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Abstract 

This is the first part of an introduction to multicriteria decision making using the Analytic 
Hierarchy Process (AHP) and its generalization, the Analytic Network Process (ANP). The discussion 
involves individual and group decisions both with the independence of the criteria from the 
alternatives as in the AHP and also with dependence and feedback in the entire decision structure as in 
the ANP. This part explains the Analytic Hierarchy Process, with examples, and presents in some 
detail the mathematical foundations. An exposition of the Analytic Network Process and its 
applications will appear in later issues of this journal. 
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1. Introduction (Saaty 1977, 1994, 

2000a, 2000b and 2001) 
Decision making involves criteria and 

alternatives to choose from. The criteria 
usually have different importance and the 
alternatives in turn differ in our preference for 
them on each criterion. To make such tradeoffs 
and choices we need a way to measure. 
Measuring needs a good understanding of 
methods of measurement and different scales 
of measurement. 

Many people think that measurement needs 
a physical scale with a zero and a unit to apply 
to objects or phenomena. That is not true. 
Surprisingly enough, we can also derive 
accurate and reliable relative scales that do not 
have a zero or a unit by using our 
understanding and judgments that are, after all, 

the most fundamental determinants of why we 
want to measure something. In reality we do 
that all the time and we do it subconsciously 
without thinking about it. Physical scales help 
our understanding and use of the things that we 
know how to measure. After we obtain 
readings from a physical scale, they still need 
to be interpreted according to what they mean 
and how adequate or inadequate they are to 
satisfy some need we have. But the number of 
things we don’t know how to measure is 
infinitely larger than the things we know how 
to measure, and it is highly unlikely that we 
will ever find ways to measure everything on a 
physical scale with a unit. Scales of 
measurement are inventions of a technological 
mind. Our minds and ways of understanding 
we have had with us and will always have. The 
brain is an electrical device of neurons whose 
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firings and synthesis must perform 
measurement with great accuracy to give us all 
the meaning and understanding that we have to 
enable us to survive and reach out to control a 
complex world. Can we rely on our minds to 
be accurate guides with their judgments? The 
answer depends on how well we know the 
phenomena to which we apply measurement 
and how good our judgments are to represent 
our understanding. In our own personal affairs 
we are the best judges of what may be good for 
us. In situations involving many people, we 
need the judgments from all the participants. In 
general we think that there are people who are 
more expert than others in some areas and their 
judgments should have precedence over the 
judgments of those who know less as in fact is 
often the case in practice. 

Judgments expressed in the form of 
comparisons are fundamental in our biological 
makeup. They are intrinsic in the operations of 
our brains and that of animals and one might 
even say of plants since, for example, they 
control how much sunlight to admit. We all 
make decisions every moment, consciously or 
unconsciously, today and tomorrow, now and 
forever, it seems. Decision-making is a 
fundamental process that is integral in 
everything we do. How do we do it? The 
Harvard psychologist Arthur Blumenthal tells 
us in his book The Process of Cognition, 
Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1977, that there are two types of 
judgment: “Comparative judgment which is 
the identification of some relation between two 
stimuli both present to the observer, and 
absolute judgment which involves the relation 
between a single stimulus and some 

information held in short term memory about 
some former comparison stimuli or about some 
previously experienced measurement scale 
using which the observer rates the single 
stimulus.”  

When we think about it, both these 
processes involve making comparisons. 
Comparisons imply that all things we know are 
understood in relative terms to other things. It 
does not seem possible to know an absolute in 
itself independently of something else that 
influences it or that it influences. The question 
then is how do we make comparisons in a 
scientific way and derive from these 
comparisons scales of relative measurement? 
When we have many scales with respect to a 
diversity of criteria and subcriteria, how do we 
synthesize these scales to obtain an overall 
relative scale? Can we validate this process so 
that we can trust its reliability? What can we 
say about other ways people have proposed to 
deal with judgment and measurement, how do 
they relate to this fundamental idea of 
comparisons, and can they be relied on for 
validity? These are all questions we need to 
consider in making a decision. It is useful to 
remember that there are many people in the 
world who only know their feelings and may 
know nothing about numbers and never heard 
of them but can still make good decisions, how 
do they do it? It is unlikely that by guessing at 
numbers and assigning them directly to the 
alternatives to indicate order under a criterion 
will yield meaningful priorities because the 
numbers are arbitrary. Even if they are taken 
from a scale for a particular criterion, how 
would we combine them across the criteria as 
they would likely be from different scales? Our 
answer to this conundrum is to derive a relative 
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scale for the criteria with respect to the goal 
and to derive relative scales for the alternatives 
with respect to each of the criteria and use a 
weighting and adding process that will make 
these scales alike. The scale we derive under 
each criterion is the same priority scale that 
measures the preference we have for the 
alternatives with respect to each criterion, and 
the importance we attribute to the criteria in 
terms of the goal. As we shall see below, the 
judgments made use absolute numbers and the 
priorities derived from them are also absolute 
numbers that represent relative dominance. 
Among the many applications made by 
companies and governments, now perhaps 
numbering in the thousands, the Analytic 
Hierarchy Process was used by IBM as part of 
its quality improvement strategy to design its 
AS/400 computer and win the prestigious 
Malcolm Baldrige National Quality Award 
(Bauer et al. 1992). 

2. Deriving a Scale of Priorities 
from Pairwise Comparisons 
Suppose we wish to derive a scale of 

relative importance according to size (volume) 
of three apples A, B, C shown in Figure 1. 

Assume that their volumes are known 
respectively as 1 2 3,  and .S S S  For each 
position in the matrix the volume of the apple 
at the left is compared with that of the apple at 
the top and the ratio is entered. A matrix of 
judgments ( )ijA a= is constructed with respect 
to a particular property the elements have in 
common. It is reciprocal, that is, 1/ji ija a= , 
and 1iia = . For the matrix in Figure 1, it is 
necessary to make only three judgments with 
the remainder being automatically determined. 
There are ( 1) / 2n n −  judgments required for a 
matrix of order n . Sometimes one (particularly 
an expert who knows well what the judgments 
should be) may wish to make a minimum set 
of judgments and construct a consistent matrix 
defined as one whose entries satisfy 

ij jk ika a a= , , , 1, ,i j k n= L . To do this one 
can enter 1n −  judgments in a row or in a 
column, or in a spanning set with at least one 
judgment in every row and column, and 
construct the rest of the entries in the matrix 
using the consistency condition. Redundancy 
in the number of judgments generally improves 
the validity of the final answer because the 
judgments of the few elements one chooses to 
compare may be more biased. 

Pairwise Comparison 
Apple A Apple B Apple C Size 

Comparison 

 
 

Apple A S1/S1 S1/S2 S1/S3 

    

Apple B S2/S1 S2/S2 S2/S3 

    

 Apple C S3/S1 S3/S2 S3/S3 

Figure 1 Reciprocal structure of pairwise comparison matrix for apples  
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Assume that we know the volumes of the 
apples so that the values we enter in Figure 2 
are consistent. Apple A is twice as big in 
volume as apple B, and apple B is three times 
as big as apple C, so we enter a 2 in the (1,2) 
position, and so on. Ones are entered on the 
diagonal by default as every entity equals itself 

on any criterion. Note that in the (2, 3) position 
we can enter the value 3 because we know the 
judgments are consistent as they are based on 
actual measurements. We can deduce the value 
this way: from the first row A = 2B and A = 6C, 
and thus B = 3C. 

Pairwise Comparison 
 Size

Apple B Apple CApple A 
 

Apple A Apple B Apple C Size 
Comparison 

 
 

Relative Size of 
Apples from Any 

Column 
Normalized 

Priorities 

Apple A 1 2 6 6/10 A 

      

Apple B 1/2 1 3 3/10 B 

      

Apple C 1/6 1/3 1 1/10 C 

Figure 2 Pairwise comparison matrix for apples using judgments 
If we did not have actual measurements, we 

could not be certain that the judgments in the 
first row are accurate, and we would not mind 
estimating the value in the (2, 3) position 
directly by comparing apple B with apple C. 
We are then very likely to be inconsistent. How 
inconsistent can we be before we think it is 
intolerable? Later we give an actual measure of 
inconsistency and argue that a consistency of 
about 10% is considered acceptable. 

We obtain from the consistent pairwise 
comparison matrix above a vector of priorities 
showing the relative sizes of the apples. Note 
that we do not have to go to all this trouble to 
derive the relative volumes of the apples. We 

could simply have normalized the actual 
measurements. The reason we did so is to lay 
the foundation for what to do when we have no 
measures for the property in question. When 
judgments are consistent as they are here, this 
vector of priorities can be obtained in two 
ways: dividing the elements in any column by 
the sum of its entries (normalizing it), or by 
summing the entries in each row to obtain the 
overall dominance in size of that alternative 
relative to the others and normalizing the 
resulting column of values. Incidentally, 
calculating dominance plays an important role 
in computing the priorities when judgments are 
inconsistent for then an alternative may 
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dominate another by different magnitudes by 
transiting to it through intermediate 
alternatives. Thus the story is very different if 
the judgments are inconsistent, and we need to 
allow inconsistent judgments for good reasons. 
In sports, team A beats team B, team B beats 
team C, but team C beats team A. How would 
we admit such an occurrence in our attempt to 
explain the real world if we do not allow 
inconsistency? Most theories have taken a 
stand against such an occurrence with an 
axiom that assumes transitivity and prohibits 
intransitivity, although one does not have to be 
intransitive to be inconsistent in the values 
obtained. Others have wished it away by 
saying that it should not happen in human 
thinking. But it does, and we offer a theory 
below that copes with intransitivity. 

3. The Fundamental Scale of 
the AHP for Making 
Comparisons with 
Judgments 
If we were to use judgments instead of 

ratios, we would estimate the ratios as numbers 
using the Fundamental Scale of the AHP, 
shown in Table 1 and derived analytically later 
in the paper, and enter these judgments in the 
matrix. A judgment is made on a pair of 
elements with respect to a property they have 
in common. The smaller element is considered 
to be the unit and one estimates how many 
times more important, preferable or likely, 
more generally “dominant”, the other is by 
using a number from the Fundamental Scale. 
Dominance is often interpreted as importance 
when comparing the criteria and as preference 

when comparing the alternatives with respect 
to the criteria. It can also be interpreted as 
likelihood as in the likelihood of a person 
getting elected as president, or other terms that 
fit the situation. 

The set of objects being pairwise compared 
must be homogeneous. That is, the dominance 
of the largest object must be no more than 9 
times the smallest one (this is the widest span 
we use for many good reasons discussed 
elsewhere in the AHP literature). Things that 
differ by more than this range can be clustered 
into homogeneous groups and dealt with by 
using this scale. If measurements from an 
existing scale are used, they can simply be 
normalized without regard to homogeneity. 
When the elements being compared are very 
close, they should be compared with other 
more contrasting elements, and the larger of 
the two should be favored a little in the 
judgments over the smaller. We have found 
this approach to be effective to bring out the 
actual priorities of the two close elements. 
Otherwise we have proposed the use of a scale 
between 1 and 2 using decimals and similar 
judgments to the Fundamental Scale below. We 
note that human judgment is relatively 
insensitive to such small decimal changes. 

Table 2 shows how an audience of about 30 
people, using consensus to arrive at each 
judgment, provided judgments to estimate the 
dominance of the consumption of drinks in the 
United States (which drink is consumed more 
in the US and how much more than another 
drink?). The derived vector of relative 
consumption and the actual vector, obtained by 
normalizing the consumption given in official 
statistical data sources, are at the bottom of the 
table.   
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Table 1 The Fundamental scale of absolute numbers 

Intensity of 
Importance 

Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 
2 Weak or slight  
3 Moderate importance Experience and judgment slightly favor one activity over another 
4 Moderate plus  
5 Strong importance Experience and judgment strongly favor one activity over another 
6 Strong plus  

7 
Very strong or demonstrated 
importance 

An activity is favored very strongly over another; its dominance 
demonstrated in practice 

8 Very, very strong  

9 Extreme importance 
The evidence favoring one activity over another is of the highest 
possible order of affirmation 

Reciprocals 
of above 

If activity i has one of the 
above nonzero numbers 
assigned to it when 
compared with activity j, 
then j has the reciprocal 
value when compared with i 

A reasonable assumption 

Rationals Ratios arising from the scale 
If consistency were to be forced by obtaining n numerical values to 
span the matrix 

Table 2 Relative consumption of drinks 

Which Drink Is Consumed More in the U.S.? W c s Co su ed o e e U.S.?
An Example of Estimation Using Judgments

Coffee Wine Tea Beer Sodas Milk Water
Drink
Consumption
in the U.S.

Coffee
Wine
Tea
Beer
Sodas
Milk
Water

1
1/9
1/5
1/2
1
1
2

9
1
2
9
9
9
9

5
1/3
1
3
4
3
9

2
1/9
1/3
1
2
1
3

1
1/9
1/4
1/2
1

1/2
2

1
1/9
1/3
1
2
1
3

1/2
1/9
1/9
1/3
1/2
1/3
1

The derived scale based on the judgments in the matrix is:
Coffee Wine Tea Beer Sodas Milk Water
.177 .019 .042 .116 .190 .129 .327
with a consistency ratio of .022.
The actual consumption (from statistical sources) is:
.180 .010 .040 .120 .180 .140 .330

W c s Co su ed o e e U.S.?
An Example of Estimation Using Judgments

Coffee Wine Tea Beer Sodas Milk Water
Drink
Consumption
in the U.S.

Coffee
Wine
Tea
Beer
Sodas
Milk
Water

1
1/9
1/5
1/2
1
1
2

9
1
2
9
9
9
9

5
1/3
1
3
4
3
9

2
1/9
1/3
1
2
1
3

1
1/9
1/4
1/2
1

1/2
2

1
1/9
1/3
1
2
1
3

1/2
1/9
1/9
1/3
1/2
1/3
1

The derived scale based on the judgments in the matrix is:
Coffee Wine Tea Beer Sodas Milk Water
.177 .019 .042 .116 .190 .129 .327
with a consistency ratio of .022.
The actual consumption (from statistical sources) is:
.180 .010 .040 .120 .180 .140 .330   
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If the objects are not homogeneous, they 
may be divided into groups that are 
homogeneous. If necessary additional objects 
can be added merely to fill out the intervening 
clusters to move from the smallest object to the 

largest one. Figure 3 shows how this process 
works in comparing a cherry tomato with a 
water melon, which appears to be two orders 
of magnitude bigger in size, by introducing 
intermediate objects in stages. 

Figure 3 Clustering to compare non-homogeneous objects 

4. Scales of Measurement 
Mathematically a scale is a triple, a set of 

numbers, a set of objects and a mapping of the 
objects to the numbers. There are two ways to 
perform measurement, one is by using an 
instrument and making the correspondence 
directly, and the other is by using judgment. 
When using judgments one can either assign 
numbers to the objects by guessing their value 
on some scale of measurement when there is 
one, or derive a scale by considering a subset 
of objects in some fashion such as comparing 
them in pairs, thus making the correspondence 

indirect. In addition there are two kinds of 
origin; one is an absolute origin as in absolute 
temperature where nothing falls below that 
reading; and the other where the origin is a 
dividing point of positive and negative values 
with no bound on either side such as with a 
thermometer. Underlying both these ways are 
the following kinds (there can be more) of 
general scales:  

Nominal Scale invariant under one to one 
correspondence where a number is assigned to 
each object; for example, handing out numbers 
for order of service to people in a queue. 

Ordinal Scale invariant under monotone 

.07 .28 

 

.65 

Cherry Tomato  Small Green Tomato  Lime  
.08 .22  

 

.70 

Lime 
.08 = 1
.08

 

.65×1=.65 

 
 

Grapefruit 
.22 = 2.75
.08

 

.65×2.75=1.79 

 
 

Honeydew 
.70 = 8.75
.08

 

.65×8.75=5.69 
 
 

 

.10 .30 .60 

Honeydew 
.10 = 1
.10

 

5.69×1=5.69 

 
 

Sugar Baby Watermelon 
.30 = 3
.10

 

5.69×3=17.07 

 
 

Oblong Watermelon 
.60 = 6
.10

 

5.69×6=34.14 

 
 

 
This means that 34.14/.07.487.7 cherry tomatoes are equal to the oblong watermelon. 
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transformations, where things are ordered by 
number but the magnitudes of the numbers 
only serve to designate order, increasing or 
decreasing; for example, assigning two 
numbers 1 and 2, to two people to indicate that 
one is taller than the other, without including 
any information about their actual heights. The 
smaller number may be assigned to the taller 
person and vice versa. 

Interval Scale invariant under a positive 
linear transformation; for example, the linear 
transformation F = (9/5) C + 32 for converting 
a Celsius to a Fahrenheit temperature reading. 
Note that one cannot add two readings 1x  and 

2x  on an interval scale because then 

1 2 1 2 1 2+  (  + )  (   )  (  )y y a x b a x b a x x= + + = +
2  b+  which is of the form 2   ax b+ and not 

of the form ax b+ . However, one can take an 
average of such readings because dividing by 2 
yields the correct form. 

Ratio Scale invariant under a similarity 
transformation, y ax= , 0a > . An example is 
converting weight measured in pounds to 
kilograms by using the similarity 
transformation K = 2.2 P. The ratio of the 
weights of the two objects is the same 
regardless of whether the measurements are 
done in pounds or in kilograms. Zero is not the 
measurement of anything; it applies to objects 
that do not have the property and in addition 
one cannot divide by zero to preserve ratios in 
a meaningful way. Note that one can add two 
readings from a ratio scale, but not multiply 
them because 2

1 2a x x  does not have the form 
ax . The ratio of two readings from a ratio 
scale such as 6 kg/ 3 kg = 2 is a number that 
belongs to an absolute scale that says that the 6 
kg object is twice heavier than the 3 kg object. 

The ratio 2 cannot be changed by some 
formula to another number. Thus we introduce 
the next scale.  

Absolute Scale invariant under the identity 
transformation x = x; for example, numbers 
used in counting the people in a room.  

There are also other less well-known scales 
like a logarithmic and a log-normal scale.  

The fundamental scale of the AHP is a 
scale of absolute numbers used to answer the 
basic question in all pairwise comparisons: 
how many times more dominant is one 
element than the other with respect to a 
certain criterion or attribute? The derived 
scale, obtained by solving a system of 
homogeneous linear equations whose 
coefficients are absolute numbers, is also an 
absolute scale of relative numbers. Such a 
relative scale does not have a unit nor does it 
have an absolute zero. The derived scale is like 
probabilities in not having a unit or an absolute 
zero. 

In a judgment matrix A , instead of 
assigning two numbers iw  and jw  (that 
generally we do not know), as one does with 
tangibles, and forming the ratio /i jw w we 
assign a single number drawn from the 
fundamental scale of absolute numbers shown 
in Table 1 above to represent the ratio 
( / ) /1i jw w . It is a nearest integer 
approximation to the ratio /i jw w . The ratio of 
two numbers from a ratio scale (invariant 
under multiplication by a positive constant) is 
an absolute number (invariant under the 
identity transformation) and is dimensionless. 
In other words it is not measured on a scale 
with a unit starting from zero. The numbers of 
an absolute scale are defined in terms of 
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similarity or equivalence. The (absolute) 
number of a class is the class of all those 
classes that are similar to it; that is they can be 
put into one-to-one correspondence with it. But 
that is not our complete story about absolute 
numbers transformed to relative form – relative 
absolute numbers. We now continue our 
account. 

The derived scale will reveal what iw and 

jw  are. This is a central fact about the relative 
measurement approach. It needs a fundamental 
scale to express numerically the relative 
dominance relationship by using the smaller or 
lesser element as the unit of each comparison. 
Some people who do not understand this and 
regard the AHP as controversial, forget that 
most people in the world don’t think in terms 
of numbers but of how they feel about 
intensities of dominance. They think that the 
AHP would have a greater theoretical strength 
if the judgments were made in terms of “ratios 
of preference differences”. I think that the 
layman would find this proposal laughable as I 
do for its paucity of understanding, taking the 
difference of non-existing numbers which one 
is trying to find in the first place. He needs first 
to see a utility doctor who would help him 
create an interval scale utility function so he 
can take values from it to form differences and 
then form their ratios to get one judgment! 

5. From Consistency to 
Inconsistency 
Consistency is essential in human thinking 

because it enables us to order the world 
according to dominance. It is a necessary 

condition for thinking about the world in a 
scientific way, but it is not sufficient because a 
mentally disturbed person can think in a 
perfectly consistent way about a world that 
does not exist. We need actual knowledge 
about the world to validate our thinking. But if 
we were always consistent we would not be 
able to change our minds. New knowledge 
often requires that we see things in a new light 
that can contradict what we thought was 
correct before. Thus we live with the 
contradiction that we must be consistent to 
capture valid knowledge about the world but at 
the same time be ready to change our minds 
and be inconsistent if new information requires 
that we think differently than we thought 
before. It is clear that large inconsistency 
unsettles our thinking and thus we need to 
change our minds in small steps to integrate 
new information in the old total scheme. This 
means that inconsistency must be large enough 
to allow for change in our consistent 
understanding but small enough to make it 
possible to adapt our old beliefs to new 
information. This means that inconsistency 
must be precisely one order of magnitude less 
important than consistency, or simply 10% of 
the total concern with consistent measurement. 
If it were larger it would disrupt consistent 
measurement and if it were smaller it would 
make insignificant contribution to change in 
measurement. 

The paired comparisons process using 
actual measurements for the elements being 
compared leads to the following consistent 
reciprocal matrix: 
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1 2

1 2

1 1 1 1 2 1

2 2 1 2 2 2

1 2

                                    
                                  

     

     

n

n

n

n

n n n n n

A A A
w w w

A w w w w w w
A w w w w w w

A w w w w w w

 
 
 
 
 
 

L

L

L

L

M M

L

 

We note that we can recover the vector 

1( ,..., )nw w w=  by solving the system of 
equations defined by: 

1 2

2 2 2 2

2

2 2

             

  

  

1 1 1 n

1 n

n 1 n n n

1 1

n n

w w w w w w
w w w w w wAw

w w w w w w

w w
w wn nw

w w

 
 
 =
 
 
 

   
   
   ⋅ = =
   
   
   

K

K

M

K

M M

 

Solving this homogeneous system of linear 
equations Aw nw=  to find w is a trivial 
eigenvalue problem, because the existence of a 
solution depends on whether or not n is an 
eigenvalue of the characteristic equation of A. 
But A has rank one and thus all its eigenvalues 
but one are equal to zero. The sum of the 
eigenvalues of a matrix is equal to its trace, the 
sum of its diagonal elements, which in this 
case is equal to n. Thus n is the largest or the 
principal eigenvalue of A and w is its 
corresponding principal eigenvector that is 
positive and unique to within multiplication by 
a constant, and thus belongs to a ratio scale. 
We now know what must be done to recover 
the weights iw , whether they are known in 
advance or not. 

We said earlier that an n by n matrix 
( )ijA a= is consistent if ,ij jk ika a a=  

, , 1,...,i j k n=  holds among its entries. We 
have for a consistent matrix 1k kA n A−= , a 
constant times the original matrix. In 
normalized form both A and kA  have the 
same principal eigenvector. That is not so for 
an inconsistent matrix. A consistent matrix 
always has the form 

i

j

w
A

w

 
=   
 

. 

Of course, real-world pairwise comparison 
matrices are very unlikely to be consistent. 

In the inconsistent case, the normalized 
sum of the rows of each power of the matrix 
contributes to the final priority vector. Using 
Cesaro summability and the well-known 
theorem of Perron, we are led to derive the 
priorities in the form of the principal right 
eigenvector. Now we give an elegant 
mathematical discussion, based on the concept 
of invariance, to show why we still need for an 
inconsistent matrix the principal right 
eigenvector for our priority vector. It is clear 
that no matter what method we use to derive 
the weights iw , we need to get them back as 
proportional to the expression 

1
   1,...,

n
ij j

j
a w i n

=
=∑ , 

that is, we must solve 

1
=    1,...,

n
ij j i

j
a w cw i n

=
=∑ . 

Otherwise 
1

   1,...,
n

ij j
j

a w i n
=

=∑  

would yield another set of different weights 
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and they in turn can be used to form new 
expressions 

1
   1,...,

n
ij j

j
a w i n

=
=∑ , 

and so on ad infinitum. Unless we solve the 
principal eigenvalue problem, our quest for 
priorities becomes meaningless. 

We learn from the consistent case that what 
we get on the right is proportional to the sum 
on the left that involves the same ratio scale 
used to weight the judgments that we are 
looking for. Thus we have the proportionality 
constant c. A better way to see this is to use the 
derived vector of priorities to weight each row 
of the matrix and take the sum. This yields a 
new vector of priorities (relative dominance of 
each element) represented in the comparisons. 
This vector can again be used to weight the 
rows and obtain still another vector of 
priorities. In the limit (if one exists), the limit 
vector itself can be used to weight the rows 
and get the limit vector back perhaps 
proportionately. Our general problem possibly 
with inconsistent judgments takes the form: 

12 1 1

12 2 2

1 2

1 ...
1/ 1 ...

1/ 1/ ... 1

n

n

n n n

a a w
a a w

Aw cw

a a w

   
   
   = =
   
   
   

M M
 

This homogeneous system of linear 
equations Aw cw= has a solution w if c is the 
principal eigenvalue of .A  That this is the 
case can be shown using an argument that 
involves both left and right eigenvectors of A. 
Two vectors 1 1( ,..., ),  ( ,..., )n nx x x y y y= = are 
orthogonal if their scalar product 

1 1 ... n nx y x y+ + is equal to zero. It is known 
that any left eigenvector of a matrix 
corresponding to an eigenvalue is orthogonal 
to any right eigenvector corresponding to a 
different eigenvalue. This property is known as 
biorthogonality (Horn and Johnson 1985). 
Theorem For a given positive matrix A, the 
only positive vector w and only positive 
constant c that satisfy Aw cw= , is a vector w 
that is a positive multiple of the principal 
eigenvector of A, and the only such c is the 
principal eigenvalue of A. 
Proof. We know that the right principal 
eigenvector and the principal eigenvalue 
satisfy our requirements. We also know that 
the algebraic multiplicity of the principal 
eigenvalue is one, and that there is a positive 
left eigenvector of A (call it z) corresponding to 
the principal eigenvalue. Suppose there is a 
positive vector y and a (necessarily positive) 
scalar d such that Ay dy= . If d and c are not 
equal, then by biorthogonality y is orthogonal 
to z, which is impossible since both vectors are 
positive. If c and d are equal, then y and w are 
dependent since c has algebraic multiplicity 
one, and y is a positive multiple of w. This 
completes the proof. 

6. An Example of an AHP 
Decision 
The simple decision is to choose the best 

city in which to live. We shall show how to 
make this decision using both methods of the 
AHP which conform with what Blumenthal 
said. We do it first with relative (comparative) 
measurement and second with absolute 
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measurement. With the relative measurement 
method the criteria are pairwise compared with 
respect to the goal, the alternatives are pairwise 
compared with respect to each criterion and the 
results are synthesized or combined using a 
weighting and adding process to give an 
overall ranking of the alternatives. With the 
absolute measurement method standards are 
established for each criterion and the cities are 

rated one-by-one against the standards rather 
than being compared with each other.  

6.1 Making the Decision with a Relative 

Measurement Model 

The relative measurement model for 
picking the best city in which to live is shown 
below in Figure 4 (example by Mary Reiter). 

 

Bethesda Boston Pittsburgh Santa Fe 

GOAL 
Best City to Live in 

1.000 

Cultural 
0.152 

Family 
0.454 

Jobs 
0.072 

Housing 
0.305 

Transportation 
0.038 

 

Figure 4 Relative model for choosing best city to live in 

Entering Judgments 
For each cell in the comparison matrix 

there is associated a row criterion (listed on the 
left), call it X, and a column criterion (on the 
top), call it Y. One answers this question for 
the cell: How much more important is X than 
Y in choosing a best city in which to live? The 
judgments, shown in Table 3, are entered using 
the Fundamental Scale of the AHP. Fractional 
values between the integers such as 4.32 can 
also be used when they are known from 
measurement.  

The Number of Judgments and Consistency 
In this decision there are 10 judgments to 

be entered. As we shall see later, inconsistency 
for a judgment matrix can be computed as a 
function of its maximum eigenvalue maxλ  and 
the order n of the matrix. The time gained, 
from making fewer judgments than 10 along a 
spanning tree for example can be offset by not 
having sufficient redundancy in the judgments 
to fine tune and improve the overall outcome. 
There can be no inconsistency when the 
minimum number of judgments is used. 
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Next the alternatives are pairwise compared 
with respect to each of the criteria. The 
judgments and the derived priorities for the 
alternatives are shown in Table 4. The priority 
vectors are the principal eigenvectors of the 
pairwise comparison matrices. They are in the 
distributive form, that is, they have been 
normalized by dividing each element of the 
principal eigenvector by the sum of its 
elements so that they sum to 1. The priority 
vectors can be transformed to their idealized 
form by selecting the largest element in the 
vector and dividing all the elements by it so 
that it takes on the value 1, with the others 
proportionately less. The element (or elements) 
with a priority of 1 become the ideal(s). Later 
we explain why we use these two forms of 
synthesis.  
Synthesis 

The outcome of the distributive form is 
shown in Table 5 and that for the ideal form is 
shown in Table 6. The columns in Table 5 are 
the priority vectors for the cities from Table 4 

and the columns in Table 6 are these same 
vectors in idealized form with respect to each 
criterion. Using either form the totals vector is 
obtained by multiplying the priority of each 
criterion times the priority of each alternative 
with respect to it and summing. The overall 
priority vector is obtained from the totals 
vector by normalizing: dividing each element 
in the totals vector by the sum of its elements. 
The final outcome with either form of 
synthesis is that Pittsburgh is the highest 
ranked city for this individual. Though the 
final priorities are somewhat different the order 
is the same: Pittsburgh, Boston, Bethesda and 
Santa Fe. The ratios of the final priorities are 
meaningful. Pittsburgh is almost twice as 
preferred as Bethesda. 

When synthesizing in the distributive form 
the totals vector and the overall priorities 
vector are the same. When synthesizing in the 
ideal form as shown in Table 6 they are not. 
Ideal synthesis gives slightly different results 
from distributive synthesis in this case. 

Table 3 Criteria weights with respect to the goal 

GOAL Culture Family Housing Jobs Transportation Priorities 
Culture 1 1/5 3 1/2 5 0.152 
Family 5 1 7 1 7 0.433 
Housing 1/3 1/7 1 1/4 3 0.072 
Job 2 1 4 1 7 0.305 
Transportation 1/5 1/7 1/3 1/7 1 0.038 
Inconsistency 0.05 

Table 4 Alternatives’ weights with respect to criteria 
Culture Bethesda Boston Pittsburgh Santa Fe Priorities 
Bethesda 1 1/2 1 1/2 0.163 
Boston 2 1 2.5 1 0.345 
Pittsburgh 1 1/2.5 1 1/2.5 0.146 
Santa Fe 2 1 2.5 1 0.345 

Inconsistency .002 
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Family Bethesda Boston Pittsburgh Santa Fe Priorities 

Bethesda 1 2 1/3 4 0.210 

Boston 1 1 1/8 2 0.098 

Pittsburgh 3 8 1 9 0.635 

Santa Fe 1/4 1/2 1/9 1 0.057 
Inconsistency .012 
 

Housing Bethesda Boston Pittsburgh Santa Fe Priorities 

Bethesda 1 5 1/2 2.5 0.262 

Boston 1/5 1 1/9 1/4 0.047 

Pittsburgh 2 9 1 7 0.571 

Santa Fe 1/2.5 4 1/7 1 0.120 
Inconsistency .012 
 

Jobs Bethesda Boston Pittsburgh Santa Fe Priorities 

Bethesda 1 1/2 3 4 0.279 

Boston 2 1 6 8 0.559 

Pittsburgh 1/3 1/6 1 1 0.087 

Santa Fe 1/4 1/8 1 1 0.075 
Inconsistency .004 
 

Transportation Bethesda Boston Pittsburgh Santa Fe Priorities 

Bethesda 1 1.5 1/2 4 0.249 

Boston 1/1.5 1 1/3.5 2.5 0.157 

Pittsburgh 2 3.5 1 9 0.533 

Santa Fe 1/4 1/2.5 1/9 1 0.061 
Inconsistency .001 

Table 5 Synthesis using the distributive mode to obtain the overall priorities for the alternatives 

Synthesis 
Cultural

0.152 

Family

0.433 

Housing 

0.072 

Jobs 

0.305 

Transport

0.038 

Totals 

(Weight and add) 

Overall Priorities 

(Normalize Totals) 

Bethesda 0.163 0.210 0.262 0.279 0.249 0.229 0.229 

Boston 0.345 0.098 0.047 0.559 0.157 0.275 0.275 

Pittsburgh 0.146 0.635 0.571 0.087 0.533 0.385 0.385 

Santa Fe 0.345 0.057 0.120 0.075 0.061 0.111 0.111 
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Table 6 Synthesis using the ideal mode to obtain the overall priorities for the alternatives 

Alternatives 
Cultural

0.152 

Family 

0.433 

Housing 

0.072 

Jobs

0.305

Transport

0.038 

Totals 

(Weight and add) 

Overall Priorities 

(Normalize Totals) 

Bethesda 0.474 0.330 0.459 0.500 0.467 0.418 0.224 

Boston 1.000 0.155 0.082 1.000 0.295 0.541 0.290 

Pittsburgh 0.424 1.000 1.000 0.155 1.000 0.655 0.351 

Santa Fe 1.000 0.089 0.209 0.135 0.115 0.251 0.135 
 

Ideal Synthesis Prevents Rank Reversal 
(Saaty 2001, Saaty and Vargas 1984a) 

An important distinction to make between 
measurement in physics and measurement in 
decision making is that in the first we usually 
seek measurements that approximate to the 
weight and length of things, whereas in human 
action we seek to order actions according to 
priorities. In mathematics a distinction is made 
between metric topology that deals with the 
measurement of length, mass and time and 
order topology that deals with the ordering of 
priorities through the concept of dominance 
rather than closeness used in metric methods. 
We have seen that the principal eigenvector of 
a matrix is necessary to capture dominance 
priorities. When we have a matrix of 
judgments we derive its priorities in the form 
of its principal eigenvector. When we deal with 
a hierarchy the principle of hierarchic 
composition involves weighting and adding as 
a special case of the more general principle of 
network composition in which priorities are 
also derived as the principal eigenvector of a 
stochastic matrix which involves weighting 
and adding in the process of raising a matrix to 
powers. Some scholars whose specialization is 
in the physical sciences are perhaps unaware of 
the methods of order topology and have used 
various arguments to justify why they would 

use a metric approach to derive priorities and 
also to obtain the overall synthesis. It may be 
worthwhile to discuss this at some length in the 
following paragraph. 

Ideal synthesis should be used when one 
wishes to prevent reversals in rank of the 
original set of alternatives from occurring 
when a new dominated alternative is added. 
With the distributive form rank reversal can 
occur to account for the presence of many 
other alternatives in cases where adding many 
things of the same kind or of nearly the same 
kind can depreciate the value of any of them. It 
has been established that 92% of the time, 
there is no rank reversal in the distributive 
mode when a new dominated alternative is 
added (Saaty and Vargas 1993). We note that 
uniqueness or manyness are not criteria that 
can be included when the alternatives are 
assumed to be independent of one another, for 
then to rank an alternative one would have to 
see how many other alternatives there are thus 
creating dependence among them. 

Both the distributive and ideal modes are 
necessary for use in the AHP. We have shown 
that idealization is essential and is independent 
of what method one may use. There are people 
who have made it an obsession to find ways to 
avoid rank reversal in every decision and wish 
to alter the synthesis of the AHP away from 
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normalization or idealization. They are likely 
to obtain outcomes that are not compatible 
with what the real outcome of a decision 
should be, because in decision-making we also 
want uniqueness of the answer we get.  

Here is a failed attempt by some people to 
do things their metric way to preserve rank 
other than by the ideal form. The multiplicative 
approach to the AHP uses the familiar methods 
of taking the geometric mean to obtain the 
priorities of the alternatives for each criterion 
without normalization, and then raising them 
to the powers of the criteria and again taking 
the geometric mean to perform synthesis in a 
distorted way to always preserve rank. It is 
essentially a consequence of attempting to 
minimize the logarithmic least squares 
expression (Saaty 2000a, Saaty and Vargas 
1984b) 

2

1 1
log log

n n i
ij

i j j

w
a

w= =

 
− ∑ ∑  

 
. 

It does not work when the same 
measurement is used for the alternatives with 
respect to several criteria as one can easily 
verify and that should be sufficient to throw it 
out. Second and more seriously, the 
multiplicative method has an untenable 
mathematical problem. Assume that an 
alternative has a priority 0.2 with respect to 
each of two criteria whose respective priorities 
are 0.3 and 0.5. It is logical to assume that this 
alternative should have a higher priority with 
respect to the more important criterion, the one 
with the value of 0.5, after the weighting is 
performed. But 0.5 0.30.2 0.2<  and alas it 
does not, it has a smaller priority. One would 
think that the procedure of ranking in this way 
would have been abandoned at first knowledge 

of this observation.  
We conclude that in order to preserve rank 

indiscriminately from any other alternative, 
one can use the rating approach of the AHP 
described below in which alternatives are 
evaluated one at a time using the ideal mode. 
In addition, by deriving priorities from paired 
comparisons, rank is always preserved if one 
idealizes only the first time, and then compares 
each alternative with the ideal, allowing the 
value to exceed one. On the other hand, 
idealizing repeatedly, only preserves rank from 
irrelevant alternatives. 
Remark On occasion someone has suggested 
the use of Pareto optimality instead of 
weighting the priorities of the alternatives by 
the priorities of the criteria and adding to find 
the best alternative. It is known that a concave 
function for the synthesis, if one could be 
found, would serve the purpose of finding the 
best alternative when it is known what it 
should be. But if the best alternative is already 
known for some property that it has which 
makes it the best, then one has a single not a 
multiple criteria decision. Naturally a multiple 
criteria problem may not yield the expected 
outcome. This is a special case of when the 
weights of the criteria depend on those of the 
alternatives. We will see in Part 2 that the final 
overall choice is automatically made in the 
process of finding the priorities of the criteria 
as they depend on the alternatives. Pareto 
optimality plays no role to determine the best 
outcome in that general case.  

6.2 Making the Decision with an Absolute 

or Ratings Model 
Using the absolute or ratings method of the 

AHP, categories (intensities) or standards are 
established for the criteria and cities are rated 
one at a time by selecting the appropriate 
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category under each criterion rather than 
compared against other cities. The standards 
are prioritized for each criterion by making 
pairwise comparisons. For example, the 
standards for the criterion Job Opportunities 
are: Excellent, Above Average, Average, 
Below Average and Poor. Judgments are 
entered for such questions as: “How much 
more preferable is Excellent than Above 
Average for this criterion? Each city is then 
rated by selecting the appropriate category for 
it for each criterion. The city’s score is then 
computed by weighting the priority of the 
selected category by the priority of the 
criterion and summing for all the criteria. The 
prioritized categories are essentially absolute 
scales, abstract yardsticks, which have been 
derived and are unique to each criterion. 
Judgment is still required to select the 

appropriate category under a criterion for a city, 
but the cities are no longer compared against 
each other. In absolute measurement, the cities 
are scored independently of each other. In 
relative measurement, there is dependence, as a 
city’s performance depends on what other 
cities there are in the comparison group. Figure 
5 and Tables 7, 8 and 9 represent what one 
does in the ratings or absolute measurement 
approach of the AHP. Table 7 illustrates the 
pairwise comparisons of the intensities under 
one criterion. The process must be repeated to 
compare the intensities for each of the other 
criteria. We caution that such intensities and 
their priorities are only appropriate for our 
given problem and should not be used with the 
same priorities for all criteria nor carelessly in 
other problems. 

 GOAL 
Best City to Live in 
1.000 

Cultural 
0.152 

Family 
0.454 

Housing 
0.072 

Jobs 
0.305 

Transportation 
0.038 

Extreme 
1.000 

Great 
.411 

Significant 
.188 
Moderate  
.106 
Tad  
.052 

Abundant 
.906 

Considerable 
1.000 

Manageable 
.396 

Negligible 
.120 

Own<35% Sal.
1.000 

Own>35% Sal. 
 .363 

Rent<35% Sal. 
.170 

Rent>35% Sal. 
.056 

Excellent 
1.000 

Average 
.306 

Poor 
.065

<100 mi
1.000 

101-300 mi
.521 

301-750 mi
.179 

>750 mi
.079 

Above Avg 
.664 

Below Avg 
.126

 

Figure 5 Absolute or ratings mode for choosing best city to live in 
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Table 7 Deriving priorities for the cultural criterion categories 

 Extreme Great Significant Moderate Tad 
Derived 

Priorities 
Idealized 
Priorities 

Extreme 1 5 6 8 9 .569 1.000 

Great 1/5 1 4 5 7 .234 .411 

Significant 1/6 1/4 1 3 5 .107 .188 

Moderate 1/8 1/5 1/3 1 4 .060 .106 

Tad 1/9 1/7 1/5 1/4 1 .030 .052 
Inconsistency = .112 

Table 8 Verbal ratings of cities under each criterion 

Alternatives 
Cultural 

.195 
Family 

.394 
Housing 

.056 
Jobs 
.325 

Transport 
.030 

Total 
Score 

Priorities 
(Normal.) 

Pittsburgh Signific. <100 mi Own>35% Average Manageable .562 .294 

Boston Extreme 301-750 mi Rent>35% Above Avg Abundant .512 .267 

Bethesda Great 101-300 mi Rent<35% Excellent Considerable .650 .339 

Santa Fe Signific. >750 mi Own>35% Average Negligible .191 .100 

Table 9 Priorities of ratings of cities under each criterion 

Alternatives 
Cultural 

.195 
Family

.394 
Housing 

.056 
Jobs 
.325 

Transport 
.030 

Total 
Score 

Priorities 
(Normalized) 

Pittsburgh 0.188 1.000 0.363 0.306 0.396 .562 .294 

Boston 1.000 0.179 0.056 0.664 0.906 .512 .267 

Bethesda 0.411 0.521 0.170 1.000 1.000 .650 .339 

Santa Fe 0.188 0.079 0.363 0.306 0.120 .191 .100 

When the intensities are intangible, like 
excellent, very good and so on down to poor, 
there may be alternatives that fall above or 
below that range because what is excellent for 
one group of alternatives may not be 
applicable to alternatives that are much better 
or much worse than the given alternatives. In 
that case we need to expand the intensities by 
putting them into categories. We may use the 
same names for them but we may have order 
of magnitude categories in which we compare 
the elements in each category or even use the 
same scale but then combine that category with 

an adjacent category using the top or bottom 
rated intensity as a pivot as in the cherry and 
watermelon example. To determine which 
category an alternative should be rated on, we 
first start with any alternative and rate it. From 
then on before rating a new alternative we need 
to compare it with the previous alternative if it 
is better or worse and in doing that we need to 
reason through and insert hypothetical 
alternatives to place it correctly just as we did 
in the cherry-watermelon example. In real life, 
alternatives that naturally occur in a certain 
activity tend to be alike or homogeneous. Even 
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when they are not alike they generally differ by 
one or two categories of intensity on each 
criterion. When they differ by more, they are 
unlikely to be considered as serious contenders 
and are assigned a zero value. The concern is 
usually from the top rated alternatives 
downwards for the intensities of each criterion. 

7. Sanctioning China? An 
Application with Benefits, 
Costs and Risks 
This example was developed in February 

1995 when media were voicing strong opinion 
about whether the US government should 
sanction China about intellectual property 
rights. I and my coauthor Professor Jen Shang 

sent our analysis to Mr. Mickey Kantor, the 
then chief US negotiator before his trip to 
Beijing. Mr. Kantor acknowledged reading our 
article in a very positive way by calling me. 
We are not taking credit that the US did not 
sanction China. But we are quite happy that the 
outcome of the decision was along the lines of 
our recommendation. The model we used, 
shown in Figure 6, is a three part Benefits, 
Costs and Risks model. Note that in this 
example we formed the (marginal) ratio of the 
benefits which are positive, to the costs and 
risks both of which are opposite because we 
must respond to the question, which alternative 
is more costly (risky) for a give criterion.  

Protect rights and maintain high Incentive to 
make and sell products in China  (0.696)

Rule of Law Bring China to 
responsible free-trading 0.206)

Help trade deficit with China 
(0.098)

BENEFITS

Yes 0.729 No 0.271

$ Billion Tariffs make Chinese products
more expensive (0.094)

Retaliation
(0.280)

Being locked out of big infrastructure
buying:  power stations, airports (0.626)

COSTS

Yes 0.787 No 0.213

Long Term negative competition
(0.683)

Effect on human rights and 
other issues (0.200)

Harder to justify China joining WTO
(0.117)

RISKS

Yes 0.597 No 0.403

Result:  
Benefits

Costs x Risks
; YES  

.729

.787 x .597
= 1.55 NO  

.271

.213 x .403
= 3.16

Yes
No

.80

.20
Yes
No

.60

.40
Yes
No

.50

.50

Yes
No

.70

.30
Yes
No

.90

.10
Yes
No

.75

.25

Yes
No

.70

.30
Yes
No

.30

.70
Yes
No

.50

.50

Figure 6 China trade sanction model 
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Figure 7 Sensitivity analysis of the outcome of the China decision  

In later examples, instead of forming ratios 
of absolute numbers, we use subtraction and 
negative priorities (Saaty and Ozdemir 2003b) 
after carefully rating one at a time the highest 
ranked alternative under each of the benefits 
(B), opportunities (O), the costs (C) and the 
risks (R) or as a collective we refer to them as 
(BOCR). The highest ranked alternative is 
often different under each. In this manner 
instead of obtaining marginal (per unit) results 
by forming the ratio we obtain the totals. It is 
clear from this analysis that the US should not 
have taken any action that would be averse to 
cultivating a successful working relation 
between the two great countries for the 
foreseeable future. 

8. Stimulus-Response and the 
Fundamental Scale 
We shall see in Part 2 that a hierarchy is a 

special case of a network whose priorities and 
interactions are represented in a supermatrix W. 
As a result, hierarchic synthesis of priorities is 
a special case of network synthesis of priorities 
(Saaty 2001). The limit priorities of W, limit as 

kof  ,k W→∞  yield its network synthesis. 
Equivalently, because W is column stochastic, 
its network synthesis can be obtained by 
solving the principal eigenvalue problem 

maxwith  1.Ww w λ= =  Invariance of the 
eigenvector makes additive hierarchic 
synthesis necessary to obtain priorities for a 
hierarchy. 

To be able to perceive and sense objects in 
the environment our brains miniaturize them 
within our system of neurons so that we have a 
proportional relationship between what we 
perceive and what is out there. Without 
proportionality we cannot coordinate our 
thinking with our actions with the accuracy 
needed to control the environment. 
Proportionality with respect to a single 
stimulus requires that our response to a 
proportionately amplified or attenuated 
stimulus we receive from a source should be 
proportional to what our response would be to 
the original value of that stimulus. If w(s) is 
our response to a stimulus of magnitude s, then 
the foregoing gives rise to the functional 
equation w(as) = b w(s). This equation can also 
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be obtained as the necessary condition for 
solving the Fredholm equation of the second 
kind: 

max( ) ( ) ( )
b

a
K s,t  w t  dt  =   w sλ∫  

obtained as the continuous generalization of 
the discrete formulation maxAw wλ= for 
deriving priorities where instead of the positive 
reciprocal matrix A in the principal eigenvalue 
problem, we have a positive kernel, K(s,t) > 0, 
with K(s,t) K(t,s) = 1 that is also consistent i.e. 
K(s,t) K(t,u)= K(s,u), for all s, t, and u . The 
solution of this functional equation in the real 
domain is given by  

loglog
log log( )

log

sb
a sw s Ce P

a
 

=  
 

 

where P is a periodic function of period 1 and 
P(0) = 1. One of the simplest such examples 
with log / logu s a= is P(u) = cos (u/2Β) for 
which P(0) = 1. 

The logarithmic law of response to stimuli 
can be obtained as a first order approximation 
to this solution through series expansions of 
the exponential and of the cosine functions as: 

1 2 3( ) ( ) loguv u C e P u C s Cβ−= ≈ +  

log , 0.ab β β≡ − >  The expression on the 
right is known as the Weber-Fechner law of 
logarithmic response log , 0M a s b a= + ≠  to 
a stimulus of magnitude s. This law was 
empirically established and tested in 1860 by 
Gustav Theodor Fechner who used a law 
formulated by Ernest Heinrich Weber 
regarding discrimination between two nearby 
values of a stimulus. We have now shown that 
that Fechner’s version can be derived by 

starting with a functional equation for stimulus 
response.  

The integer-valued scale of response used 
in making paired comparison judgments can be 
derived from the logarithmic response function 
as follows.  The larger the stimulus, the larger 
a change in it is needed for that change to be 
detectable.  The ratio of successive just 
noticeable differences (the well-known “jnd” 
in psychology) is equal to the ratio of their 
corresponding successive stimuli values.  
Proportionality is maintained. Thus, starting 
with a stimulus s0 successive magnitudes of the 
new stimuli take the form: 

0
1 0 0 0 0 0

0
(1 )

s
s s s s s s r

s
∆

= + ∆ = + = +  

2 2
2 1 1 1 0 0(1 ) (1 )s s s s r s r s α= + ∆ = + = + ≡  

M  

1 0 ( 0,1, 2,...)n
n ns s s nα α−= = =  

 

We consider the responses to these stimuli 
to be measured on a ratio scale (b=0). A typical 
response has the form log i

iM a α= , i =1, 
L ,n, or one after another they have the form: 

1 2log , 2 log , , lognM a M a M naα α α= = =L  

We take the ratios 1,/iM M , i = 1,L , n, of 
these responses in which the first is the 
smallest and serves as the unit of comparison, 
thus obtaining the integer values 1, 2, L , n of 
the fundamental scale of the AHP. It appears 
that numbers are intrinsic to our ability to 
make comparisons, and that they were not an 
invention by our primitive ancestors. We must 
be grateful to them for the discovery of the 
symbolism. In a less mathematical vein, we 



Decision Making – The Analytic Hierarchy and Network Processes (AHP/ANP) 

22  JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 13, No. 1, March, 2004 

note that we are able to distinguish ordinally 
between high, medium and low at one level 
and for each of them in a second level below 
that also distinguish between high, medium 
and low giving us nine different categories. We 
assign the value one to (low, low) which is the 
smallest and the value nine to (high, high) 
which is the highest, thus covering the 
spectrum of possibilities between two levels, 
and giving the value nine for the top of the 
paired comparisons scale as compared with the 
lowest value on the scale. Because of increase 
in inconsistency when we compare more than 
about 7 elements, we don’t need to keep in 
mind more than 7 2±  elements. This was first 
conjectured by the psychologist George Miller 
in the 1950’s and explained in the AHP in the 
1970’s (Saaty and Ozdemir 2003a). Finally, we 
note that the scale just derived is attached to 
the importance we assign to judgments. If we 
have an exact measurement such as 2.375 and 
want to use it as it is for our judgment without 
attaching significance to it, we can use its 
entire value without approximation. 

A person may not be schooled in the use of 
numbers and there are many in our world who 
do not, but still have feelings, judgments and 
understanding that enable him or her to make 
accurate comparisons (equal, moderate, strong, 
very strong and extreme and compromises 
between these intensities). Such judgments can 
be applied successfully to compare stimuli that 
are not too disparate but homogeneous in 
magnitude. By homogeneous we mean that 
they fall within specified bounds. Table 1, the 
Fundamental Scale for paired comparisons, 
summarizes the foregoing discussion. 

The idea of using time dependent 

judgments has been examined in detail and 
will not be discussed in this paper (Saaty 
2003). 

9. When Is a Positive 
Reciprocal Matrix 
Consistent? (Saaty 2000a) 
Let A= [aij] be an n-by-n positive reciprocal 

matrix, so all aii =1 and aij =1/aji for all 
i,j=1,L , n. Let w = [wi] be the Perron vector 
of A, let D = diag (w1,L , wn) be the n-by-n 
diagonal matrix whose main diagonal entries 
are the entries of w, and set E / D–1AD = [aij wj 
/wi] = [εij]. Then E is similar to A and is a 
positive reciprocal matrix since εji = ajiwi/wj = 
(aij wj /wi)–1 = 1/εij . Moreover, all the row sums 
of E are equal to the principal eigenvalue of A:  

1

max max

/ [ ] /

/

n
jij ij j i i i

j

i i

a w w Aw w

w w

ε

λ λ
=

= =∑ ∑

= =
. 

The computation 

max
1 1 1 , 1

1 2 2

, 1

( ) ( )

( ) ( ) / 2

n n n n
ij ii ij ji

i j i i j
i j

n
ij ij

i j
i j

n

n n n n n

λ ε ε ε ε

ε ε

= = = =
≠

−

=
≠

= = + +∑ ∑ ∑ ∑

= + + ≥ + − =∑
 (1) 

reveals that max .nλ ≥  Moreover, since 
1/ 2x x+ ≥  for all x > 0, with equality if and 

only if x = 1, we see that max nλ =  if and only 
if all εij = 1, which is equivalent to having all 
aij = wi/ wj. 

The foregoing arguments show that a 
positive reciprocal matrix A has max nλ ≥ , 
with equality if and only if A is consistent. As 
our measure of deviation of A from consistency, 
we choose the consistency index 
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max .
1

n
n

λ
µ

−
≡

−
 

We have seen that 0µ ≥  and 0µ =  if 
and only if A is consistent. These two desirable 
properties explain the term “n” in the 
numerator of µ ; what about the term “n–1” in 
the denominator? Since trace A = n is the sum 
of all the eigenvalues of A, if we denote the 
eigenvalues of A that are different from maxλ  
by 2 1,..., nλ λ − , we see that 

max
2

n
i

i
n λ λ

=
= + ∑ , 

so 

max
2

n
i

i
n λ λ

=
− = ∑ and 

2

1
1

n
i

in
µ λ

=
= − ∑

−
 

is the negative average of the non-principal 
eigenvalues of A.  

It is an easy, but instructive, computation to 
show that max 2λ =  for every 2-by-2 positive 
reciprocal matrix: 

1

1

1

α

α−

 
 
 

1 1

1 1
2

(1 ) (1 )

α α

α α α α− −

+ +   
=   

+ +   
 

Thus, every 2-by-2 positive reciprocal 
matrix is consistent.  

Not every 3-by-3 positive reciprocal matrix 
is consistent, but in this case we are fortunate 
to have again explicit formulas for the 
principal eigenvalue and eigenvector. For 

1
1/ 1
1/ 1/ 1

a b
A a c

b c

 
 =  
  

,  

we have 1
max 1 d dλ −= + + , 1/3( / )d ac b= and 

1

2

3

/(1 )

/ (1 )

1/(1 )

cw bd bd
d
cw c d bd
d

cw bd
d

= + +

= + +

= + +

,        (2) 

Note that max 3λ =  when d = 1 or c = b/a, 
which is true if and only if A is consistent. 

In order to get some feel for what the 
consistency index might be telling us about a 
positive n-by-n reciprocal matrix A, consider 
the following simulation: choose the entries of 
A above the main diagonal at random from the 
17 values {1/9, 1/8,L , 1/2, 1, 2,L , 8, 9}. 
Then fill in the entries of A below the diagonal 
by taking reciprocals. Put ones down the main 
diagonal and compute the consistency index. 
Do this 50,000 times and take the average, 
which we call the random index. Table 4 shows 
the values obtained from one set of such 
simulations, for matrices of size 1, 2,L , 10. 

Since it would be pointless to try to discern 
any priority ranking from a set of random 
comparison judgments, we should probably be 
uncomfortable about proceeding unless the 
consistency index of a pairwise comparison 
matrix is very much smaller than the 
corresponding random index value in Table 10. 
The consistency ratio (C.R.) of a pairwise 
comparison matrix is the ratio of its 
consistency index µ to the corresponding 
random index value in Table 10. 

Table 10 Random index 
n 1 2 3 4 5 6 7 8 9 10 

Random Index 0 0 .52 .89 1.11 1.25 1.35 1.40 1.45 1.49 
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If the C.R. is larger than desired, we do 
three things: 1) Find the most inconsistent 
judgment in the matrix, 2) Determine the range 
of values to which that judgment can be 
changed corresponding to which the 
inconsistency would be improved, 3) Ask the 
decision maker to consider, if he can, changing 
his judgment to a plausible value in that range. 
If he is unwilling, we try with the second most 
inconsistent judgment and so on. If no 
judgment is changed the decision is postponed 
until better understanding of the criteria is 
obtained. Three methods are plausible for 
changing the judgments to improve 
inconsistency. All require theoretical 
investigation of convergence and efficiency. 
The first uses an explicit formula for the partial 
derivatives of the principal eigenvalue with 
respect to the matrix entries.  

For a given positive reciprocal matrix A= 
[aij] and a given pair of distinct indices k > l, 
define A(t)= [aij(t)] by akl(t) ≡ akl + t, alk(t) ≡ 
(alk + t) –1, and aij(t) ≡ aij for all i≠ k, j≠ l , so 
A(0) = A. Let maxλ (t) denote the Perron 
eigenvalue of A(t) for all t in a neighborhood 
of t = 0 that is small enough to ensure that all 
entries of the reciprocal matrix A(t) are 
positive there. Finally, let v = [vi] be the unique 
positive eigenvector of the positive matrix AT 

that is normalized so that vTw = 1. Then a 
classical perturbation formula (Horn and 
Johnson 1985, theorem 6.3.12) tells us that 

T
Tmax

T
0

d ( ) '(0) '(0)
d t

t v A w v A w
t v w

λ

=

= =

2
1 .k l l k
kl

v w v w
a

= −  

We conclude that  

2max
i j ji j i

ij
v w a v w

a
λ∂

= −
∂

 for all i,j=1,L ,n. 

Because we are operating within the set of 
positive reciprocal matrices we have: 

max

jia
λ∂

=
∂

– max

ija
λ∂
∂

for all i and j. 

Thus, to identify an entry of A whose 
adjustment within the class of reciprocal 
matrices would result in the largest rate of 
change in maxλ we should examine the 
n(n–1)/2 values 2{ },i j ji j iv w a v w i j− > and 
select (any) one of largest absolute value 
(Harker 1987). It is significant to note here that 
if one compares more than about seven 
elements in a homogeneous group, the rise in 
inconsistency is generally so small that it is 
then difficult to determine which judgment 
should be changed (Saaty and Ozdemir 2003a). 

10. Nonlinearity and 
Multilinear Forms in the 
AHP 

Hierarchic composition produces sums of 
products of priorities. These define a special 
kind of mathematical function known as a 
multilinear form. It is useful for us to examine 
briefly how these forms that arise here 
naturally, may tell us something useful about 
the real world. This subject is wide open for 
investigation. 

A monomial is a single term that is a 
product of one coefficient and several variables 
each with an exponent indicating a power 
(often restricted to be a non-negative integer) 
of that variable. Examples are 5 2 3 23 , ,x a x y−  
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a− . A polynomial is the sum or difference of 
monomials as 3 7 2 45 2 7x y z xy− + + from 
which we can define a polynomial in one 
variable as 4 22 1.x x x− + +  A polynomial is a 
rational integral algebraic expression with 
nonnegative powers of the variables. The 
coefficients of a polynomial can be real or 
complex. A multinomial is another term for 
polynomial, although one would prefer the 
former to apply to several variables and the 
latter to a single variable. A form is a 
polynomial in several variables in which the 
sum of the powers of the variables in each term 
is equal to that in any other term. A form is 
binary, ternary etc depending on whether it has 
two, three etc. variables. It is linear, quadratic 
etc the sum of the degrees of the variables that 
is the same in each term. For example 

27 3 2xz y yz− + is a ternary quadratic form. A 
multilinear form is a form in which the 
variables are divided into sets so that in each 
term a variable from every set appears to the 
first power. It has the general form  

, , , 1
...

n
ij l i j l

i j l
a x y z

=
∑ L
L

 

with m sets of variables with n variables in 
each set, 1 2 1 2 1 2, , , ; , , , ; , ,n nx x x y y y z zL L  

, nzL  and because it is linear in the variables 
of each set, it is called a multilinear form. 
When m=1, the form 

1

n
i i

i
a x

=
∑  

is known as a linear form. When m=2, the form  

, 1

n
ij i i

i j
a x y

=
∑  

is known as a bilinear form. Any form can be 

obtained from a multilinear form by 
identifying certain of the variables. Conversely, 
transforming any form to a multilinear form is 
carried out by polarization. For example 

2 2
1 1 2 22x x x x+ + can be written as a multilinear 

form 1 1 1 2 2 1 2 2x y x y x y x y+ + +  with 1y  
identified with 1x  and 2y identified with 2x . 
A multilinear form is a particular case of a 
multilinear mapping or operator (not defined 
here) as a result of which one can think of it as 
symmetric, skew symmetric, alternating, 
symmetrized and skew symmetrized forms. Let 
us now turn to hierarchies using more uniform 
notation. 

Hierarchic composition yields multilinear 
forms which are of course nonlinear and have 
the form  

1 2

1
1 2

, ,

p

p

ii i
p

i i
x x x∑

L
L  

The richer the structure of a hierarchy in 
breadth and depth the more complex are the 
derived multilinear forms from it. There seems 
to be a good opportunity to investigate the 
relationship obtained by composition to 
covariant tensors and their algebraic properties. 
More concretely we have the following 
covariant tensor for the priority of the ith 
element in the hth level of the hierarchy. 

1 1

1 2 2 1 1
2 1

, ,
1 2 1

1
, , 1

h

h h h
h

N N
h h
i i i i i i

i i
w w w w i i

−

− − −
−

−

=
= ≡∑

L

L
L  

The composite vector for the entire hth 
level is represented by the vector with 
covariant tensorial components. Similarly, the 
left eigenvector approach to a hierarchy gives 
rise to a vector with contravariant tensor 
components. Tensors, are generalizations of 
scalars (which have no indices), vectors (which 
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have a single index), and matrices or arrays 
(which have two indices) to an arbitrary 
number of indices. They are widely known and 
used in physics and engineering. 

Another interpretation follows the lines of 
polynomial approximation. We see above that 
polynomials in one and in several variables are 
intimately linked to multilinear forms. The 
Weierstrass approximation theorem states 
that every continuous function defined on an 
interval [a,b] can be uniformly approximated 
as closely as desired by a polynomial function. 
It assures us that one can get arbitrarily close 
to any continuous function as the polynomial 
order is increased. Because polynomials are 
the simplest functions, and computers can 
directly evaluate polynomials, this theorem has 
both practical and theoretical relevance. The 
Stone-Weierstrass theorem generalizes the 
Weierstrass approximation theorem in two 
directions: instead of the compact interval [a,b], 
an arbitrary compact Hausdorff space X is 
considered, and instead of the algebra of 
polynomial functions, approximation with 
elements from other subalgebras is 
investigated. Thus we see that the multilinear 
forms generated in the AHP represent or 
converge closely to a continuous function in 
many variables, differentiable or 
non-differentiable, assumed to underlie our 
understanding of a complex decision. In the 
ANP, raising the matrix to infinite powers 
generates a multilinear form that is an infinite 
series of numerical terms that converges to 
some limit. Performing sensitivity analysis 
generates a large number of limit points 
presumed to lie on a function to which the 
multilinear form as a function of its variables 

converges. As a result, the ANP, discussed in 
Part 2, is more likely to provide accurate 
answers about real world decisions than the 
AHP with its truncated relations. 

11. The Analytic Hierarchy 
Process and Resource 
Allocation (Saaty et al. 2003) 

Intangible resources such as quality, care, 
attention, and intelligence are often needed to 
develop a plan, design a system or solve a 
problem. Thus far, resource allocation models 
have not dealt with intangibles directly, but 
rather by assigning them worth in terms of 
such phenomena as time and money. Although 
there is no direct scale of measurement for an 
intangible, it can be measured in relative terms 
together with tangibles. A ratio scale of 
priorities can thus be derived for both. These 
priorities serve as coefficients in an 
optimization framework to derive relative 
amounts of resources to be allocated. For 
intangible resources, because there is no unit of 
measurement, no absolute amount of a 
resource can be specified. However, in the 
presence of tangibles, it becomes possible to 
compute their absolute equivalents because of 
the proportionality inherent in their priorities. 
The coefficients of a mathematical linear 
programming (LP) model can be represented 
with priorities obtained with relative (i.e., 
pairwise comparisons) measurement as shown 
in the previous section. The result is that when 
measurement scales exist, the solution to the 
relative linear programming (RLP) model 
(with coefficients normalized to unity to make 
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them correspond to priorities obtained with 
relative measurement) and the solution to the 
absolute linear programming (LP) model (the 
“usual” model with measurements on physical 
scales are the same to within a multiplicative 
constant. It is then possible to construct LP 
models using solely relative measurement to 
optimize the allocation of intangible resources, 
as follows:  
Traditional LP  ⇔   Relative LP 

Decision Variables: 1( , , )T
nx x x= L  

    1( , , )T
nw w w= L  

Objective Function: j j
j

c x∑ →
| |

j
R j
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c
=
∑

    →  R j j
j

c w∑   

Constraints: ij j i
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It is significant to note that all coefficients 
in the relative formulation are unit free, 
although their relative magnitudes are 
preserved. Thus, the underlying magnitudes 
they represent can be compared in pairs. 

There are three places where intangibles 
can arise in an LP model, the objective 
function and in estimating the left side and the 
right side of the coefficients of the constraints. 
The most common is in the objective function 
wherein the coefficients can be estimated as 
priorities, with the rest of the model formulated 
in the usual way. This presents no practical 
complications since the solution is the same if 
the objective function coefficients are given in 
relative terms, which is tantamount to dividing 
by a constant. For general treatment and 
examples, see (Saaty et al. 2003). 

12. Group Decision Making 
Here we consider two issues in group 

decision making. The first is how to aggregate 
individual judgments, and the second is how to 
construct a group choice from individual 
choices. The reciprocal property plays an 
important role in combining the judgments of 
several individuals to obtain a judgment for a 
group. Judgments must be combined so that 
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the reciprocal of the synthesized judgments 
must be equal to the syntheses of the 
reciprocals of these judgments. It has been 
proved that the geometric mean is the unique 
way to do that. If the individuals are experts, 
they my not wish to combine their judgments 
but only their final outcome from a hierarchy. 
In that case one takes the geometric mean of 
the final outcomes. If the individuals have 
different priorities of importance their 
judgments (final outcomes) are raised to the 
power of their priorities and then the geometric 
mean is formed. 
How to Aggregate Individual Judgments 

Let the function 1( ,..., )nf x x  for 
synthesizing the judgments given by n judges, 
satisfy the  

(i) Separability condition (S): 1( ,..., )nf x x  

1( )... ( )ng x g x= , for all 1,..., nx x  in an interval 
P of positive numbers, where g is a function 
mapping P onto a proper interval J and is a 
continuous, associative and cancellative 
operation. [(S) means that the influences of the 
individual judgments can be separated as 
above.] 

(ii) Unanimity condition (U): ( ,..., )f x x =  
x  for all x in P. [(U) means that if all 
individuals give the same judgment x, that 
judgment should also be the synthesized 
judgment.] 

(iii) Homogeneity condition (H): 

1 1( ,..., ) ( ,..., )n nf ux ux uf x x= where 0u >  and 
,k kx ux  (k=1,2,L ,n) are all in P. [For ratio 

judgments (H) means that if all individuals 
judge a ratio u times as large as another ratio, 
then the synthesized judgment should also be u 
times as large.] 

(iv) Power conditions (Pp): 1( ,..., )p p
nf x x =  

1( ,..., )p
nf x x . [(P2) for example means that if 

the kth individual judges the length of a side of 
a square to be kx , the synthesized judgment 
on the area of that square will be given by the 
square of the synthesized judgment on the 
length of its side.] 

Special case (R=P–1): 

1
1

1 1,..., 1/ ( ,..., )n
n

f f x x
x x

 
= 

 
. 

[(R) is of particular importance in ratio 
judgments. It means that the synthesized value 
of the reciprocal of the individual judgments 
should be the reciprocal of the synthesized 
value of the original judgments.] 

Aczel and Saaty (Saaty 2000b) proved the 
following theorem: 
Theorem The general separable (S) 
synthesizing functions satisfying the unanimity 
(U) and homogeneity (H) conditions are the 
geometric mean and the root-mean-power. If 
moreover the reciprocal property (R) is 
assumed even for a single n-tuple 1( ,..., )nx x of 
the judgments of n individuals, where not all 

kx  are equal, then only the geometric mean 
satisfies all the above conditions.  

In any rational consensus, those who know 
more should, accordingly, influence the 
consensus more strongly than those who are 
less knowledgeable. Some people are clearly 
wiser and more sensible in such matters than 
others, others may be more powerful and their 
opinions should be given appropriately greater 
weight. For such unequal importance of voters 
not all g's in (S) are the same function. In place 
of (S), the weighted separability property (WS) 
is now: 1 1 1( ,..., ) ( )... ( )n n nf x x g x g x=  [(WS) 
implies that not all judging individuals have 
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the same weight when the judgments are 
synthesized and the different influences are 
reflected in the different functions 

1( ,..., )ng g .] 
In this situation, Aczel and Alsina (Saaty 

2000b) proved the following theorem:  
Theorem The general weighted-separable (WS) 
synthesizing functions with the unanimity (U) 
and homogeneity (H) properties are the 
weighted geometric mean 1 2 nf  ( , , ,  ) = x x xK  

n1 2 qq q
n1 2=   x x xK  and the weighted root-mean- 

powers 1 2 n n1 21 2 nf  ( , , ,  ) =   +   +  q q qx x x x x xγ γγ γK K , 
where 1 ... 1nq q+ + = , 0, 1,...,kq k n> = , 

0γ > , but otherwise 1,..., ,nq q γ  are arbitrary 
constants. 

If f also has the reciprocal property (R) and 
for a single set of entries 1( ,..., )nx x of 
judgments of n individuals, where not all kx  
are equal, then only the weighted geometric 
mean applies. We give the following theorem 
which is an explicit statement of the synthesis 
problem that follows from the previous results, 
and applies to the second and third cases of the 
deterministic approach: 
Theorem If (i) (i)

n1 , ..., x x  i=1, L , m are 
rankings of n alternatives by m independent 
judges and if ia  is the importance of judge i 
developed from a hierarchy for evaluating the 
judges, and hence 

1
1

m
i

i
a

=
=∑ ,then i ia a

n1

m m
, ..., x x

i = 1 i = 1

   
   Π Π   
   
   

 

are the combined ranks of the alternatives for 
the m judges. 

The power or priority of judge i is simply a 
replication of the judgment of that judge (as if 
there are as many other judges as indicated by 

his/her power ai), which implies multiplying 
his/her ratio by itself ai times, and the result 
follows.  

The first requires knowledge of the 
functions which the particular alternative 
performs and how well it compares with a 
standard or benchmark. The second requires 
comparison with the other alternatives to 
determine its importance.  
On the Construction of Group Choice from 
Individual Choices  

Given a group of individuals, a set of 
alternatives (with cardinality greater than 2), 
and individual ordinal preferences for the 
alternatives, Arrow proved with his 
Impossibility Theorem that it is impossible to 
derive a rational group choice (construct a 
social choice function that aggregates 
individual preferences) from ordinal 
preferences of the individuals that satisfy the 
following four conditions, i.e., at least one of 
them is violated: 

Decisiveness: the aggregation procedure 
must generally produce a group order. 

Unanimity: if all individuals prefer 
alternative A to alternative B, then the 
aggregation procedure must produce a group 
order indicating that the group prefers A to B. 

Independence of irrelevant alternatives: 
given two sets of alternatives which both 
include A and B, if all individuals prefer A to B 
in both sets, then the aggregation procedure 
must produce a group order indicating that the 
group, given any of the two sets of alternatives, 
prefers A to B. 

No dictator: no single individual 
preferences determine the group order. 

Using the ratio scale approach of the AHP, 



Decision Making – The Analytic Hierarchy and Network Processes (AHP/ANP) 

30  JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 13, No. 1, March, 2004 

it can be shown that because now the 
individual preferences are cardinal rather than 
ordinal, it is possible to derive a rational group 
choice satisfying the above four conditions. It 
is possible because: a) Individual priority 
scales can always be derived from a set of 
pairwise cardinal preference judgments as long 
as they form at least a minimal spanning tree in 
the completely connected graph of the 
elements being compared; and b) The cardinal 
preference judgments associated with group 
choice belong to an absolute scale that 
represents the relative intensity of the group 
preferences (Saaty and Vargas 2003).  

13. Axioms of the AHP (Saaty 

2000b) 
The AHP includes four axioms. Informally, 

they are concerned with the reciprocal relation, 
comparison of homogeneous elements, 
hierarchic and systems dependence, and 
expectations about the validity of the rank and 
value of the outcome and their dependence on 
the structure used and its extension. The 
formalism for introducing the axioms would 
take us far afield in this presentation although 
we recommend examining them very highly to 
the reader by reference to my book on 
Fundamentals of the AHP. 

14. How to Structure a 
Hierarchy - Relationship to 
Automatic Control 

What kinds of hierarchies are there and 
how should they be structured to meet certain 
needs? What is the main purpose of arranging 
goals, attributes, issues, and stakeholders in a 

hierarchy? Most problems arise because we do 
not know the internal dynamics of a system in 
sufficient detail to identify cause-effect 
relationships. If we were able to do so, the 
problem could be reduced to one of social 
engineering, as we would know at what points 
in the system intervention is necessary to bring 
about the desired objective. The crucial 
contribution of the AHP is that it enables us to 
make practical decisions based on a 
“pre-causal” understanding – namely, on our 
feelings and judgments about the relative 
impact of one variable on another (Saaty 
2000b). 

Briefly, when constructing hierarchies one 
must include enough relevant detail to 
represent the problem as thoroughly as 
possible, but not so much as to include the 
whole universe in a small decision. One needs 
to: Consider the environment surrounding the 
problem. Identify the issues or attributes that 
one feels influence and contribute to the 
solution. Identify the participants associated 
with the problem. Arranging the goals, 
attributes, issues, and stakeholders in a 
hierarchy serves three purposes: It provides an 
overall view of the complex relationships 
inherent in the situation; it captures the spread 
of influence from the more important and 
general criteria to the less important ones; and 
it permits the decision maker to assess whether 
he or she is comparing issues of the same order 
of magnitude in weight or impact on the 
solution. 
Two General Structures of Hierarchies 

1) Generic Hierarchy for Forward Planning 
The levels of the hierarchy successively 

descend from the goal down to: 
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− Time Horizons 
− Uncontrollable Environmental Constraints 
− Risk Scenarios 
− Controllable Systemic Constraints 
− Overall Objectives of the Systems 
− Stakeholders 
− Stakeholder Objectives (Separate for each) 
− Stakeholder Policies (Separate for each) 
− Exploratory Scenarios (Outcomes) 
− Composite or Logical Scenario (Out- come) 

Most prediction problems are of this kind. 
Contingency Planning policies must be devised 
to deal with unexpected occurrences and 
exploratory scenarios are included to allow for 
such a possibility. The exploratory scenarios 
are what each stakeholder would pursue if 
alone with no other stakeholders around. 

2) The Backward Planning Hierarchy 
The levels of this hierarchy successively 

descend from the goal of choosing a best 
outcome to: 
− Anticipatory Scenarios 
− Problems and Opportunities 
− Actors and Coalitions 
− Actor Objectives 
− Actor Policies 
− Particular Control Policies of a particular 

actor to Influence the Outcome 
Most decision problems are of this kind. 

Planning involves testing the impact of the 
high priority policies in the bottom level. 
These policies are added to the policies of that 
particular actor in the forward process which 
results in a second forward process hierarchy. 
The iterations are repeated to close the gap 
between the dominant contrast scenarios (or 
composite scenario) of the forward process and 
the anticipatory scenarios of the backward 

process. See my book on planning (Saaty and 
Kearns 1991). 

In a hierarchy or network alternatives can 
be evaluated not simply in terms of the usual 
criteria but also separately in terms of control 
criteria that would expedite and ensure their 
implementation. That way an alternative that 
looks best under “state” criteria may not look 
as good under control criteria and may not 
come out best even if it is the most desired. 

15. Judgments Feelings and 
Measurement 

Because decision making involves 
judgments, preferences, feelings, and risk 
taking, it appears that it belongs in part to meta 
rational thinking. In rational thinking one uses 
logic based on explicit assumptions to derive 
one’s conclusions. In decision making one 
elicits information about comparisons and 
preferences that belong to the domain of 
feelings and emotions.  

A question that puzzles all of us brought up 
in the use of models is that usually a model is 
based on data from measurement that anyone 
can validate on their own. In the AHP we rely 
on the judgment of people. Where does this 
judgment originate, and how can we trust the 
subjective understanding of people to tell us 
something “objective” about the real world? 
We must assume that any understanding 
registers somewhere in our nervous system and 
we carry it with us. In the end we are the ones 
who provide the criteria and ways of 
understanding. At bottom all knowledge is 
subjectively derived. In this regard 
psychologists make the distinction between our 
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cognitive and our affective (feeling) abilities. 
The changes in state of an organism due to the 
dynamic stresses in the psychological situation 
experienced are directly apprehended as 
sensations or perceptions belonging to our 
cognitive ability. The state itself is 
apprehended as feeling (affect), a global effect 
arising from a pattern of visceral impulses that 
is not easily localizable.  

While “thinking” is generally thought to be 
carried out in the neo-cortex of the brain, 
feelings and partly emotions are associated 
with the autonomic (sympathetic and 
parasympathetic) nervous system that in part is 
known to operate independently of the thought 
processes of the brain. There is very little 
conscious control over many activities of the 
autonomic nervous system. It is as if there are 
two persons in each of us. One that looks out at 
the environment to give us information for 
survival of hazards, and another that looks 
inside to keep our system running. The 
sympathetic division, located in the spinal cord 
from its first thoracic to its third lumbar 
segments prepares the body in times of stress 
by dilating the blood vessels in the heart, 
muscles, and other vital organs, speeding the 
heart and blood flow (by stimulating 
production of adrenaline that liberates sugar 
from the liver) and constricting it in the skin. 
The parasympathetic division has two parts 
one originating in the midbrain, pons and 
medulla and consists of four cranial nerves 
mostly opposing sympathetic action as needed, 
and the other division comes from cells in the 
second, third and fourth segments of the sacral 
part of the spinal cord both stimulating parts of 
the body and inhibiting others like constricting 

the bronchi in the lungs. 
Most animals have small brains but have 

effective autonomic systems to run their bodies, 
perhaps better in some ways than we have. Our 
brain looks out to the environment to provide 
data for adjustment and survival. 
Philosophically, decision making must be 
subject to the laws of science but its 
assumptions cannot be stated explicitly 
because of the use of feelings and intuition to 
express preference. Science has not yet learned 
enough about where emotions and feelings fit 
rationally into our system of logical thinking. 

It has been pointed out to this author that 
there is a classification of types or levels of 
consciousness that originated in India which 
shows that truth belongs to different domains 
of existence of which logical thinking is only a 
part and not necessarily the ultimate means of 
discovering ideas and meaning. They are: 1) 
physical (matter and energy in the form of 
solids, liquids and gasses), 2) etheric 
(electromagnetic, subatomic particles), 3) 
emotional (feeling, emotion, desire, 
imagination, personal power), 4) mental 
(intellectual, understanding, beliefs, thoughts, 
knowledge, and cognitive processes), 5) causal 
(personal individuality, the enlivening source 
of life and consciousness), 6) physical to 
causal (the personality as a unit is made of 
several bodies: the mental/intellectual, the 
emotional, the etheric and the physical), 7) the 
different bodies combined, 8) manasic 
(consciousness of a bigger reality beyond the 
physical world), 9) social or religious 
buddhic/christic, (wider consciousness beyond 
individuality and integration with others with 
love and harmony), 10) atmic (identification 
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not with individuals, not with groups, but with 
all pervading life-equanimity and peacefulness 
towards all.) Atmic consciousness is 
characterized by omnipotence and an extreme 
power of will that makes nearly all possible is 
that of pure equanimity with undifferentiated 
awareness - identification, not with 
individuality, not with groups of beings, but 
with all pervading life itself. It is the 
transcendence of both pain and bliss, 
extremely intense peace, 11) monadic (the 
generator of consciousness for all the previous 
levels, the power station from which will, love 
and intelligence are derived), and 12) logoic 
(the universal God consciousness 
encompassing all the beings living on the 
multiple levels mentioned above of which we 
are the atoms.) Decision making, even as we 
try to explain it with logic, belongs to the tenth 
or atmic level of consciousness.  

16. Conclusions 
A reliable decision theory, as any scientific 

theory, should be able to describe and account 
for how people make decisions and how to 
generalize on that as a foundation for 
organizing human thinking in a workable and 
harmonious way with what our instincts and 
feelings tell us. Thus we need to be aware of 
how to present our theories and validate them 
so they can provide a basis for further 
developments in the future. How do we know 
that we have valid answers about the real 
world when we make a decision? After all that 
decision depends on our feelings and 
preferences. Do they survive well and capture 
what happens in the real world?  How long 
should it take to find that out? 

The Analytic Hierarchy Process (AHP) and 
its generalization to dependence and feedback 
the Analytic Network Process (ANP) are our 
conscious analytical digitalization or 
discretization of thoughts in the brain of 
continuous natural processes that go on in our 
intuitive learning systems that are both mental 
thinking processes as well as long standing 
feelings, reflexes, preferences and judgments 
whose origins are tied to our autonomic system 
consisting of sympathetic and parasympathetic 
nervous systems. It is as if we are a form of 
intelligent life that uses the brain to obtain 
information about the global environment, but 
is otherwise self-sufficient to exist in the local 
environment. The AHP/ANP helps us in 
unfolding the complexity that is within us. The 
ANP will show greater depth and more widely 
usable applications of these ideas. 

I know of at least four books in Chinese on 
the AHP. They are: 

Saaty,T.L., The Analytic Hierarchy 
Process-Applications to Resource Allocation, 
Management and Conflict, translated by Shubo 
Xu, Press of Coal Industry, China, 334 pages, 
1989. 

Xu, Shubo, Applied Decision Making 
Methods – The Analytic Hierarchy Process, 
Press of Tianjin University, Tianjin, 1988. 

Zhao, Huan Chen, Shubo Xu and Jinsheng 
He, The Analytic Hierarchy Process-A New 
Method For Decision Making, Science 
Publishers, Beijing, 116 pages,1986.  

Wang Lianfen and Shubo Xu, The Analytic 
Hierarchy Process, People’s University 
Publishers, Beijing, 389 pages. 1989. 
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