ZAB0161 - Álgebra Linear com Aplicações em Geometria Analítica

Ortogonalidade

$$\mathbb{R}^n\left(\mathbb{R}^2,\mathbb{R}^3\right)$$

Prof. Dr. Jorge Lizardo Díaz Calle

ZAB (Dpto. de Ciências Básicas) – FZEA – USP

Sejam os espaços vetoriais

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) / x_1, x_2, \dots, x_n \in \mathbb{R}\}\$$

com as seguintes operações:

Adição: Sejam $x e y \in \mathbb{R}^n$ define-se

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

Multiplicação vezes escalar: Sejam $\alpha \in \mathbb{R}$ e $x \in \mathbb{R}^n$ define-se $\alpha x = \alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_n)$.

 $(\mathbb{R}^n, +,)$ é um espaço vetorial.

Tópicos

- Interpretação geométrica das componentes de um vetor como deslocamento nas direções dos eixos.
- Produto escalar (ponto, interno).
- Norma de um vetor.
- Vetor unitário a um vetor dado.
- Ângulo entre vetores. Lei de cosenos.
- Vetores ortogonais. Vetores paralelos.
- Vetor projeção ortogonal, de um vetor sobre outro.

O espaço vetorial

$$\mathbb{R}^2 = \{ (x_1, x_2) / x_1, x_2 \in \mathbb{R} \}$$

com a adição:

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

e multiplicação vezes escalar:

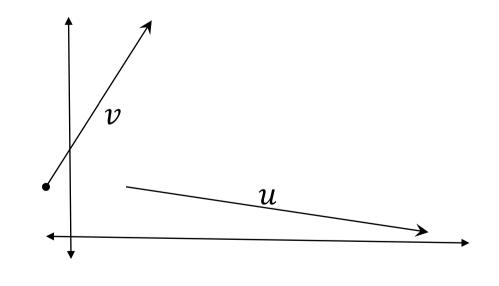
$$\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)$$

Produto Escalar, (Ponto, Interno, Interior)

Dados dois vetores $u, v \in \mathbb{R}^2$, define-se o produto escalar $u \cdot v$ como

$$u \cdot v = (u_1, u_2) \cdot (v_1, v_2) = u_1 v_1 + u_2 v_2$$

Assim, $u \cdot v \in \mathbb{R}$ (daqui o nome de **escalar**) o resultado é um escalar.



Propriedades do produto escalar

Propriedades:

Sejam os vetores $u, v, z \in \mathbb{R}^2$ e o escalar $\alpha \in \mathbb{R}$

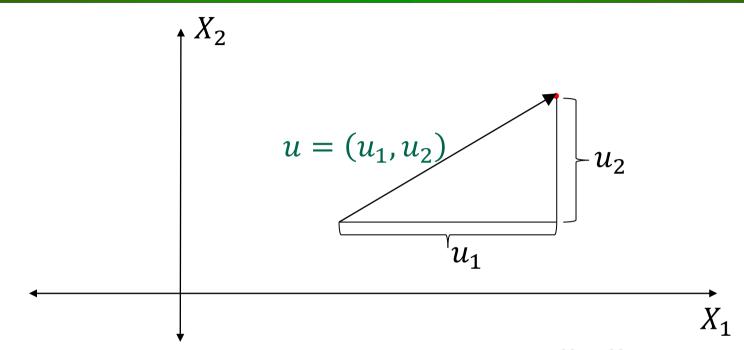
1.
$$u \cdot v = v \cdot u$$

2.
$$\alpha u \cdot v = \alpha(u \cdot v)$$

3.
$$(u+v) \cdot z = u \cdot z + v \cdot z$$

4.
$$u \cdot u \geq 0$$
.

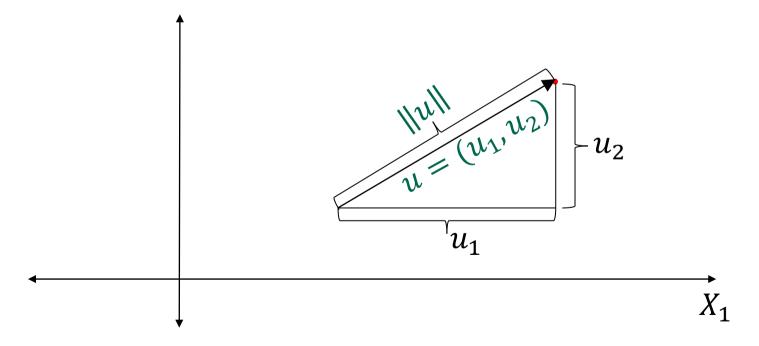
5.
$$u \cdot u = 0 \Leftrightarrow u = 0$$



Por Pitágoras: a medida do vetor u, ||u||, é $||u|| = \sqrt{(u_1)^2 + (u_2)^2}$

isto é
$$||u||^2 = (u_1)^2 + (u_2)^2 = u_1u_1 + u_2u_2 = u \cdot u$$

Definição: A medida de um vetor $u \in \mathbb{R}^2$, denota-se por ||u||, é chamada de **norma do vetor** u e $||u||^2 = u \cdot u$



Não confundir o vetor e sua norma.

Propriedades da norma de um vetor

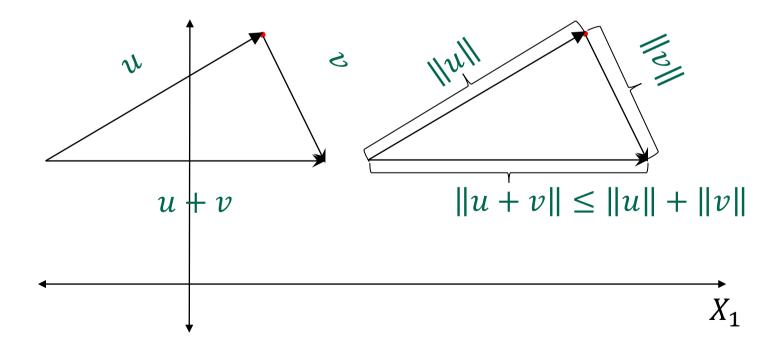
Propriedades:

Sejam os vetores $u, v \in \mathbb{R}^2$ e o escalar $\alpha \in \mathbb{R}$

- 1. $||u|| \ge 0$.
- 2. $||u|| = 0 \Leftrightarrow u = 0$
- 3. $\|\alpha u\| = |\alpha| \|u\|$
- 4. $||u + v|| \le ||u|| + ||v||$
- 5. Se v = MN então $||v|| = dist(M, N) = \sqrt{(n_1 m_1)^2 + (n_2 m_2)^2}$

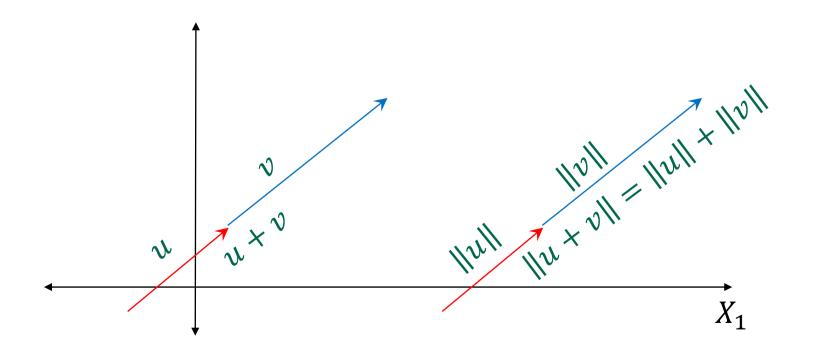
Exemplo: Para a propriedade "desigualdade triangular"

$$||u + v|| \le ||u|| + ||v||$$



Exemplo: Para a propriedade "desigualdade triangular"

$$||u + v|| \le ||u|| + ||v||$$



Vetor unitário

Dado qualquer vetor não nulo, $v\neq 0$, $v\in \mathbb{R}^2$ então $||v||\neq 0$

Portanto, sempre existe o valor real $\frac{1}{\|v\|}$.

Podemos construir o vetor v_u da seguinte forma:

$$v_u = \left(\frac{1}{\|v\|}\right)v$$

Vetor unitário

Dado qualquer vetor não nulo, $v\neq 0$, $v\in \mathbb{R}^2$ então $||v||\neq 0$

Portanto, sempre existe o valor real $\frac{1}{\|v\|}$.

Podemos construir o vetor v_u da seguinte forma:

$$v_u = \left(\frac{1}{\|v\|}\right)v$$

Observar:

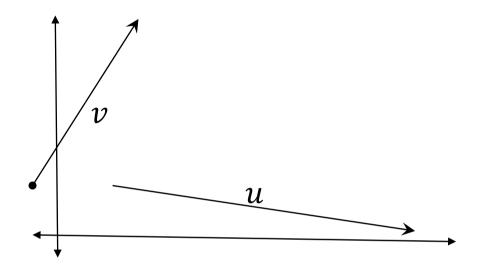
$$||v_u|| = ||\left(\frac{1}{||v||}\right)v|| = \left|\frac{1}{||v||}\right|||v|| = \frac{||v||}{||v||} = 1$$

Definição: O vetor v_u é chamado de **vetor unitário** do vetor v não nulo.

Formação de um triângulo

Se temos dois vetores $u, v \in \mathbb{R}^2$

Sempre podem ser representados utilizando um ponto comum.

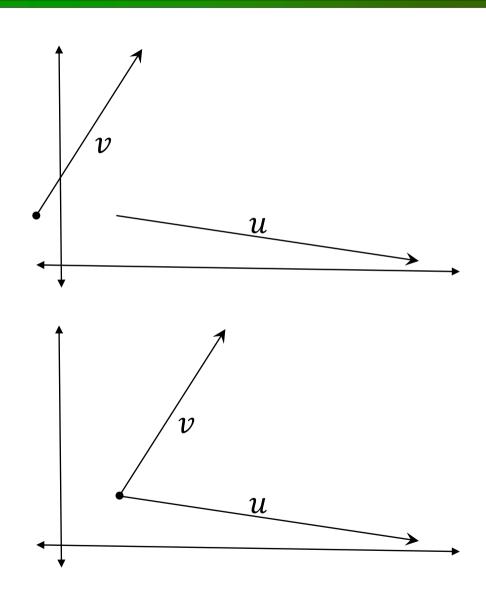


Formação de um triângulo

Se temos dois vetores $u, v \in \mathbb{R}^2$

Sempre podem ser representados utilizando um ponto comum.

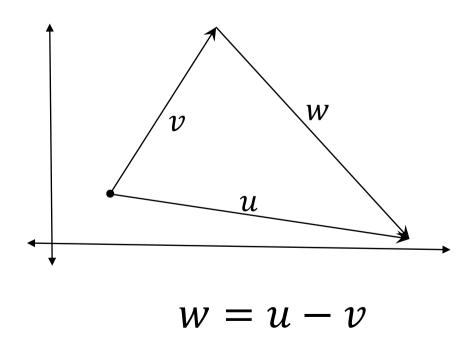
Como na figura:



Formação de um triângulo

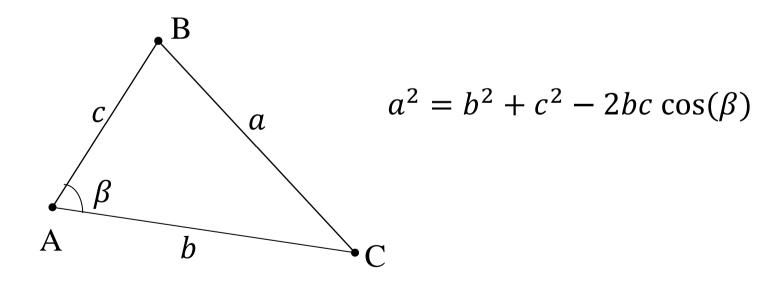
Sejam dois vetores $u, v \in \mathbb{R}^2$

Se eles não são nulos, sempre podemos construir um triângulo unindo os extremos finais dos vetores com um vetor w: $v + w = u \Rightarrow w = u + (-v)$

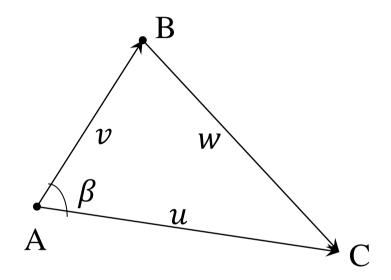


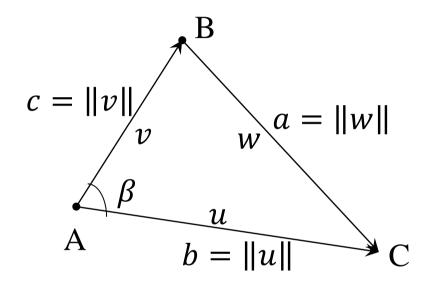
Visão vetorial para alguns resultados geométricos.

Ângulo entre vetores: Lembrando a lei de cosenos em um triângulo. As letras minúsculas são as medidas dos lados.



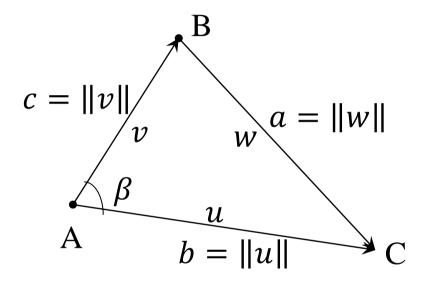
Olhando como vetores





$$a^{2} = b^{2} + c^{2} - 2bc \cos(\beta)$$
$$||w||^{2} = ||u||^{2} + ||v||^{2} - 2||u|| ||v|| \cos(\beta)$$

Olhando como vetores



$$a^2 = b^2 + c^2 - 2bc \cos(\beta)$$

Por outro lado

$$w = u - v$$

$$||w||^{2} = w \cdot w =$$

$$= (u - v) \cdot (u - v)$$

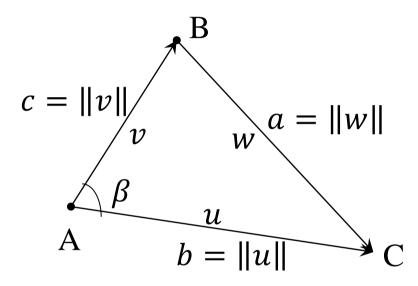
$$= u \cdot u - v \cdot u - u \cdot v + v \cdot v$$

$$= u \cdot u - 2u \cdot v + v \cdot v$$

$$= ||u||^{2} + ||v||^{2} - 2u \cdot v$$

 $||w||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos(\beta)$

Olhando como vetores



$$a^2 = b^2 + c^2 - 2bc \cos(\beta)$$

Por outro lado

$$w = u - v$$

$$||w||^{2} = w \cdot w =$$

$$= (u - v) \cdot (u - v)$$

$$= u \cdot u - v \cdot u - u \cdot v + v \cdot v$$

$$= u \cdot u - 2u \cdot v + v \cdot v$$

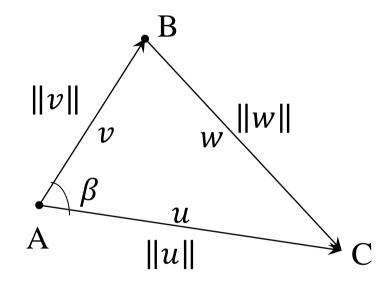
$$= ||u||^{2} + ||v||^{2} - 2u \cdot v$$

$$||w||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos(\beta)$$

Igualando:

$$||u||^2 + ||v||^2 - 2u \cdot v = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos(\beta)$$

Ângulo entre vetores:



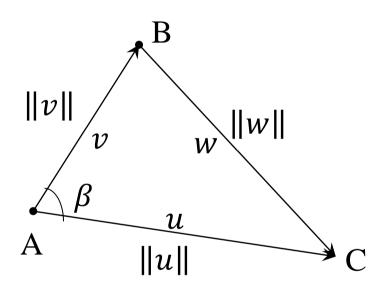
Cancelando somandos:

$$u \cdot v = ||u|| ||v|| \cos(\beta)$$

para todos os $u, v \in \mathbb{R}^2$.

Observar: Se $\beta = 90^{\circ} = \frac{\pi}{2}$ então $u \cdot v = 0$

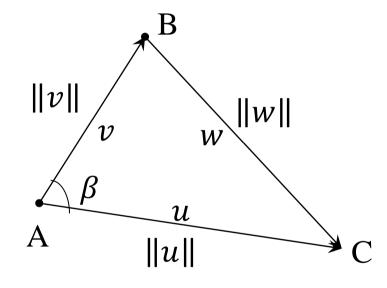
Ângulo entre vetores: Se $u \neq 0$ e $v \neq 0$



$$\cos(\beta) = \frac{u \cdot v}{\|u\| \|v\|}$$

determinando o ângulo entre dois vetores não nulos $u, v \in \mathbb{R}^2$.

Ângulo entre vetores: Se u = 0 ou v = 0



Se
$$u = 0$$
 ou $v = 0$

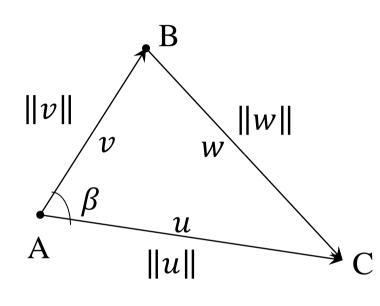
então
$$u \cdot v = 0$$

e temos

$$u \cdot v = ||u|| ||v|| \cos(\beta)$$
$$0 = 0$$

Portanto o ângulo β pode assumir qualquer valor.

Nota: O vetor zero 0 forma qualquer ângulo com outro vetor.



Para $u, v \in \mathbb{R}^2$ não nulos.

Se $u \cdot v = 0$, então

$$\cos(\beta) = \frac{u \cdot v}{\|u\| \|v\|} = 0$$

Então $\beta = n(\frac{\pi}{2})$ para n ímpar.

Agora, se $\beta = n(\frac{\pi}{2})$, para n ímpar, então $u \cdot v = 0$

Se u = 0 ou v = 0 então $u \cdot v = 0$ e temos

$$u \cdot v = ||u|| ||v|| \cos(\beta)$$
$$0 = 0$$

Portanto o ângulo β pode assumir qualquer valor, em particular $\beta = \frac{\pi}{2}$.

Definição: **ortogonalidade** (\bot). Sejam $u, v \in \mathbb{R}^2$ $u \bot v \Leftrightarrow u \cdot v = 0$

Definição: **ortogonalidade** (\bot). Sejam $u, v \in \mathbb{R}^2$ $u \bot v \Leftrightarrow u \cdot v = 0$

No espaço vetorial \mathbb{R}^2 é muito fácil, obter um vetor ortogonal a um vetor dado v.

Se
$$v = (v_1, v_2)$$
 construimos o vetor $v^{\perp} = (-v_2, v_1)$

Definição: **ortogonalidade** (\bot). Sejam $u, v \in \mathbb{R}^2$ $u \bot v \Leftrightarrow u \cdot v = 0$

No espaço vetorial \mathbb{R}^2 é muito fácil, obter um vetor ortogonal a um vetor dado v.

Se $v = (v_1, v_2)$ então o vetor $v^{\perp} = (-v_2, v_1)$ é chamado de **vetor ortogonal de v**, pois $v^{\perp} \cdot v = -v_2 v_1 + v_1 v_2 = 0$

O v^{\perp} é o vetor v girando $\frac{\pi}{2}$ no sentido **antihorário**.

Vetores paralelos

Observar: seja $v \in \mathbb{R}^2$ e seja um escalar $\alpha \in \mathbb{R}$ Constuimos o vetor $u = \alpha v$ então o ângulo entre u e v satisfaz

$$\cos(\beta) = \frac{u \cdot v}{\|u\| \|v\|} = \frac{\alpha v \cdot v}{\|\alpha v\| \|v\|} = \frac{\alpha \|v\|^2}{|\alpha| \|v\|^2} = \pm 1$$

Vetores paralelos

Observar: seja $v \in \mathbb{R}^2$ e seja um escalar $\alpha \in \mathbb{R}$ talque o vetor $u = \alpha v$ então o ângulo entre u e v satisfaz

$$\cos(\beta) = \frac{u \cdot v}{\|u\| \|v\|} = \pm 1$$

Assim, $\beta = k\pi$.

Vetores paralelos: Dizemos que $u, v \in \mathbb{R}^2$ são paralelos se e somente se existe um $\alpha \in \mathbb{R}$ talque

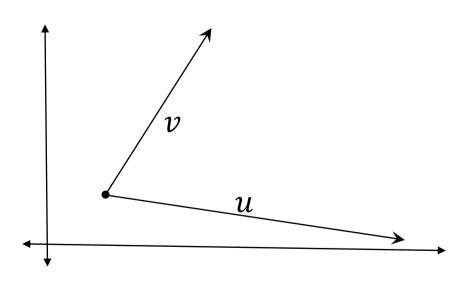
$$u = \alpha v$$

Escreve-se: $u \parallel v \Leftrightarrow \exists \alpha \in \mathbb{R}$ talque $u = \alpha v$

Vetor projeção ortogonal (Apenas \mathbb{R}^2)

Sejam dois vetores $u, v \in \mathbb{R}^2$.

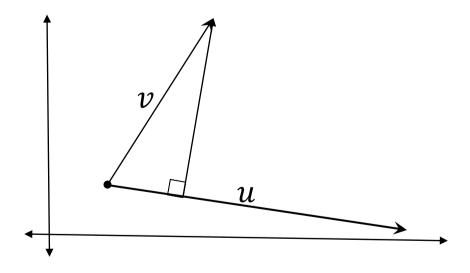
Pergunta: é possível formar um triângulo retângulo sobre u, com o vetor v como hipotenusa?



Sejam dois vetores $u, v \in \mathbb{R}^2$.

Pergunta: é possível formar um triângulo retângulo sobre *u*, com o vetor *v* como hipotenusa?

Sim, é possível:

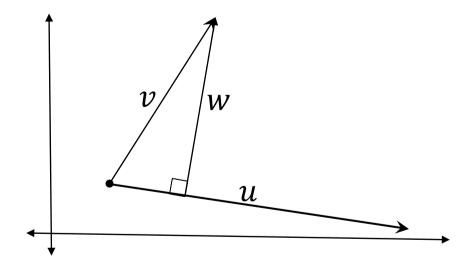


Sejam dois vetores $u, v \in \mathbb{R}^2$.

Pergunta: Podemos conhecer o cateto sobre u?

Observar:

 $w \perp u$ então $u \cdot w = 0$

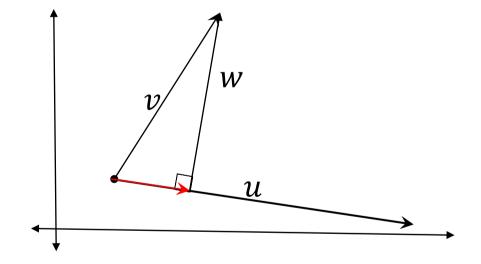


Sejam dois vetores $u, v \in \mathbb{R}^2$.

Pergunta: Podemos conhecer o cateto sobre *u* ?

Observar:

Pode ser entendido como a sombra de v sobre o vetor u.

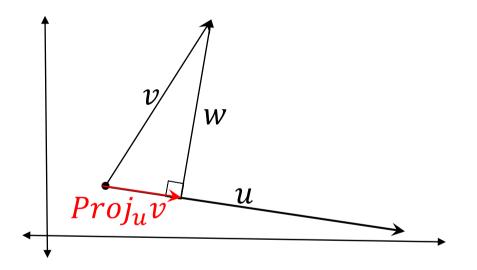


Sejam dois vetores $u, v \in \mathbb{R}^2$.

Pergunta: Podemos conhecer o cateto sobre u?

Observar:

Pode ser entendido como a sombra de v sobre u, a **projeção de** v sobre u, e será denotado por $Proj_uv$.



Sejam dois vetores $u, v \in \mathbb{R}^2$.

Pergunta: Podemos conhecer o cateto sobre u?

Observe o vetor projeção é paralelo a *u*:

v/w $Proj_uv$

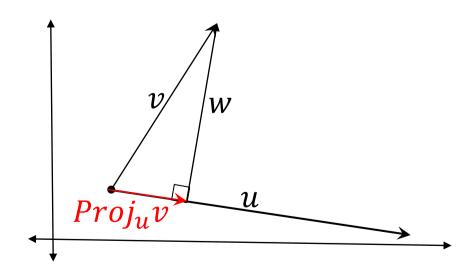
Existe $\alpha \in \mathbb{R}$ talque

$$Proj_u v = \alpha u$$
.

Sejam dois vetores $u, v \in \mathbb{R}^2$, não nulos.

Sempre que possível destaque a soma de vetores:

$$v = Proj_u v + w$$
$$v = \alpha u + w$$



Sejam dois vetores $u, v \in \mathbb{R}^2$, não nulos.

Vejamos o potencial do produto escalar:

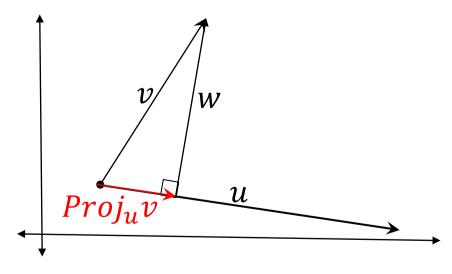
$$v = Proj_u v + w$$
$$v = \alpha u + w$$

Agora aplicamos o produto escalar com o vetor *u*:

$$v \cdot u = \alpha u \cdot u + w \cdot u$$
$$v \cdot u = \alpha \|u\|^2 + 0$$

então

$$\alpha = \frac{v \cdot u}{\|u\|^2}$$



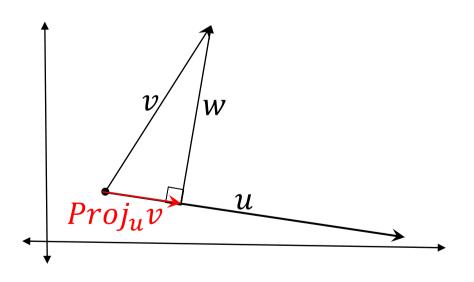
Sejam dois vetores $u, v \in \mathbb{R}^2$, não nulos.

Assim, o vetor projeção ortogonal de v sobre u é

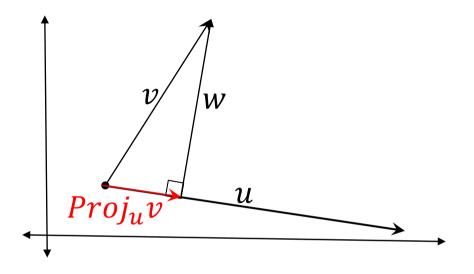
$$Proj_{u}v = \alpha u = \frac{v \cdot u}{\|u\|^{2}}u$$

O escalar é chamado de **componente** de *v* sobre *u* e se escreve por

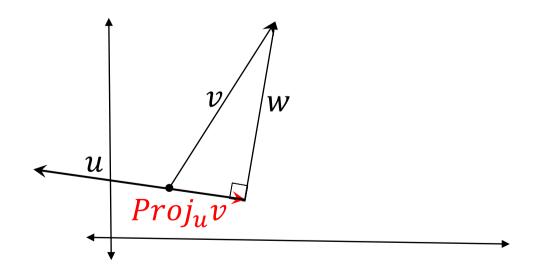
e se escreve por
$$Comp_{u}v = \alpha = \frac{v \cdot u}{\|u\|^{2}}$$



Se a componente de *v* sobre *u* é positiva, então:



Se a componente de *v* sobre *u* é negativa, então:



Todos os conceitos dados, podem ser estendidos para o espaço \mathbb{R}^n .

Produto Escalar

Dados dois vetores $u, v \in \mathbb{R}^n$, define-se o produto escalar $u \cdot v$ como

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Assim, $u \cdot v \in \mathbb{R}$.

Todas as propriedades dadas em \mathbb{R}^2 são válidas em \mathbb{R}^n .

Definição: A medida de um vetor $u \in \mathbb{R}^n$ é a **norma** do vetor e

$$||u||^2 = u \cdot u$$

Definição: Dado um vetor não nulo, $v \neq 0$, $v \in \mathbb{R}^n$, o vetor

$$v_u = \left(\frac{1}{\|v\|}\right)v$$

é chamado de **vetor unitário** de *v*.

Ângulo entre vetores:

Sejam $u, v \in \mathbb{R}^n$ e $u \neq 0$ e $v \neq 0$, então o ângulo entre u e v é dado por

$$\cos(\beta) = \frac{u \cdot v}{\|u\| \|v\|}$$

Ortogonalidade (
$$\bot$$
). Sejam $u, v \in \mathbb{R}^2$
 $u \perp v \Leftrightarrow u \cdot v = 0$

Vetores paralelos:

$$u \parallel v \Leftrightarrow \exists \alpha \in \mathbb{R} \text{ talque } u = \alpha v$$

Operações no espaço vetorial

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) / x_1, x_2, \dots, x_n \in \mathbb{R}\}\$$

Adição: Sejam $x e y \in \mathbb{R}^n$ define-se

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n) \in \mathbb{R}^n$$

Multiplicação vezes escalar: Sejam $\alpha \in \mathbb{R}$ e $x \in \mathbb{R}^n$ define-se

$$\alpha x = \alpha(x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n) \in \mathbb{R}^n$$

Produto escalar: Sejam $u, v \in \mathbb{R}^n$, define-se

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n \in \mathbb{R}$$