Image Restoration SCC0251/5830 – Image Processing

Moacir A. Ponti

ICMC/USP — São Carlos, SP, Brazil

2020

Moacir Ponti (ICMC-USP)

Image Restoration

> 三 つへで
2020 1/65

◆□▶ ◆□▶ ◆□▶ ◆□▶

Agenda

Introduction

Noise

- Sources and models of noise
- Noise generation
- Noise reduction
- Bilateral filtering

) Blur

- Degradation functions
- Inverse and pseudo-inverse filtering
- Least squares filtering

- 4 ∃ ▶

Agenda

Introduction

Noise

- Sources and models of noise
- Noise generation
- Noise reduction
- Bilateral filtering

Blur

- Degradation functions
- Inverse and pseudo-inverse filtering
- Least squares filtering

4 ∃ > < ∃ >

Obtaining better images

Problem — to improve the visual quality of the images

 $\bullet \ {\rm Enhancement} \times {\rm Restoration} \\$

イロト イポト イヨト イヨト

Obtaining better images

Problem — to improve the visual quality of the images

• Enhancement \times Restoration

- <u>Enhancement</u>: subjective method based on operations that supposedly improve image quality
- <u>Restoration</u>: objective method based on prior knowledge about the image degradation model

イロト イポト イヨト イヨト 二日

Degradation: blur

Moacir Ponti (ICMC-USP)

E 5 / 65 2020

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

Degradation: motion blur

Moacir Ponti (ICMC-USP)

Image Restoration

э 6/65 2020

DQC

◆□▶ ◆□▶ ◆□▶ ◆□▶

Degradation: noise

Moacir Ponti (ICMC–USP)

2020 7/65

990

- 2

Degradation: blur and noise

Moacir Ponti (ICMC-USP)

E 2020 8/65

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

$g(\mathbf{x}) = \mathcal{N} \{ f(\mathbf{x}) * h(\mathbf{x}) \}$

• g — observed (degraded) image

- f ideal or original image
- * convolution
- *h* degrading function
- $\mathcal{N}()$ noise generation process

When the nature of the noise is "additive"

$$g(\mathbf{x}) = f(\mathbf{x}) * h(\mathbf{x}) + n(\mathbf{x})$$

- g observed (degraded) image
- f ideal or original image
- * convolution
- *h* degrading function
- *n* additive noise function

Moacir Ponti (ICMC-USP)

■ ► ■ つへで 2020 10/65

This equation tries to capture the idea of an imaging system

• the image is capture via a system: microscope, telescope, camera lens $-f(\mathbf{x}) * h(\mathbf{x}).$

イロト イポト イヨト イヨト

This equation tries to capture the idea of an imaging system

- the image is capture via a system: microscope, telescope, camera lens
 f(x) * h(x).
- 2 the electronic acquisition of the sensor generates additive noise $[f(\mathbf{x}) * h(\mathbf{x})] + n(\mathbf{x})$.

Restoration algorithms aim to achieve a restored image $\hat{f}(x)$ that is as similar as possible to the original/ideal image f(x).

イロト イポト イヨト イヨト 二日

This equation tries to capture the idea of an imaging system

- the image is capture via a system: microscope, telescope, camera lens
 f(x) * h(x).
- 2 the electronic acquisition of the sensor generates additive noise $[f(\mathbf{x}) * h(\mathbf{x})] + n(\mathbf{x})$.

Restoration algorithms aim to achieve a restored image $\hat{f}(x)$ that is as similar as possible to the original/ideal image f(x).

• In order to to that, we use knowledge about the *point spread function* and *noise*.

イロト イポト イヨト イヨト 二日

Sources of noise

Generally, the source defines the noise characteristic. Most images has noise that is accumulated through several acquisition steps

- Photo counting
- Thermal
- Quantisation
- Transmission/display

∃ ► < ∃ ►</p>

2020

13 / 65

Sources of noise — photon counting

- **Photon counting**: light detection via a sensor is a statistical process, well modeled by a Poisson distribution.
- The precision of the measured signal is proportional to the mean of the signal (the amount of photons).

- **Photon counting**: light detection via a sensor is a statistical process, well modeled by a Poisson distribution.
- The precision of the measured signal is proportional to the mean of the signal (the amount of photons).
- The amount of noise can be approximated by the squared root of the number of photons.

- That is why two cameras with the same pixel quantities but different sensor sizes can result in different images.
- Below two images from the same maker, number of pixels, ISO parameter, aperture and shutter speed, but different sensors.

thanks to Roger Clark

http://www.clarkvision.com/articles/telephoto_reach/

▲口 と ▲御 と ▲ 臣 と ▲ 臣 と 二臣 -

Moacir Ponti (ICMC-USP)

Image Restoration

2020 15 / 65

• When imaging under extreme focal distances (e.g. small objects imaged at close distance / large objects imaged from far away):

Noise

• Smaller pixels allow to capture better fine details,

• When imaging under extreme focal distances (e.g. small objects imaged at close distance / large objects imaged from far away):

Noise

- Smaller pixels allow to capture better fine details,
- Each pixel will have a lower amount of photons.
- Therefore, a sharper image, but still

• When imaging under extreme focal distances (e.g. small objects imaged at close distance / large objects imaged from far away):

Noise

- Smaller pixels allow to capture better fine details,
- Each pixel will have a lower amount of photons.
- Therefore, a sharper image, but still noisier.

• When imaging under extreme focal distances (e.g. small objects imaged at close distance / large objects imaged from far away):

Noise

- Smaller pixels allow to capture better fine details,
- Each pixel will have a lower amount of photons.
- Therefore, a sharper image, but still noisier.
- Smaller pixels allow to observe more details, paying the cost of a lower signal-to-noise ratio per pixel.

thanks to Roger Clark http://www.clarkvision.com/articles/telephoto_reach/.

Moacir Ponti (ICMC-USP)

Image Restoration

2020 17 / 65

Sac

- Sparse images, with low exposure time, has noise characterised by Poisson distribution. Examples are:
 - Astronomic images
 - Microscopy images

- Sparse images, with low exposure time, has noise characterised by Poisson distribution. Examples are:
 - Astronomic images
 - Microscopy images
- Noise is signal dependent (correlated).

A B F A B F

- Sparse images, with low exposure time, has noise characterised by Poisson distribution. Examples are:
 - Astronomic images
 - Microscopy images
- Noise is signal dependent (correlated).
- Its image formation is given by $g(\mathbf{x}) = \mathcal{P} \{ f(\mathbf{x}) * h(\mathbf{x}) \}$

- Sparse images, with low exposure time, has noise characterised by Poisson distribution. Examples are:
 - Astronomic images
 - Microscopy images
- Noise is signal dependent (correlated).
- Its image formation is given by $g(\mathbf{x}) = \mathcal{P} \{ f(\mathbf{x}) * h(\mathbf{x}) \}$
- When imaging with good illumination conditions and adequate exposure, counting noise is often low and can be neglected.
 - This is because the Poisson distribution approaches the Normal distribution, i.e. P(λ) ~ N(λ, λ), as λ → ∞.

イロト 不得下 イヨト イヨト 二日

E 2020 19/65

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

Noise

э 2020 20 / 65

DQC

◆□▶ ◆□▶ ◆□▶ ◆□▶

• **Thermal**: electrons are generated when the photons are detected. Those will vary given the temperature of the sensor.

Noise

- Usually we assume this noise to be Gaussian (Normal) and additive, also called White noise.
 - This noise is independent of the signal.
 - Image formation is given by: $g(\mathbf{x}) = f(\mathbf{x}) * h(\mathbf{x}) + n(\mathbf{x})$

A B M A B M

- A possible way to diminish thermal noise is via a Dark Frame capture, an image obtained without light acquisition.
- This image contains a map of the thermal noise. Although it varies with the temperature, it is usually stable after a period.
 - Dark Frame can then be subtracted from acquired images
 - Below: Dark Frames of CCDs from a telescope (left), and a cellphone camera (right), with normalised levels.

Sources of noise — quantisation

- Quantisation: noise caused by quantisation of pixels from continuous to unsigned int/char.
 - It often follows uniform distribution.
 - When quantisation level is low, the noise can become signal dependent and correlated to each region of the image (non-uniform).

Sources of noise — quantisation

(a) 256 level quantisation, (b) 64 level quantisation, (c) quantisation noise with 64 levels

(日) (四) (日) (日) (日)

Sources of noise — transmission/display

- Noise often caused by errors in some bits when storing or failure when transmitted.
- Resulting noise is referred to as "impulsive", but also "salt and pepper".
 - Can be caused by other processes then transmission/display
 - Affects a smaller number of pixels, but the ones affected are completely destroyed.

Sources of noise — transmission/display

Noise

э 2020 26 / 65

DQC

イロト イポト イヨト イヨト
Sources of noise — transmission/display

• The mathematical representation of the impulsive noise can seen as two "impulses" (or Dirac functions) in 0 (black) e 255 (white)

Noise

• A random pixel has probability p of been affected by noise, usually p/2 for "salt" and p/2 for "pepper".

Agenda

Introduction

Noise

• Sources and models of noise

Noise generation

- Noise reduction
- Bilateral filtering

Blur

- Degradation functions
- Inverse and pseudo-inverse filtering
- Least squares filtering

프 () 이 프

Noise generation

- It is possible to simulate noise in images using known distributions.
- Real noise is difficult to simulate, but by knowing the basic image formation system it is possible to obtain a good approximation.
- Implementation consists in generating random numbers and using probability density functions.

Noise

Noise generation

Noise generation

æ 2020 30 / 65

DQC

< E

< E

Image: A matrix

Noise

Noise generation

Noise generation

æ 2020 31/65

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

Noise

Noise generation

Noise generation

Moacir Ponti (ICMC–USP)

Image Restoration

2020 32 / 65

200

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Noise generation

æ 33 / 65 2020

SQC

◆□▶ ◆□▶ ◆□▶ ◆□▶

Agenda

Introduction

Noise

- Sources and models of noise
- Noise generation
- Noise reduction
- Bilateral filtering

) Blur

- Degradation functions
- Inverse and pseudo-inverse filtering
- Least squares filtering

2020 34 / 65

∃ ► 4 Ξ

Noise reduction

Mean filtering

- Smooth out pixels using the contextual information (neighbours),
- Mean operators allow to **reduce the signal variance** and, therefore, noise.
- Variations of mean filtering: arithmetic, geometric, harmonic, weighted.

Mean filtering

- Arithmetic: increase the blur by creating a new value based on the average of neighbour pixels $S_{(x)}$, where (x) = (x, y).
- Neighbourhood is rectangular of size $m \times n$
- when $\lambda_{(s,t)} = 1$ for all s, t, then all pixels have the same weigh

$$\hat{f}(\mathbf{x}) = \frac{1}{nm} \sum_{(s,t)\in S_{\mathbf{x}}} \lambda_{s,t} \cdot g(s,t)$$

イロト イポト イヨト イヨト 二日

Mean filtering

• Geometric: can help preserving details when pixel differences are in the order of multiples of a given base (2, 10, etc.), i.e. it is logarithmic.

$$\hat{f}(\mathsf{x}) = \left[\prod_{(s,t)\in S_{\mathsf{x}}} \lambda_{s,t} \cdot g(s,t)\right]^{\frac{1}{n\pi}}$$

イロト イポト イヨト イヨト

Mean filtering

- Harmonic: reduce the influence of outliers.
- This filter is adequate when there is additive noise mixed with salt noise (outlier)

$$\hat{f}(\mathbf{x}) = \frac{mn}{\sum_{(s,t)\in S_{\mathbf{x}}} \frac{1}{g(s,t)}}$$

Moacir Ponti (ICMC–USP)

Image: A matrix

2020 38 / 65

A B F A B F

Noise reduction

Order statistic filters

- Given a series of observations of some random variable, the order statistics are obtained by sorting those observations in ascending order.
- In context of images, the observations are pixels in a neighbourhood.
- Result in non-linear filters such as
 - Median
 - Maximum, mininum
 - Mean point

프 노 국 프 노

Order statistic filters

- Median: widely used in image pre-processing
- Remove texture, preserve edges.
- Very effective to remove impulsive noise.
- The resulting pixel is the percentile 50 of a ordered sequence of numbers

$$\hat{f}(\mathbf{x}) = \text{median}_{(s,t) \in S_{\mathbf{x}}} \{g(s,t)\}$$

Noise reduction

Order statistic filters

- Max: 100° percentile (maximum value)
- Can be used to locate bright points in the image $\hat{f}(\mathbf{x}) = \max_{(s,t) \in S_{\mathbf{x}}} \left\{ g(s,t) \right\}$
- Min: 0° percentile (minimum value)
- Can be used to locate dark points in the image $\hat{f}(\mathbf{x}) = \min_{(s,t) \in S_{\mathbf{x}}} \{g(s,t)\}$

Order statistic filters

- Mean point: combines order statistics with mean
- Usually produces an effect similar to median, but often thickens the borders/edges.

$$\hat{f}(\mathbf{x}) = \frac{1}{2} \left[\max_{(s,t) \in S_{\mathbf{x}}} \left\{ g(s,t) \right\} + \min_{(s,t) \in S_{\mathbf{x}}} \left\{ g(s,t) \right\} \right]$$

- 4 王

Adaptive filtering

- Take into account local statistics.
- The objective is to allow smoother results mostly in flat regions (with less detail);
- Any filter can be developed in an adaptive fashion. For example:
 - Adaptive noise reduction using mean and local variance,
 - Adaptive noise reduction using median and local inter-quartile range (IQR).

글 돈 옷 글 돈

Considering a local region S_x , the response of the adaptive filter needs:

- g(x): the value of noisy image at x
- 2 σ_{η}^2 : the variance of noise in the image (global)
- m_L : local mean of pixels in S_x
- σ_L^2 : local variance of pixels in S_x

$$\hat{f}(\mathbf{x}) = g(\mathbf{x}) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(\mathbf{x}) - m_L]$$

Moacir Ponti (ICMC–USP)

2020 44 / 65

Considering a local region S_x , the response of the adaptive filter needs:

- g(x): the value of noisy image at x
- 2 σ_{η}^2 : the variance of noise in the image (global)
- m_L : local mean of pixels in S_x
- σ_L^2 : local variance of pixels in S_x

$$\hat{f}(\mathbf{x}) = g(\mathbf{x}) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(\mathbf{x}) - m_L]$$

- We need to estimate (or know strong assumption) the noise variance
 - It is possible to estimate σ_{η}^2 measuring variance in a flat region of the image.

2020 44 / 65

イロト 不得下 イヨト イヨト 二日

$$\hat{f}(\mathsf{x}) = g(\mathsf{x}) - rac{\sigma_{\eta}^2}{\sigma_L^2} [g(\mathsf{x}) - m_L]$$

The filter behaves in each point as follows:

- if $\sigma_L^2 = 0$, then the response is $g(\mathbf{x})$,
- if $\sigma_L^2 \gg \sigma_\eta^2$, then it approaches $g(\mathbf{x})$,
- if $\sigma_L^2 \approx \sigma_\eta^2$, then the response is the local mean at region S_x .

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\hat{f}(\mathbf{x}) = g(\mathbf{x}) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(\mathbf{x}) - m_L]$$

The filter behaves in each point as follows:

- if $\sigma_L^2 = 0$, then the response is $g(\mathbf{x})$,
- if $\sigma_L^2 \gg \sigma_\eta^2$, then it approaches $g(\mathbf{x})$,
- if $\sigma_L^2 \approx \sigma_\eta^2$, then the response is the local mean at region $S_{\mathbf{x}}$.

We need that $\sigma_\eta^2 \leq \sigma_L^2$

• if we observe $\sigma_{\eta}^2 > \sigma_L^2$, then the ratio between the variances must be defined as 1 to avoid spurious values.

イロト 不得下 イヨト イヨト 二日

$$\hat{f}(\mathbf{x}) = g(\mathbf{x}) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(\mathbf{x}) - m_L]$$

The filter behaves in each point as follows:

- if $\sigma_L^2 = 0$, then the response is $g(\mathbf{x})$,
- if $\sigma_L^2 \gg \sigma_\eta^2$, then it approaches $g(\mathbf{x})$,
- if $\sigma_L^2 \approx \sigma_\eta^2$, then the response is the local mean at region $S_{\mathbf{x}}$.

We need that $\sigma_{\eta}^2 \leq \sigma_L^2$

- if we observe $\sigma_{\eta}^2 > \sigma_L^2$, then the ratio between the variances must be defined as 1 to avoid spurious values.
- this condition makes the filter non-linear.

Bilateral filtering

Noise reduction filter with edge preservation that uses the image content in order to avoid averaging across edges. Centered at a pixel \mathbf{p} , it is given by:

$$BF(g(\mathbf{p})) = \begin{bmatrix} \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf$$

- term A defines the weight in space (difference in coordinates),
- term B controls the range weight (differences in intensities), avoiding filtering over edges.

OBS: removing the normalisation and the term B, we have a Gaussian filter.

Bilateral filtering

Bilateral filtering

2020 47 / 65

-

• □ ▶ • □ ▶ • □ ▶ •

590

Bilateral filtering

$$BF(g(\mathbf{p})) = \frac{1}{F_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_s}(||\mathbf{p} - \mathbf{q}||) G_{\sigma_r}(||g_{\mathbf{p}} - g_{\mathbf{q}}||) g_{\mathbf{q}}$$

- σ_s parameter for the size of neighbourhood, e.g. 2% of the image diagonal
- σ_r minimum amplitude to consider presence of an edge, e.g. mean of the image gradient

OBS: because each neighbourhood has a different filter, cannot be precomputed to use with FFT. Naive implementation is slow, but there are approximations with good quality/speed ratio.

Blur

Agenda

Introduction

Noise

- Sources and models of noise
- Noise generation
- Noise reduction
- Bilateral filtering

) Blur

- Degradation functions
- Inverse and pseudo-inverse filtering
- Least squares filtering

-

Assuming a noise-free scenario, the image formation model is given by:

Blur

 $g(\mathbf{x}) = f(\mathbf{x}) * h(\mathbf{x})$

- g degraded/observed image
- f ideal or original image
- * convolution
- *h* degradation function

Moacir Ponti (ICMC–USP)

< □ > < 同 > < 回 > < 回 > < 回 > <

Blur

Problem

Function h(x) represents the **impulse response** of the imaging system

• in an image it models how the system responds when the input is a single point (or impulse)

(日) (同) (三) (三)

Moacir Ponti (ICMC-USP)

Image Restoration

2020 51 / 65

Blur

Problem

Function $h(\mathbf{x})$ represents the **impulse response** of the imaging system

- in an image it models how the system responds when the input is a single point (or impulse)
- often called point spread function (PSF)

(日) (四) (日) (日) (日)

- *h* are non-negative due to the physics of image formation,
- if the image is real (yes, there are complex images), PSF is also real,
- imperfections of the imaging system are modelled so that the energy of the signal is preserved:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) dx dy = 1$$
$$\sum_{\mathbf{x}=(0,0)}^{(N-1,M-1)} h(\mathbf{x}) = 1$$

Moacir Ponti (ICMC–USP)

2020 52 / 65

No blur

$$h(x,y) = \delta(x,y) = \begin{cases} 1, & \text{if } x, y = (0,0) \\ 0, & \text{other positions} \end{cases}$$

Blur

Moacir Ponti (ICMC-USP)

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

No blur

$$h(x,y) = \delta(x,y) = \begin{cases} 1, & \text{if } x, y = (0,0) \\ 0, & \text{other positions} \end{cases}$$

Blur

Uniform blur

$$h(x, y; R) = \begin{cases} \frac{1}{\pi R^2}, & \text{if } \sqrt{x^2 + y^2} \le R^2, \\ 0, & \text{otherwise} \end{cases}$$

Moacir Ponti (ICMC-USP)

æ 2020 53 / 65

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

No blur

$$h(x,y) = \delta(x,y) = \begin{cases} 1, & \text{if } x, y = (0,0) \\ 0, & \text{other positions} \end{cases}$$

Blur

Uniform blur

$$h(x, y; R) = \begin{cases} \frac{1}{\pi R^2}, & \text{if } \sqrt{x^2 + y^2} \le R^2\\ 0, & \text{otherwise} \end{cases}$$

Motion blur

$$h(x,y;L,\phi) = \begin{cases} \frac{1}{L}, & \text{if } \sqrt{x^2 + y^2} \le \frac{L}{2} \text{ and } \frac{x}{y} = -\tan\phi, \\ 0, & \text{otherwise} \end{cases}$$

Moacir Ponti (ICMC-USP)

æ 2020 53 / 65

590

イロト イポト イヨト イヨト

Problem

Blur

FIGURE 2 PSF of motion blur in the Fourier domain, showing |H(u, v)|, for (a) L = 7.5 and $\phi = 0$; (b) L = 7.5 and $\phi = \pi/4$

FIGURE 3 (a) Fringe elements of discrete out-of-focus blur that are calculated by integration; (b) PSF in the Fourier domain, showing |H(u, v)|, for R = 2.5

Moacir Ponti (ICMC-USP)

Image Restoration

э 2020 54 / 65

э

DQC

Discrete degrading functions

Uniform blur

$$h(\mathbf{x}; R) = \begin{cases} \frac{1}{C} & \text{if } \sqrt{x_1^2 + x_2^2} \le R^2, \\ 0 & \text{otherwise} \end{cases}$$

where C is a constant so that the sum of the coefficients is 1.

Moacir Ponti (ICMC–USP)

■ ► ■ つへで 2020 55/65

イロト イポト イヨト イヨト

Discrete degrading functions

Uniform blur

$$h(\mathbf{x}; R) = \begin{cases} \frac{1}{C} & \text{if } \sqrt{x_1^2 + x_2^2} \le R^2, \\ 0 & \text{otherwise} \end{cases}$$

where C is a constant so that the sum of the coefficients is 1.

Moacir Ponti (ICMC–USP)

■ ► ■ つへで 2020 55/65

イロト イポト イヨト イヨト
Discrete degrading functions

Uniform blur

$$h(\mathbf{x}; R) = \begin{cases} \frac{1}{C} & \text{if } \sqrt{x_1^2 + x_2^2} \le R^2, \\ 0 & \text{otherwise} \end{cases}$$

where C is a constant so that the sum of the coefficients is 1.

Motion blur

$$h(\mathbf{x}; L) = \begin{cases} \frac{1}{L} & \text{if } x_1 = 0, |x_2| \le \lfloor \frac{L-1}{2} \rfloor \\ \frac{1}{2L} \left\{ (L-1) - 2\lfloor \frac{L-1}{2} \rfloor \right\} & \text{if } x_1 = 0, |x_2| = \lfloor \frac{L-1}{2} \rfloor \\ 0, & \text{otherwise} \end{cases}$$

Moacir Ponti (ICMC–USP)

■ ■ つへで 2020 55/65

<ロト < 団ト < 臣ト < 臣ト

Inverse filtering

We want to invert h, so that:

$$\hat{f}(\mathbf{x}) = g(\mathbf{x}) * h^{-1}(\mathbf{x})$$

Blur

Example: Gaussian degradation function 5×5 :

0.003	0.014	0.025	0.014	0.003
0.014	0.058	0.095	0.058	0.014
0.025	0.095	0.150	0.095	0.025
0.014	0.058	0.095	0.058	0.014
0.003	0.014	0.025	0.014	0.003

イロト イボト イヨト イヨト

Image: Image:

Inverse filtering

We want to invert h, so that:

$$\hat{f}(\mathbf{x}) = g(\mathbf{x}) * h^{-1}(\mathbf{x})$$

Blur

Example: Gaussian degradation function 5×5 :

0.003	0.014	0.025	0.014	0.003
0.014	0.058	0.095	0.058	0.014
0.025	0.095	0.150	0.095	0.025
0.014	0.058	0.095	0.058	0.014
0.003	0.014	0.025	0.014	0.003

Matrix is singular, there is no inverse!

4 ∃ > 4 ∃ >

Inverse filtering

If we know the PSF of the imaging system, the image formation can also be considered in frequency domain:

Blur

 $G(\mathbf{u}) = F(\mathbf{u})H(\mathbf{u})$

Moacir Ponti (ICMC–USP)

∃ ► < ∃ ►</p>

Now we divide the Fourier transform of the observed image by the PSF Fourier transform H, also called OTF (Optical Transfer Function).

$$\hat{F}(\mathsf{u}) = rac{G(\mathsf{u})}{H(\mathsf{u})}$$

▲ 臣 ▶ | ▲ 臣 ▶

Now we divide the Fourier transform of the observed image by the PSF Fourier transform H, also called OTF (Optical Transfer Function).

$$\hat{F}(\mathbf{u}) = rac{G(\mathbf{u})}{H(\mathbf{u})}$$

When we know the OTF and we have a well-behaved transform (such as the Gaussian function), this operation is possible and approaches a perfect restoration.

In a noisy image, we have:

$$\hat{F}(\mathbf{u}) = rac{H(\mathbf{u})F(\mathbf{u}) + N(\mathbf{u})}{H(\mathbf{u})}$$

Blur

() <) <)</p>

Image: Image:

In a noisy image, we have:

$$\hat{F}(\mathbf{u}) = rac{H(\mathbf{u})F(\mathbf{u}) + N(\mathbf{u})}{H(\mathbf{u})}$$

Blur

$$\hat{F}(\mathbf{u}) = F(\mathbf{u}) + rac{N(\mathbf{u})}{H(\mathbf{u})}$$

In this scenario and in those in which H shows values near zero, the ratio $\frac{N(\mathbf{u})}{H(\mathbf{u})}$ dominates the sum, and the resulting image is just noise.

In some cases, it is possible to use the pseudo-inverse filtering, changing H below the threshold γ :

$$\mathcal{W}(\mathsf{u}) = \left\{egin{array}{cc} \mathcal{H}(\mathsf{u}), & \mathcal{H}(\mathsf{u}) > \gamma \ \gamma, & ext{otherwise} \end{array}
ight.$$

The threshold is often between 0.0001 and 0.1. The filter W is then used to achieve the inverse:

$$\hat{F}(\mathbf{u}) = \frac{G(\mathbf{u})}{W(\mathbf{u})}$$

Moacir Ponti (ICMC–USP)

2020 60 / 65

Least squares filtering

The pseudo-inverse filter allows to deal with null or small values, but its formulation does not include explicitly the noise model.

Least squares filters were developed in this context: the constrained least squares filter (CLS) and the Wiener filter are important examples.

Considering image and noise as random variables, this method tries to find an image estimate \hat{f} so that the mean squared error is minimized:

$$e^2 = E\left\{(f-\hat{f})^2\right\}$$

Blur

Least squares filtering: Wiener

Assuming:

- noise is not correlated;
- Inoise has zero mean (centered at each pixel);
- the intensities of the restored image can be written as a linear function of the degraded image.

$$\hat{\mathcal{F}}(\mathbf{u}) = \left[rac{H^*(\mathbf{u})S_f(\mathbf{u})}{|H(\mathbf{u})|^2S_f(\mathbf{u}) + S_\eta(\mathbf{u})}
ight] imes G(\mathbf{u}),$$

Moacir Ponti (ICMC–USP)

2020 62 / 65

(B) < B)</p>

Least squares filtering: Wiener

Assuming:

- noise is not correlated;
- Inoise has zero mean (centered at each pixel);
- the intensities of the restored image can be written as a linear function of the degraded image.

$$\hat{\mathcal{F}}(\mathbf{u}) = \left[rac{H^*(\mathbf{u})S_f(\mathbf{u})}{|H(\mathbf{u})|^2S_f(\mathbf{u}) + S_\eta(\mathbf{u})}
ight] imes G(\mathbf{u}),$$

- $S_f(\mathbf{u}) = |F(\mathbf{u})|^2$ power spectrum of the ideal image
- $S_{\eta}(\mathbf{u}) = |N(\mathbf{u})|^2$ power spectrum of the noise
- $H^*(\mathbf{u})$ is the complex conjugate of $H(\mathbf{u})$

イロト 不得下 イヨト イヨト 二日

Least squares filtering: Wiener

How can we know the power spectrum of the ideal/original image and of the additive noise.

- Using the noise variance as parameter, and the direct method of periodogram:
 - $\hat{S}_{\eta}(\mathbf{u}) = \sigma_{\eta}^2$ for all (**u**)
 - $\hat{S}_f(\mathbf{u}) = 1/N^2 [G(\mathbf{u})G^*(\mathbf{u})] \sigma_\eta^2$

Least squares filtering: Wiener

How can we know the power spectrum of the ideal/original image and of the additive noise.

- Using the noise variance as parameter, and the direct method of periodogram:
 - $\hat{S}_{\eta}(\mathbf{u}) = \sigma_{\eta}^2$ for all (**u**)
 - $\hat{S}_{f}(\mathbf{u}) = 1/N^{2} [G(\mathbf{u})G^{*}(\mathbf{u})] \sigma_{\eta}^{2}$

There are other methods to obtain S_{η} and S_{f} , but it required additional knowledge about image and noise.

イロト イポト イヨト イヨト 二日

Constrained Least squares filtering

From a similar formulation, considering a constraint in the least squares, a method was proposed by regularizing the solution via a Laplacian operator:

Blur

$$\hat{F}(\mathbf{u}) = \left[rac{H^*(\mathbf{u})}{|H(\mathbf{u})|^2 + \gamma |P(\mathbf{u})|^2}
ight] imes G(\mathbf{u}),$$

where $P(\mathbf{u})$ is the Fourier transform of a Laplacian operator:

$$p(\mathsf{x}) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

 γ controls the influence of the regularization

References

- Gonzalez, R.C.; Woods, R.E. Processamento Digital de Imagens. 3.ed. Capítulo 5. 2010.
- Lagendijk, R.L.; Biemond, J. Basic Methods for Image Restoration and Identification (Capítulo 3.5). In: Bovik, A. Handbook of Image and Video Processing, 2000.

Blur

• Image quality in digital cameras, Roger Clark: www.clarkvision.com