Chem 234 Organic Chemistry II Professor Duncan J. Wardrop

Spring 2004

University of Illinois at Chicago

20.6 Reactions of Carboxylic Acid Anhydrides

Reactions of Anhydrides

Reactions of Anhydrides

Carboxylic acid anhydrides react with alcohols to give esters:

normally, symmetrical anhydrides are used (both R groups the same) reaction can be carried out in presence of pyridine (a base) or it can be catalyzed by acids Carboxylic acid anhydrides react with alcohols to give esters:

Reactions of Anhydrides- Examples

Reactions of Anhydrides with Amines

Acid anhydrides react with ammonia and amines to give amides:

Reactions of Anhydrides with Amines- Example

Acid anhydrides react with water to give carboxylic acids (carboxylate ion in base):

Acid anhydrides react with water to give carboxylic acids (carboxylate ion in base):

Reactions of Anhydrides with Water - Example

20.7 Sources of Esters

Esters are Commonly Found in Natural Products

3-methylbutyl acetate

also called "isopentyl acetate" and "isoamyl acetate" contributes to characteristic odor of bananas

Esters of Glycerol

R, R', and R" can be the same or different called "triacylglycerols," "glyceryl triesters," or "triglycerides" fats and oils are mixtures of glyceryl triesters

Fat & Oil are Mixtures of Glyceryl Triesters

Tristearin: found in many animal and vegetable fats

Lactones are Cyclic Esters

(Z)-5-Tetradecen-4-olide (sex pheromone of female Japanese beetle)

- 1. Fischer esterification (Sections 15.8 and 19.14)
- 2. from acyl chlorides (Sections 15.8 and 20.4)
- from carboxylic acid anhydrides (Sections 15.8 and 20.6)
- 4. Baeyer-Villiger oxidation of ketones (Section 17.16)

20.9 Reactions of Esters: A Review and a Preview

Reactions of Esters

- 1. with Grignard reagents (Section 14.10)
- 2. reduction with LiAlH₄ (Section 15.3)
- 3. with ammonia and amines (Sections 20.12)
- 4. hydrolysis (Sections 20.10 and 20.11)

20.10 Acid-Catalyzed Ester Hydrolysis

Acid-Catalyzed Hydrolysis of Esters

Mechanism is just the reverse of Fischer esterification

maximize conversion to ester by removing water

maximize ester hydrolysis by having large excess of water equilibrium is closely balanced because carbonyl group of ester and of carboxylic acid are comparably stabilized

Acid-Catalyzed Hydrolysis of Esters - Example

Is the reverse of the mechanism for acidcatalyzed esterification.

Like the mechanism of esterification, it involves two stages:

- formation of tetrahedral intermediate (3 steps)
- 2) dissociation of tetrahedral intermediate (3 steps)

First stage: formation of tetrahedral intermediate

water adds to the carbonyl group of the ester this stage is analogous to the acidcatalyzed addition of water to a ketone

Second stage: cleavage of tetrahedral intermediate

Mechanism of formation of tetrahedral intermediate

carbonyl oxygen is protonated because cation produced is stabilized by electron delocalization (resonance)

Cleavage of tetrahedral intermediate

Key Features of Acid-Catalyzed Hydrolysis

- 1. Activation of carbonyl group by protonation of carbonyl oxygen
- 2. Nucleophilic addition of water to carbonyl group forms tetrahedral intermediate
- 3. Elimination of alcohol from tetrahedral intermediate restores carbonyl group
Investigation of Mechanism via ¹⁸O Labeling Studies

$- \overset{\parallel}{\text{COCH}_2\text{CH}_3} + H_2\text{O}$

H+

- 1. Ethyl benzoate, labeled with ¹⁸O at the carbonyl oxygen, was subjected to acid-catalyzed hydrolysis.
- Ethyl benzoate, recovered before the reaction had gone to completion, had lost its ¹⁸O label.
- 3. This observation is consistent with a tetrahedral intermediate.

COCH₂CH₃ + H₂O

20.11 Ester Hydrolysis in Base: Saponification

Ester Hydrolysis in Aqueous Base

- 1. is called saponification
- 2. is irreversible, because of strong stabilization of carboxylate ion
- if carboxylic acid is desired product, saponification is followed by a separate acidification step (simply a pH adjustment)

Ester Hydrolysis in Aqueous Base - Example 1

Ester Hydrolysis in Aqueous Base - Example 2

Manufacture of Soap

Basic hydrolysis of the glyceryl triesters (from fats and oils) gives salts of long-chain carboxylic acids. These salts are soaps.

CH₃(CH₂)_xCOK

Is the Mechanism B_{AL}^2 or B_{AC}^2 ?

One possibility is an S_N^2 attack by hydroxide on the alkyl group of the ester. Carboxylate is the leaving group.

This mechaism would be designated B_{AL}2:

B (Basic conditions)

AL (Carbonyl-OAlkyl bond breaking in rate-determining step)
2 (Reaction is second order - rate = k[ester][hydroxide]

Is the Mechanism B_{AL}^2 or B_{AC}^2 ?

A second possibility is nucleophilic acyl substitution.

¹⁸O Labeling gives the answer

¹⁸O retained in alcohol, not carboxylate; therefore nucleophilic acyl substitution.

Stereochemistry gives the same answer

alcohol has same configuration at chirality center as ester; therefore, nucleophilic acyl substitution

Does it proceed via a tetrahedral intermediate?

Does nucleophilic acyl substitution proceed in a single step, or is a tetrahedral intermediate involved?

¹⁸O Labeling Studies

HO

$COCH_2CH_3 + H_2O$

Ethyl benzoate, labeled with ¹⁸O at the carbonyl oxygen, was subjected to hydrolysis in base.

Ethyl benzoate, recovered before the reaction had gone to completion, had lost its ¹⁸O label.

This observation is consistent with a tetrahedral intermediate.

¹⁸O Labeling Studies

Mechanism of Ester Hydrolysis in Base

Involves two stages:

- 1) formation of tetrahedral intermediate
- 2) dissociation of tetrahedral intermediate

First stage: formation of tetrahedral intermediate

water adds to the carbonyl group of the ester this stage is analogous to the base-catalyzed addition of water to a ketone

Second stage: cleavage of tetrahedral intermediate

Mechanism of formation of tetrahedral intermediate

Dissociation of tetrahedral intermediate

Key Features of Mechanism

Nucleophilic addition of hydroxide ion to carbonyl group in first step

Tetrahedral intermediate formed in first stage

Hydroxide-induced dissociation of tetrahedral intermediate in second stage

20.11 Reactions of Esters with Ammonia and Amines

Reactions of Esters

Reactions of Esters

Esters react with ammonia and amines to give amides:

20.14 Preparation of Amides

Preparation of Amides

Amides are prepared from amines by acylation with:

acyl chlorides (Table 20.1) anhydrides (Table 20.2) esters (Table 20.5)

Preparation of Amides

Amines do not react with carboxylic acids to give amides. The reaction that occurs is proton-transfer (acid-base).

$$\begin{array}{c} O \\ | \\ \mathsf{RCOH} + \mathsf{R'NH}_2 \end{array} \xrightarrow{O} \mathsf{RCO} + \mathsf{R'NH}_3 \end{array}$$

If no heat-sensitive groups are present, the resulting ammonium carboxylate salts can be converted to amides by heating.

Preparation of Amides

Amines do not react with carboxylic acids to give amides. The reaction that occurs is proton-transfer (acid-base).

(80-84%)

20.15 Lactams

Lactams

Lactams are cyclic amides. Some are industrial chemicals, others occur naturally.

ε-Caprolactam*: used to prepare a type of nylon

*Caproic acid is the common name for hexanoic acid.
Lactams

Lactams are cyclic amides. Some are industrial chemicals, others occur naturally.

Penicillin G: a β-lactam antibiotic

20.16 Imides

Imides

Imides have 2 acyl groups attached to the nitrogen.

The most common examples are cyclic imides.

Succinimide

Phthalimide

Preparation of Imides

Cyclic imides are prepared by heating the ammonium salts of dicarboxylic acids.

20.17 Hydrolysis of Amides

Hydrolysis of Amides

Hydrolysis of amides is irreversible. In acid solution the amine product is protonated to give an ammonium salt.

 $\begin{array}{c} O \\ | \\ RCNHR' + H_2O + H^+ \longrightarrow RCOH + R'NH_3 \end{array}$

Hydrolysis of Amides

In basic solution the carboxylic acid product is deprotonated to give a carboxylate ion.

Example: Acid Hydrolysis

Example: Basic Hydrolysis

Mechanism of Acid-Catalyzed Amide Hydrolysis

Acid-catalyzed amide hydrolysis proceeds via the customary two stages:

- 1) formation of tetrahedral intermediate
- 2) dissociation of tetrahedral intermediate

First stage: formation of tetrahedral intermediate

water adds to the carbonyl group of the amide this stage is analogous to the acidcatalyzed addition of water to a ketone

Second stage: cleavage of tetrahedral intermediate

Mechanism of formation of tetrahedral intermediate

carbonyl oxygen is protonated because cation produced is stabilized by electron delocalization (resonance)

Cleavage of tetrahedral intermediate

Mechanism of Amide Hydrolysis in Base

Involves two stages:

- 1) formation of tetrahedral intermediate
- 2) dissociation of tetrahedral intermediate

First stage: formation of tetrahedral intermediate

water adds to the carbonyl group of the amide this stage is analogous to the base-catalyzed addition of water to a ketone

Second stage: cleavage of tetrahedral intermediate

Mechanism of formation of tetrahedral intermediate

Dissociation of tetrahedral intermediate

20.18 Preparation of Nitriles

Preparation of Nitriles

Nitriles are prepared by:

nucleophilic substitution by cyanide on alkyl halides (Sections 8.1 and 8.13) cyanohydrin formation (Section 17.7)

dehydration of amides

KCN H⁺

(75%)

Preparation of Nitriles

By dehydration of amides uses the reagent P_4O_{10} (often written as P_2O_5) $(CH_3)_2CHCNH_2 \xrightarrow{P_4O_{10}}{200^{\circ}C} (CH_3)_2CHC \equiv N$

(69-86%)

20.19 Hydrolysis of Nitriles

Hydrolysis of Nitriles

Hydrolysis of nitriles resembles the hydrolysis of amides. The reaction is irreversible. Ammonia is produced and is protonated to ammonium ion in acid solution.

In basic solution the carboxylic acid product is deprotonated to give a carboxylate ion.

Example: Basic Hydrolysis 1. KOH, H₂O, heat CH₃(CH₂)₉CN CH₃(CH₂)₉COH 2. H+ (80%)

Hydrolysis of nitriles proceeds via the corresponding amide.

We already know the mechanism of amide hydrolysis.

Therefore, all we need to do is to see how amides are formed from nitriles under the conditions of hydrolysis.

The mechanism of amide formation is analogous to that of conversion of alkynes to ketones.

It begins with the addition of water across the carbon-nitrogen triple bond.

The product of this addition is the nitrogen analog of an enol. It is transformed to an amide under the reaction conditions.

Step 1

20.20 Addition of Grignard Reagents to Nitriles

Grignard reagents add to carbon-nitrogen triple bonds in the same way that they add to carbonoxygen double bonds.

The product of the reaction is an imine.

Information & Suggested Problems

Sample Available Posted on Website

Suggested Problems: 20.29-20.38

Office Hour: Thursday, 3.30 P.M., SES 4446