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Basics of image classification

Image classification example

Problem — given two classes of images:
@ class 1: desert,
@ class 2: beach,

and also a set of 9 images taken from each class, develop a program able
to classify a new, and unseen image, into one of those two classes.

@ Object: image
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Basics of image classification

Image classification example

o Feature: set of values extracted from images that can be used to
measure the (dis)similarity between images Any suggestion?

o Requantize the image to obtain only 64 colours per image, use the two

most frequent colours as features!
e Each image is represented by 2 values: 2D feature space.
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Basics of image clas ation

Image classification example
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Basics of image classification

Image classification example

e Classifier: a model build using labeled examples (images for which

the classes are known). This model must be able to predict the class
of a new image. Any suggestion?

e To find a partition of the space, using the data distribution.
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Basics of image classification

Image classification example

@ Examples used to build the classifier : training set.
@ Training data is seldom linearly separable
@ Therefore there is a training error
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Basics of image classification

Image classification example

@ The model, or classifier, can then be used to predict/infer the class of
a new example.
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Basics of image classification

Image classification example

e Now we want to test, for future data (not used in training), the
classifier error rate (or alternatively, its accuracy)

@ The examples used in this stage is known as test set.

T
16 testing objects A A A |
60 5 misclassified, a A
accuracy = 68,7%
A A o

Color 2

A
° . I:B)each
ok e e ° esert| |
0 10 20 30 40 50 60
Color 1

Moacir Ponti (ICMC-USP) Convolutional Neural Networks 2017



Basics of image classification

Terminology

Class: label/category, Q = {w1, w2, ...,wc}

Dataset: X = {x1,x2,...,xy}, for x; € RM

x; € RM example (object) in the feature space: the feature vector
I(xi) = yi € 2 labels assigned to the each example

matrix N examples x M features:

X1 X122 0 XiMm /(Xl) =N
X: X: X [(x2) =

X — 2.1 2.2 2.M labels = Y = ( 2) Y2
XN1 O XN2 ccc XNM I(xn) = yn
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Image classification method that beats humans
Agenda
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Image classification method that beats humans

Introduction

Recent history that tries to solve the problem of image classification:
@ Color, shape and texture descriptors (1970-2000)
o SIFT (1999)
@ Histogram of Gradients (2005)
e Spatial Pyramid Matching (2006),
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Image classification method that beats humans
Pipeline

@ Descriptor grid: HoG, LBP, SIFT, SURF
@ Fisher Vectors

© Spatial Pyramid Matching

Q@ Classifier
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Image classification method that beats humans

Image Net/ Large Scale Visual Recognition Challenge

ImageNet: 22000 categories, 14 million images
ImageNet Challenge: ~ 1.4 million images, 1000 classes.
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Image classification method that beats humans

Architectures and number of layers

AlexNet (9) GoogleNet (22) VGG (16/19) ResNet (34+)
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CNNs were not invented in 2012...

Fukushima's Neocognitron (1989)

110
7x7x22 TxIx30 4 a6
1x11x8 11x11x38 7x7x32

19x19x12

LeCun's LeNet (1998)

C3: f. maps 16@10x10
INPUT & soaiure maps; S4:1. maps 16@5x5
S22 = $2: {. maps
6@14x14

| Full conrection Gaussian connections
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Neural networks Linear function, loss function, optimization

A linear classifier

weight
matrix 00

|
f(w,x)= [l x + b

= scores for possible classes of x
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Neural networks Linear function, loss function, optimization

Linear classifier for image classification

@ Input: image (with N x M x 3 numbers) vectorized into column x
o Classes: cat, turtle, owl
@ OQutput: class scores

= x = [1,73,227,82)

f(x, W)=s — 3 numbers with class scores

Wx 4+ b
0.1 —-025 0.1 25 713 —2.0 —337.3
0 0.5 0.2 —-0.6 | x 997 + 1.7 = —38.6
2 0.8 1.8 -0.1 82 —-0.5 460.30
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Neural networks Linear function, loss function, optimization

Linear classifier for image classification

cat -337.3 380.3 8.6
owl 460.3 160.3 26.3
turtle 38.6 17.6 21.8

We need:
@ a loss function that quantifies undesired scenarios in the training set
@ an optimization algorithm to find W so that the loss function is
minimized!
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Neural networks Linear function, loss function, optimization

Linear classifier for image classification

@ We want to optimize some function to produce the best classifier
@ This function is often called loss function,

Let (X, Y) be the training set: X are the features, Y are the class labels,
and f(.) a classifier that maps any value in X into a class:

&FQ
LEW, ) = (V)] — B ) 1)
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Neural networks Linear function, loss function, optimization

A linear classifier we would like

-
-

4

turtle classifier,

.

owl classifier

-

~
cat classifier “¥

LIRS
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Neural networks Linear function, loss function, optimization

Minimizing the loss function

Use the slope of the loss function over the space of parameters!
For each dimension J:

df(x) . f(x+9)—f(x)
= lim
dx 6—0 4]
de(f(w;,x;)) .. f(wj+6,%;) — f(w,x)
— =" = |im
dw; 60 0

We have multiple dimensions, therefore a gradient (vector of derivatives).

We may use:
© Numerical gradient: approximate
@ Analytic gradient: exact

Gradient descent — search for the valley of the function, moving in the
direction of the negative gradient.
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Neural networks Linear function, loss function, optimization

Gradient descent

Changes in a parameter affects the loss (ideal example)

12

10

Squared Error Loss
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Neural networks Linear function, loss function, optimization

Gradient descent

w w; + 9
[ 0.1, T [ 0.1+0.001, T
—0.25, —0.25,
0.1, 0.1,
2.5, 2.5,
0, 0,
| —0.1 | i -0.1 i

C(F(W)) =2.31298 ¢ (F(W')) = 2.31201
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Neural networks Linear function, loss function, optimization

Gradient descent

w w; + 9
[ 0.1, T [ 0.1+0.001, T
—0.25, —0.25,
0.1, 0.1,
2.5, 2.5,
0, 0,
| —0.1 | i -0.1 i

C(F(W)) =2.31298 ¢ (F(W')) = 2.31201
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Neural networks Linear function, loss function, optimization

Gradient descent

w w; + 9
[ 0.1, T I 0.1, i
—0.25, —0.25 4 0.001,
0.1, 0.1,
2.5, 2.5,
0, 0,
| —0.1 | i -0.1 i

C(F(W)) =2.31298  ¢(f(W')) = 2.31298
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Neural networks Linear function, loss function, optimization

Gradient descent

w wi + 9
[ 0.1, T I 0.1, T
—0.25, —0.25,
0.1, 0.1+ 0.001,
2.5, 2.5,
0, 0,
| 0.1 | | 01

C(F(W)) =2.31208  ¢(f(W1)) = 2.31459
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Neural networks Linear function, loss function, optimization

Gradient descent

w w; + 9
[ 0.1, T [ 0.1, T
—0.25, —0.25,
0.1, 0.1,
2.5, 2.5,
0, 0,
| —0.1 | | —0.1 |

C(F(W)) =2.31298 ¢ (F(W')) = 2.08720
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Neural networks Linear function, loss function, optimization

Regularization

regularization

N |
Z (xiry i, W)+ (ARG
N
Vwl(W Z wli(xi,y + i, W) + AVwR(W)

Regularization will help the model to keep it simple. Possible methods
o L1: R(W) =733 W,

@ others (dropout, batch normalization)
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Linear function, loss function, optimization
Stochastic Gradient Descent (SGD)

It is hard to compute the gradient, when N is large.

SGD:
Approximate the sum using a minibatch (random sample) of instances:

something between 32 and 512.
Because it uses only a fraction of the data:

o fast
@ often gives bad estimates on each iteration, needing more iterations
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Linear function, loss function, optimization
Stochastic Gradient Descent (SGD)

Naive approach (« is the learning rate):

repeat until convergence (or a fixed number of iterations) {
sample a minibatch of examples
for each w(i) {
tmp(i) = w(i) - alpha (d / d theta(i)) 1(theta)
}
for each w(i) {
w(i) = tmp(di)
}
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NEEEAWVIIES  Simple Neural Network

Neuron

@ input: 14 values

@ output: 1 value

@ each connection associated with a weight w (connection strength)
@ often there is a bias value b (intercept)

@ to learn is to adapt the parameters: weights w and b

e function f(.) is called activation function (transforms output)

net = ijklj i+ b,

x,=f,(net,)
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NEEEAWVIIES  Simple Neural Network

Neuron

@ input: 14 values

@ output 1 value

@ each connection associated with a weight w (connection strength)
e often there is a bias value b

@ to learn is to adapt the parameters: weights w and b

netkzzjwkvj lj+bk

x,=f (net,)
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Some activation functions

Sigmoid Hiperbolic Tangent
= 1+e x = tanh(x
ReLU Leaky ReLU
= max(0, x) f(x) = max(0.1x, x)
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S ] et
Backpropagation

@ Algorithm that recursively apply chain rule to compute weight
adaptation for all parameters.

@ Forward: compute result of the operation in some input over all
neurons, up to the loss function

e Backward: apply chain rule to compute the gradient of the loss

function, propagating through all layers of the network, in a graph
structure
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sl alCs
Simple NN with two layers

The linear classifier was defined as f(W,x) = Wx

A two-layer neural network could be seen as: f (W, max(0, Wix))
@ input: image 32 x 32 x 3
@ hidden layer: 256 neurons

@ output: vector with 3 scores
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sl alCs
Simple NN with two layers

1 [
w2
2x256 256x3
X

h o

256
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Convolutional Neural Networks
Agenda
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Architecture LeNet

C3: f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5
INPUT 6@28x28 2

el 2.1 maps CS:1ayer Fe: jayer OUTPUT
Lol 84 10

s = =

|
‘ Full conAecﬁon Gaussian connections

& : ing c i st Full

New terminology:
e Convolutions / convolutional layer
@ Subsampling / pooling
@ Feature maps

@ Full connection
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Convolutional Neural Networks

Convolutional layer

Input (N x M x L) eg 32x32x3

Filter (neuron) w with P x Q x D, e.g. 5 x5 x 3 (keeps depth)

@ Each neuron/filter performs a convolution with the input image

Centred at a specific pixel, we have, mathematically

wix+ b
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Convolutional Neural Networks

Convolutional layer: input x filter x stride

The convolutional layer must take into account
@ input size
o filter size

@ convolution stride

An input with size N; x N, filter size P x P and stride s will produce an
output with size:

No= M =P) Ly
S
Examples:
e (7-3)/1+1=5
0 (7-3)2+1=3
e (7—3)/3+1=2.3333
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Convolutional Neural Networks

Convolutional layer

@ Feature maps are stacked images generated after convolution with
filters followed by an activation function (e.g. RelLU)

01|

L convolution layer
?\ Py 10 filters of 5 x 5 x 3 02

(32 x 32 x 3)

(28 x 28 x 10)
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Convolutional Neural Networks

Convolutional layer: zero padding

In practice, zero padding is used to avoid losing borders. Example:
@ input size: 10 x 10
o filter size: 5 x5
@ convolution stride: 1
@ zero padding: 1
@ output: 10 x 10

General rule: zero padding size to preserve image size: (P —1)/2
Example: 32 x 32 x 3 input with P =5, s = 1 and zero padding z =2
Output size: (N;+(2-2z)—P)/s+1=(32+(2-2)—-5)/1+1=32
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Convolutional Neural Networks

Convolutional layer: number of parameters

Parameters in a convolutional layer is [(P x P x d) + 1] x K:
o filter weights: P x P x d , d is given by input depth
@ number of filters/neurons: K (each processes input in a different way)
@ +1 is the bias term

Example, with an image input 32 x 32 x 3:
@ Conv Layer 1: P=5, K =38
e Conv Layer2: P=5, k=16
e Conv Layer3: P=1, k=232
@ # parameters Conv layer 1: [(5 x 5 x 3) + 1] x 8 = 608
@ # parameters Conv layer 2: [(5 x 5 x 8) 4 1] x 16 = 3216
e # parameters Conv layer 3: [(1 x 1 x 16) + 1] x 32 = 544
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Convolutional Neural Networks

Convolutional layer: pooling

Operates over each feature map, to make the data smaller
Example: max pooling with downsampling factor 2 and stride 2.

S

32x32x10
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Convolutional Neural Networks

Convolutional layer: convolution + activation + pooling

o C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 2

32x32 S2: f. maps C5: layer ¢ ayer  OUTPUT
12 84 10

el = NG

‘ Full conAecﬂon Gaussian connections
C i ing G i St [ Full connection

@ Convolution: as seen before
@ Activation: RelLU

@ Pooling: maxpooling
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Convolutional Neural Networks

Fully connected layer + Output layer

ature maps
58

NPU 28

32x32
a2 Ve Fe:layer OUTPUT
84 10
B e
= —-p.
Y N L —_—
] - : .
Full connection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fully connected (FC) layer:
o FC layers work as in a regular Multilayer Perceptron

@ A given neuron operates over all values of previous layer

Output layer:

@ each neuron represents a class of the problem

Moacir Ponti (ICMC-USP) Convolutional Neural Networks 2017

48/1



Convolutional Neural Networks

Visualization

figs/single_layer.png
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Convolutional Neural Networks Current Architectures
Agenda
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Current Architectures
AlexNet (Krizhevsky, 2012)

60 million parameters.

input 224 x 224

convl: K = 96 filters with 11 x 11 x 3, stride 4,
conv2: K = 256 filters with 5 x 5 x 48,

conv3: K = 384 filters with 3 x 3 x 256,

convd: K = 384 filters with 3 x 3 x 192,

convh: K = 256 filters with 3 x 3 x 192,

o fcl, fc2: K = 4096.

27
13 13 13
,\:_ - s\ -
// by Ej = 13 P\ 13 - 13
3 A~
384 384 256
Max
256 "
Max Max pooling ~ 40°
Stride\| o | POling pooling
of 4
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Current Architectures
VGG 19 (Simonyan, 2014)

o +layers, —filter size = less parameters
@ input 224 x 224,

o filters: all 3 x 3,

e conv 1-2: K = 64 + maxpool

@ conv 3-4: K = 128 + maxpool

@ conv 5-6-7-8: K = 256 + maxpool

@ conv 9-10-11-12: K = 512 + maxpool
@ conv 13-14-15-16: K = 512 + maxpool
o fcl, fc2: K = 4096

3x3 conv, 64
3x3 conv, 256
3)3 conv, 256
3x3 conv, 256
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

o
51
12}
>
g
s
g
R
@

3x3 conv, 512
3x3 conv, 512

3x3 conv, 64, pool/2
3x3 conv, 512

3x3 conv, 128, pool/2
3x3 conv, 256, pool/2
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ST T
GoogleNet (Szegedy, 2014)

22 layers

Starts with two convolutional layers

Inception layer (“filter bank”):
o filters 1 x 1,3 x 3,5 x5 + max pooling 3 x 3;
e reduce dimensionality using 1 x 1 filters.
e 3 classifiers in different parts

Blue = convolution,

Red = pooling,

Yellow = Softmax loss fully connected layers
Green = normalization or concatenation

Inception

e
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Convolutional Neural Networks Current Architectures

GoogleNet: inception module

Filter
concatenation

7

3x3 convolutions 5x5 convolutions 1x1 convelutions

+

1x1 convolutions [} L)

ﬂtmns 1x1 convolutions 3%3 max pooling

Previous layer

@ 1 x 1 convolution reduces the depth of previous layers by half
e this is needed to reduce complexity (e.g. from 256 to 128 d)

@ concatenates 3 filters plus an extra max pooling filter (because).
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Current Architectures
Inception modules (V2 and V3)

multiple 3 x 3 convs. flattened conv. decrease size

Filter Concat

Filter Concat

Filter Concat

3x3
stride 2

3x3
stride 1

3x3
stride 2

Pool
stride 2
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Current Architectures

VGG19 vs “VGG34" vs ResNet34

Convolutional Neural Networks
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Current Architectures
Residual Network — ResNet (He et al, 2015)

Reduces number of filters, increases number of layers (34-1000).
Residual architecture: add identity before activation of next layer.

increase
dimensionality
residual sum (zero padding)

R

SQ
2’138
3 3

@

image

[raenen ]

pool, /2

roe

i
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(G NWVTECLEIRNETTEI M AWIEI  Current Architectures

Comparison

152 layers .

\ 16.4
L 11.7
| 22 layers [ 19 Iavers I
\ 6.7

ﬁ I_ I 8 layers H 8 layers ( shallow |

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 umﬁmusvm )
ResNet GoogleNet VGG AlexNet

Thanks to Qingping Shan www.qingpingshan.com
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www.qingpingshan.com

(G NWVTECLEIRNETTEI M AWIEI  Current Architectures
Xception

Xception
input (J) separable conv2d (J)

output (K)

=
|
e

convolution with 1x1 convolutions
1to 1 connections from J to K maps
J to J maps
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Convolutional Neural Networks Current Architectures

Xception

Entry flow

Middle flow

Exit flow

299x299x3 images

19x19x728 feature maps

Conv 32, 3x3, stride=2x2
]

19x19x728 feature maps

SeparableConv 728, 3x3

[ReLU [ReLu |
bleC:

[Conv 64, 3x3 | 128; 3x3

[ReLU | [[ReLu

SeparableConv 128, 3x3

[SeparableConv 728, 3x3 |

ReLU
SeparableConv_1024, 3x3

|Cnnv 1x1 |
L d 2

Conv 1x1
stride=2x2

ReLU
SeparableConv 128, 3x3

MaxPooling 3x3, stride=2x2

SeparableConv 256, 3x3

Conv 1x1
stride=2x2

ReLU
SeparableConv 256, 3x3

Conv 1x1
stride=2x2

MaxPooling 3x3, stride=2x2

SeparableConv 728, 3x3

SeparableConv 728, 3x3

MaxPooling 3x3, stride=2x2

19x19x728 feature maps

19x19x728 feature maps

Repeated 8 times

Moacir Ponti (ICMC-USP)

MaxPooling 3x3, stride=2x2

SeparableConv_1536, 3x3)

SeparableConv 2048, 3x3

GlobalAveragePooling

2048-dimensional vectors

Optional fully-connected
layex(s

Logistic regression

Convolutional Neural Networks 2017
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(DTG EIRNETTEIRNEWIIEM  Guidelines for training
Agenda
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(G HWVTEL E{RNETTEI R SAWIEH  Guidelines for training
Tricks

Batch |

@ Mini-batch: in order to make it easier to process, on SGD use several
images at the same time,

@ Mini-batch size: 128 or 256, if not enough memory, 64 or 32,

@ Batch normalization: when using ReLU, normalize the batch.

Convergence and training set

@ Learning rate: in SGD apply a decaying learning rate, a fixed
momentum,

@ Clean data: cleaniness of the data is very important,

e Data augmentation: generate new images by perturbation of
existing ones,

@ Loss, validation and training error: plot values for each epoch.
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Guidelines for new data

Classification (finetuning)

@ Data similar to ImageNet: fix all Conv Layers, train FC layers

fc, 4096
v

fc, 4096
v

fc, classes

f»f+;+}+{+{+{+5+;+;*;»S§C+§+;+s+_

@ Data not similar to ImageNet: fix lower Conv Layers, train others

S E E T T

o
a
2|
8
2
&

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
fc, 4096
v
fc, 4096
v
fc, classes
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Guidelines for new data

Feature extraction for image classification and retrieval

@ Perform forward, get activation values of higher Conv and/or FC layers

@ Apply some dimensionality reduction: e.g. PCA, Product
Quantization, etc.

@ Use external classifier: e.g. SVM, k-NN, etc.

3x3 conv, 64
3x3 conv, 64,
3x3 conv, 128
3x3 conv, 128,
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256,
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

€| 3x3 cony, 512,

l

feature maps
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