

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"

LGN0313 – Melhoramento Genético

SISTEMAS REPRODUTIVOS DAS PLANTAS CULTIVADAS E SUAS RELAÇÕES COM O MELHORAMENTO

Gabriel Mamedio De Freitas

PIRACICABA

São Paulo - Brasil

2022

Importância do conhecimento do sistema reprodutivo vegetal;

- Variabilidade e aspectos evolutivos;
- Melhoramento de manejo ambiental;
- Autógamas: possibilidade de usar sementes próprias;
- Alógamas: possibilidade de uso da heterose e do vigor de hibrido;

- i) Reprodução vegetal Assexuada >> Propagação vegetativa;
- Não envolve a fusão de gametas;
- Mitose → órgãos vegetativos tais como: raízes, tubérculos, estolões, colmos, manivas, rizomas, rebentos, estacas, borbulhas ou por cultura de tecidos;
- Originando indivíduos idênticos à planta-mãe;

Cana-de-açúcar

Eucalipto

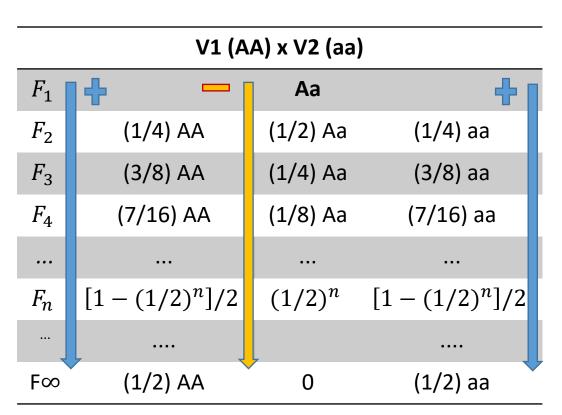
- ii) Reprodução vegetal Sexuada;
- Formação de gametas (meiose);
- Fusão dos gametas masculino e feminino (fertilização) → Embrião → Semente.

Autógama (Autofecundação) Arroz, Aveia, Amendoim Ervilha, Feijão, Soja

Alógama (Fecundação cruzada) Curcubitaceas, Abacaxi, Cenoura, Milho

Classificação mais restrita;

• Considerando-se o percentual de sementes;

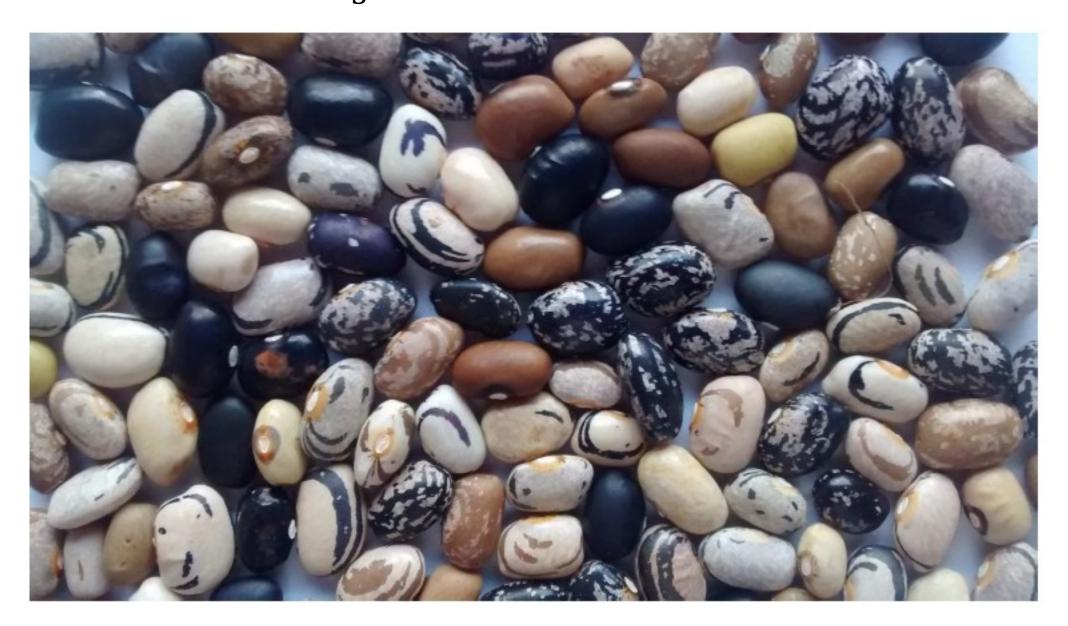

Classificação das espécies								
%	Autógama	Intermediaria*	Alógama					
Autofecundação	95 a 100	5 a 95	0 a 5					
Fecundação cruzada	0 a 5	5 a 95	95 a 100					

^{*} Para fins de melhoramento, as espécies intermediárias podem ser tratadas como alógamas ou autógamas, a exemplo do Café e da Beringela.

Estrutura Genética

i) Espécies Autógamas -> Autofecundação natural;

- Implicações: Como as espécies praticam a autofecundação natural, a frequência de locos heterozigotos (Aa) deve ser muito baixa (próxima de zero), uma vez que em cada geração de autofecundação os heterozigotos são reduzidos a metade;
 - Assim, na enésima geração de autofecundação, tem-se: $(1/2)^n$ heterozigotos e $1-(1/2)^n$ homozigotos;
 - Coeficiente de endogamia: $F = 1 (1/2)^n$;
 - Ex: 6ª geração de autofecundação: *F* = 98,4375% de homozigotos 1,5625% de heterozigotos;


Estrutura Genética

- i) Espécies Autógamas -> Autofecundação natural;
- Variabilidade genética

 mistura genótipos homozigóticos, mutações genética e cruzamentos naturais com plantas de diferentes genótipos;
- Os programas de melhoramento das espécies autógamas são delineados para que no <u>final do processo a homozigose seja</u> <u>restaurada</u>, produzindo apenas plantas homozigóticas (linhas, linhas puras, linhagens, linhagens endogâmicas);

F_3 DE ZEBRA X BOLINHA

Estrutura Genética

ii) Espécies Alógamas;

	p (A)	q (a)			
p (A)	p^2 (AA)	pq (Aa)			
q (a)	pq (Aa)	q^2 (aa)			

•	Cruzamento natural→	ocorrendo	troca	de	genes	entre	OS	indivíduos	de	uma
	mesma população;									

- Implicações: Tem-se, então, variabilidade genética devido à presença de genótipos homozigóticos e heterozigóticos;
- GenótipoFrequênciaAA p^2 Aa2pqaa q^2
- Em espécies alógamas, o tipo de cultivar mais comum é o **híbrido**; no entanto, outros tipos também são viáveis, como os **cultivares de polinização aberta**;

Estrutura Genética

ii) Espécies Alógamas;

Depressão por endogamia (diminuição do valor fenotípico médio de uma população devido aos acasalamentos consanguíneos).

Mecanismos de Controle da Polinização

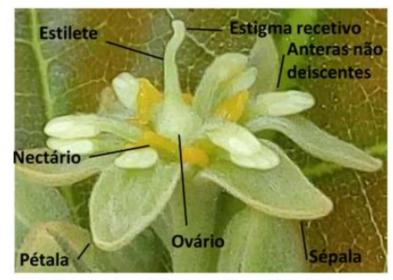
Cleistogamia: mecanismo que permite a autofecundação antes da abertura da flor;

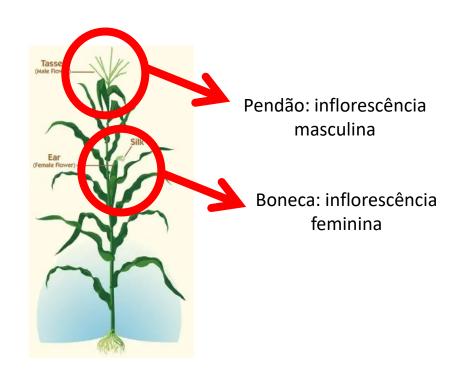
Polinização do estigma ocorre antes da abertura do botão floral (antese)

Quilha envolve o estigma e os estames numa estrutura em forma de espiral

Estames formam um cone envolvendo o estigma

Protoginia: O estigma fica receptivo antes do amadurecimento do grãode-pólen;




Figura 1 – Flor na fase feminina.

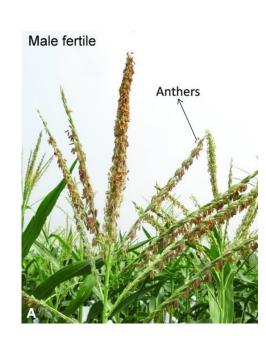
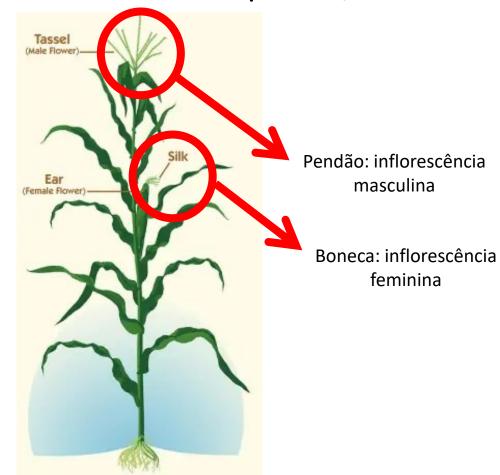


Figura 2 – Flor na fase masculina.


Protandria: pólen é liberado antes do estigma estar receptivo;

Monoicia: sexo separados na mesma planta;

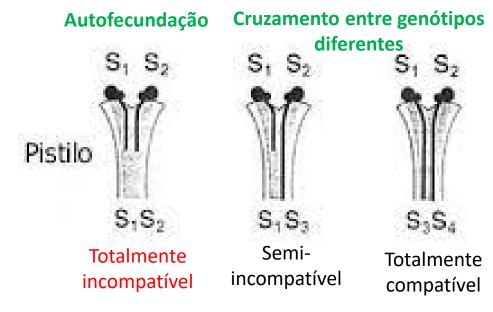
Dioicia: sexos separados em plantas femininas e masculinas;

Autoincompatibilidade: ocorre uma interação entre o grão de pólen e o estigma, que impede que o pólen germine no estigma da mesma planta;

Mais 150 famílias de angiospermas e em mais de 3000 espécies;

Gênero Nicotiana

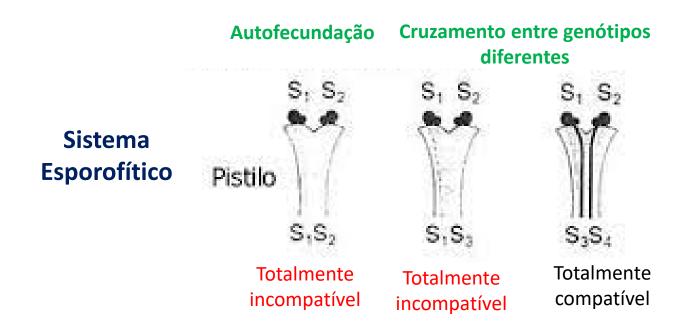
Gênero Brassica



Gênero Ananas

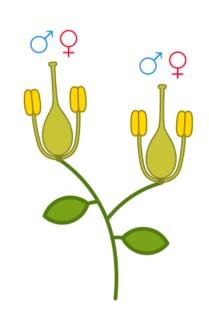
Autoincompatibilidade Gametofítica

Sistema Gametofítico

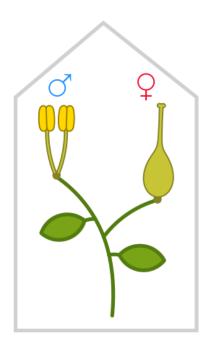


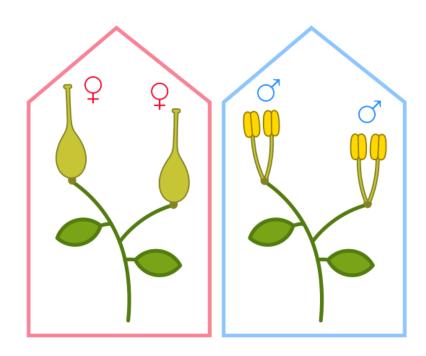
- Loco S com diversos alelos S1
 , S2, S3, S4, etc;
- Plantas com o mesmo genótipo com relação ao loco S não conseguem cruzar, e a autofecundação não ocorre;

Autoincompatibilidade Esporofítica



- O alelo S1 é dominante sobre S2, S3 e S4;
- Entre os dois alelos de um mesmo loco, existem relações de dominância;
- No cruzamento S1S2 x S1S3, pólen S2, que foi produzido por um parental S1S2, não consegue germinar no estigma S1S3;




i) Exame da estrutura floral:

Planta com flores hermafroditas

Plantas monóicas

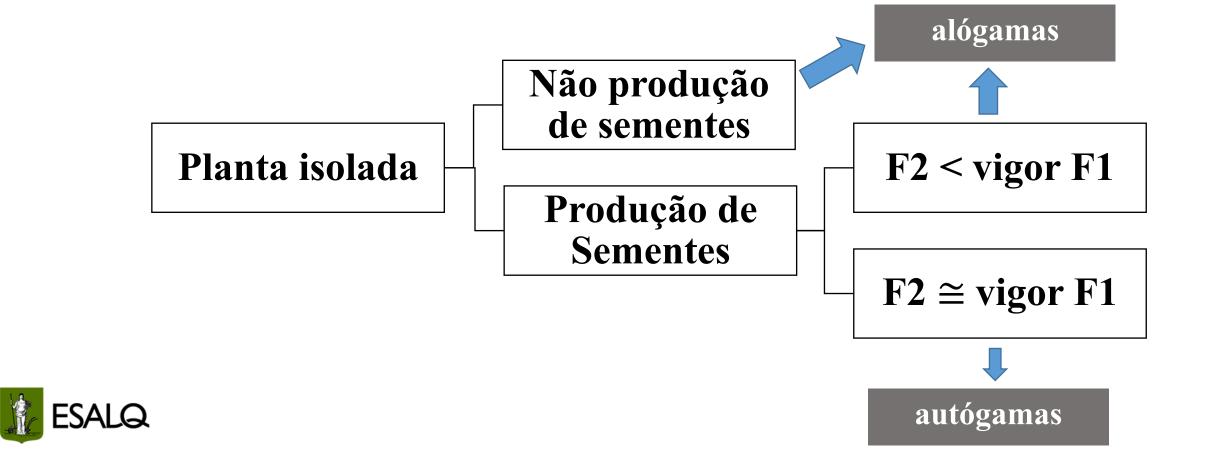
Plantas dióicas

Alógamas

ii) Exame da polinização

Autofecundação

androceu


Quilha, no seu interior encontra-se gineceu e

Polinização pelo vento, insetos e pássaros

Alógamas **Autógamas**

iii) Produção de sementes de plantas isoladas:

iv) Autofecundação artificial:

Descendentes normais

Autógamas

Descendentes anormais

Alógamas

Obrigado! gabrielmamedio@usp.br

REFERÊNCIAS

- Alard, R.W. (1971) Princípios do Melhoramento Genético das Plantas. Editora Edgard Blücher Ltda. Capítulos 4 e 5. 2;
- Borém, A. (Ed.) (1999) Hibridação artificial de plantas. Editora UFV. Pg. 269-294 e 401-426;

