we use a set of nine basic principles recently

formulated by Moody in [17]. Those principles consolidate a large body of knowledge originating from
disciplines such as human-computer interaction [19] and cognitive psychology [4]. One of these principles is
modularity, i.e. organising diagrams in manageable modules to avoid confusing the reader with overly
complex diagrams. Another is emphasis, i.e. visually drawing the attention to the most important pieces of
information.

This paper evaluates how easy it is to follow the principles using the current version of the KAOS
(Knowledge Acquisition in autOmated Specification) language [12, 23] and its associated tool, Objectiver
(release 2.0.0 professional edition). The resulting critical analysis of KAOS’ and Objectiver’s visual abilities
aims to formulate recommendations (i) for KAOS modellers, (ii) for language engineers, and (iii) for tool
developers. Although this paper is not a comparative study, it is a first step towards such a systematic
comparison of different GMLs.

Section 2 describes KAOS. Section 3 recalls the nine principles [17]. Section 4 analyses how the
principles are addressed in KAOS and Objectiver. Section 5 formulates the recommendations. Section 6
discusses conclusions and future work.

2 KAOS

In this work we are using KAOS as defined in [12, 23]. The KAOS approach consists of a modelling
language, a method, and a software environment. The main purpose of KAOS is to ensure that high-level
goals are identified and progressively refined into precise operational statements. These are then assigned to
agents of the software-to-be and its environment, both forming the so-called system-to-be. Along this
process, various alternative goal assignments and refinements are considered until the most satisfactory
solution is chosen.

A KAOS model consists of four kinds of diagrams: goal, object, agent and operation. KAOS constructs
have a graphical (Fig. 6) and a textual syntax (Fig. 2). Selected constructs (e.g., goal, operation) can be
further defined using the KAOS real-time temporal logics facilitating reasoning (Fig. 2, FormalDef). The
major construct in KAOS is goal, which is a prescriptive assertion that captures an objective that the system-
to-be should meet. A goal can be refined through G-refinement, which relates it to subgoals whose
conjunction contributes to the satisfaction of the goal. A goal can have alternative G-refinements, which
result in different software designs. Goals are refined until they are assigned to individual agents. A goal
effectively assigned to a software agent is called a requirement. If a goal is operationalised and has a
responsible agent, the latter performs the operations.

Fig. 2. Textual goal syntax. A goal has a name (Meeting held), a natural language definition (Def), and optional
attributes like pattern (e.g. Achieve) and formal definition (FormalDef) [12]

In this work we focus on the KAOS graphical syntax. Fig. 7 represents an excerpt of the meeting scheduler
model [12]. The goal Meeting held is refined into two subgoals: Participant informed and Participant info
known. The latter is further refined into Participant agenda is up to date and Participant info known
from agenda. The agent Scheduler is responsible for Participant informed to become true. The agent
performs operations Inform about the time and Inform about the place to fulfil the requirement.

3 Principles of Effective Diagrams

The principles for the effective diagrams [17] introduce how a diagram should be prepared manipulating
eight visual variables (vertical position, horizontal position, shape, colour, size, value, orientation, and
texture) in order to communicate effectively wrt a “model of human graphical information processing, which
reflects current research in human cognition and visual perception” [17]. We start with the principle of

discriminability. There are two types of discriminability. Absolute discriminability is reader’s ability to
separate diagram elements from the background (see Fig. 3). It depends on element size (a), element
proximity (b), and diagram contrast (c and d). Relative discriminability is the reader’s ability to differentiate
between different element types. It relies on by the use of shapes, lines and visual variables. There are five
basic geometric signs [9] – square (e.g., diamonds and rectangles are square variations), triangle, circle, cross
and arrows – which are not likely to be confused. For example, KAOS uses three basic geometric signs:
squares (e.g., goal and agent), circles (e.g., operation) and arrows (e.g., G-refinement,
operationalisation, and assignment). Shape, colour, orientation, thickness and colour of borderline also
play a very important part. For instance, in Fig. 6 constructs goal and requirement are discriminated only
by borderline thickness (see also Table 2).

Modularity (or decomposition), defines how a diagram is organised into cognitively manageable
modules, or “chunks”, that would reduce diagram complexity. In order to avoid cognitive overload, diagrams
should be limited to seven plus/minus two elements [17]. In our example (Fig. 6) we respect these
boundaries; however, we note that goal models can quickly become complex, and the modularity is highly
dependent on the modeller’s skills.

Structure organises diagram elements into distinct perceptual groups. Elements in a diagram can be
structured by proximity, similarity, or common region. For example, in Fig. 4 operations Inform about the
time and Informed about the place are structured by similarity (because of labels and shape), proximity
(because they are physically close to each other) and common region (because they belong to the region
Participants informed).

Structuring is “an alternative and a complement to decomposition” [16]: instead of dividing a diagram
into manageable modules, elements can be organised into groups.

a) Element size is small

b) Element proximity is high

c) Elements are not contrasted

d) Elements are contrasted

Fig. 3. Examples of absolute proximity principle

Fig. 4. Structuring the KAOS diagram

Cognitive integration deals with understanding the overall information covered by the whole set of
diagrams. A model usually consists of multiple diagrams. Cognitive integration describes how different
pieces of information are integrated from various diagrams. Summarisation is the process of creating more
abstract representations of information (Fig. 5a). A navigation map is a representation of the entire system of
diagrams and the navigation paths between them (Fig. 5b). Signposting includes navigation clues to show
diagram transitions, in such a way providing user awareness of where they are in the system of diagrams
(Fig. 5c). Other cognitive integration techniques are discussed in [16].

a) Summarisation

b) Navigational map c) Signposting

Fig. 5. Cognitive integration techniques supported in KAOS/Objectiver

Emphasis is about drawing attention to the most important information presented in a diagram. Emphasis is
made by visual variables, like shading, size, and colour of the element, font size, value and colour of the
label, colour of the diagram background. Fig. 6 illustrates emphasis using font size of the label and by
shading the element background (goal “Meeting held”).

Perceptual directness describes the use of representations that have direct interpretation. In case of very
abstract concepts, perceptually direct representations are difficult to find. Hence, arbitrary representation
conventions are made, and a legend often facilitates remembering those conventions (Fig. 6).

Identification is about clear diagram labelling with title, type, and legend. External identification defines
the correspondence between the diagram and the represented world. In Fig. 6 the diagram has a name:
Refinement of goal “Meeting held”. The diagram type is identified before its name, in bold Goal model.
Internal identification defines the correspondence between graphical conventions and their meaning. In Fig.
6 all element types used in the diagram are indicated in its legend.

Visual expressiveness refers to the visual variables used to encode information. Visual variables may
increase perceptual representation, accuracy and draw attention and interest. However the modellers need to
be careful not to violate other principles (e.g., discrimination, emphasis, and structuring). All variables
should be held constant or normalised. This helps avoiding undesirable and unintended messages of the
diagram. In Fig. 6 all relative elements are normalised by size.

Graphical simplicity is about minimising the number of different conventions used. The span of absolute
judgment (the ability to discriminate between perceptually distinct alternatives) is around 7 plus or minus
two. In Fig. 6 we use eight KAOS constructs. In addition to graphical notations, textual information using
attributes (not appearing in diagram, see Fig. 2) could be defined.

Fig. 6. KAOS diagram with drawing tools (MS Word’s graphical editor)

4 KAOS/Objectiver Evaluation

Following the principles for effective diagrams, in Fig. 6 we present a KAOS goal model created using
drawing tools (MS Word’s graphical editor). However, this was time consuming. Thus in this section we
investigate how the principles for effective diagrams can be fulfilled with Objectiver. The resulting diagram
is shown in Fig. 7.

Refinement of goal “Meeting held”

Fig. 7. KAOS diagram with Objectiver

KAOS includes constructs from graph and iconic classes [7], which are manipulated using visual variables
(Tables 1 and 2). KAOS adopts squares, circles and arrows (Table 1). Visual variables (Table 2) are
important for construct discrimination when modelling; but some of them (e.g. colour) play no role when a
diagram is printed using a black and white printer (Fig. 7). Objectiver does not provide means for contrasting
elements versus background. To discriminate absolutely, the modeller can manually use element proximity
and size; however, s/he has to be careful not to neglect other principles.

Table 1. Construct variation

Construct variation KAOS/Objectiver
Square
Circle

G-refinement Operationalisation Responsibility Arrow

Table 2. Relative discriminability of the KAOS/Objectiver goal-related constructs

Construct Shape Background colour Border line colour Border line thickness Orientation
 Parallelogram Light blue Black Thin Right

 Parallelogram Light blue Blue Thin Right

 Parallelogram Light blue Black Thick Right

 Parallelogram Yellow Black Thick Right
 Parallelogram Orange Black Thin Left

To integrate cognitively different information from different diagrams, Objectiver supports navigation map
and signposting techniques (see Fig. 5 b, c). However, model modularisation and structuring depends
entirely on the modeller’s skills. Objectiver also has no means to set boundaries for structured elements.
Also there are no means to emphasise elements in a diagram.

When working with Objectiver the diagram is identified by its name and type in the title bar of the active
window. When printing the diagram, its name (but not type) is included at the bottom of the diagram (Fig. 7).
Except for toolbars used when modelling, Objectiver does not include legend on the printed diagrams.

Visual expressiveness is limited in Objectiver in that a very few of visual variables (e.g., size) are used.
But the tool can automatically normalise element size, spacing and alignment. KAOS turns out to be quite
complex wrt graphical simplicity; its overall complexity is 18 graphical conventions. In addition to graphical
constructs, modellers also have to define obligatory (e.g. Def in Fig. 2) and can define optional (e.g.
FormalDef in Fig. 2) attributes.

Table 3. Analytical comparison of goal modelling languages
(“–“ - language does not support the property; “+” - language supports the property)

Principle Properties KAOS/Objectiver
Element size Depends on label length
Contrast –
Proximity Manual activity

Square Goal, agent, entity,
Triangle –
Circle Operation
Cross –

C
on

st
ru

ct
s

va
ri

at
io

n

Arrow G-refinement, operationalisation, performance, input, output
Horizontal and vertical Element position depends on the modeller
Shape +
Size + (modeller’s skills)
Colour +
Value –
Orientation +

Discriminability

V
isu

al
 v

ar
ia

bl
es

Texture –
Modularity Decomposition or modularisation Diagram division into manageable “chunks” depends on the modeller.

Element shading –
Element size + (modeller’s skills)
Element colour –
Text size –
Text value –

Emphasis

V
isu

al

va
ri

ab
le

s

Text colour –
Diagrams types Goal model, Agent model, Operation model, Object model

Summary –
Navigational map –
Signposting +

Cognitive
integration

Te
ch

-
ni

qu
es

Current context –
Icon representation Modeller must learn the icons Perceptual

directness Perceptual direct relationships –
Proximity –
Similarity –

Structure

Te
ch

-
ni

qu
es

Common area –
Diagram names +
Diagram types +/– (only when modelling)
Labels +

Identification

Legend –
Horizontal and vertical Element position depends on the modeller
Shape +
Size +/– (manually)
Colour + (discrimination of elements)
Value –
Orientation + (discrimination of elements)

V
isu

al
 v

ar
ia

bl
es

Texture –/+ (only background grid)
Element size +
Line thickness and style –
Label typeface, font size,
and capitalisation

–

Elements evenly spaced +

Visual
expressiveness

N
or

m
al

isa
tio

n

Alignment of elements + (clan layout strategy, tree layout strategy)
Visual categories 18 Graphical

simplicity Other means of information Informally and formally

5 Recommendations

Based on the analysis of KAOS we formulate recommendations (Table 4) for modellers, language engineers
and tool developers.

Modeller. The only Objectiver function that might help to deal with the element discriminability is
proximity control (M.1). This is performed by organising diagrams using clan layout or tree layout strategies.
Although modularisation (M.2) is helpful for large diagrams [16], the modeller should not overestimate it,
viz. it might be inefficient for small diagrams [20]. For structuring (M.3), modellers have to use proximity
appropriately, and structure elements based on semantics but not on syntax [20]. To ease cognitive
integration, the modeller must name each diagram, as well as specify its type (M.6).

Objectiver does not provide legends automatically, nor does it allow attaching more “direct” icons to
diagram elements (M.5); instead modeller has to do it manually (e.g., with text-editing and drawing tools).
This is a labour intensive activity, but might result in better model understanding, especially for unskilled
diagram readers. M9 stresses the “good” use of principles [20]. It means that principles should be followed
with reason, e.g., sometimes well-accepted conventions in some domain or organisation might prevail
although they contradict the principles.

All these guidelines might be applied separately, but we also suggest a scenario on how to use the
Objectiver’s functionality in order to fulfil the principles of effective diagrams [17]. The scenario is provided
in appendix A.

Table 4. Recommendations for modeller, language engineer and tool developer

Modeller Language engineer Tool developer
M.1: Use proximity normalisation
functions to discriminate elements.
M.2: Divide model into
manageable modules.
M.3: Group elements in the
diagram according to the semantic
relevance.
M.4: Define visual cues that might
ease information integration from
different diagrams.
M.5: Create legends for the
constructs used in the diagrams.
M.6: Name and specify type for
each diagram in the model.
M.7: Learn the language and tool
principles from documentations.
M.8: Define contextual information
in the diagram.
M.9: Make “good” use of principles
for effective diagrams.

E.1: Design a concrete syntax that
would allow discriminate
language constructs.
E.2: Define visual clues
supporting different cognitive
integration techniques.
E.3: Develop icons and
relationships that would help to
remember and comprehend their
meaning.
E.4: Language constructs should
be equipped with attributes for
defining additional information.
E.5: Define simple language
graphical conventions.
E.6: In documentation, explain
each language construct (icons
and relationships), visual clues,
properties and graphical
conventions.

Tool should:
T.1: have discrimination means.
T.2: provide guidelines for decomposing the
model into modules.
T.3: have means to structure elements in a
diagram.
T.4: provide cognitive integration techniques
[16, 17].
T.5: have means for emphasis of diagram
elements.
T.6: be explained in its tutorials.
T.7: guide creation of the diagram using
scenarios.
T.8: have means to define legend in a
diagram.
T.9: include diagram name and type on the
printed diagram.
T.10: have element normalisation means.
T.11: have means for controlling visual
variables for every element in the diagram
(model).
T.12: print comments, conceptual cues,
textual and formal information provided in the
element properties.
T.13: have discussion means for modellers
and diagram readers.

Language engineer. These recommendations include guidelines on how to improve KAOS, or support the
development of specific domain languages based on KAOS. For the visual language, an engineer should
carefully choose discriminating shapes [7] and variables (E.1, E.3) as well as strive for simple graphical
conventions (E.5). But not everything should be possible to specify graphically. Thus, language constructs
have to be equipped with attributes not appearing in graphical views where textual information would be
defined (E.4). The use of cognitive integration is much dependent on modeller. The language can support
this principle (E.2) by suggesting different visual clues, corresponding to different integration techniques
[16].

For example the concrete suggestion for E.1 is to discriminate constructs not only by colours, but also
include different shapes and icons (e.g., as they are suggested in [12] or [23]). Other concrete suggestions are
provided in appendixes B and C.

Tool developer. The modelling tool should provide different support for unskilled modellers (novices)
and for experts. Petre notices that novices are distracted by “syntax and surface features” [20]. Thus, on the
one hand, the tool features like T.1-T3, T.6-T8 and T.10 might be of great help for novices to learn both the
language and the tool. On the other hand, experts tend to “handle information at a different level” [20] (e.g.,
T.2-T4) and understand importance of emphasis (T.5), visual variables (T.11) and other conceptual cues
(T.12). Further the difference between novices and experts could be handled by the tool. For example, the
tool should have an option of including a legend (T.8) for novices and not including it for experts.

Other concrete suggestions are provided in appendix D.

6 Discussion

In this paper we have considered some basic principles [17] for producing the effective diagrams. We have
analysed how they are fulfilled for KAOS and its supporting tool Objectiver. The investigation was
performed by one researcher, the first author of this paper. Therefore, the research is subjective wrt
understanding and interpreting the principles. The language and tool investigation was carried out during one
week, testing them on small examples. Hence, it might be that some language or tool properties were not
observed. The observations would be more accurate if the principles were applied on large-scale (industrial)
models. However, our study resulted in an arguably more fine-grained analysis in comparison to [1, 3, 14].

The “goodness” of principles for effective diagrams relies on the individual skills and insight of modellers
and diagram readers. For example, normalisation can affect intentional use of visual variables for emphasis,
grouping and discriminability [17]. Furthermore KAOS like other GMLs deals with the abstractions, like
goal, that do not carry physical representation in the real world. This makes perceptual directness difficult to
achieve. The graphical conventions proposed in KAOS (as well as other GMLs) are thus arbitrary and have
to be learnt before starting modelling.

The analysis indicates that KAOS can be substantially improved wrt most principles. The observations
are in line with similar studies for other visual modelling languages (e.g. UML [18]). Thus, we have
suggested recommendations for KAOS and Objectiver users to produce models that communicate more
effectively. Recommendations for language engineers and tool developers suggest (i) how to maintain and
improve both KAOS and Objectiver, and (ii) how to devise new domain specific languages and tools based
on KAOS. However, the suggested recommendations need to be validated empirically. Our future work
includes analysing other GMLs, as well as investigating principles for effective diagrams in large-scale
(industrial) goal models.

Acknowledgement. We wish to thank R. Darimont for the very useful comments

References

1. Al-Subaie, H. S. F., Maibaum, T. S. E.: Evaluating the Effectiveness of a Goal-oriented Requirements Engineering
Method. Proc. of the 4th Int. workshop on Comparative Evaluation in Requirements Engineering (CERE’06) (2006)
8-19

2. Anton, A. I.: Goal-based Requirements Analysis. In Proceedings of the 2nd Int. Conference on Requirements
Engineering (ICRE ’96), IEEE Computer Society (1996) 136-144

3. Ayala, C. P., Cares, C., Carvallo, J. P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E., Quer, C.: A
Comparative Analysis of i*-based Agent-oriented Modelling Languages, Proc. of the 17th Int. Conf. SEKE'05
China (2005) 43-50

4. Blackwell, A., Green, T.: Notational Systems – the Cognitive Dimensions of Notations Framework, Carrol, J. M.
(eds): HCI Models, Theories and Frameworks: Towards a Multidisciplinary Science, Morgan Kaufmann (2003)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-oriented Software
Development Methodology. Autonomous Agents and Multi-Agent Systems, 8(3) (2004) 203-236

6. Chung, K. L., Nixon, B., Mylopoulos, J., Yu, E.: Non-Functional Requirements in Software Engineering. Kluwer
Academic Publishers, Boston (2000)

7. Costagliola, G., Delucia, A., Orefice, S., Polese, G.: A Classification Framework to Support the Design of Visual
Languages, Journal of Visual Languages and Computing, 13 (2002) 573-600

8. Franch, X.: On the Quantitative Analysis of Agent-oriented Methods. In: Proc. of the 18th Int. Conf. on Advanced
Information System Engineering (CAiSE2006) (2006) 495–509. Springer, Heidelberg (2006)

9. Frutiger, A., Bluhm, A.: Signs and Symbols: Their Design and Meaning, New York, USA, Watson-Guptill
Publications (1998)

10. Kavakli, E.: Goal-oriented Requirements Engineering: a Unifying Framework, Requirements Engineering Journal,
6(4) (2002) 237–251

11. Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analysis and Critique of Current
Methods, Krogstie, J., Halpin, T., Siau, K., (eds.), Information Modeling Methods and Methodologies, IDEA Group
Publishing (2005) 102–124

12. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering. PhD thesis, Universite Catholique
de Louvain (2001)

13. Lindland, O. I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modelling. IEEE Software, 11(2)
(1994) 42-49

14. Matulevičius R., Heymans P., Comparison of Goal Languages: an Experiment. Proceedings of the Working
Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2007) Springer-Verlag Berlin
Heidelberg (2007) 18-32

15. Matulevičius, R., Heymans, P., Opdahl, A. L.: Comparing GRL and KAOS using the UEML Approach. Concalves,
R. J., Muller, J. P., Mertins, K., Zelm, M. (eds.): Enterprise Interoperability II. New Challenges and Approaches,
Springer-Verlag (2007) 77-88

16. Moody, D.: Dealing with “Map Shock”: A Systematic Approach for Managing Complexity in Requirements
Modelling, Proceeding of the REFSQ 2006, Luxembourg (2006)

17. Moody, D.: What Makes a Good Diagram? Improving the Cognitive Effectiveness of Diagrams in IS Development,
Appear in Proc. of the 15th Int. Conf. in Information Systems Development (ISD 2006) (2006)

18. Morris, S., Spanoudakis, G.: UML: An Evaluation of the Visual Syntax of the Language, Proc. 34th Annual Hawaii
International Conference on System Sciences (HICSS-34) IEEE Computer Society (2001)

19. Narayanan, N. H., Hubscher, R.: Visual Language Theory: Towards a Human-Computer Interaction Theory,
Marriott K., Meyer B. (eds.) Visual language theory, Springer-Verlag New York, Inc. (1998) 87-128

20. Petre M.: Why looking isn’t Always Seeing: Readership Skills and Graphical Programming, Communications of the
ACM, 38 (6) (1995) 33-44

21. Regev, G.: A Systemic Paradigm for Early IT System Requirements Based on Regulation Principles: The
Lightswitch Approach. PhD thesis, Swiss Federal Institute of Technology (EPFL) (2003)

22. Regev, G., Wegmann, A.: Where do Goals Come From: the Underlying Principles of Goal-oriented Requirements
Engineering. Proc. of the 13th IEEE Int. Conf. on Requirements Engineering (RE’05) (2005)

23. van Lamsweerde A.: The KAOS Meta-model: Ten Years After. Technical report, Universite Catholique de Louvain
(2003)

24. Yu, E.: Towards Modeling and Reasoning Support for Early-phase Requirements Engineering. Proc. of the 3rd
IEEE Int. symposium on Requirements Engineering (RE’97), IEEE Computer Society (1997) 226-235

25. A. van Lamsweerde, Elaborating security requirements by construction of intentional anti-models, in: Proceedings
of the 26th International Conference on Software Engineering (ICSE ’04), IEEE Computer Society, Washington,
DC, USA, 2004, pp. 148–157.

26. A. van Lamsweerde, Engineering Requirements for Mission-Critical Software Systems, URL:
http://ssel.vub.ac.be/francqui/, 2007.

27. Gurr, C.A., Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic Issues. Journal of Visual
Languages and Computing, 1999, 10: p. 317-342.

28. Opdahl AL, Henderson-Sellers B, (2005) A Unified Modelling Language without Referential Redundancy. Data
and Knowledge Engineering (DKE). Special Issue on Quality in Conceptual Modelling 277-300.

Appendix A. Use KAOS/Objectiver to prepare effective goal model

(A top-down approach)

1) M.7: Learn the language and tool principles from documentations.
(Perceptual directness, Graphical simplicity)

2) M.2: Divide model into manageable modules.
(Modularity)

- Define the major modules the model. In Objectiver the modeller can define model components by creating new
diagrams.

3) M.6: Name and specify type for each diagram in the model.
(Identification)

M.2: Divide model into manageable modules.
(Modularity, Cognitive integration)

Define relationships between major modules

Navigation map

Goal diagram dependency diagram can also be prepared using the Generator functionality.

5) Define context of each diagram. If number of elements is bigger than 7+/- 2 it is advisable to reorganise diagram to

smaller manageable modules (use).
(Cognitive integration)

Refinement of goal “Meeting held”

Modules (of a goal model) can be created using function Refine in another diagram (right mouse click on the goal
concept)

The user can see the diagrams where the selected element is used in the Property/Document tab:

6) M.4: Define visual clues that are used for information integration from different diagrams.
(Cognitive integration)

Refinement of goal “Meeting held”

7) M.1: Use proximity normalisation functions to discriminate elements.
(Discriminability)

Use element normalisation functions “clean diagram layout”. It will restore the size of elements.

Refinement of goal “Meeting held”

8) M.1: Use proximity normalisation functions to discriminate elements.
(Discriminability)

Clan layout

Refinement of goal “Meeting held”

Tree layout

Refinement of goal “Meeting held”

9) M.3: Group elements in the diagram according to the semantic relevance.
(Structure)

Refinement of goal “Meeting held”

10) Emphasize element by increasing their size.
(Emphasis)

Refinement of goal “Meeting held”

11) M.8: Define contextual information in the diagram.
(Graphical simplicity)
Contextual information include:

- element attributes

- notes

- textual explanations

- reports

12) M.5: Create legends for the construct used in the diagrams
(Identification)

Since Objectiver does not allow inclusion of legend to the diagram, use additional graphical editing tool.

Refinement of goal “Meeting held”

Appendix B. Comparison of KAOS constructs
(Only)
Some constructs [23] [12] [25] Objectiver

(version 2.0.0 professional edition)
Reference year 2003 2001 2004 2006-2007

Goal

Maintain goal

Achieve goal

Avoid goal
Cease goal - -

- -

Requirement

Expectation

Same as Goal, and pattern goals.

Softgoal

- -

Software agent

Environment agent

-

Refinement

Responsibility

-

COMMENTS -For “Cease goal” there is no graph. icon. - “Cease goal” can be presented as
other patterns.
- No separation between software
and environment agents.

- Patterns identified in the
(paper) text.
- Not clear if refinement is
complete.
- No differentiation from the
goal and between requirement
and expectation.

- Patterns are identified as construct attributes.
- Colours. On the black-white printed it might be
problematic to differentiate.
- No separation between software and environment
agents.
- Not clear about assignment: during the seminar
[4] it was said that this concept is taken out of the
latest language version.

Models selected form the [26] (2007). Summary of the graphical constructs

(Only)
Some constructs Page 12, 15 Page 19 Page 36 Page 70 Page 79

Goal
- -

Maintain goal -

- -

Achieve goal -

- -

Avoid goal - - - - -
Cease goal - - - - -
Requirement - - -
Expectation - - -
Softgoal - - - - -

Software agent -

-

Environment
agent -

-

Refinement

 -

Responsibility -

-

COMMENTS
- OR-refinement is
identified with
alternative name

- Maintain or Mt
- No difference between software and
environment agents

- No difference between requirement and expectation
- Two different responsibility links

- Patterns identified in full
word

(Only)
Some constructs Page 83 Page 85 Page 84 Page 115 Page 126

Goal

Maintain goal - - - -

Achieve goal - - - - -
Avoid goal - - - - -
Cease goal - - - -

Requirement

-

Expectation

 -

Softgoal - - - -

Software agent -

- -

Environment
agent

- - -

Refinement

-

-

Responsibility

-

- -

COMMENTS
- Responsibility link without arrow
- No differentiation between requirement and goal
(expectation is differentiated with a little human).

- Goal (requirement, expectation) graphical icon
the same as for object
- Actor has different icon in comparison to other
models
- Software and environment agents are not
differentiated.

- Goal, requirement,
expectation are not
differentiated.

- The only model where the
softgoal is used.
- Completely different icon for
refinement

Appendix C. Recommendations for language improvement

In appendix B the comparison of some constructs for KAOS is provided. Based on this comparison we will elaborate

few recommendations for the concrete KAOS syntax.

E.1: Design a concrete syntax that would allow discriminate language constructs.

KAOS/Objectiver concrete syntax is based i) on the colours and ii) on the neighbourhood concepts. In the first case the
problems arise when diagram is printed using the white-black printers. In the second case the diagram requires from its
reader an additional mental effort to relate neighbourhood concepts to understand the meaning of the elements. Based
on these limitations we suggest:

- avoid use of similar colour to discriminate close constructs;
- use the shape or/and additional visual variables (e.g. orientation) for discriminability;
- use different colours to discriminate element groups.

Our suggestions to discriminate elements analysed in appendix B are suggested in the table below.

Suggested construct Description

Goal without pattern - parellelogram, oriented to the right, light blue
background, borderline thin. Label include goal name, placed in the
centre.

Goal with pattern - parellelogram, oriented to the right, light blue
background, borderline thin. Label include pattern name (maintain,
achieve, cease, avoid) and goal name, placed in the centre.

Expectation - parellelogram, oriented to the right, light blue background,
borderline thick. Label include goal name, placed in the centre. Before
the label a small icon of human.

Expectation - parellelogram, oriented to the right, light blue background,
borderline thick. Label include goal name, placed in the centre. Before
the label a small icon of “class diagram” indicating piece of software.

Softgoal - parellelogram, oriented to the right, light blue background,
borderline thin, dashed. Label include goal name, placed in the centre.

Environment agent - hexagon, light pink background, borderline thin.
Label include name of the software agent. Before the label a small icon of
human.

Software agent - hexagon, light pink background, borderline thin. Label
include name of the software agent. Before the label a small icon of
“class diagram” indicating piece of software.

Goal refinement1

Complete goal refinement

Alternative goal refinement.
 AltName-1 – name of alternative one
 AltName-2 – name of alternative two

Responsibility

1 In order to differentiate between G-refinement and operationalisation on the white-black printed version of diagram,
the following icons are suggested:

 - G-refinement - Operationalisation

E.2: Define visual clues supporting different cognitive integration techniques.

 Existing functionality Recommended improvements

For Summary diagrams

They are clearly distinguished from the 2D shapes [16].
They are perceptually direct in that their 3D appearance make them
look as if they are able to contain other elements [16]
For Zoom out (scale up) – link to “parent” diagram

Related diagrams – at the same level.

Zoom in (scale down) – link to “child” diagram. It might also be
textual definitions, diagram element names provide specific cross-
references.

Cognitive
integration
icons [16]

Used for Navigation maps
and Signposting

Define graphical syntax for element grouping

E.3: Develop icons and relationships that would help to remember and comprehend their meaning.

The notation should share important properties with object or relationship they represent [27]. Language notations
should not be redundant, overlapping, incomplete and underdefined [27, 28]. The language should be based on the
precisely defined metamodel and the metaCase tools should support definition of semantic and abstract syntax for this
language.

E.4: Language constructs should be equipped with attributes for defining additional information.

Allow definition of additional attributes for the language elements.
These attributes might be used for element sorting, filtering, categorization.

E.5: Define simple language graphical conventions.

In case of very abstract concepts, perceptually direct representations are difficult to find. In addition different users
might have different notation needs [20] depending on their background and the problem (and the domain) they need to
solve. Also on the one hand expert users would focus on notations helping to define additional information on the
model (e.g., element properties); on the other hand novice users would use the graphical elements. The metaCase tool
developers should include the means to develop different notation groups for different background users.
Languages/tools should be extendable with other concepts and elements to model problems of different domains.
The concrete suggestion for E.5 includes the means which user can use to define the needed graphical elements for the
modelled problem.

E.6: In documentation, explain each language construct (icons and relationships), visual clues, properties and graphical
conventions

Language tutorials explain the major constructs, however they miss the detailed explanation of every single entity
(element, attribute, visual clue, etc) used in the language. For example:
1) there is brief explanation of a goal. However, there is no explanation of its properties (Name, Def, Issue, Pattern,
Category, Priority, FormalDef);
2) There is no description of the required and domain properties which are important attributes for operation and
operationalisation;
3) There are no explanation of notations such as "Underfined relationship", "N-ary association", "Note link" and other.
They are implemented and used in the tool, thus should be included in the documentation.

Appendix D. Existing and recommended functionality for the Objectiver

T.1: Tool should have means for absolute discriminability.

 Existing functionality Recommended improvements
Size - User is able to change element size

manually
- User can normalise (restore) size of all
elements using command “Clean diagram
layout”.

- Together with the element size tool should allow
control of the label size.
- Tool should control size of the elements would
not affect the length of the label.

Contrast - User is able add/remove the grid to the
graphical editor field.

- Tool should allow change of the background
colour for graphical editor.
- Tool should include printing of the background
colour.

Proximity - User is able to use different layout
strategies: e.g., clan layout, tree layout.
- In the properties window – user can set
initial values for element spacing

- Tool should inform user about element proximity
with respect to other elements.
- Tool could suggest graphical patterns for the
diagram layout (e.g. similar to PowerPoint patterns
for slide layout).

T.2: Tool should provide guidelines for decomposing the model into modules.

 Existing functionality Recommended improvements
Modularisation - Users are provided with templates for

the requirements specification (not
tested/provided in the evaluated version
of the tool)
- In the goal model separate goals can be
refined in different diagrams by executing
function “Refine in another diagram”.
- Each a detailed diagram can be opened
by clicking on the diagram/element icon
(Open document)

- Develop scenarios, which would guide model
decomposition. Provide guidance according to the
scenarios (Kaindl, 2004). If experts are using the
tool, scenario guidance could be switched off.
- Check number of elements in the diagram; inform
the user if the number of elements in a diagram
exceeds cognitive limits.
- Define element filtering mechanism (e.g., filtering
might be organised using information defined in the
appropriate element attributes)

T.3: Tool should have means to structure elements in a diagram.

 Existing functionality Recommended improvements
Structure - User can manually place elements close

to each other (according to proximity).

- Tool should check for possible structuring
possibilities and provide the hints to the user:
 i) according to the element proximity;
 ii) according to the element similarity;
 iii) according to the common region.
- Tool should have visual clues to structure
elements according to the common area.

T.4: Tool should provide cognitive integration techniques [16, 17].
 Existing functionality Recommended improvements
Cognitive
integration

- Structure of the model is provided in the
Explorer field.
- Tool/language contain icon, which
represents the diagram. This icon can be
used to identify links between diagrams
(signposting) or to create a global view of
the model (navigation map).
- Table “element–diagram” based on the
indexing technique.

Based on [16, 17] additional cognitive integration
techniques can be implemented:

- Summarisation;
- Horizontal integration (continuity between

adjoining views);
- Orientation (level numbering, title, locator

map, and scale indicator)
- Spatial contiguity (parallel views)

T.5: Tool should have means for emphasis of diagram elements.
 Existing functionality Recommended improvements
Emphasis Element might be manually emphasised

by increasing its size.
- Tool should be equipped with means for emphasis
using the graphical variables
- Emphasis should be in both directions –
highlighting and lowlighting.

T.6: Tool should be explained in its tutorials.
T.7: Tool should guide creation of the diagram using scenarios.

 Existing functionality Recommended improvements
Tutorials and
driving scenarios

- In the tool tutorial included language
explanation on the lift example.
- Explanation movies (not tested).

- Tool tutorial must be up to the current tool
version.
- Tool should be supported by the tool tutorial
explaining the actions needed to perform with the
tool.
- Tool functionality should be explained in the
scenarios.

T.8: Tool should have means to define legend in a diagram.
 Existing functionality Recommended improvements
Legend Language constructs are explained with

appearing labels when modelling.
- Tool should include legend (of used constructs) on
the printed diagram.
- Tool should include functionality not to include
legend (if experienced users are using the tool)

T.9: Tool should include diagram name and type on the printed diagram.
 Existing functionality Recommended improvements
Name and type - On the printed diagram at the bottom,

the tool includes the diagram name.
- On the printed diagram the tool should include the
diagram type.
- The text-style (font, size, typeface) should editable
before printing the diagram.
- The position of diagram name and type should be
editable by the user.

T.10: Tool should have element normalisation means.
 Existing functionality Recommended improvements
Normalisation - User can normalise (restore) size of all

elements using command “Clean diagram
layout”.
- User is able to use different layout
strategies: e.g., clan layout, tree layout.
- In the properties window – user can set
initial values for element spacing.

- Tool should have means to normalise line
thickness and style
- Tool should have means to normalise label
typeface, font size, and capitalisation.

T.11: Tool should have means for controlling visual variables for every element in the diagram, diagram background,
its name, type, place in the diagram, font type, font size, orientation, and others.

T.12: Tool should print comments, conceptual cues, textual and formal information provided in the element properties.

 Existing functionality Recommended improvements
Printing - User can print separate diagrams

- User can print the reports
- Tool should allow printing of the element
properties.
- Tool should allow previews and editing of model
element depending on the generated previous. For
instance, the modeller should be able to change
placement of the elements, highlight/lowlight the
elements, options for inclusion/removing the
legend, etc.

T.13: Tool should have discussion means for modellers and diagram readers.
 Existing functionality Recommended improvements
Discussion - There is an option to work in

developers’ and/or reviewers’ roles.
Information sharing is done by
exchanging the file.
- Tool contains comment and review
elements, where modellers can write their
comments, suggestions, explanations,
provide other contextual information.

- Tool should have a collaborative environment
where different users would work simultaneously
being in different geographical locations.
- Tool should have rationale registration means
(ensure the feature of model being traced back to
goal/requirements source).
- Tool should have the discussion means (similar to
messaging programs, such as ICQ, Messenger). The
discussion should be possible to rise about any
element in the model. The discussion should be
registered as part of the model (in order to be
possible to look at it later).
- The tool should ensure change propagation and
approval mechanisms.
- Tool should have means for the agreement about
the model.

View publication statsView publication stats

https://www.researchgate.net/publication/221268623

