Inverting
 Amplifier

The Inverting Configuration

1 Op amps are not used alone; rather, the op amp is connected to passive components in a feedback circuit. There are two such basic circuit configurations employing an op amp and two resistors: the inverting configuration and the noninverting configuration.

2 Resistor R_{2} is connected from the output terminal of the op amp, terminal 3, back to the input terminal, terminal 1.

We speak of R_{2} as applying negative feedback.
If R_{2} were connected between terminals 3 and 2 we would have called this positive feedback.

3 We will do so assuming the op amp to be ideal. The gain A is very large (ideally infinite).

$$
v_{o}=\mathrm{A}\left(v_{2}-v_{1}\right) \longrightarrow v_{2}-v_{1}=\frac{v_{o}}{A}=0 \longrightarrow v_{2}=v_{1}
$$

4 It follows that the voltage at the inverting input terminal $\left(v_{1}\right)$ is given by $v_{1}=v_{2}$. That is, because the gain A approaches infinity, the voltage v_{1} approaches and ideally equals v_{2}. We speak of this as the two input terminals "tracking each other in potential." We also speak of a "virtual short circuit" that exists between the two input terminals. Here the word virtual should be emphasized, and one should not make the mistake of physically shorting terminals 1 and 2 together while analyzing a circuit. A virtual short circuit means that whatever voltage is at 2 will automatically appear at 1 because of the infinite gain A. But terminal 2 happens to be connected to ground; thus $v_{2}=0$ and $v_{1}=0$. We speak of terminal 1 as being a virtual ground- that is, having zero voltage but not physically connected to ground.

$$
\text { Ganho }=G=\frac{v_{o}}{v_{I}}
$$

$$
\begin{equation*}
i_{1}=\frac{v_{I}-v_{1}}{R_{1}}=\frac{v_{i}-0}{R_{1}}=\frac{v_{I}}{R_{1}} \tag{1}
\end{equation*}
$$

Where will this current go? It cannot go into the op amp, since the ideal op amp has an infinite input impedance and hence draws zero current. It follows that i_{1} will have to flow through R_{2} to the low-impedance terminal 3.

$$
\begin{equation*}
v_{O}=v_{i}-i_{1} R_{2}=0-\frac{v_{I} R_{2}}{R_{1}} \tag{2}
\end{equation*}
$$

$(1) \mathrm{e} \quad(2) \longrightarrow$

$$
G=\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}
$$

$$
G=\frac{v_{O}}{v_{I}}=-\frac{R_{2}}{R_{1}}
$$

We note that:
5.1 The fact that the closed-loop gain depends entirely on external passive components (resistors R_{1} and R_{2}) is very significant. It means that we can make the closed-loop gain as accurate as we want by selecting passive components of appropriate accuracy.
5.2 We started out with an amplifier having very large gain A, and through applying negative feedback we have obtained a closed-loop gain that is much smaller than A but is stable and predictable. That is, we are trading gain for accuracy.

Effect of Finite Open-Loop Gain

Analysis of the inverting configuration taking into account the finite open-loop gain of the op amp.

1 If we denote the output voltage v_{O} then the voltage between the two input terminals of the op amp will be v_{0} / A. Since the positive input terminal is grounded, the voltage at the negative input terminal must be $-v_{0} / A$ (out of phase with respect the output). The current i_{1} through R_{1} can now be found:

$$
\begin{equation*}
i_{1}=\frac{v_{I}-\left(-v_{o} / A\right)}{R_{1}}=\frac{v_{I}+v_{o} / A}{R_{1}} \tag{3}
\end{equation*}
$$

2 The infinite input impedance of the op amp forces the current i_{1} to flow entirely through R_{2}. The output voltage v_{O} can thus be determined from:

$$
\begin{equation*}
v_{o}=-\frac{v_{o}}{A}-i_{1} R_{2}=-\frac{v_{o}}{A}-\left(\frac{v_{I}+v_{o} / A}{R_{1}}\right) R_{2} \tag{4}
\end{equation*}
$$

$$
\text { (3) } \mathrm{e}(4) \longrightarrow G=-\frac{v_{o}}{v_{I}}=\frac{-R_{2} / R_{1}}{1+\frac{\left(1+R_{2} / R_{1}\right)}{A}}
$$

$$
G=-\frac{v_{o}}{v_{i}}=\frac{-R_{2 /} R_{1}}{1+\left(1+R_{2} R_{1}\right) / A}
$$

3 We note that:
3.1 As A approaches ∞, G approaches the ideal value $-R_{2} / R_{1}$.
3.2 Also, we see that as A approaches ∞, the voltage at the inverting input $\left(-v_{0} / A\right)$ terminal approaches zero. This is the virtual-ground assumption we used in our earlier analysis when the op amp was assumed to be ideal.
3.3 Finally, note that the gain equation in fact indicates that to minimize the dependence of the closed-loop gain G on the value of the open-loop gain A, we should make $\left(1+R_{2} R_{1}\right) \ll A$.

$$
\begin{aligned}
& R_{i}=\frac{v_{I}}{i_{I}}=\frac{v_{I}}{v_{I} / R_{1}} \\
& \longrightarrow R_{i}=R_{1}
\end{aligned}
$$

1
Amplifier input resistance forms a voltage divider with the resistance of the source that feeds the amplifier. Thus, to avoid the loss of signal strength, voltage amplifiers are required to have high input resistance.

In the case of the inverting op-amp configuration we are studying, to make R_{i} high we should select a high value for R_{1}. However, if the required gain is also high, then R_{2} could become impractically large (e.g., greater than a few megohms).

We may conclude that the inverting configuration suffers from a low input resistance.

A solution to problem of low input resistance is discussed in this exercise !

Assuming the op amp to be ideal, derive an expression for the closed-loop gain of the circuit shown.

Use this circuit to design an inverting amplifier with a gain of 100 and an input resistance of $1 \mathrm{M} \Omega$.

Assume that for practical reasons it is required not to use resistors greater than 1 $\mathrm{M} \Omega$.

$$
\text { Ganho }=G=\frac{v_{S}}{v_{I}}
$$

1 The analysis begins at the inverting input terminal of the op amp, where the voltage is:

$$
\left.v_{i}=0 \quad \text { (virtual ground }\right)
$$

2 Knowing v_{i} we can determine the current i_{1} as follows:

$$
i_{1}=\frac{v_{I}-v_{i}}{R_{1}}=\frac{v_{I}-0}{R_{1}}=\frac{v_{I}}{R_{1}}
$$

3
Since zero current flows into the inverting input terminal, all of i_{1} will flow through R_{2}, and thus:

$$
i_{2}=i_{1}=\frac{v_{I}}{R_{1}}
$$

4 Now we can determine the voltage at node x :

$$
v_{x}=v_{i}-i_{2} R_{2}=0-\frac{v_{I}}{R_{1}} R_{2}=\frac{v_{1}}{R_{1}} R_{2}
$$

5 This in turn enables us to find the current i_{3} :

$$
i_{3}=\frac{0-v_{x}}{R_{3}}=\frac{R_{2}}{R_{1} R_{3}} v_{I}
$$

6 Next, a node equation at x yields i_{4} :

$$
i_{4}=i_{2}+i_{3}=\frac{v_{I}}{R_{1}}+\frac{R_{2}}{R_{1} R_{3}} v_{I}
$$

7 Finally, we can determine v_{0} :

$$
\begin{gathered}
v_{0}=v_{x}-i_{4} R_{4}=-\frac{R_{2}}{R_{1}} v_{I}-\left(\frac{v_{I}}{R_{1}}+\frac{R_{2}}{R_{1} R_{3}} v_{I}\right) R_{4} \\
\longrightarrow \frac{v_{0}}{v_{I}}=-\left[\frac{R_{2}}{R_{1}}+\frac{R_{4}}{R_{1}}\left(1+\frac{R_{2}}{R_{3}}\right)\right] \longrightarrow G=\frac{v_{0}}{v_{I}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{2}}+\frac{R_{4}}{R_{3}}\right)
\end{gathered}
$$

$$
G=\frac{v_{0}}{v_{I}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{2}}+\frac{R_{4}}{R_{3}}\right)
$$

8 Now, since an input resistance of $1 \mathrm{M} \Omega$ is required, we select $R_{1}=1 \mathrm{M} \Omega$. Then, with the limitation of using resistors no greater than $1 \mathrm{M} \Omega$, the maximum value possible for the first factor in the gain expression is 1 and is obtained by selecting $R_{2}=1 \mathrm{M} \Omega$.

To obtain a gain of $-100, R_{3}$ and R_{4} must be selected so that the second factor in the gain expression is 100 .

If we select the maximum allowed (in this example) value of $1 \mathrm{M} \Omega$ for R_{4}, then the required value of R_{3} can be calculated to be $10.2 \mathrm{k} \Omega$.

Thus this circuit utilizes three $1 \mathrm{M} \Omega$ resistors and a $10.2 \mathrm{k} \Omega$ resistor.
In comparison, if the inverting configuration were used with $R_{1}=1 \mathrm{M} \Omega$ we would have required a feedback resistor of $100 \mathrm{M} \Omega$, an impractically large value!

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{3} R_{3}=R_{2} i_{I} \\
i_{2}=i_{I} \\
i_{4}=i_{2}+i_{3}
\end{array}\right. \\
& \longrightarrow i_{4}=\left(1+\frac{R_{2}}{R_{3}}\right) i_{I}
\end{aligned}
$$

I_{4} não depende de R_{4} !

Output Resistance

Since the output of the inverting configuration is taken at the terminals of the ideal voltage source $A\left(v_{2}-v_{1}\right)$, it follows that the output resistance of the closed-loop amplifier is zero.

The Weighted Summer

$$
\begin{array}{r}
i_{1}=\frac{v_{1}}{R_{1}} \\
i_{2}=\frac{v_{2}}{R_{2}} \\
\ldots i_{n}=\frac{v_{n}}{R_{n}}
\end{array}
$$

$$
\left.\begin{array}{l}
i=i_{1}+i_{2} \ldots . i_{n} \\
v_{o}=0-\mathrm{i} R_{f}
\end{array}\right] \longrightarrow \quad \begin{array}{|}
v_{o}=-\left(\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\cdots \frac{R_{f}}{R_{n}} v_{n}\right)
\end{array}
$$

1 That is, the output voltage is a weighted sum of the input signals $v_{1}, v_{2}, \ldots, v_{n}$. This circuit is therefore called a weighted summer. Note that each summing coefficient may be independently adjusted by adjusting the corresponding "feed-in" resistor (R_{1} to R_{n}). This nice property, which greatly simplifies circuit adjustment, is a direct consequence of the virtual ground that exists at the inverting op-amp terminal.

2 In the weighted summer saw all the summing coefficients must be of the same sign. The need occasionally arises for summing signals with opposite signs. Such a function can be implemented, however, using two op amps as shown below. Assuming ideal op amps, it can be easily shown that the output voltage is given by:

$$
v_{o}=v_{1}\left(\frac{R_{a}}{R_{1}}\right)\left(\frac{R_{C}}{R_{b}}\right)+v_{2}\left(\frac{R_{a}}{R_{2}}\right)\left(\frac{R_{C}}{R_{b}}\right)-v_{3}\left(\frac{R_{C}}{R_{3}}\right)-v_{4}\left(\frac{R_{C}}{R_{4}}\right)
$$

Weighted summers are utilized in a variety of applications including in the design of audio systems where they can be used in mixing signals originating from different musical instruments !

Frequency Response

$$
\mathrm{PGL}=\mathrm{A}_{\mathrm{vf}} \times \mathrm{BW}=\mathrm{f}_{\mathrm{T}}
$$

$$
\mathrm{A}_{\mathrm{vf}}=10(20 \mathrm{~dB})
$$

$B W=\frac{1 \mathrm{MHz}}{10}=100 \mathrm{KHz}$

LM741 | $\mathbf{f}_{\mathrm{T}}=\mathbf{1 M H z}$
LF351 | $\mathrm{f}_{\mathrm{T}}=\mathbf{4 M H z}$

Noninverting

 Amplifier
The Noninverting Configuration

Here the input signal $v_{l d}$ is applied directly to the positive input terminal of the op amp while one terminal of R_{1} is connected to ground.

$$
\begin{equation*}
v_{I d}=\frac{v_{o}}{A}=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
v_{o}=v_{I}+\left(\frac{v_{I}}{R_{1}}\right) R_{2} \tag{6}
\end{equation*}
$$

(5) e (6) $\longrightarrow G=\frac{v_{O}}{v_{I}}=1+\frac{R_{2}}{R_{1}}$

Effect of Finite Open-Loop Gain

it can be shown that the closed-loop gain of the noninverting amplifier circuit is given by

$$
G=\frac{v_{o}}{v_{i}}=\frac{1+\left(R_{2} / R_{1}\right)}{1+\left(1+R_{2} / R_{1}\right) / A}
$$

If

$$
\mathrm{A} \gg 1+\frac{R_{2}}{R_{1}} \longrightarrow G=1+\frac{R_{2}}{R_{1}}
$$

Input and Output Resistance

The gain of the noninverting configuration is positive-hence the name noninverting.
The input impedance of this closed-loop amplifier is ideally infinite, since no current flows into the positive input terminal of the op amp.

The output of the noninverting amplifier is taken at the terminals of the ideal voltage source $A\left(v_{2}-v_{1}\right)$, thus the output resistance of the noninverting configuration is zero.

There are situations in which one is interested not in voltage gain but only in a significant power gain. For instance, the source signal can have a respectable voltage but a source resistance that is much greater than the load resistance. Connecting the source directly to the load would result in significant signal attenuation. In such a case, one requires an amplifier with a high input resistance (much greater than the source resistance) and a low output resistance (much smaller than the load resistance) but with a modest voltage gain (or even unity gain). Such an amplifier is referred to as a buffer amplifier.

Loading Effect - Op Amp Isolador

$\Rightarrow \quad V_{\text {load }}=\frac{V_{\text {source }}}{10 k+1 K} .1 k$

$$
V_{\text {load }}=\frac{V_{\text {source }}}{10 k+1 K} \cdot 1 k
$$

The resistive divider with 10k Ω e $1 \mathrm{~K} \Omega$ significantly reduces the voltage on the $1 \mathrm{~K} \Omega$ load !

