
Chapter 8 

 

Topological Optimization and Reliability 
 
8.1 Topological Optimization 

 

Optimization can be defined as a procedure by which it is possible to find a 

solution or a set of optimal solutions for a given function or set of functions, which 

govern a specific problem, subject to restrictions. So, in topological optimization, there 

is the intention of providing the best distribution of material from a fixed design space. 

Hence, this innovation favors industries in different sectors, considering that designing 

mechanical parts and components with large stiffness and small weight has become a 

common necessity. It has been applied, for example, in aircraft wing spars webs, as 

represented in Fig. 8.1. 

 

Figure 8.1 – Process of topological optimization of an aircraft wing spar 

 

The topological optimization procedure can be outlined as shown in Fig. 8.2, 

which displays the use of the Finite Element Method (FEM) together with an 

optimization algorithm, which introduces numerical strategies in the search for optimal 

engineering solutions, to obtain an optimized domain. 

 

 

 

Figure 8.2 – Topological optimization design procedure 

 

It is worth mentioning that in the practical application of topological 

optimization, some aspects are fundamental. For example, in Fig. 8.2 (obtained 

topology), points with intermediate shades between black and white, called gray scales, 

can appear. These points indicate the presence of elements with an intermediate 

thickness between the maximum and the null. These thicknesses may not be feasible to 



be implemented in practice, but they usually occur, that is, the presence of the gray 

scale is inherent in obtaining the optimal solution, Brasil (2017). The image of the 

obtained structure by topological optimization (TO) represents an excellent starting 

point that needs to be interpreted, in order to obtain the final design of the structure to 

be adopted in practice in the industry. This interpretation process is called refinement 

or smoothing, and can be done using image processing methods, or simply by designing 

a structure based on the image obtained by TO, often adhering to CAD/CAE software. 

In some cases, the results generated by TO are not intuitive and it is necessary to check 

the final structure using the Finite Element Method. The last step is the manufacture of 

the structure. 

 

8.2 The Finite Element Method in Topological Optimization 

To better exemplify this whole process, we will deal with some examples such 

as rectangular plates and beams with concentrated loads and distributed loads with 

various boundary conditions, using MATLAB, a high-level programming language that 

allows the solution of countless scientific problems with its accessible syntax, excellent 

debugging tools and extensive graph manipulation tools. Therefore, it allows the user 

to focus on the physical and mathematical context of the optimization problem without 

being distracted by technical implementation problems. The optimization algorithm 

will consist of determining the thickness of each element, in order to minimize the total 

mass function of the structure, respecting the limits of allowable stresses imposed. 

The Finite Element Method (FEM) consists of discretizing the domain of the 

structure in several subdomains (bars, triangles, quadrilaterals, tetrahedrons etc.), called 

elements, of small but finite dimensions, united in points called nodes. An equilibrium 

equation is assembled for each element and then these equations are combined to 

determine an expression that represents the structure as a whole. Next, the 

displacements, strains and stresses in the domain of the structure are determined. 

The displacements of a point in a solid continuum are modeled by a vector 𝐮. 

In the case of a plate, in a two-dimensional domain of x and y axes, we have a 2 x 1 

vector. 

 𝐮 =  {
𝑢(𝑥, 𝑦, 𝑡)
𝑣(𝑥, 𝑦, 𝑡)

} (8.1) 

 

From the displacements, the strains are obtained by the application of a 

differential operator D: 

 

 𝛆 = 𝐃𝐮 (8.2) 

 

so, in the case of a plate, we have the following 3 x 2 operator: 
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(8.3) 

 

The next step is to obtain the stress vector, from the strains, using, for simplicity, 

Hooke's law, in matrix form: 

 

 𝛔 = 𝐄𝛆 = 𝐄𝐃𝐮 (8.4) 

 

In the case of a plate, the stress vector is 3 x 1: 

 

 
𝛔 =  {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} 

 

(8.5) 

 

in the Plane Stress hypothesis, Hooke's Law is expressed by the following 3 x 3 matrix: 

 

 

𝐄 = 
𝐸𝑚

1 − 𝜈2
 [

1 𝜈 0
𝜈 1 0

0 0
1 −  𝜈

2

] 

 

(8.6) 

 

where   is the Poisson's ratio and m is Young's modulus. 

 

Our sample structure will be a rectangular plate. In order to implement the FEM 

in MATLAB, it is necessary to input the dimensions of the structure to be analyzed and 

how it will be discretized. In this specific case, Argyris’ 4 nodes square elements will 

be used, and one must define the number of elements, nodes and size for each element, 

in order to generate the coordinates of the nodes and the connectivity between them. In 

addition to inserting all the physical specificities of the material, such as Poisson's ratio 

and the Young’s modulus. 

 

%Dimensions 

compr=8; 

alt=2; 

%divisions 



ndx=24; ndy=6; %number of divisions on x and y 

nel=ndx*ndy; %number of elements 

nno=(ndx+1)*(ndy+1); %number of nodes 

dx=compr/ndx; dy=alt/ndy; %size of each element 

%admissible stress of steel 

csadm = 225e6; 

%generating the nodes coordinates 

gcoord=zeros(nno,2); 

x=0;y=0;k=0; 

for i=1:ndx+1 

    for j=1:ndy+1 

        k=k+1; 

        gcoord(k,1)=x; 

        gcoord(k,2)=y; 

        y=y+dy; 

    end 

    y=0; 

    x=x+dx; 

end 

%Elements connectivity 

nodel=zeros(nel,4); %matrix finite element 

kel=0;kaux=0; 

for i=1:ndx 

    for j=1:ndy 

        kaux=kaux+1; 

        kel=kel+1; 

        nodel(kel,1)=kaux+ndy+2; 

        nodel(kel,2)=kaux+1; 

        nodel(kel,3)=kaux; 

        nodel(kel,4)=kaux+ndy+1; 

    end 



    kaux=kaux+1; 

end 

%problem dimensions 

nglpn=2;%number of degrees of freedom per node 

nds=nno*nglpn; %number of system displacements 

nnel=4; %number of nodes per element 

ndpel=nnel*nglpn;%number of displacements per element 

%physical data of the elements 

t0=0.1; %inital thickness 

EM=200e9; %steel elasticity module 

nu=0.3; %Poisson's ratio of steel 

EL=EM/(1-nu*nu); 

G=EM/2/(1+nu); %shear module 

E=EL*[1 nu 0;nu 1 0;0 0 (1-nu)/2]; %Elasticity matrix 

 

Then it will be sought to obtain the stresses present in each element. For that 

end, it is necessary to determine certain matrices and vectors. In this way, it is defined 

the loads, constraints, system stiffness matrix and the displacements. 

 

%matrix: number of degrees of freedom per node 

LN=zeros(nno,nglpn); 

%boundary conditions 

%cantilever beam 

 for i= k-ndy:k 

     LN(i,:)=[-1 -1]; 

 end 

%matrix LN 

ngl=0; 

for i=1:nno 

    for j=1:nglpn 

        if  LN(i,j)== 0 



            ngl=ngl+1; 

            LN(i,j)=ngl; 

        end 

    end 

end 

ngr=ngl; 

for i=1:nno 

    for j=1:nglpn 

        if LN(i,j)<0 

            ngr=ngr+1; 

            LN(i,j)=ngr; 

        end 

    end 

end 

%matrix and vector initialization 

K=zeros(nds,nds); 

p=zeros(nds,1); 

P=zeros(nds,1); 

Tens=zeros(nel,3); 

q=zeros(8,1); 

% loading vector P 

%vertical load 

%V=-100e4; 

%  for i=1:ndy+1 

%     P(LN(i,2))=V/(ndy+1); 

%  end 

%stiffness matrices of the elements 

nd=ones(1,4);  

for iel=1:nel 

    for j=1:nnel 

        nd(j)=nodel(iel,j); 



    end 

    xa=gcoord(nd(1),1);xb=gcoord(nd(2),1); 

    yb=gcoord(nd(2),2);yc=gcoord(nd(3),2); 

    t = vt(iel,1); 

%rectangle dimensions 

    a=(xa-xb)/2; 

    b=(yb-yc)/2; 

%constants 

    c1=EL*t*b/3/a; 

    c2=c1/2; 

    c3=EL*t*nu/4; 

    c4=G*t*a/3/b; 

    c5=c4/2; 

    c6=G*t/4; 

% 

    kd(1,1)=c1;kd(1,2)=c3;kd(1,3)=-

c1;kd(1,4)=c3;kd(1,5)=-c2;kd(1,6)=-

c3;kd(1,7)=c2;kd(1,8)=-c3; 

    kd(2,2)=c1;kd(2,3)=-c3;kd(2,4)=c2;kd(2,5)=-

c3;kd(2,6)=-c2;kd(2,7)=c3;kd(2,8)=-c1; 

    kd(3,3)=c1;kd(3,4)=-

c3;kd(3,5)=c2;kd(3,6)=c3;kd(3,7)=-c2;kd(3,8)=c3; 

    kd(4,4)=c1;kd(4,5)=-c3;kd(4,6)=-

c1;kd(4,7)=c3;kd(4,8)=-c2; 

    kd(5,5)=c1;kd(5,6)=c3;kd(5,7)=-c1;kd(5,8)=c3; 

    kd(6,6)=c1;kd(6,7)=-c3;kd(6,8)=c2; 

    kd(7,7)=c1;kd(7,8)=-c3; 

    kd(8,8)=c1; 

% 

    ks(1,1)=c4;ks(1,2)=c6;ks(1,3)=c5;ks(1,4)=-

c6;ks(1,5)=-c5;ks(1,6)=-c6;ks(1,7)=-c4;ks(1,8)=c6; 



    ks(2,2)=c4;ks(2,3)=c6;ks(2,4)=-c4;ks(2,5)=-

c6;ks(2,6)=-c5;ks(2,7)=-c6;ks(2,8)=c5; 

    ks(3,3)=c4;ks(3,4)=-c6;ks(3,5)=-c4;ks(3,6)=-

c6;ks(3,7)=-c5;ks(3,8)=c6; 

    

ks(4,4)=c4;ks(4,5)=c6;ks(4,6)=c5;ks(4,7)=c6;ks(4,8)=-c5; 

    ks(5,5)=c4;ks(5,6)=c6;ks(5,7)=c5;ks(5,8)=-c6; 

    ks(6,6)=c4;ks(6,7)=c6;ks(6,8)=-c4; 

    ks(7,7)=c4;ks(7,8)=-c6; 

    ks(8,8)=c4; 

% 

    k=kd+ks; 

%symmetry    

for i=2:8 

        for j=1:i-1 

            k(i,j)=k(j,i); 

        end 

    end 

%sum in the system stiffness matrix 

    kl=0; 

    d = ones(1,8); 

    for n=1:nnel 

        kl=kl+1; 

        d(kl)=LN(nd(n),1); 

        kl=kl+1; 

        d(kl)=LN(nd(n),2); 

    end 

    for i=1:ndpel 

        for j=1:ndpel 

            K(d(i),d(j))=K(d(i),d(j))+k(i,j); 

        end 



    end 

end 

%System solution 

%calculation of displacements 

disp('displacements') 

p(1:ngl)=K(1:ngl,1:ngl)\(P(1:ngl)-

K(1:ngl,ngl+1:nds)*p(ngl+1:nds)); 

disp(p) 

%calculation of support reactions 

disp('Esforços Nodais inclusive reacoes de apoio') 

P(ngl+1:nds)=K(ngl+1:nds,1:ngl)*p(1:ngl)+K(ngl+1:ngl

+1,ngl+1:ngl+1).. 

    *p(ngl+1:nds); 

disp(P) 

%Stress 

disp('Stresses at the central point of the elements') 

disp('sigma_x,    sigma_y,    tau_xy') 

for iel=1:nel 

    for j=1:nnel 

        nd(j)=nodel(iel,j); 

    end 

    xa=gcoord(nd(1),1);xb=gcoord(nd(2),1); 

    yb=gcoord(nd(2),2);yc=gcoord(nd(3),2); 

%  rectangle dimensions 

    a=(xa-xb)/2;b=(yb-yc)/2; 

% constants 

    ca=1/4/a;cb=1/4/b;     

%  matrix B=L*N calculated in the center of the element 

x=y=0 

    B=[ca 0 -ca 0 -ca 0 ca 0;0 cb 0 cb 0 -cb 0 -cb;cb 

ca cb -ca -cb -ca -cb ca]; 



% 

    kl=0; 

    for n=1:nnel 

        kl=kl+1; 

        d(kl)=LN(nd(n),1); 

        kl=kl+1; 

        d(kl)=LN(nd(n),2); 

    end 

    for i=1:ndpel 

        q(i)=p(d(i)); 

    end 

    tau=E*B*q; 

    Tens(iel,:)=tau'; 

end 

disp(Tens) 

 

Subsequent to obtaining the stresses, in order to have an optimization analysis 

based on the maximum allowable stresses, the maximum and minimum principal 

stresses and the maximum shear stresses are obtained, based on the stresses present in 

each element with components in x and y, given by Eqs. (8.7) and (8.8). 

 

 

𝜎1,2  =  
𝜎𝑥  +  𝜎𝑦

2
± √(

𝜎𝑥 + 𝜎𝑦

2
)
2

+ 𝜏𝑦𝑥
2 

 

(8.7) 

 

𝜏𝑚𝑎𝑥  =  √(
𝜎𝑥 + 𝜎𝑦

2
)
2

+ 𝜏𝑦𝑥
2 

 

(8.8) 

 

%Normal Stress at each element [MPa] 

%sigma_1,    sigma_2,    sigma_max 

smax = zeros(3,3); 

for i=1:nel 

    smax(i,1)=(Tens(i,1)+Tens(i,2))/2+(((Tens(i,1)-

Tens(i,2))/2)^2+Tens(i,3)^2)^0.5; 



    smax(i,2)=(Tens(i,1)+Tens(i,2))/2-(((Tens(i,1)-

Tens(i,2))/2)^2+Tens(i,3)^2)^0.5; 

    if abs(smax(i,1))>abs(smax(i,2)) 

       smax(i,3)=smax(i,1); 

    else  

       smax(i,3)=smax(i,2); 

    end 

end 

for i=1:nel 

    smax(i,3)=abs(smax(i,3)); 

end 

%disp(smax) 

%vector maximum stress [MPa] 

vmax = zeros(nel,1); 

for i=1:nel 

    vmax(i)= smax(i,3); 

end 

 

8.3 The KINITRO Algorithm  

Now there is an interesting basis that will allow us to program the optimization 

process of the structure and for that we will turn to a theoretical scheme of the whole 

process.  

Initially a classic optimization problem can be defined as: Determine x  n 

that minimizes the objective function f(x) subject to: 

 

The Lagrangian function of the problem is defined as 

 

 
𝛬(𝐱, 𝐮) = 𝑓(𝐱) + ∑𝑢𝑖𝑔𝑖(𝐱)

𝑚

𝑖=1

 

 

 

(8.11) 

 

where u  m is the vector of the Lagrange multipliers. 

Equality constraints: 𝑔𝑗(𝐱) = 0;  𝑗 = 1, 𝑙 (8.9) 

Inequality constraints: 𝑔𝑗(𝐱) ≤ 0; 𝑗 = 𝑙 + 1,𝑚 (8.10) 



 

The variables, individually, represent certain factors of a certain project, Brasil 

and Silva (2018). These values are independent of each other and constantly changed 

during the optimization process as requested by the problem-solving tool. In this case, 

the design variables are the thickness vector (𝑣𝑡), represented previously by the vector 

x, and the number of divisions in x and y directions. 

 𝑣𝑡 (𝑘,1)
= [𝑣𝑡1 𝑣𝑡2 … ], 𝑘 = 1,… , nel (8.12) 

 

Constraints are a set of limitations imposed on the system. They can be of 

inequality and equality, indicating maximum or minimum values that should not be 

exceeded. Here, the restrictions are non-linear inequalities and refer to the allowable 

stress, 𝜎 = 225 ∗ 106 𝑁 , of the material and minimum thickness, 𝑣𝑡𝑚𝑖𝑛 = 0.0001 𝑚. 

 

 𝑔1 = 𝜎𝑚𝑎𝑥   ≤  𝜎𝑎𝑑𝑚 = 𝜎𝑚𝑎𝑥 − 𝜎 (8.13) 

 

 𝑔2 = 𝑣𝑡  ≥  𝑣𝑡𝑚𝑖𝑛 = 𝑣𝑡𝑚𝑖𝑛 − 𝑣𝑡   (8.14) 

 

The objective function f(x) corresponds to a single value, connected with the 

whole project. It must optimize the project in order to maximize it, minimize it or reach 

a desired value. The volume is the most important data of the project, since from it, the 

quantity of material to be used is known. It is understood that, by optimizing the volume, 

that is, minimizing it, the entire project is optimized. Therefore, the volume (Vol) will 

be the objective function: 

 

 𝐴𝑟𝑒𝑎(1,𝑘) = [
𝑑𝑥1 ∗ 𝑑𝑦1

…
] , 𝑘 = 1, … , nel (8.15) 

 

 𝑉𝑜𝑙 = 𝐴𝑟𝑒𝑎 ∗ 𝑣𝑡 (8.16) 

 

To solve the problem, the KNITRO, Artelys (2021) algorithm will be used, 

which has an easy coding interface for MATLAB. The function returns, among other 

parameters, the optimal value of the design variables, the value of the function, 

Lagrange multipliers etc. The illustration of the arguments is shown in Fig. 8.3. It is 

worth mentioning the importance of choosing a good algorithm, because without one 

“the chessboard irregularity” can occur, Bensoe and Sigmund (2003), due to the high 

dependence of the algorithm on all the parameters of the project. Therefore, a good 

choice allows us to be able to maintain good results, regardless of initial values, or any 

other parameter, thus providing solid and consistent results. 



 

Figure 8.3 – Arguments of the KNITRO function in MATLAB, Artelys (2021) 

 

Based on what was described, the initial formulation of the problem for 

optimization in MATLAB follows the given format: 
 

vol = @(vt) Area*vt; 

options = knitro_options('outlev',3); 
[vt,fval,exitflag,output] = 

knitro_nlp(vol,x0,[],[],[],[],[],[],@nonlcon,[],options,[

]); 
 

It is important to note that “@nonlcon” is performed in a function script that 

admits a set of initial values and returns two vectors c(x) and ceq(x). In addition, 

“options”, Artelys (2021), has a series of options capable of not only modifying how 

the optimization module operates, but also how the information is made available. In 

this case we have an “outlev” capable of informing the amount of process information 

that will be available to the user, such as providing a quick summary of the process to 

all information, including all iterations. 

Note that the knitro function has several input and output parameters. The 

optimization problem shown in Fig. 8.3 and in the initial formulation is the same 

governed by Eqs. 8.9, 8.10 and 8.11, written in a more detailed way, separating linear 

from non-linear restrictions, as well as the lower and upper limits of the function. 

After the optimization process, as a way of presenting the results, a “GRID”, 

mesh or chessboard will be made, using the "gray scale", expressing in mathematical 

and visual terms both the maximum stress and the thickness, in a similar way as shown 

in Fig. 8.1, and programmed as follows. 

%Generate the X and Y grid arrays using the MESHGRID 

function. 

clf; 

%Maximum Stress 

x = (1:ndx+1); 



y = (1:ndy+1); 

[X,Y] = meshgrid(x,y); 

%Thickness 

x1 = (1:ndx+1); 

y1 = (1:ndy+1); 

[X1,Y1] = meshgrid(x1,y1); 

%Generator of Matrix Z 

Z = ones(ndy+1,ndx+1); 

Z1 = ones(ndy+1,ndx+1); 

kx=0; 

for j=1:ndx 

    for i=1:ndy 

        kx=kx+1; 

        Z(i,j)= vmax(kx); 

        Z(ndy+1,j)= 0; 

        Z(i,ndx+1)= 0; 

        Z(ndy+1,ndx+1)=0; 

        Z1(i,j)= vt(kx); 

        Z1(ndy+1,j)= 0; 

        Z1(i,ndx+1)= 0; 

        Z1(ndy+1,ndx+1)=0; 

    end 

end 

%Plots 

%Maximum Stress 

subplot(2,1,1) 

s = pcolor(X,Y,Z); 

title('Maximum Stress') 

colormap(flipud(gray)); 

colorbar; 

axis image; 



%Thickness 

subplot(2,1,2) 

s1 = pcolor(X1,Y1,Z1); 

title('Thickness') 

colormap(flipud(gray)); 

colorbar; 

axis image; 

There are some relevant points to note before presenting the results obtained in 

the optimization. It is known that the finer the discretization of the mesh, the more 

accurate the results will be. However, the constant increase results in an almost 

exponential computational cost. For this reason, discretization was established in two 

and three times of the initial dimensions of the structure, which have an initial thickness 

of 0.1 m. 

 

 

Figure 8.4 – Cantilever plate with concentrated loading on the edge (x2 and x3) 

 

Table 8.1 - Cantilever plate with concentrated loading on the edge 

Dimensions: 8x2 

Initial Volume: 1.6 m3 

 x2 x3 

Final Volume: 0.201368 m3 0.194917 m3 

Reduction: 87.41% 87.82% 



 

Figure 8.5 – Simply supported plate with concentrated side-loading  (x2 e x3) 

 

Table 8.2 - Cantilever plate with concentrated loading on the edge 

Dimensions: 5x5 

Initial Volume: 2.5 m3 

 x2 x3 

Final Volume: 0.055845 m3 0.056045 m3 

Reduction: 97.77% 97.76% 

 

 

Figure 8.6 – Simply supported beam with uniformly distributed loading (x2 e x3) 

 

 



Table 8.3 - Double-based beam with uniformly distributed loading 

Dimensions: 10x2 

Initial Volume: 2 m3 

 x2 x3 

Final Volume: 0.072808 m3 0.108060 m3 

Reduction: 96.36% 94.60% 

 

 

 

Figure 8.7 – Simply supported beam with concentrated centered loading (x2 e x3) 

 

Table 8.4 – Simply supported beam with concentrated centered loading 

Dimensions: 10x2 

Initial Volume: 2 m3 

 x2 x3 

Final Volume: 0.061673 m3 0.061700 m3 

Reduction: 96.92% 96.91% 

 

 

8.4 Reliability 

After programming the entire optimization process and obtaining the results, it 

is possible to add a highly relevant aspect, which is the Structural Reliability. 

Reliability is understood as the ability of an equipment or human being to 

perform their expected functions properly under specific conditions during a given 



period of time, in the absence of breaks or failures. It is an area of study that aims to 

evaluate and optimize the reliability of systems through techniques derived from 

probability and statistics theories. In history, the concept of reliability acquired 

technological significance after the end of the First World War, when it was used for 

comparative studies carried out on airplanes with one, two or four engines, in order to 

measure the number of accidents per flight hour. It was during World War II that as a 

result of a failure of German V-1 missiles, mathematician Robert Lusser proposed a 

probability law for a serial component product. And only in 1963, a first association 

brought together engineers from the reliability sector and the first periodical for the 

dissemination of works in the area appeared in the United States. 

A general problem is built around the idea of “discrete events”, being developed 

to help follow a model over time, since it often involves a complex logical structure of 

its elements, Jin (1993), necessary to determine the relevant amounts that are of interest. 

The simulation based on this structure is often called simulation of discrete events. 

Therefore, the study of the Monte Carlo method is a great alternative for such 

simulations and requires the understanding of different areas of knowledge: Probability, 

to describe processes and random experiments; Statistics to analyze the data; Computer 

Science for efficient implementation of algorithms and Mathematical Programming to 

formulate and solve optimization problems. 

The computational method uses random numbers and statistics to solve 

problems, since currently several numerical problems in Finance, Engineering and 

Statistics are solved with the Monte Carlo method. The interest in this study is to apply 

the technique in order to make the budget of a structural project feasible in terms of 

mass. 

A limit mass,𝑚𝑒𝑙, will be obtained based on the available budget. In the case of 

structural reliability analysis, Nowak and Collins (2021), this means, in the simplest 

approach, sampling each random variable to provide a sample value. With changes in 

the allowable stress and using the optimization process described in this Chapter, it is 

possible to obtain the mass of the structure, 𝑚𝑒. Therefore, using the Eq. (8.17), we can 

interpret the situation. 

 

 𝑀 = 𝑚𝑒𝑙 − 𝑚𝑒 (8.17) 

 

Equation (8.17) is then verified using the sample value set. If the function is 

violated (i.e. M <0), the structure or structural element has 'failed', Melchers and Beck 

(2018). This procedure will be run n times in order to obtain a considerable set of values 

referring to M, so being possible to obtain its mean (�̅�) and standard deviation (�̂�). 

With this whole set of data, it is possible to calculate the reliability index (𝛽), a factor 

that measures the distance between the origin and the average value present in a normal 

distribution, following Eq. (8.18): 

 𝛽 =  �̂�
�̅�

⁄  (8.18) 

 

Based on the reliability index, the probability of failure can be calculated using 

Eq. (8.19): 



 

 𝑃 =  Φ(−𝛽) 
(8.19) 

 

where  is the standard normal cumulative function. 

 

 
Φ(y)  =  

1

√2π
∫ e

−z2

2
y

−∞
dz   

 

(8.20) 

 

However, there are often hardware limitations, so it is necessary to use other 

methods besides Monte Carlo, due to the fact that it has a high computational cost. 

Consequently, the classic method for calculating the probability of failure is also used, 

given Eq. (8.21). 

 

 
𝑃𝑓  =  

Non favorable cases

Total cases
 

 

 

(8.21) 

 

A hundred iterations were performed for the processes and the limit mass was 

based on the final mass obtained in the optimization process. Using the final value of 

the volume and the density of the material, it’s possible to find the limit mass, being 

initially increased by 10% of the base value, as shown in Eq. (8.22). 

 

%limit mass 

porcent = input('Percentage for the limit mass ? '); 

mel = (fval*7800)*(1+(porcent/100)); 

Minter = input('Amount of iterations ?  '); 

me = ones(Minter,1); 

tic; 

for h=1:Minter 

    csadm = norminv(rand(),260e6,26e6);  

    reliability; %script to run the optimization 

process 

    me(h,1) = (fval*7800); %[kg] 

end 

time2=toc; 

 𝑚𝑒𝑙  =  (𝑉𝑜𝑙 ∗ 7800)  ∗  (1 + 10%) (8.22) 



%M 

M = mel - me; 

%average 

M_mean = mean(M); 

%standard deviation 

M_std = std(M); 

%beta 

beta = (M_mean)/(M_std); 

%standard normal cumulative function 

fun2 = @(z) exp(-(((z).^2)/2)); 

int_fun2 = integral(fun2,-Inf,-beta); 

P_phi = (1/(sqrt(2*pi)))*int_fun2; 

T4 = table(beta,P_phi,time2,... 

    

'VariableNames',{'Beta','FailureProbability','Runtime',},

... 

    'RowNames',{'Results'}); 

disp(T4) 

%Classic Method - Reliability 

cont = 0; 

for i = 1:Minter 

    if(M(i)<0) 

  cont = cont +1; 

    end 

end 

falha2 = cont/Minter; 

probabilidadefalha2 = falha2*100; 

T5 = table(probabilidadefalha2,... 

    'VariableNames',{'ProbabilidadeFalha2'},... 

    'RowNames',{'Resultado (Confiabilidade2)'}); 

disp (T5) 



 

Table 8.5 - Cantilever plate with concentrated loading on the edge 

Monte Carlo Method 

 x2 x3 

Beta 2.6553 2.72879 

Failure Probability 0.39614% 0.31871% 

Classic Method 

 x2 x3 

Failure Probability 1% 2% 

Runtime 0.26546 hours 2.40272 hours 

 

 

Table 8.66 – Simply supported plate with concentrated side-loading 

 

Monte Carlo Method 

 x2 x3 

Beta 2,5092 2,9796 

Failure Probability 0,60507% 0,14430% 

Classic Method 

 x2 x3 

Failure Probability 2% 0% 

Runtime 2,0745 hours 27,9 hours 

 

 

 

 

 

 

 

 

 

 

Table 8.7 – Simply supported beam with uniformly distributed loading 

 



Monte Carlo Method 

 x2 x3 

Beta 2.844 2.674 

Failure Probability 0.22273% 0.37477% 

Classic Method 

 x2 x3 

Failure Probability 0% 1% 

Runtime 0.57631 hours 12.235 hours 

 

Table 8.8 – Simply supported beam with concentrated centered loading 

 

Monte Carlo Method 

 x2 x3 

Beta 2.5157 2.6779 

Failure Probability 0,59400% 0,37040% 

Classic Method 

 x2 x3 

Failure Probability 1% 1% 

Runtime 0.48483 hours 13.885 hours 

 


