
PRACTICE AND EXPERIENCE

A Reappraisal of Structured Analysis:
Design in an Organization

J@RGEN P. BANSLER

University of Copenhagen

and

KELD B@DKER

Roskilde University

Context

We review Structured Analysis as presented by Yourdon and DeMarco. First, we examine the

implicit assumptions embodied in the method about the nature of organizations, work processes,

and design. Following this we present the results of an exploratory study, conducted to find out

bow the method is applied in practice. This study reveals that while some of the tools of

Structured Analysis—notably the data flow diagrams—are used and combined with other tools,

the designers do not follow the analysis and design procedures prescribed by the method. Our

findings suggest that there is a gap between the way systems development is portrayed in the

norm ative technical literature and the way in which it is carried out.

Categories and Subject Descriptors: D.2. 1 [Software Engineering]: Requirements/Specifics-

tions—methodologies, tools; D.2.9 [Software Engineering]: Management—lzjte cycle; D.2. 10

[Software Engineering]: Design—methodologies, representation; H. 1.0 [Models and Princi-

ples]: General; J. 1 [Computer Applications]: Administrative Data Processing—busz ness,

financial

General Terms: Design, Documentation, Management

Additional Key Words and Phrases: Design process, qualitative empirical studies, structured

analysis

1. INTRODUCTION

The term ‘structured’ was first introduced in connection with programming.
Structured programming and underlying principles like ‘top-down develop-
ment,’ ‘stepwise refinement,’ ‘hierarchical decomposition,’ and ‘modulariza-
tion’ were introduced in the late sixties. From the start these concepts were

Authors’ addresses: J. P. Bansler, Department of Computer Science, University of Copenhagen,

Universitetsparken 1, DK-21OO Copenhagen, Denmark, email: bansler@diku.dk; K. B~dker,

Department of Computer Science, Roskilde University, DK-4000 Roskilde, Denmark.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

Q 1993 ACM 1046-8188/93/0400-0165 $01.50

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993, Pages 165-193,



166 . J P. Bansler and K. B#dker

subject to criticism, by for instance Naur [32]. Later the term structured
was applied to technical design and implementation: Structured Design [41,
51]; to systems analysis and design: Structured Analysis [9] and Struc-
tured Systems Analysis [19]; as well as to system development in general:
Structured Systems Development [37], SADT—Structured Analysis and
Design Technique [40], and ISAC—Information Systems Analysis and
Construction [29].

We are concerned with the Structured Analysis method only, originally
developed by Yourdon and DeMarco and refined several times. Throughout
the eighties this method has been subject to much criticism from researchers
within the information systems field [5, 6, 7, 15, 24, 45]. In spite of this
criticism, Structured Analysis is widely used. In Denmark this method is by
far the most well-known and most widely used method for development of
business applications for banking, insurance companies, and so forth.

Empirical studies of system development in practice are limited. We have
not found empirical evidence in the literature to questions like why Struc-
tured Analysis is introduced—and how it is applied in real projects. To

obtain answers to these questions we conducted a small scale exploratory

study interviewing nine designers in three Danish DP-departments on their

application of Structured Analysis.

The paper has two main parts: In the first part (Sections 2 and 3), we

review Structured Analysis from a theoretical perspective. The major princi-

ples of Structured Analysis are presented in Section 2. In Section 3, we

examine the underlying assumptions about the nature of organizations, work,

and systems design. In the second part of the article (Sections 4 and 5), we

describe the procedure and discuss the results from our exploratory study in

three Danish companies making extensive use of Structured Analysis.

2. THE PRINCIPLES OF STRUCTURED ANALYSIS

Since its introduction in the late seventies, the Structured Analysis method

has been refined and modified several times. The underlying principles and

aims have, however, more-or-less remained the same. In this section we

describe these fundamental principles of Structured Analysis as they are

presented in the main textbooks [9, 38, 50]. Yourdon [49] describes a project

model covering the activities from the survey to the final implementation and
installation. The project model, called ‘the structured project life cycle,’
integrates a number of structured methods/techniques like Structured Anal-
ysis and Structured Design into an overall framework. The discussion of
different project models is beyond the scope of this paper.

The basic tools provided by Structured Analysis are the same as presented

in Structured Analysis and System Specification [9]. These include various

1 Throughout the text we use designer as a generic term for system analysts and system

designers. Similarly, deszgn refers to a number of activities such as systems analysis, systems

specification, and systems design. ‘rhls use differs from Yourdon and DeMarco, who use the

terms analyst and analysis, respectively.

ACM Transactions on Information Systems, Vol. 11, No. 2., Aprd 1993.



A Reappraisal of Structured Analysis . 167

types of diagrams used to model (part of) an organization as an information
system, the most important being the data flow diagrams (DFD). A data flow
diagram is “a network representation of a system. The system may be
automated, manual, or mixed. The Data Flow Diagram portrays the system
in terms of its component pieces, with all interfaces among the components
indicated.” [9, p. 47]. The data flow diagram models the system by describing
the flow between data sources and sinks, processes, and data stores.

The data flow diagram is structured in levels with the top level diagram
describing the overall functions of the system. Each process (function) is then
decomposed and modeled by a hierarchy of diagrams showing more and more
details. The processes at the bottom level are described by mini-specifications
(mini-specs), which are decision tables or ‘structured English’ texts describing
the rules governing the transformation of data flows. The composition of
individual data elements into data flows is described in the data dictionary.
The use of data flow diagrams to describe systems is seen as a way of
bridging the communication gap between users and designers. Because the
diagrams are graphic and nontechnical—as opposed to for instance data
format descriptions and flow charts—they supposedly provide a common
language between users and designers.

Palmer and McMenamin [38] supplement Structured Analysis with tools to
describe data relationships at a higher level in entity-relationship diagrams

(E/R diagrams). Recently, Yourdon [50] has added state transition diagrams
(ST diagrams) to describe time-dependent behavior.

The techniques—or procedures as they are called in Structured Anal-
ysis—prescribing how to use the tools have to some extent evolved over the
years. According to [9] the analysis should include four steps modeling the
current physical, the current logical, the new logical, and the new physical
system, respectively (see Figure 1). Each step should consist of a complete
description of the system by DFDs, the data dictionary and mini-specs.

This procedure rests upon two distinctions. Firstly, DeMarco distinguishes
between models describing the current manual or partly automated system,
and models describing the new, partly or fully automated, system. The

second distinction is between physical models, describing a particular imple-
mentation, and logical models, describing the functionality in its pure form.
DeMarco [9], however, offers only vague guidelines for the transformation of
a physical model into a logical equivalent (and vice versa), and he offers no
guidelines at all for the transition from a current logical model to a new
logical model.

The basic distinction between the physical and logical aspects of a system
has been elaborated by Palmer and McMenamin [38]. They stress that the
analysis should result in only true requirements, i.e., features or capabilities
that the system must possess to fulfill its purpose, regardless of how the
system is implemented. To this end they introduce the concept of ‘essential
model,’ which is a kind of ‘logical’ model. However, they consider it to be more
well-defined than the original concept, developed by DeMarco.

An essential model is independent of technology, i.e., it does not describe
how, when, and by whom a process is carried out, but only what is done.

ACMTransactions on Information Systems, Vol. 11, No. 2, April 1993.



168 . J. P. Bansler and K. Bddker

Model
new Ioglcal

f \ f \
Current

system

b
New

Logical Logical
Model Model

Derive
A

Establish
logical man-machine
equivalent interface

v
f- > >

Current ‘New

> Physical Physical E
Analyze Model Model Implement

current system new system

Fig. 1. Relationship among the four types of models in Structured Analysis

Palmer and McMenamin propose two principles of essential modeling:

—An essential model contains the essence of the system only. Essence is

defined as “all characteristics. . . that would exist if the system were

implemented with perfect technology” [38, p. 16]. ‘Perfect technology’ is

able to do anything and everything instantly, it has infinite capabilities

and infinite work load capacity. It costs nothing, consumes no energy,

takes no space, generates no heat, never makes a mistake, and never

breaks down.

—The processes in an essential model must be grouped by euents, that is,
changes in the system’s environment which the system must respond to.
There are two types of events that systems respond to: ‘external events,’
which are initiated by entities in the environment; and ‘temporal events,’
which are initiated by the passing of time.

The emphasis on the essential model is also reflected in the principle of

‘blitzing’ or high-level analysis. Palmer and McMenamin suggest that the

designer starts by constructing (blitzing) an incomplete, high-level essential

model before modeling the physical aspects of the current system. This

enables the designer to perform a detailed analysis of the relevant parts of

the current system only. The designer cannot, however, skip the physical

modeling altogether because the physical model is needed to verify and

complete the essential model.

Yourdon [50] proposes minimizing or even skipping the model of the

current physical system if at all possible. The reason given is ‘political’: from

experience it has become apparent that the process of making a model of the

current system may require so much time and effort that the user will

become frustrated and impatient, and ultimately cancel the project. Yourdon

maintains, however, that in some cases “the systems analyst must build a
model of the user’s current system; that is true, for example, if the systems

ACM TransactIons on Information Systems, Vol. 11, No 2, Aprd 1993



A Reappraisal of Structured Analysis . 169

analyst needs to model the current physical system in order to discover what
the essential processes really are.” [50, p. 323].

So, despite changes in terminology and recommendations, the basic ideas
are still the same: The first principle is to model organizations and work
processes as information processing systems, emphasizing the fi!ow of data.

The second principle is to distinguish between ‘physical’ aspects of the system
on the one hand and ‘logical’ or ‘essential’ aspects on the other hand. The
third, less consistently applied, principle is to use an analysis of the current
‘physical’ system as the starting point when deriving logical/essential
aspects.

3. CRITICAL ASSUMPTIONS UNDERLYING STRUCTURED ANALYSIS

3.1 Organization and Work from a Structured Analysis Perspective

Structured Analysis envisions an organization as a kind of information

processing system, that is, as a network of processes exchanging information
according to certain rules. The construction of a set of formal models of the
current work processes as well as of the new computer based work processes
is the core of Structured Analysis. As described above, the aim is to produce
detailed functional or ‘logical’ descriptions of tasks and operations while
focussing on the flow and processing of information. Functional or ‘logical’
indicates an abstraction from ‘accidental’ or ‘historical’ peculiarities. No
distinction is made between manual and automated procedures. A process
can be carried out by a human being, an electromechanical device like an
old-fashioned cash register, a fully electronic device like a digital computer,
or any other ‘information processing’ device.

The most important and immediate consequence of this approach to SyS-
tems analysis is that people are made into objects, simply perceived as

‘system components,’ comparable with tools, machines, and raw materials. In

Structured Analysis one does not distinguish between the way people act and

the way machines function, they are all alike from the method’s point of view.

This is representative for a ‘functionalistic’ or ‘system-structural’ approach

to the study of organizations, see the categorization of organization theories

[1]. A system-structural model of an organization focuses on the structural

properties of the context within which the organizational activities unfold,

and individual behavior is considered to be determined by a reaction to

structural constraints. Thus the organization is seen as a ‘machine’ designed

to perform a given function optimally (in some sense); and work is essentially

treated as procedural in nature, involving the workers’ execution of a

prescribed sequence of steps.

The machine metaphor has dominated engineering and management sci-

ence, and dates back to the development of the classical management theories

at the turn of the century. The basic ideas and procedures of Structured

Analysis are in many respects identical with the ideas expressed by Taylor in

his Principles of Scientific Management from 1911 [44]. DeMarco and Your-

don, like Taylor, suppose that most work processes can be reduced to ‘rules,

laws, and formulae.’ They seem to believe that it is possible to find ‘the one

ACM Transactions on Information Systems, Vol 11, No. 2, April 1993.



170 . J. P. Bansler and K, Bddker

best way,’ and to control the process by prescribing the work procedures step

by step,

DeMarco’s technique for analyzing information flows is based upon the

process flow chart, an industrial engineering method developed by Taylor and

the Gilbreths [8]. Process flow charts displayed how materials moved and
indicated points where they were transformed. Later flow charts were used to
show the flow of forms in office work. Eventually, with the development of
data processing machines these form flow charts included transformations of
data using electromechanical devices such as card punchers, tabulators, and
sorters.

The analysis aims at ‘rationalizing’ information processing by identifying
and removing the “procedural, historical, political or tool-related” peculiari-
ties. According to [9] the designer must first build a ‘physical model’ of the
current work processes and then “logicalize” it:

“Working closely with the users, you learn and document the way things
currently work. Rather than do this from the point of view of any one user or

set of users, you attempt to assess operations from the wzewpoint of the
data . .. . The next step is to ‘logicalize’ our model of the current environment . . . .

A particular implementation of policy is replaced by a representation of the

policy itself. The underlying objectives of the current operation are divorced
from the methods of carrying out those objectives.” [9, p. 27-28]

While ‘logicalizing’ the model, the designer should focus on the regular,

main-line processing and ignore the handling of error situations:

“Most systems and most, systems people dedicate the majority of their

resources to dealing with error situations. Still, error processing usually does
not have a strong effect on the philosophy of a system. . Most systems

derive their phdosophy from the main-lme processing. Internal structure
must reflect thm philosophy.” [9, p. 68]

The designer is thus required to ‘distill’ the current work processes to
extract the essence of the work, the pure functionality, in term of a ‘logical’
model. This model is then subject to systematic interpretations by the de-
signer with the purpose of constructing a new system:

,’

the analyst builds a new model, one that documents operations of the
future envmonment (with the new system in place), just as the current model

documents the present. The new model presents the system-to-be as a
partitioned set of elemental processes. The details of these processes are now
specified, one mini-spec per process.” [10, p. 416]

The new system is first described in terms of a ‘logical’ model without
considering which procedures are to be performed by human beings and
which are to be carried out by machines. “We do not even distinguish
between those procedures that will be automated and those which will be
manual. We simply declare the work that must be done, the rules that govern
its doing and interfaces among component parts of the whole.” [9, p. 30]. Only
after the logical model has been constructed in detail, it is possible to decide,
which of the procedures should be carried out by people and which should

ACM Transactions on Information Systems, Vol. 11, No. 2, Apr]l 1993



A Reappraisal of Structured Analysis . 171

not. This decision is based on a cost-benefit analysis and jobs and tasks are
simply treated as residuals of the automated procedures:

“The last transformation calls for incorporating a minimum of physical
information, principally the man-machine boundary. (. . ) Only when you

have established which of the primitives of your model will be performed by a
machine and which by humans will you have completed the specification of
your project targets. The scope of automation is determined by a cost-benefit
study.” [9, p. 265]

Structured Analysis-like “scientific management’’—is, however, contra-
dictory in nature. Ultimately Structured Analysis treats workers as all-pur-
pose human information processors, programmed and manipulated by the
systems department. Still, the problem is that people can not simply be
reduced to machines. People have physical and psychological needs as well as
abilities which no machine possesses. By treating workers as machines and
thereby removing any intrinsic interest they may have in the tasks they
perform, dissatisfaction is increased and motivation is decreased. At the same
time the positive aspects of human labor are forgone, i.e., their intelligence
and flexibility [17]. This inherent contradiction leads to a number of deficien-
cies and shortcomings with regard to the practical application of the method:

(1) Structured Analysis underrates the skills and ingenuity of the workers.
Most work processes—and not just the so-called skilled work—involve a
fair amount of ‘problem solving,’ interpretation, and judgement, which
cannot be reduced to rude following, see, e.g., [12, 27, 42].

(2) Structured Analysis ignores the significance of casual meetings and infor-
mal conversations among the workers. In many cases, however, informal

communication plays a crucial role in the work process by allowing the
workers to coordinate their tasks and to cooperate in solving difficult or
unusual problems, see, e.g., [18, 36, 48].

(3) Structured Analysis underestimates the frequency and significance of
errors and exceptions from the ‘norm,’ which inevitably crop up in the
work process. Rarely, if ever, do actual work processes proceed as smoothly
and regularly as described by a data flow diagram, and the so called
‘exceptions’ are not trivial [27, 42, 43, 46, 48].

(4) Structured Analysis disregards the problems posed by differing interests

and by power. Consequently, Structured Analysis does not recognize the
need for negotiating and thereby establishing a certain degree of consen-
sus among users about the purpose of the new system. Opportunistic
behavior or the resistance from individuals or groups of users may,
however, prevent the effective implementation of a solution which—in
principle— is ‘technically feasible’ and ‘rational’ [13, 23].

(5) Structured Analysis offers no help in describing and analyzing work

organization. Even if the method has many implicit assumptions about
work organization, it does not deal explicitly with questions regarding the
design of jobs and modes of cooperation. The method contains no concepts
for modeling organizational units or resources, and there is no way of

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.



172 . J. P Bansler and K. B4dker

specifying relations of authority and responsibility, etc. [5]. As noted
above, jobs and tasks are simply treated as residuals of the automated
procedures [6, 12, 16, 20].

3.2 The Design Process from a Structured Analysis Perspective

Embedded in Structured Analysis is a strong belief in instrumental rational-

ity. The design process is seen as a problem soluing activity. Starting with a

well defined problem and explicit objectives (documented in the so-called

Charter for Change), the designer then searches for the best way to solve the

problem and achieve the objectives, proceeding along the steps of a prescribed

procedure.

Structured Analysis belongs to a broad family of design methods based on

hierarchical decomposition of functions, often referred to as functional analy-

sis [28]. Functional analysis has been widely applied—not only to the design

of programs and information systems—but also within industrial production,

architectural design, and management science. Within the computing field,

Dijkstra [ 11] and Wirth [47] first advocated using the principles of functional

analysis in their work on ‘structured programming.’ Structured program-

ming, as we noted in the introduction, is the antecedent of methods for

‘structured design’ and ‘structured analysis.’

The basic idea is, that a complex problem is best understood—and

solved—when it is subdivided into smaller pieces, each of which can be

tackled and solved separately. According to the principles of functional

analysis a product or a system is designed by decomposing it into its

constituent parts, i.e., elementary functions which can be precisely defined.

By a process of hierarchical decomposition the designer builds a functional

tree: going out along the various branches one describes more and more

simple functions, ending with the most elementary ones. At the root of the

tree the functions are coordinated and the components assembled.

According to Structured Analysis the designer must build not one, but two

functional trees. First, the designer analyzes the structure of the current

system in order to determine its basic functionality, which is to be docu-

mented in the current logical model. The designer then reconstructs this

functional tree in order to accommodate the objectives stated in the charter

for change. Generating this new tree (documented in the new logical model)

entails a logical top-down partitioning- of the new system’s functions:

“This partitioning differs from past efforts in a number of respects:

—It is truly top-down. Since the top is known. . . . there is no need to start in
the middle as is sometimes required in studying the current physical
environment.

—The analyst is boss. Instead of being guided by the user’s political and
procedural view, the analyst partitions according to his own standard:
minimization of interfaces.

—There is a new set of rules in force. I refer to the Charter for Change. It
may call for added function, new processes and data flows, increased
accountability, etc.” [9, pp. 260–262]

ACM TransactIons on Information Systems, Vol 11, No. 2,, April 1993



A Reappraisal of Structured Analysis . 173

The designer is not supposed to consider the system’s implementation until
after the functional tree has been worked out in detail. In other words, the
transformation from the current logical to the new logical model is a transfor-
mation from one abstract specification to another. Exactly how the designer
is going to carry out this top-down partitioning of the new systems functions
remains an open question.

The role of the users in this process is passive. They may act as sources of
information and as reviewers of the designer’s proposals, but they are not
asked to participate in the actual design work. DeMarco almost leaves one
with the impression that the prime reason for involving users in the design of
the new system is to “co-opt” them:

“Urge the user to help you ‘debug’ the model [of the new system] while it is

still on paper. ( . ..) This is not the time to ask the user to be lenient. On the

contrary, he ought to be allowed some whims while the system is still made
only of paper. Now is the time to co-opt him, to make him feel that, by

imposing his modifications on the model, he is establishing the eventual
shape of the system. This will give him a sizable measure of responsibility for
the system when it is delivered, and will make him feel every deficiency is at
least partly his fault. That frame of mind makes him doubly helpful during

analysis and more than normally docile at acceptance time.” [9, pp. 263–264].

Structured analysis is based on three basic assumptions about the nature
of the design process:

(1) The problem to be solved is well-defined and clearly stated at the outset,
and the given ends will not be modified during the process. Objectives as
well as criteria for evaluating proposed solutions are unambiguous and
consistent; and it is possible to verify whether or not a given solution
meets the stated evaluation criteria.

(2) The designer is assumed to be completely rational—an ideal type with
perfect information about design variables as well as about environmen-
tal parameters and constraints.

(3) It is possible and desirable to separate function from implementation, and
to design and describe the function of the system without any reference to
its actual implementation. Decisions about so-called ‘physical aspects’
must be postponed until after the so-called ‘logical aspects’ have been
determined.

These assumptions have, however, very little to do with real-life design
situations. Problems are ill-defined more often than not. Objectives and goals
are vague, changing, and often in conflict with one another. In most cases the
design process is one of collective inquiry and search where several actors, in
cooperation or conflict, define relevant problems and possible solutions—doing
so more or less simultaneously. Problem and ends can not be taken as givens,
they are negotiated and clarified during the design process.

Malhotra et al. [31] describe an empirical study of designer-client dia-
logues. Their work clearly demonstrates the unstable and vague goals typical
in design situations. Malhotra et al. conclude that in “real-world design

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.



174 . J P. Bansler and K. B@dker

situations, the goals are, typically, fuzz y and poorly articulated and cannot be
mapped directly into properties of the design. Thus, the exact configuration of
the final state is not prescribed. A part of the design process consists of
formalizing and refining the design goals into functional requirements that
can be matched by properties of the design. Even so, it is usually difficult to
tell how well a design meets a particular functional requirement. In addition,
the functional requirements often cover different dimensions and the trade-off
between them are rarely well specified.” [31, p. 120].

Based upon their empirical findings Malhotra et al. propose an alternative,
descriptive model of the design process. We do not want to promote this
model as the only true description of this process, but we Find that it
highlights some aspects that are very important in our context.

Malhotra et al. decompose the design process into three fundamental,
underlying processes. The first process is called goal elaboration and entails

stating and discussing the goals of the design. During the second process, the

design generation, attempts are made to come up with a design which meets

the stated goals. After a (partial) design has been generated, the third

process, that of design evaluation, begins. This starts with the introduction of
the new (partial) design and ends with either its acceptance or rejection. The
most important feature of this process is that it may uncover new require-
ments, especially those which are fuzzy and difficult to formalize. These three
processes are usually inextricably interlaced, reinforcing each other. Results
from a recent study of software designers by Guindon support this view [21].
She reports how separate operations intertwined and how opportunistic
behavior played a crucial role, even among designers who subscribe to
top-down design.

Because Structured Analysis focuses so strongly upon functional analysis it
offers little or no help to the designer in carrying out the three fundamental
processes of design described above. In particular, Structured Analysis over-
looks the fact that some form of active user participation is indispensable
when objectives and evaluation criteria are not explicit and fixed at the
outset [12, 16, 20]. This has a number of practical implications:

(1) By taking for granted that the problem to be solved is well-defined and
that means and ends are given, Structured Analysis consequently ignores
the need for goal elaboration as part of the design activity.

(2) DeMarco and Yourdon recognize the importance of design generation, but
do not have any suggestions on how to support it. Instead, they propose
that it is “an act of creativity for which there are no mechanical rules”
[49, p. 84] We agree that no ‘mechanical rules’ for creative acts can be
formulated. However, guidelines for establishing creative settings and for
stimulating creativity might be given. Prototyping techniques have been
proposed to support design generation (and design evaluation) by empha-
sizing experiments and iterations in the systems development process [3,
4, 12, 14, 20]. Madsen and Kensing use Future Workshops and metaphor-

ical design to stimulate generation of new ideas for design of computer

systems [25, 30].

ACM Transactions on Information Systems, Vol. 11, No 2, April 1993



A Reappraisal of Structured Analysis . 175

(3) According to Structured Analysis evaluation of the new systems design is

a rather straightforward matter. The designer simply asks the user to

‘verify the meaningfulness’ of the new logical model [9, p. 263]. It is,

however, less than likely that the user will be able to imagine how the

new system will function by looking at formal descriptions such as data

flow diagrams. This has been pointed out by authors discussing the value

of ‘hands-on’ experience in the design process, see, e.g., [3, 12, 20, 22].

(4) In general, Structured Analysis underestimates the need for and the

difficulties involved in communicating with users. Users play a very

passive role in Structured Analysis. Their job is to supply information and

to ‘verify’ diagrams and specifications made by the designer. The data

flow diagrams and the various types of formal notations (e.g., decision

tables and structured English) are, however, not designed with the user

in mind; on the contrary, they reflect the world-view of the computer

society. As a result, we doubt that these formalisms are suited for

communication outside the group of systems designers and computer

programmers.

4. THE EXPLORATORY STUDY

A number of quantitative empirical studies on the use of methods, techniques
and tools in system development have been carried out, e.g., [341. Such
studies provide insight into the approach DP-departments use to develop
information systems. These studies are, however, of limited value in provid-
ing answers to questions like why and how a particular method is applied in
practice. The reader is often left wondering, what it really means, when
“62% of the DP-departments say that they use a structured approach with
data flow diagrams and data dictionary descriptions as the most widely used
tools” [34, Tables 4 and 6].

We have therefore carried out a small exploratory study based on qualita-
tive interviews, and thus complement our theoretical criticism with evidence
on how Structured Analysis is actually used in practice. The study also
develops hypotheses for further inquiry.

We have conducted open-ended interviews with nine designers in three
Danish companies with internal DP-departments. We use the term ‘designer’
to designate the informants. However, only one was actually entitled de-
signer. Of the rest, three were project leaders, two were data base designers,
one was a head of a development department, one was a programmer and one
was a consultant. Regardless of position, they all had extensive practical
experience in using Structured Analysis. The companies were selected on the
basis of their experience with and positive evaluation of Structured Analysis.
We actively searched for ‘success stories’ when looking for candidate compa-
nies. A Danish consultant firm specializing in Structured Analysis assisted in
selecting appropriate cases and providing contacts with companies.

In an international context, these companies and their DP-departments are
relatively small, although relative to other Danish companies, they are
relatively large. Furthermore, within software work in Denmark the division

ACMTransactions on Information Systems, Vol. 11, No. 2, April 1993.



176 . J. P. Bansler and K. Bddker

of labor is less pronounced and jobs less fragmented, when compared to the
situation in the U.S. (see [26]).

Some of the interviews were conducted individually (at The Bank and at
The Utility Company), whereas the interview at The Financial Institution
was conducted as a group interview. The interviews were structured using a
simple interview guide as reference. z The guide covers four major topics: Why
was Structured Analysis introduced? How was Structured Analysis intro-
duced? How is Structured Analysis applied? Experience with the use of
Structured Analysis?

The interviews were tape-recorded, and the results as they appear in the
following are our interpretation from listening to these tapes. The designers
interviewed have read and approved the following description of their use of
Structured Analysis. To illustrate main points in the description, we have cut
out parts of the interviews and placed these in boxes.

The interviews should, of course, be considered verbal reports only, and as
such are subject to the problems of bias, poor recall, and poor or inaccurate
articulation. When designers are asked to tell about how they carry out their
work, and why they do it the way they do, one must be aware that they may
—in retrospect—’rationalize’ their activities and their reasons for doing
them, see e.g., [43]. We have therefore found it necessary to corroborate our
interview data with studies of relevant design documents and demonstrations
of applied CASE tools.

4.1 Study 1: The Bank

The Bank is one of the largest in Denmark, employing several thousand
people. The Bank has an internal DP-department with a few hundred em-
ployees. The department is responsible for the development and maintenance
as well as the daily operation of all computer systems in The Bank.

Structured Analysis was introduced in The Bank in the early 1980’s
primarily due to its reported success in other large companies within the
financial sector, but also due to an intensive marketing effort. As one of the
designers noted, “the method is not exceptional in any way, but the timing
was perfect.” When Structured Analysis was first introduced, all development
projects had to use the method. Now, it is up to the individual project group
to decide what methods and tools they will use, but the use of DFDs is
strongly recommended and most projects use them. The DP-department has
no special section responsible for defining standards, teaching methods, and
supervising development activities. It is the responsibility of the project

leaders. New employees learn Structured Analysis by attending a one week

course, offered by an external consulting firm, and by working closely with

more experienced colleagues,

Most of the projects use DFDs and the Data Dictionary for internal

communication among designers and programmers in the project group. The

diagrams are used to describe the functionality and the structure of the new

z The interview guide can be obtained from the authors upon request.

ACM TransactIons on lnformat,on Systems, Vol. 11, No 2, April 1993



A Reappraisal of Structured Analysis . 177

computer system. The diagrams do not describe manual procedures. The
description is a mixture of a logical and a physical model. As one of the
designers said, “we don’t need a pretty theoretical model—what you call a
‘logical’ model— we need a model describing the programs that are going to
run on the machine.”

While drawing and discussing the diagrams, the project group breaks down
the system into a hierarchy of subsystems or program modules with well
defined interfaces. At the same time, the group analyses the system’s data,
using E/R modeling and standard procedures for data base normalization. In
large projects, the detailed analysis, design, and programming of the individ-
ual modules may then be carried out, more or less independently, by smaller
work groups. Structured Design is not applied, except in very complicated
cases. Typically, the lowest level of DFDs together with mini-specifications
constitute the basis for programming. As a general rule, one low-level process
corresponds to one program module.

DFDs are not used for describing the current system. Designers say it
takes too much time and involves too much effort to build a model of the
current system, compared to the information you obtain by doing so. Instead
they rely upon informal discussions with users, verbal descriptions, and their
own experience with the business area. See Figure 2.

The user interface is designed by programming the screen layouts in a
fourth generation language and then validating the design by showing them
to future users of the system. DFDs are not used for communication with
users. The designers told us that they had tried to present users with the
DFDs, but the users had been unable and unwilling to read the diagrams. So,
now, they communicate with the future users of the system by means of
ordinary text, form and screen layouts as well as by building ‘prototypes’ of
the user interface. See Figure 3.

In general, the DP-department does not use DFDs and mini-specs for
maintenance purposes, and the diagrams are not kept up to date when
programs are modified.

4.2 Study 2: The Utility Company

The Utility Company is a regulated monopoly (concessionary company). It
has an internal DP-department with approximately 50 employees responsible
for development, maintenance, and daily operation of the company’s informa-
tion systems.

In connection with plans for replacing most of the existing information
systems from the sixties and early seventies, top management decided in
1985 to reorganize the DP-department and introduce new standards for
systems development. A project group was established to examine the DP-
department’s current practice and recommended, among other things, the
introduction of Structured Analysis. The group emphasized three main ad-
vantages of Structured Analysis. It would (a) alleviate communication prob-
lems between users and DP-staff, (b) provide a sound basis for estimating and

controlling costs, and (c) make systems maintenance easier by providing

better technical documentation.

ACM Transactions on Information Systems, Vol. 11, No. 2, Apr,l 1993.



178 . J. P. Bansler and K. B@dker

Q DO YOU follow the four steps recommended bY Yourdon...

A: You mean current physical model...

~ Yes, current physical, current logical, ne,v logical, new physical,,.

A: No, I don’t work that way, because it seems to me that it’s too

cumbersome. It takes too long to get any results. That’s not the

way we do things...

Q Results? Do you mean computer systems or descriptions?

A: Yes. We have some very active users, who want to see results—

so, I don’t follow the specified procedures. Actually I start with

the new logical, because I know the system which we’re supposed

to alter. If I didn’t know it, then I’d have to start with the current

physical model..

Q Does that mean, you start with designing a new system—by

outlining a new logical model ?

A: Yes, that’s what I do And, hke I said, it’s because I have the

existing system in the back of my mind—with all the faults this

may entail If I didn’t know anything about it, then I’d have to go

about it the other way around.

Q DO YOU continue and construct a new physical model or do you

only construct the new logical model?

A: Well, its always a little bit of both. While I’m designing the loglcal

model, I can’t help looklng at what files exist—that means lf I can

see two processes at the lowest le~rel reading the same fde, then I

change things, so it’s only one process reading—that’s of course

because I also consider how the system is to be implemented,

Fig. 2. Extract from interview with Designer A m The Bank

A: ..and then in a drawing I show how the screen layout is going to

be...

Q Then, what you in fact do is primarily to ask the user to decide

about the screen layout? You don’t ask them to go in and read the

data flow diagrams?

A: No, but I’d be very happy if that’s what they did—but it’s

hopeless, it really is. SO that’s why, when we—and remember it’s

only possible because I know the system so well, that things don’t

go all wrong—when we had coded everything, we asked the user

to test it—on the basis of his experience, where he just imagined

that he was working away on a mortgage application and came up

afterwards with his comments.

Fig. 3. Extract from interview with Designer A in The Bank

ACM Transactions on Information Systems, Vol. 11, No. 2, Aprd 1993



A Reappraisal of Structured Analysis . 179

No alternatives to Structured Analysis were considered. As one of the
designers pointed out, it would take too much time to examine and test other
methods, and “management was eager to see some results.” In 1986 manage-
ment decided to adopt Structured Analysis as a company standard, compul-
sory for all new development projects. The DP-department has no special
section supporting the use of methods and tools. Instead the company relies
upon external consultants, who, among other things, teach new employees
about Structured Analysis.

The tools of Structured Analysis—in particular the data flow
diagrams-are used in the initial survey study as well as in the subsequent
analysis phase.3 The designers and the user representatives who are mem-
bers of the project group use these diagrams when they communicate about
the scope of the development effort and about the functional requirements.4
In the survey study, the group makes a very rough sketch (about two to three
levels) of both the existing and the new system, but in the analysis activity
the group only builds a model of the new system. At the same time the group
conducts a data analysis, using E/R modeling. The detailed model of the new
system, worked out in the analysis phase, includes manual as well as
automated processes, but it concentrates on the structure of the computer

system. As a supplement to the data flow diagrams, processes at all levels are
described by narrative text. It is hard to classify the model as either logical or
physical. See Figures 4 and 5.

In addition, designers and programmers use the DFDs to estimate the size
of the new computer system (in terms of the lines of code and in terms of
programming effort) and to divide the system into program modules with
clearly defined interfaces.

Structured Design is not used. Programming takes as its starting point the
lowest level of data flow diagrams along with the corresponding mini-specifi-
cations. In projects where programmers are brought in during the program-
ming phase, problems have occurred, however. The explanation given, was
that the diagrams and the mini-specifications did not contain the necessary
information for the programmer to implement the low-level processes. The
user interface is designed using a fourth generation language. The program-
mer produces a screen layout, shows it to the future users of the system, and
quickly make changes until the users are satisfied.

The designers agree that the use of DFDs has improved communication
between DP-staff and (some of) the users. Users who are members of the
project groups read—and sometimes even draw—DFDs without difficulty,
but the diagrams cannot be used as a means of communication with users
outside the project groups. The majority of the users are engineers and
electricians who are accustomed to reading different types of technical
diagrams. See Figure 6.

.
3 The development activities are divided mto six phases: survey, analysis (including functional

analysis and data analysis), systems modeling, design, programming and implementation.

~ Users participate in the project group right from the start. The head of the project group is

always a high-ranking user.

ACM TransactIons on Information Systems, Vol. 11, No. 2, Aprd 1993



180 . J. P, Bansler and K Bddker

Q DO YOU start by constructing a current physical or current logical

model?

B: No, no, no We’ve already described that [in the survey]—so

there’s no reason to do it again, is there?

Q No, not unless you want to do it more thoroughly. You’ve only

outlined the current system [in the survey].

B: Yes, and that’s enough. Outlining the existing system means that

everyone, who M at the highest level in the group, knows what

we’re working with.

Q So, you start with the new... you start by modeling the new...

B. Yes, we start by modeling the new—and by continuing to work on

this And we do it while taking into consideration how things are

done today—how their work is organized and so on. We still

haven’t talked about whether this is to be on-line or whether it’s

paper-based manual procedures. We’ve had some problems with

this in the beginning—in telhng the users “Well, I don’t care If

you think it should be computerized—I don’t care if you think

it’s going to be in a screen layout—that’s not necessarily so, and

I’m not interested in it—it’s not what we’re working on “

Fig. 4. Extract from interwew with Designer B from The Utility Company

One designer also stressed that Structured Analysis had proved to be
useful for estimating and controlling development costs. Since the introduc-
tion of Structured Analysis, estimates had improved considerably and this in
turn had improved the image of the DP-department. Expectations about
improved systems documentation, however, have not been fully met. Changes
to programs made during or after implementation have not been recorded
due to time pressure. Integrated computer-based tools are considered to be
necessary if the diagrams and the mini-specs are to be kept up to data. We

also noted that among designers having experience from different projects

there is a difference of opinion on how Structured Analysis should be used

and how it is actually used, see Figures 4 and 5.

4,3 Study 3: The Financial Institution

The Financial Institution is a mixed-sector computer service center estab-

lished in 1980. The institution has a little more than 100 employees, most of

them DP-people. Right from the beginning, top management decided to apply

structured system development techniques—including structured design and

structured programming—in order to increase productivity and to minimize

maintenance. Their basic philosophy was to divide the system development

task into small, manageable projects will well-defined interfaces. However,

they lacked adequate tools for the analysis phase. At about the same time, [9]

appeared, and in many ways this book provided the missing tools.

ACM TransactIons on Information Systems, Vol. 11, No 2, April 1993



A Reappraisal of Structured Analysis . 181

Q When you started analyzing the various functions, did you start

by modeling the existing system?

C No.

Q YOU started directly with the new one?

C Yes.

Q Did you distinguish between a new logical and a new physical

model—or did you construct just one model?

C No, we—and I’m not at all satisfied with what we did... in fact I

think we did ourselves disservice by doing things the way we

did—which is something that has been discussed a number of

times. But our time schedule didn’t leave us enough time to do

anything about it, and at the same time people weren’t really

interested in doing anything about it.

Q. What do you think should have been done instead?

C Yeah, well, at any rate, I think it’s wrong to boast about using a

model when you haven’t really used it... In my opinion, if you

want to get results from a certain method, you have to use the

method in accordance with its own premises. You can’t expect to

get some results if you only use half of the prescribed procedures...

And I don’t think that much has been accomplished by using

structured analysis in this project...

Fig. 5. Extract from interview with Designer C, who works on another project than Designer B

m The Utility Company.

D: From our experlence+specially in cooperating with the users—

it’s [the use of SA] been a success—at least this project has.

Among some of the comments which we have received—we had

a big meeting a couple of months ago with all the participants in

the project—was that it was a good way of describing things. They

understood it. But it’s worth noting that we work a lot with

technicians, tvho are used to looking at diagrams and drawings.

Q So, a data flo$v diagram doesn’t scare them?

D. No, on the contrary—’’finally here is something, which we can

understand’’-in stead of having to sit and read a lot of words

which are difficult to understand.

Q. What do you mean, when you say that the users are other

technicians?

B: Engineers, among others.

D: And electricians—people who are used to looking at diagrams

It’s a way of describing things, that they are used to.

Fig. 6. Extract from interview with Designers B and D from The Utility Company.

ACM Transactions on Information Systems. Vol. 11, No. 2, April 1993.



182 . J. P. Bansler and K. B4dker

The institution has no special section for enforcing standards and support-
ing the use of methods and tools. The use of structured techniques is
mandatory, however, and all senior designers have considerable experience
with their use. New employees learn the techniques by attending external
one week courses and by working together with more experienced designers
and programmers.

The tools of Structured Analysis are used for development as well as

maintenance purposes. With respect to the former, designers use DFDs to

model the new computer system and to break it down into a hierarchy of
well-defined modules. This, in turn, enables them to divide the total develop-
ment effort into more manageable sub tasks, which to a certain extent can be

carried out independently of each other. In this way, they are also able to

estimate rather precisely the time and effort needed for the subsequent

programming of the system.

In general, the designers do not build a model of the current system; and

they do not distinguish between logical and physical models of the new

system. The models they build consist of mainly the automated procedures,

and the models are used for internal communication only. Communication

with users depends on screen layouts, informal drawings (e.g., of the struc-

ture of the system and the organizational context), and plain text.

To a large extent, this use of DFDs corresponds to the practice at The

Bank, described in Section 4.1. Unlike The Bank, however, The Financial

Institution in addition uses the DFDs, mini-specifications and DDs to pro-

duce technical systems documentation. The institution has committed itself

to maintain the diagrams and specifications, even after implementation of

the computer system. To ensure that they are correct and up to date, the

organization makes extensive use of formal walkthroughs [49, 50], also

during maintenance, see Figure 7. To keep the documentation “alive,” a

computer based documentation tool was considered necessary. Structured

Design is only applied to the most complicated tasks, but the designers we

talked to contemplated using it more often. The structure charts are not

maintained, however.

4.4 Overview of Study Findings

On the basis of the study we can draw the following general conclusions
regarding the introduction and use of Structured Analysis in the three
development departments.

Introduction of Structured Analysis. None of the organizations have cho-
sen to use Structured Analysis, in the sense that they have deliberately
selected Structured Analysis out of a variety of available methods for systems
design. No alternatives have been examined and tested in order to establish

their relative merits. The organizations chose Structured Analysis because

they had contact with other large organizations using the method, or because

they were not aware of alternatives. More surprising, Structured Analysis is

even today perceived as the only feasible method for systems analysis and

ACM Transactions on Information Systems, Vol 11, No 2, Aprd 1993.



A Reappraisal of Structured Analysis . 183

Q Did you consider other methods? Were there other possibilities?

E Everyone knew Jackson’s method and the RAS model from

Sweden and the SYSKON-model—they ’re all ‘Victorian novels’,

which we all wanted to get rid off, because we’re from the finance

sector, where the mammoth works never were up-dated. And we

weren’t too good at it ourselves, because so much of the

documentation had to be re-written. So we had to get rid of these

‘Victorian novels’ and secure just enough documentation so that

it was usable-and not more than people would up-date... What

we also wanted at this point was a vivid and handy

documentation—where, once we documented something we also

used it actively—all the way down into the programs—this

means that if the documentation hasn’t been updated, then the

programs won’t work. We draw on our documentation to write

the user manuals—so, if there’s a mistake in the documentation,

there’ll be something wrong in the user-manual. That’s why we

try to make it into something active, so it’s always up-dated,

because that’s an end in itself...

Fig. 7. Extract from interview with Designer E in The Financial Institution.

design in a large business environment. When asked, no designer in the

study could think of any real alternatives to Structured Analysis.

We attribute the widespread use of Structured Analysis in large Danish

DP-departments to two factors: (a) The promises made by Structured Analy-

sis of bringing ‘system, control, and order’ to the otherwise chaotic system

development process appeal strongly to management. This is particularly

prominent in the case of The Financial Institution, but also in the case of The

Utility Company. (b) The tools of Structured Analysis-notably the DFDs—

are clearly conceived of by the designers as being useful as a means of

communication and as system documentation. Many of the designers in our

study underline the conceptual simplicity of the method and the nice graphi-

cal lay-out of the DFDs, making them easy to comprehend and construct.

The Use of Structured Analysis. In general the designers and their organi-

zations have a very pragmatic attitude towards using the method. They make

use of the tools of Structured Analysis, primarily the DFDs, but also the Data

Dictionary and in some cases decision tables or structured English, and they

combine them freely with other tools as they see fit; but they do not comply

with the rules and procedures of Structured Analysis.
According to Structured Analysis the designer must build four different

models of the system during the design activity: the current physical model,

the current logical (essential) model, the new logical (essential) model, and

the new physical model. In general, however, designers in the study only

produce one model of the system—namely, a model of the new (computer)

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.



184 . J. P. Bansler and K B@dker

Table I. Models Developed

The Bank The Utility The Financial

Company Institution

current physical model m yes, but only m the m
survev actlwty

current logical model m m m

new logical model m m m

new physical model yes, but manual yes yes, but manual
procedures are not procedures are not
described by the descnbcd by the
mm+.1 mnr! .1

system—and they do not distinguish between logical and physical data flow

diagrams:

—The designers do not analyze the current system by first constructing a

current physical model and then deriving a logical equivalent. In fact, in

most cases, they do not build a model of the current system at all. Instead,

they rely upon their own intuitive understanding of the system and upon

verbal descriptions and informal discussions with users.

—The designers do not design the new system by first building a new logical

model and then deriving a physical model from the logical model by

establishing the man-machine boundary. Instead, they construct one model

of the new system, which may be described as something between a logical

and a physical model. The model focuses on the structure of the computer

system. See Table I.

The designers clearly view themselves as technical designers of cornpzder

systems, not as designers of work organization, jobs, and work tasks. As a

result they concentrate on specifying input and output data while leaving

decisions about the redesign of the work system in general to others. This

also explains why their descriptions of the manual procedures and actual

working practices are rather limited.

How the tools of Structured Analysis are actually used and combined with

other tools, and for what purpose, vary a great deal from one organization to

another, and even from project to project. In Table II we have summarized

how the DFDs are used in the three companies.

These difference regarding the use of Structured Analysis can be explained

by referring to the context of application. At The Financial Institution senior

management introduced Structured Analysis to increase managerial control

and obtain a high level of standardization with regard to systems documen-

tation. At The Bank, however, the individual project groups decide whether

or not to use the tools of Structured Analysis, and the group members use

them for internal communication and coordination purposes only. The Utility

Company uses the tools primarily to facilitate user participation by improv-

ing communication between users and DP-staff. This is possible because most

ACM Transactions on Information Systems, Vol. 11, No 2, April 1993,



A Reappraisal of Structured Analysis .

Table II. Use of Data Flow Diagrams and Other Tools

185

The Bank The Utility The Financial

Company Institution

DFDs used when com- m yes, within the m

municating with users project group

DFDs used for commu- yes yc5 yes

nication among design-

ers and programmers

DFDs used for breaking yes yes yes

down software into

modules

DFDs kept up-to-date for m yes, but changes yes

maintenance purposes during or after
impkmentatlon are
not recorded

The use of DFDs is m yes, on new projects yes

mandatory

Structure Charts only m very cOmpll- m only m the most

(Structured Design) are ;::t:e:;a:, complicated cases

applied (the Structure
are not kept up-to- Charts are not kept
date) up-to-date)

Other tools used ● E/R dmgrams . E/R diagrams ● E/R diagrams
● Screen Iayou ts ● Screen layouts ● Screen layouts
. Prototypes of user . Prototypes of user . Informal descrlp-

Interface Interface hens
w Informal descrlp- . Informal dcscr!p- . In formal drawings

tions tlons (e.g. orgamzatlon
charts)

of the users are engineers and technicians who are used to interpreting and

constructing technical diagrams.

We find it more correct to say that the designers in our study use data flow

diagrams, the Data Dictionary and mini-specifications as tools—for various

purposes and in combination with other tools such as E\R diagrams, screen

layouts, prototypes, organization charts, and plain text—rather than to say

they employ Structured Analysis as the method for analyzing and designing

information systems. In other words, when a company states that it uses

Structured Analysis, it can mean many different things.

5. DISCUSSION

In conclusion, we would like to elaborate on the use of system development

methods in practice as opposed to how they are presented in textbooks and

scientific literature. We are especially interested in the reasons why the use

of Structured Analysis differs from the method as theorized. To what extent

do circumstances relating to the introduction of the method and the manage-

ment of the development activities explain this difference, and to what extent

is it caused by innate methodological problems?

To answer these questions requires more extensive, longitudinal investiga-

tions, not only of the development process, itself, but also of the implementa-

tion and use of the produced systems. From our studies we expect that some

methodological problems will show up during the development phase and

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.



186 . J. P Bansler and K B#dker

manifest themselves as designers’ problems, i.e., how to communicate with

users? (See Section 3.2). Other types of problems, will probably not show up

until the new system is implemented in the organization—and they may

primarily present themselves as users’ problems, i.e., how to deal with the

system in situations not anticipated by the designers? (See Section 3.1. )

These phases of implementation and use are not included in our present

study.

In the following discussion we, therefore, do not pretend to provide a

definitive answer to the question why Structured Analysis is not used ‘by the

book.’ Rather, we limit ourselves to discussing some possible explanations, to

be tested in later studies.

5.1 The Use of Methods

Our study of the application of the Structured Analysis method shows that

the designers only use the method partially, and that the parts chosen differ

from organization to organization and even from project to project.

One obvious reason might be that the projects studied were too small to

justify the complete implementation of this rather elaborate method. The

projects in the study fall, however, well within the size limits recommended

for the use of structured techniques, including Structured Analysis. Yourdon

strongly recommends the use of structured techniques in projects ranging

from ten thousand to one million lines of code. He also finds the techniques

useful for smaller projects but he admits that their implementation may

represent ‘unnecessarily heavy artillery,’ and that their use may not speed up

development time at all. [49, pp. 3-5].

Another reason might be inadequate training and weak management

support. There may be some truth to this. With regard to the training and

building up of in-house competence, none of the companies in the study had

internal departments or specialists responsible for the implementation of

Structured Analysis. Instead, they rely on external consultants to teach new

employees and provide advice in projects where the method is adopted. On

the other hand, DP-management—at least in The Utility Company and The

Financial Institution—fully supports the use of Structured Analysis.

A third reason may have to do with organizational politics. If the data

processing staff constitutes an interest group within the organization that is

eager to preserve and enhance the importance and power of the DP-depart-

ment, then practices likely to increase the size, the budget, and the indepen-

dence of the DP-staff will be viewed positively. Whereas any attempts to

decrease the staffing or the equipment, or to increase the control of the

DP-departments’ activities are clearly considered to be disadvantageous.

The failure to construct models of both the new and the old systems and

the reluctance to distinguish clearly between physical and logical aspects

may thus be explained in terms of differing interests and power relationships

between the user and the data processing department. By not analyzing the

existing system and by conflating the physical and logical models of the new

system, it may be easier for the DP-department to justify the acquisition of

new resources. For example, they can make arguments of the sort, “if you

ACM TransactIons on Information Systems, Vol. 11, No 2, April 1993



A Reappraisal of Structured Analysis . 187

want such and such new feature, then we will have to buy such and such new

equipment or so ftware,” even though a careful analysis of either the old or

new systems might reveal that such a new acquisition was not really neces-

sary. We do not have enough empirical evidence to either support or reject

this explanation. However we find it is an interesting hypothesis worthy of

future investigation.

Finally, we would like to suggest a fourth reason, having to do—not so

much with the specific circumstances of the implementation—as with the

substance of the method itself The limited use of Structured Analysis may

reflect inherent methodological weaknesses. The results of the explorative

study confirm the validity and relevance of at least some of the theoretical

criticism, as discussed in Section 3.

When we look at the way the designers carry out their work, we observe

four major deviations from the prescribed procedures: (1) the designers do not

use data flow diagrams when communicating with users, (2) their diagrams

do not comprise manual procedures, (3) the designers limit the number of

models they construct to one (a model of the new system), and (4) they always

supplement this model with other types of descriptions, diagrams, or proto-

types. This seems to suggest that the tools and procedures of Structured

Analysis are inadequate and cumbersome to apply in practice.

Communicating with users. Although DeMarco and Yourdon claim that
one of the major advantages of Structured Analysis is that it improves

communication between designers and users, the designers at The Bank and

at The Financial Institution consistently told us that data flow diagrams

were not suitable for communicating with users. We suspect that this is due

to the fact that the diagrams reflect an information processing view, which

most users presumably are unfamiliar with (see Section 3.2). Only the

technicians and engineers at The Utility Company were willing and able to

try and grasp the meaning of the diagrams, see Table II.

Modeling work processes. Structured Analysis is presented as a general

method for describing and analyzing ‘information processing systems,’

whether manual or automated. However, at The Bank and at The Financial

Institution the designers excluded manual procedures from their system

models, and although the models developed at The Utility Company included

some manual procedures, their focus was clearly on the computer system, see

Table I. By restricting the use of DFDs to specify the computerized proce-
dures, the designers avoid the problematic issue of describing work as data

processing. While it makes sense to understand a computer system in terms

of data processes and data flows, it is doubtful whether it makes much sense

to understand work in these same terms (see Section 3.1). The practice of

focussing on the computer system may create new problems because the

organizational and behavioral aspects of work are ignored.

Limiting the number of models. Regarding the third observation, it is

clear that the construction of a detailed and comprehensive system model is

enormously time-consuming. At the same time most DP-departments and

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.



188 . J. P. Bansler and K Bq$dker

systems designers are under heavy pressure to speed up delivery of new

applications. Therefore, designers and DP-managers are inclined to skip any

activity which they believe ‘returns too little on investment.’

The designers find it useful to build a model of the new (computer) system

in order to document its overall structure, see Table II. They particularly like

the data flow diaa~ams because they are concise graphical representations

and give a good general view of the system, compared to traditional func-

tional specifications. However, they do not think that modeling the current

system is worth the time and effort. It is not at all clear to them what they

should do with such a model. Those designers who have tried it, have missed

criteria for deciding on the scope of the model and on the level of detail. In

their opinion the model merely contains a lot of irrelevant information, which

is of very little help in designing the new system. One of the few designers

(from The Bank) who has tried to construct a current physical model told us,

for instance, that the project group gave up after three months of drawing

diagrams. His opinion was that “the improvement in our general understand-

ing [of the system] wasn’t worth a dime. ”

Both Palmer and McMenamin [38] and Yourdon [50] acknowledge this

problem, which Palmer and McMenamin refer to as the ‘the current physical

tarpit’:

“The single most common and most deadly result of failing to understand the
method or the system is what we call the current physical tarpit. It is the
reason that unsuccessful structured analysis projects usually fail sometime
during the study of the existing system: Members of these projects nearly
always take an unacceptable length of time to study the system, because they
put far more physical detail into the current physical model than is needed to
develop a new system.” [38, p. 351].

Palmer and McMenamin try to circumvent the problem by introducing a

more iterative way of working (called ‘blitzing’), while Yourdon simply pro-

poses skipping the model of the current system “if at all possible” because it

is “a politically dangerous activity” (see Section 2). We agree with Palmer and

McMenamin. One has to study the existing work process to understand the

need for changes, no matter how scarce project time is. However, the question

is whether Structured Analysis is the right way to address this problem (see

Section 3.1).

In addition to this, the designers are very sceptic about distinguishing

between logical and physical models. They stress that what they need is not

‘a pretty theoretical model,’ but a model of the system to be implemented,

containing the necessary information about modules, files, man-machine

boundary, etc. They obviously consider the whole idea to be a theoretical and

academic discussion without practical relevance. The reason may be that

DP-departments today rarely develop new systems from scratch. The design-

ers know, for instance, right from the start that their programs have to run

on an IBM mainframe under CICS, that they have to be written in PL/ 1 and

that they must interface with a specific older system. In general, the design-

ers are well aware of the multiple constraints in a particular organizational

ACM Transactions on Information Systems. Vol. 11, No 2, April 1993



A Reappraisal of Structured Analysis . 189

context on their design choices, i.e., values and norms, power relations, work

demarcations, and people. Under such circumstances, the idea of first making

a ‘logical model’ and postponing considerations about ‘implementation de-

tails,’ including the man-machine boundary, until the final step of physical

modeling seems odd and hard to justify (see Section 3.1).

Using additional tools. Concerning the fourth observation, the designers

give two reasons for the use of supplementary tools. First, the DFDs, the

Data Dictionary, and the mini-specs are unable to represent all relevant

aspects, technical as well as organizational. Among the many aspects, which

the designers have mentioned are data structure, timing of events, access

rights, user interfaces, business procedures, and organization structure. Sec-

ond, the users are in general unable and even reluctant to try and under-

stand the DFDs. This creates serious problems with regard to design evalua-

tion, because the designers in most cases need feedback from users (see

Section 3.1).

To describe data structure the designers use E/R-diagrams (now included

in the method [38, 50]), to describe user interfaces they draw screen layouts

and implement small ‘prototypes,’ to describe organization structure they

draw traditional organizational charts, and to describe timing, access rights,

business procedures, etc., they use plain text, some times annotated to the

DFD’s. In addition they rely heavily on close personal contact and informal

discussions with users. By doing so, they build a much richer picture of the

new system, and may thus be able to avoid some of the pitfalls of Structured

Analysis. We were unable to determine to what degree the designers succeed

in this.

In conclusion, our interpretation of what happens in practice is that

experienced designers-instead of following the rules and procedures of

Structured Analysis-pick and choose among the various formalisms given in

the method, adapt them for their own purposes, and integrate them into their

own design processes. By using the tools in their own way and very often

together with other, supplementary tools, the designers avoid or compensate

for some of the method’s deficiencies and limitations, especially with respect

to describing the user-interface and the human-computer interaction.

This interpretation of what actually happens when real-life designers apply

Structured Analysis is consistent with ‘The Theory Building View’ on pro-

gram development put forward by Naur [33]. Naur suggests that program-

ming (encompassing both the design process and implementation of pro-

grammed solutions) must be regarded as a ‘theory building activity’ as

defined by Ryle [39]. As an essential part of the activity, the programmer

achieves a deep intuitive insight into the problem at hand and develops a

mental image, a ‘theory,’ of the programmed solution. A main claim of the

‘theory building view’ of programming is that an essential part of any

program, the theory of it, is a body of knowledge that could not conceivably be

fully expressed, but is inextricably bound to human beings. This means that

the knowledge possessed by the programmer in an essential manner tran-

scends what is recorded in the program text, user documentation, and

ACM Transactions on Information Systems, Vol. 11, No. 2, Apr,l 1993.



190 . J P. Bansler and K. B~dker

additional documentation such as specifications. The programmer having the

theory of a program will be able to (1) explain how the solution relates to the

real-world problems that it helps to handle, (2) explain why each part of the

program is what it is, in other words is able to support the actual program

text with a justification of some sort, and (3) respond constructively to any

demand for a modification of the program so as to support ‘the affairs of the

world’ in a new manner [33]. In this perspective the programmer’s skill and

intuition is the pivot upon which the program development activity turns,

and the use of specific principles, rules, and tools plays a secondary, auxiliary

role.

Seen from this perspective the core of systems design is that the designers

achieve a certain kind of insight, a ‘theory’ which encompasses technical as

well as social aspects of the situation at hand. This knowledge is the

designers’ immediate possession. Any specification or ‘system model’ must be

considered as subordinate products. Consequently, the quality of a given

method—its various techniques and took-must be judged on their ability to

support the designers in building up their ‘theory.’

5.2 Implications for Future Research

Our findings suggest that there is a gap between the way systems develop-

ment is portrayed in the mainstream of scientific and technical literature and

the way it is carried out in real life. This is not only the case for textbooks on

proprietary methods such as Structured Analysis, but also pertains to much

of the academic critique of these methods. One reason for this is that

researchers attach too much importance to tools, methods and principles, and

pay too little attention to the behavioral and social aspects associated with

systems development, including the designer’s skill and know how and the

cooperation between designers and users.

Much of the research in system development is essentially normative and

speculative. Researchers seek to develop new methods and tools in order to

improve practice. In many cases, however, their research rests on a rather

simple—and often misleading—understanding of the nature of system devel-

opment, and it suffers from a lack of firm empirical foundation. As a result

their recommendations may well prove to be infeasible from a practical point

of view.

How is system development organized in real life, how do designers. and

programmers actually use methods and tools, and how do they cope with

ambiguity, uncertainty, and conflicting interests? We know very little about

the answers to these questions. A number of surveys concerning the use of

methods and tools have been carried out. However, due to their quantitative

nature they only provide very restricted or superficial answers to the ques-

tions mentioned above. Furthermore, the few empirical studies comparing

and evaluating the use of different system development methods are primar-

ily based upon, what you might call, ‘laboratory experiments’. One way of

conducting such an experiment is to ask a number of students to solve a

given well-defined problem using different methods, ‘measure’ their perfor-

mance, and compare the results (e. g., [2, 15]). Another way is to ask a

ACM TransactIons on Information Systems, Vol 11, No 2, April 1993.



A Reappraisal of Structured Analysis . 191

number of researchers to solve a common, invented problem using their own

method (e.g., [35]). Although this research yields valuable insights into the

virtues and shortcomings of the tested methods, it tells us very little about

how system development is practiced.

If we want to improve practice is some way we must, first of all, acquire a

more comprehensive understanding of the work processes of real-life design

and programming, including not only technical aspects, but also behavioral

and sociological aspects. To obtain such detailed insight we would have to

study the work processes in question more directly, e.g., through participant

observation, video analysis, and ‘document analysis’ of system descriptions as

well as the final systems. In short, we need qualitative ‘field studies’ high-

lighting such issues as the role of skill and experience, the use of formalisms

and other kinds of tools, alternative forms of cooperation and communication,

and division of labor among designers, programmers, and various groups of

users. These methods are in widespread use and have played a dominant role

in anthropology and in the sociology of industry and work. It seems obvious to

use these methods as inspiration for research in the development of informa-

tion systems. These studies should investigate not only how systems are

developed, but also how they function after being installed. Only in this way,

is it possible to link the question of systems quality with the use of specific

development methods.

ACKNOWLEDGMENTS

We are indebted to the Danish companies and their employees who candidly

participated in the study, and we thank Niveau Management ApS for provid-

ing contacts to users of Structured Analysis. We also thank Hasse Clausen,

Erik Fr~kjaer, Erling Havn, Finn Kensing, Philip Kraft, and the referees for

comments on earlier drafts of this paper.

REFERENCES

1. ASTLEY, W, G. AND VAN DE VEN, A. H. Central perspectives and debates in organization

theory. Adm. Sci. Quart., 28, 2 (June 1983), 245-273.

2. BO~IIM, B. W,, TERENCE, E. G., AND SEEWALDT, T. Prototyping versus specifying: a multipro-

ject experiment. IEEE Trans. Softz.u. Eng. 10, 3 (May 1984), 290-303.

3. B@DKER, S. AND GR#NBAE~, K. Cooperative prototyping users and designers in mutual

activity, Int. J. Man-Mach. Stud. 34, 3 (Mar. 1991) 453–478.

4. B@DKER, S,, EHN, P., KYNG, M., KAMMERSGAARD J., AND SUNDBLAD, Y. A utopian experience.

In Computers and Dermxracy. A Scandinavian Alternative, G. Bjerknes, P. Ehn, and

M. Kyng, (Eds.), Avebury, Aldershot, 1987.

5. BUIIENKO, J. Problems and unclear issues with hierarchical business activity and data flow

modelling. SYSLAB Working Paper, No. 134, Stockholm, 1988.

6. B@DKER, K. Analysis and design of computer systems supporting complex administrative

work processes. Off, Technol. People 4, 1 (Jan. 1989), 75–89.
7. CHAPIN, N. Structured analysis and structured design: an overview. In Systems Analysis

and Destgn: A Foundation for the 1980’s, W. W. Cotterman, J. D. Couger, N. L. Enger, and

F. Harold, Eds., North Holland, New York, 1981.

8. COUGER, J. D, Evolution of business system analysis techniques. Corapat. Saru. 5, 3 (Sept.

1973), 167-198.

ACM Transactions on Information Systems, Vol. 11, No. 2, April 1993.



192 . J. P. Bansler and K. B~dker

9. DEMARCO, T. Structured Analysis and System Specification. Yourdon Press, New York,

1978.

10. DEMARCO, T, Structured analysis and system specification. In Classzcs m Software Engz -

neerzng, E. Yourdon, Ed., Yourdon Press, New York, 1979.

11. DUKSTRA, E. W Notes on Structured Progammmg, Technical Univ. Eindhoven, 1970,

12, EHN, P. Worh-Orzented Design of Computer Artzfacts Arbetslivcentrum, Stockholm, 1988.

13. FISCHER, P., STRATMANN, W,, LUNDSGAARDE, H. AND STEELE, D. User reaction to PROMIS.

Comput. Appl. Medical Care, 3 (1980), 1722-1739,

14. FLOVD, C, A systematic look at prototyping. In Approaches to Prototypzng, R. Budde, K.

Kuhlen Kamp, L. Mathlassen, and H. Ziillighoven, Eds., Springer Verlag, Berlin, 1984

15. FLOYD, C. A comparative evaluation of system development methods. In Information

Systenzs Design Methodologies: Improlzng the Practice, T, W. One, H, G, Sol, and A A.

Verrijn-Stuart, Eds., North-Holland, Amsterdam, 1986.

16. FLOYD, C. Outline of a paradigm change in software engineering, In Computers and

Democracy, G. Bjerknes, P Ehn, and M. Kyng, Eds., Avebury, Aldershot, 1987.

17 FRIEDMAN, A. Industry & Labour. MacMillan Press, London, 1977,

18. GALLAGHER, J., KR~UT, R., AND EGIDO, C., EDS, Intellectual Team llork, Lawrence Erlbaum

Associates, Hillsdale, NJ, 1990.

19. GANE, C, AND SARSON, T. Structured System Analysis, Tools and Techniques, Prentice-Hall,

Englewood Cliffs, NJ, 1979.

20, GRIXNBAUM J. AND KVNG, M., EDS. Design at Work: Cooperatzl,e Deszgn of Computer

Systems. Lawrence Erlbaum Associates, Hillsdale, NJ, 1991.

21 GUINDON, R. Designing the design process: exploiting opportunistic thoughts. Ham. Corn-

put. Znteractzon 5, 2/3 (1990), 305-344.

22. J~RGENSEN, A. H. On the psychology of prototyping. In Approaches to Prototyping, R,

Budde, K. Kuhlenkamp, L. Matthiassen, and H, Zidighoven, Eds., Springer Verlag, Berlin,

1984.

23. KEEN, P. G W. Information systems and organizational change Commun. ACM 24, 1 (Jan.

1981), 24-33

24, KENSING, F, Towards evaluation of methods for property determmation. In Beyond Produc-

tzuity: Information Systems Development for Organi~ational Effectzueness, Th. M. A. Bemel-

mans, Ed., North-Holland, Amsterdam, 1984.

25. KRNSING, F. AND HALSIiOV M. K Generating visions: Future Workshops and metaphorical

design. In Design at Work: Cooperatzue Design of Computer Systems, Lawrence Erlbaum

Associates, Hillsdale, NJ, 1991.

26. KRAFT, P, AND DUBNOFF, S. Job content, fragmentation, and control in computer software

work. Ind. Rel. 25, 2 (Spring 1986), 184–196.

27, K[TSTERER, K. Know How on the Job. Westview Press, Boulder, Col., 1978.

28. LAN~ARA, G. F, The design process: frames, metaphors, and games In Systems Design For,

Wzth, and By the Users, V. Briefs, C. Ciborra, and L. Schneider, Eds., North-Holland,

Amsterdam, 1983,

29. LUN~EBERG, M., GOLDIUJHL, G,, AND NILSSON, A, Systemerzng. Studentlitteratur. Lund, 1978.

(Enghsh version: Information Systems Development—A Systematic Approach, Prentice-Hall,

Englewood Cliffs, NJ, 1981.)

30. MAL)SEN, K. H. Breakthrough by breakdown: metaphors and structured domains In Sys-

terrzs Development for Human Progress, H. Klein and K. Kumar, Eds , North-Holland,

Amsterdam, 1989,

31. MALHOTRA, A , THOMAS, J. C., CARROLL, J. M., AND MILLER, L. A. Cognitive processes in

desugn. Int. J. Man-Mach, Stud. 122 (Feb. 1980), 119-140.

32. N.MJR, P. An experiment on program development. BIT 12,3 (1972), 347-365.

33. NAUR, P. Programming as theory budding. Mtcroprocess. Microprogram. 15 ( 1985),

253–261.

34. NEWO, C. R., GORDON, C, L., AND TSAI, N. W. Systems analysis and design current

practices, MIS Q. (Dec. 1987), 461-476.

35. OLLE, T W., SCJL, H, G., AND VERRIJN-STUART, A. A., EDS. Information Systems Deszgn

MethocZologtes: A Comparat~ue Reotew. North-Holland, Amsterdam, 1982.

ACM TransactIons on Information Systems, Vol. 11, No 2, April 1993



A Reappraisal of Structured Analysis . 193

36. ORR, J. Narratives at work. Story telling as cooperative diagnostic activity. In Proceedings

of the Conference on Computer Supported Cooperative Work (Austin, Texas, Dec. 1986), pp.

62-72.

37’. ORR, K. T. Structured Systems Development. Yourdon Press, New York, 1977.

38. PALMER, J. AND MCMENAMIN, S. Essenttal Systems Analysis. Yourdon Press/Prentice-Hall,

New York, 1984.

39. RYLE, G. The Concept of Mind. Penguin Books, 1963.

40. ROSS, D. T. Structured analysis (SA): A language for communicating ideas. IEEE Trans.

So/7w. Eng. 3, 1 (Jan. 1977), 16-34.

41. STF,VENS, W. P., MYERS, G. J. AND CONSTANTINE, L. L. Structured design. IBM Syst. J. 13, 2

(1974), 115-139.

42. SUCHMAN, L. Office procedures as practical action: models of work and system design. ACM

Trans. Office Znf. Syst. 1, 4 (Oct. 1983), 320-328.
43. SUCHMAN, L. Plans and Sztuated Actton: The Problem of Human-Machine Commurucatlon.

Cambridge University Press, Cambridge, Mass., 1987.

44. TAYLOR, F, W. Scientific ManagenLent. New York and London, 1947. This is a single-volume

edition of Shop Management (1903), Principles of Scientific Managements (1911), and

Hearings Before Special Commtttee of the House of Representatiues to Investigate the Taylor

and Other Systems of Shop Management (1912).

45. VITALARI, N. P. A critical assessment of structured analysis methods: a psychological

perspective. In Beyond productivity: Informattons Systems Development for Organizational

Effectzueness, Bemelmans, Ed., North-Holland, Amsterdam, 1984.

46. WINOGRAD, T. AND FLORES, F, Understanding Computers and Cognition. A New Foundation

for Design. Ablex, Norwood, NJ, 1986.

47. WIRTH, N. Program development by stepwise refinement, Commun. ACM 14,4 (Apr, 1971),

221-227.

48. W~N, E. Office Coru,ersatzons as an Information Medium. University of California, Berke-

ley, 1979.

49. YOURDON,E. Managing the Systems Ltfe Cycle. Yourdon Press, New York, 1982.

50. YOURDON, E. Modern Structured A?talysis. Yourdon Press/Prentice Hall, New York, 1989.

51. YOUIUION, E. AND CONSTANTINE, L. L.. Structured Design. Yourdon Press/Prentice-Hall,

Englewood Cliffs, NJ, 1979.

Received December 1989; revised October 1990 and October 1991; accepted July 1992

ACM TransactIons on Information Systems, Vol. 11, No. 2, April 1993.


