Chem 234 Organic Chemistry II Professor Duncan J. Wardrop

Spring 2004

University of Illinois at Chicago

Chapter 21 Ester Enolates

Preparation of β**-Keto Esters**

The hydrogen atoms at the alpha position of a β -keto ester are relatively acidic and can be deprotonated with alkoxide bases to form the corresponding enolate anion

Deprotonation of β-Keto Esters

21.1

The Claisen Condensation

The Claisen Condensation

- β-Keto esters are made by the reaction shown, which is called the Claisen condensation.
- 2. Ethyl esters are typically used, with sodium ethoxide as the base.

The Claisen Condensation - Example 1

The Claisen Condensation - Mechanism Step 1 - Deprotonation

The Claisen Condensation - Mechanism Step 1 - Deprotonation Generates an Ester Enolate

Anion produced is stabilized by electron delocalization; it is the enolate of an ester.

The Claisen Condensation - Mechanism Step 2 - Nucleophilic Addition & Formation of Tetrahedral Intermediate

to completion?

The Claisen Condensation - Mechanism Step 3 - Collapse of Tetrahedral Intermediate, Elimination of Ethoxide & Formation of Product

The Claisen Condensation - Mechanism Step 3 - What About that Small Equilibrium Constant?

- 1. The product at this point is ethyl acetoacetate.
- 2. However, were nothing else to happen, the yield of ethyl acetoacetate would be small because the equilibrium constant for its formation is small.
- 3. Something else does happen. Ethoxide abstracts a proton from the CH_2 group to give a stabilized anion. The equilibrium constant for this reaction is favorable.

The Claisen Condensation - Mechanism Step 4 - Deprotonation of the β-Keto Ester Product

The Claisen Condensation - Mechanism Step 5 - Addition of Acid to Protonate Enolate

Claisen condensations are one-pot, two-step processes:

- 1. Condensation of two esters, under basic conditions.
- 2. Protonation of the β -keto ester enolate generated in the first step.

The Claisen Condensation - Mechanism Step 5 - Protonation of β-Keto Ester Enolate

Reaction involves bond formation between the α carbon atom of one ethyl propionate molecule and the carbonyl carbon of the other. A new C-C bond is formed

21.2 Intramolecular Claisen Condensation: The Dieckmann Reaction

The Dieckmann Reaction - An Intramolecular Claisen Condensation of a 1,*n*-Diester

Mechanism of the Dieckmann Reaction Step 1 - Deprotonation

Mechanism of the Dieckmann Reaction Step 2 - Intramolecular Nucleophilic Addition

Mechanism of the Dieckmann Reaction Steps 2, 3 & 4 - Collapse, Deprotonation & Reprotonation

21.3

Mixed Claisen Condensations

As with mixed aldol condensations, mixed Claisen condensations are best carried out when the reaction mixture contains one compound that can form an enolate and another that cannot.

Esters that Cannot Form Enolates are Good Substrates for the Claisen Condensation

The Mixed Claisen Condensation Reaction - Example

21.4

Acylation of Ketones with Esters

Acylation of Ketones with Esters

Esters that cannot form an enolate can be used to acylate ketone enolates.

Acylation of Ketones with Esters - Example 1

Acylation of Ketones with Esters - Example 2

Acylation of Ketones with Esters - Example 3

21.5

Ketone Synthesis via β-Keto Esters

The β-Keto Ester Synthesis of Ketones - Part 1

The β-Keto Ester Synthesis of Ketones - Part 2

$$\begin{array}{cccc} & O & O \\ & & & \\ R & & \\$$

β-Keto acids decarboxylate readily to give ketones (Section 19.17).

 β -Keto acids are available by hydrolysis of β -keto esters.

The β-Keto Ester Synthesis of Ketones - Part 3

The β-Keto Ester Synthesis of Ketones - Example 1

The β -Keto Ester Synthesis of Ketones - Example 2

The β-Keto Ester Synthesis of Ketones - Example 3

21.6

The Acetoacetic Ester Synthesis

Acetoacetate Esters

Acetoacetic ester is another name for ethyl acetoacetate.

The "acetoacetic ester synthesis" uses acetoacetic ester as a reactant for the preparation of ketones.

Ethyl Acetoacetate is Deprotonated by Sodium Ethoxide

Alkylation of Ethyl Acetoacetate

The anion of ethyl acetoacetate can be alkylated using an alkyl halide (S_N2: primary and secondary alkyl halides work best; tertiary alkyl halides undergo elimination).

Conversion to Ketone

Saponification and acidification convert the alkylated derivative to the corresponding β-keto acid. The β -keto acid then undergoes decarboxylation to form a ketone.

Conversion to Ketone

Saponification and acidification convert the alkylated derivative to the corresponding β-keto acid. The β -keto acid then undergoes decarboxylation to form a ketone.

(60%) CH₃CCH₂CH₂CH₂CH₂CH₂CH₃ 1. NaOH, H₂O 2. H⁺ 3. heat, $-CO_2$ Ö CH₃CCHCOCH₂CH₃ CH₂CH₂CH₂CH₃

 \bigcirc CH₃CCHCOCH₂CH₃ $CH_2CH = CH_2$ 1. NaOCH₂CH₃ 2. CH_3CH_2 \mathbf{O} CH₃CCCOCH₂CH₃ $CH_2CH = CH_2$ CH_3CH_2 (75%)

 $CH_3CCH - CH_2CH = CH_2$ CH₃CH₂ 1. NaOH, H₂O 2. H⁺ 3. heat, -CO₂ CH₃CCCOCH₂CH₃ CH_3CH_2 $CH_2CH=CH_2$

β -Keto esters other than ethyl acetoacetate may be used.

21.7

The Malonic Ester Synthesis

Malonic ester is another name for diethyl malonate.

The "malonic ester synthesis" uses diethyl malonate as a reactant for the preparation of carboxylic acids.

An Analogy

The same procedure by which ethyl acetoacetate is used to prepare ketones converts diethyl malonate to carboxylic acids.

NaOH, H₂O
H⁺
heat, -CO₂

 $CH_{3}CH_{2}OCCHCOCH_{2}CH_{3}$ $CH_{2}CH_{2}CH_{2}CH_{2}CH = CH_{2}$

NaOH, H₂O
H⁺
heat, -CO₂

(61-74%)

OOO || || CH₃CH₂OCCH₂COCH₂CH₃

NaOCH₂CH₃
BrCH₂CH₂CH₂Br

 $\begin{array}{c} O & O \\ | & | \\ CH_3CH_2OCCHCOCH_2CH_3 \\ | \\ CH_2CH_2CH_2Br \end{array}$

This product is not isolated, but cyclizes in the presence of sodium ethoxide.

21.9

Michael Additions of Stabilized Anions

Stabilized Anions

The anions derived by deprotonation of β-keto esters and diethyl malonate are weak bases. Weak bases react with α,β unsaturated carbonyl compounds by conjugate addition.

$\begin{array}{c|c} Example & O & O \\ & \parallel & \parallel \\ CH_3CCH_2CH_2CH_2COH \end{array}$ (42%)

KOH, ethanol-water
H⁺
heat

 $\begin{array}{c} O & O \\ | & | \\ CH_3CH_2OCCHCOCH_2CH_3 \\ | \\ CH_2CH_2CCH_3 \\ | \\ O \end{array}$

21.10 α-Deprotonation of Carbonyl Compounds by Lithium Dialkylamides

Deprotonation of Simple Esters

- Ethyl acetoacetate (pKa ~11) and diethyl malonate (pKa ~13) are completely deprotonated by alkoxide bases.
- Simple esters (such as ethyl acetate) are not completely deprotonated, the enolate reacts with the original ester, and Claisen condensation occurs.
- Are there bases strong enough to completely deprotonate simple esters, giving ester enolates quantitatively?

Lithium diisopropylamide

Lithium dialkylamides are strong bases (just as NaNH₂ is a very strong base). Lithium diisopropylamide is a strong base, but because it is sterically hindered, does not add to carbonyl groups.

Lithium diisopropylamide (LDA)

Lithium diisopropylamide converts simple esters to the corresponding enolate.

Lithium diisopropylamide (LDA)

Enolates generated from esters and LDA can be alkylated. CH₃CH₂CHCOCH₃ CH₂CH₃ CH₃CH₂ (92%) CH₃CH₂CHCOCH₃

Aldol addition of ester enolates

Ester enolates undergo aldol addition to aldehydes and ketones.

1. LiNR₂, THF CH₃COCH₂CH₃ 2. $(CH_3)_2 C = O$ 3. H₃O⁺ ΗQ H₃C-CCH₂COCH₂CH₃ (90%) CH_3

Ketone Enolates

Lithium diisopropylamide converts ketones quantitatively to their enolates.

Information & Suggested Problems

Sample Midterm Exam Posted on Website

Office Hour: Today, 3.30 P.M., SES 4446

Next Week: Tuesday, 3.30 P.M., SES 4446