
Although the Reference Model of Open Distributed Processing (RM-ODP) has been a
standard for more than ten years, many practitioners are still unaware of it. Building
Enterprise Systems with ODP: An Introduction to Open Distributed Processing
offers a gentle pathway to the essential ideas that constitute ODP and shows how these
ideas can be applied when designing and building challenging systems. It provides an
accessible introduction to the design principles for software engineers and enterprise
architects. The book also explains the benefits of using viewpoints to produce simpler
and more flexible designs and how ODP can be applied to service engineering, open
enterprise, and cloud computing.

The authors include guidelines for using the Unified Modeling Language™ (UML) notation
and for structuring and writing system specifications. They elucidate how this fits into the
model-driven engineering tool chain via approaches such as Model-Driven Architecture®
(MDA). They also demonstrate the power of RM-ODP for the design and organization of
complex distributed IT systems in e-government, e-health, and energy and transportation
industries.

Features
• Offers a concise, focused presentation of the essentials of RM-ODP and where it fits

within today’s software processes
• Explains all the major concepts and mechanisms of the ODP framework
• Explores the latest developments in the ISO ODP standards
• Uses the widely adopted UML notation for modeling large open distributed systems

using the ODP concepts
• Describes interoperability frameworks applicable to both government and industry

sectors

All concepts and ideas in this book are illustrated through a single running example that
describes the IT support needed by a medium-sized company as it grows and develops.
Complete UML models and more are available on a supporting website.

K12956

Computer Science/Computer Engineering/Computing
CHAPMAN & HALL/CRC INNOVATIONS IN

SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

B
u

ild
in

g
 En

terp
rise System

s w
ith

 O
D

P
Lin

in
g

ton
, M

ilosevic,
Tan

aka, an
d

 V
allecillo

K12956_Cover.indd 1 8/2/11 2:11 PM

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Building
Enterprise

Systems with ODP
An Introduction to

Open Distributed Processing

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Building
Enterprise

Systems with ODP
An Introduction to

Open Distributed Processing

Peter F. Linington
Zoran Milosevic

Akira Tanaka
Antonio Vallecillo

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110727

International Standard Book Number-13: 978-1-4398-6626-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures ix

About the Authors xiii

Foreword xv

Preface xxi

I The Framework 1

1 What Is ODP About? 5
1.1 The ODP Reference Model 8
1.2 Viewpoints . 10
1.3 Fundamental Concepts . 16
1.4 Useful Building Blocks . 21
1.5 Service Orientation . 22
1.6 Human Computer Interaction 23
1.7 The Right Tools for the Job 24

II The Viewpoints 29

2 Enterprise Viewpoint 33
2.1 Designing with Communities 34
2.2 Identifying Roles . 36
2.3 Organizational Structure . 37
2.4 Roles and Role Filling . 39
2.5 More than One Community 41
2.6 Community Behaviour . 44
2.7 Accountability and Related Concepts 49
2.8 Quality of Service and Other Constraints 50
2.9 Identifying the System’s User Interfaces 51
2.10 Writing Enterprise Specifications 52

3 Information Viewpoint 55
3.1 The Primacy of Information 56
3.2 The Elements of the Information Language 57
3.3 Writing Information Specifications 59

v

vi

3.4 Structure of the Information Specification 64

3.5 Relationship with Other Viewpoints 65

4 Computational Viewpoint 67

4.1 Designing with Computational Objects 68

4.2 Computational Objects . 69

4.3 Bindings . 71

4.4 Interactions between Computational Objects 73

4.5 Environment Contracts and Transparencies 75

4.6 Writing Computational Specifications 76

4.7 Relationship with Other Viewpoints 86

5 Engineering Viewpoint 89

5.1 What Is the Engineering Viewpoint For? 90

5.2 Objects and Distribution . 91

5.3 Node Architecture . 93

5.4 Channel Architecture . 96

5.5 Common Functions and Processes 98

5.6 Writing Engineering Viewpoint Specifications 101

5.7 Incorporating Current Technologies 102

5.8 Relationship with Other Viewpoints 102

6 Technology Viewpoint 105

6.1 Linking to the Real World 106

6.2 The Elements of the Technology Language 107

6.3 Relationship with Other Viewpoints 112

7 Correspondences — Joining It All Up 113

7.1 The Need for Correspondences 114

7.2 Different Kinds of Correspondence 115

7.3 Correspondences Required by the ODP Architecture 116

7.4 Anatomy of a Correspondence Specification 118

7.5 Taking a Formal View . 119

7.6 Examples of Correspondences 122

7.7 Tool Support for Specifying Correspondences 122

III Using ODP 125

8 Conformance — Does It Do the Right Thing? 129

8.1 Compliance and Conformance 130

8.2 A Conformance Community 131

8.3 Types of Reference Point . 133

8.4 Conformance to Viewpoint Specifications 135

8.5 Claiming Compliance or Conformance 137

vii

9 Transparencies — Hiding Common Problems 139

9.1 What Is a Transparency? . 140

9.2 Types of Transparency . 142

9.3 Transparencies and Viewpoints 144

10 Policies — Tracking Changing Requirements 147

10.1 Why Do We Need Policies? 148

10.2 What Is a Policy? . 149

10.3 Implementing Policy . 152

11 Federation — Talking to Strangers 155

11.1 How Does Interoperation Work? 157

11.2 Interpreting and Sharing Information 159

11.3 The Basis of Interoperation 160

11.4 Engineering the Federation 162

11.5 Federating Type Systems . 164

11.6 Federating Identity . 164

11.7 Legacy Systems . 165

11.8 Interoperability or Integration? 165

12 Using Existing Products 167

12.1 What Does This Product Do for Me? 168

12.2 Supplier and User Views . 169

12.3 Competing Sets of Viewpoints 172

13 System Evolution — Moving the Goalposts 175

13.1 Coping with Change . 176

13.2 The Importance of Tool Support 176

13.3 Making Changes to Viewpoints 177

13.4 Avoiding Synchronized Transitions 178

13.5 Evolution of the Enterprise 180

13.6 Version Control . 181

IV Moving On 183

14 Modelling Styles 187

14.1 The Importance of Formal Models 188

14.2 What Is a System? . 189

14.3 Modelling Open or Closed Worlds? 190

14.4 Capturing Requirements . 192

14.5 Expressing Obligations . 193

14.6 Expressing Semantics . 194

viii

15 Sharp Tools 195
15.1 What Should a Tool Do? . 196
15.2 Model Editors and Analysis Tools 197
15.3 Model-Driven Approaches . 198
15.4 Model Transformations . 200
15.5 Languages for Transformations 201
15.6 Viewpoints and Transformations 202
15.7 More Integration . 205

16 A Broader View 207
16.1 Where to Look Next . 207
16.2 Integration of Other Standards 208
16.3 Uses of ODP . 208
16.4 Tools . 211
16.5 Comparing Enterprise Architectures 212
16.6 Coda . 215

Appendices 217

A The PhoneMob Specifications 221
A.1 Enterprise Viewpoint Specifications 222
A.2 Information Viewpoint Specifications 226
A.3 Computational Viewpoint Specifications 227
A.4 Engineering Viewpoint Specifications 228
A.5 Technology Viewpoint Specifications 230
A.6 Correspondences . 231

B Selected Exercises 235
B.1 Selected Scenarios . 235
B.2 Some Additional Questions 237

Bibliography 239

Index 247

List of Figures

1.1 A traditional use of viewpoints in a mechanical drawing with
first-angle orthographic projection. 10

1.2 The five ODP viewpoints. 12

1.3 How correspondences link terms in different viewpoints. . . . 15

1.4 The viewpoints contributing to an ODP system specification,
expressed using UML4ODP. 25

1.5 The UML profile for the information viewpoint. 26

2.1 Anatomy of a community specification. 35

2.2 The business and its partners. 36

2.3 The roles of the Detailed Phone Repair community. 38

2.4 The roles of the Branch Repair Provision community. 39

2.5 Using role filling to link two communities. 42

2.6 Linking the Phone Repair and CustomerOrg communities. . . . 43

2.7 Community behaviour expressed as a set of processes. 46

2.8 The Repair Process in the Phone Repair community. 46

2.9 The handset state machine. 47

2.10 The repair process as seen from one of the branches. 48

2.11 Navigation state machine. 52

3.1 Invariant schema showing information object types. 60

3.2 Invariant schema showing selected information action types. . 61

3.3 State machine for the Handset information object. 62

3.4 Current state of an example RepairOrder. 63

3.5 Structure of the PhoneMob information specification. 64

4.1 The concepts involved in connecting computational objects. . 70

4.2 A compound binding object encapsulates an event channel. . 72

4.3 Expressing operations and stream flows in terms of signals. . 74

4.4 Division on one computational use case into the chosen tiers. 77

4.5 Part of the software architecture of the PhoneMob system. . 78

4.6 Detailed specification of operation interface signatures. 79

4.7 Refining the architecture by showing the operation interface
signatures for the computational interfaces. 80

4.8 Data types used by the computational objects. 81

ix

x

4.9 A computational interaction diagram, showing the steps in the
processing of a query. 82

4.10 Using streams when specifying a multimedia application. . . . 84

4.11 Using a binding object in a multimedia application. 85

5.1 A high-level description of engineering object distribution. . . 93

5.2 The structure of an engineering node into managed containers,
each with associated properties and resources. 95

5.3 A channel from the GUI2User BEO to the UserOps BEO. . . . 97

5.4 A storage object is replicated on separate nodes to increase its
availability. 100

6.1 An overview of the node configuration. 109

6.2 Internal node structure and implementable standards. 110

6.3 Some requirements for elements in the IXIT. 111

6.4 A TV Implementation activity selecting a technology object. . 112

7.1 Mandatory computational to engineering correspondences. . . 117

7.2 The elements of a correspondence specification. 119

7.3 The correspondence profile from UML4ODP. 121

7.4 Three examples of correspondences. 122

7.5 A simpler representation of the binding object to engineering
channel correspondence. 123

8.1 Assessing compliance and conformance. 130

8.2 A simplified view of the testing activity. 132

8.3 Conformance points for the mobile phone. 134

8.4 Checking conformance in the enterprise viewpoint. 136

9.1 How transparencies change an object’s environment. 141

9.2 The supporting objects that are needed to provide migration
transparency. 144

10.1 Epochs and points where policies are asserted. 149

10.2 A policy that controls the issue of loan handsets. 151

10.3 The use of policy execution points and policy decision points
to control policies in a streaming video server. 153

11.1 How organizations fill roles in a federation. 158

11.2 Operation of an engineering channel interceptor. 163

12.1 The infrastructure services a product needs and the services its
user makes available. 170

12.2 Broadest and narrowest behaviour envisaged by the supplier
and the behaviour needed by the user. 171

xi

13.1 Computational interface type compatibility rules. 179

14.1 A hierarchy of systems. 190
14.2 Defining open- and closed-world models. 191

15.1 A framework for model transformations. 199
15.2 A schematic view of different transformation types. 203

A.1 The overall structure of the PhoneMob system specification. . 221
A.2 The structure of the PhoneMob enterprise specification. . . . 222
A.3 Community contract for the Phone Repair community. 223
A.4 Community contract for the CustomerOrg community. 223
A.5 Community contract for the Logistics Provision community. . 224
A.6 The enterprise objects in the Phone Repair community. 224
A.7 A Request Repair interaction in the CustomerOrg community. . 225
A.8 The Phone Repair information action types. 225
A.9 A static schema stating the initial state of the system. 226
A.10 A dynamic schema for the RepairOrder information object. . . 227
A.11 The overall structure of the computational specification. . . . 227
A.12 The overall structure of the engineering specification. 228
A.13 The distribution of engineering objects. 229
A.14 The overall structure of the technology specification. 230
A.15 Correspondences between different views of the same entity. . 231
A.16 Correspondences from computational to engineering objects. . 232
A.17 Correspondences from engineering to technology objects. . . . 232
A.18 Nodes and channels correspond to technology objects. 233

This page intentionally left blankThis page intentionally left blank

About the Authors

Peter F. Linington is Emeritus Professor of Computer Communication at
the University Kent in the United Kingdom. He has been involved in the stan-
dardization of the ODP Reference Model and its various supporting standards
since the activity started. He has co-chaired WODPEC, the main workshop in
this area, since its inception. His recent research interests cover architectural
description, use of policies and model-based techniques. Further information
can be found at http://www.cs.kent.ac.uk/people/staff/pfl/.

Zoran Milosevic is a Principal of Deontik Pty Ltd., a small consulting
and software company specializing in the planning, development and deploy-
ment of enterprise systems. He was involved in the standardization of the
ODP Enterprise Language, and with several OMG standards, while work-
ing for the Distributed Systems Technology Centre (DSTC), based in Bris-
bane. He was the founder of IEEE’s Enterprise Distributed Object Com-
puting (EDOC) conference. Further information can be found at http:

//deontik.com/About/Zoran.html.

Akira Tanaka is a founder of view5 LLC, a small consulting company in
Japan, specializing in applying viewpoints and model-based approaches to
software development. He has been involved in RM-ODP standardization
from its early days. While with the Hitachi Ltd. Software Division, he led the
ODP committee of INTAP in Japan, and participated frequently in EDOC’s
WODPEC. He was also active in OMG, including as a contributor to the
UML Profile for EAI specification and SoaML RFP. Further information can
be found at http://www.view5.co.jp/.

Antonio Vallecillo is Professor of Languages and Information Systems at the
University of Málaga, Spain. His research interests include open distributed
processing, model-based engineering, componentware and software quality. He
was co-editor of ISO/IEC 19793 (UML4ODP) and of the revised versions of
RM-ODP Parts 2 and 3 (ISO/IEC 10746-2/3). Further information can be
found at http://www.lcc.uma.es/~av.

xiii

This page intentionally left blankThis page intentionally left blank

Foreword

Working as the rapporteur for Part 3 of the ISO/ITU-T Basic Reference Model
for Open Distributed Processing (RM-ODP) was one of the most stimulating
periods in my professional career and I am grateful to the authors for asking
me to write a foreword to their excellent book describing the model and its
application to the design and specification of practical distributed systems.
The role of a foreword is to set the scene for the reader and, to that end, I
offer a personal perspective on the origins of RM-ODP.

RM-ODP was in many ways a breakthrough in its approach to standard-
ization, arising from a decade of fast-paced innovation in telecommunications
and computing technology. Prior to RM-ODP, international standards for
networking had been focused on the needs of mainframe computer operat-
ing systems for file transfer, remote job control and remote terminal access
over relatively slow network links provisioned by regulated telecommunica-
tions providers. The ISO Open Systems Interconnection family of standards
and its associated seven-layer reference model were developed to meet these
needs. For point-to-point services such as file transfer, modelling communi-
cation as a protocol state machine moving messages back and forth between
two service state machines, one at each end of the communications path, was
sufficient. However, as OSI evolved to include multi-party distributed appli-
cations, limitations of the OSI model became clear. There was the need for a
new framework that could better represent system-oriented concepts such as
network management, network security and directory services. The missing
capabilities from the OSI reference model were the ability to describe system
structure and to model interactions richer than just basic data interchange.

During the 1980s and 1990s, there were huge changes to the landscape
of computing driven by the advent of the microprocessor. Minicomputers
brought computing out of the data centre and were rapidly followed by single-
user workstations and in due course the now ubiquitous personal computer.
In parallel, there was an equally revolutionary change sweeping through com-
puter networking, driven by the growth of Local Area Network (LAN) tech-
nologies. LANs permitted the low-cost interconnection of computers by high
speed links, leading to the appearance of client-server architectures in which a
powerful server computer provides print, file and database services to a group
of smaller user workstations and personal computers. Alongside client-server
architectures there was also a parallel evolution of network and distributed op-
erating systems, which followed a decentralized architecture. The client-server

xv

xvi Building Enterprise Systems with ODP

model came to dominate as the personal computer became more popular, but
the peer-to-peer model remained an important technology for building pow-
erful servers from clusters of machines, a strand of development which has
continued through to modern parallel high-performance supercomputers for
scientific processing and from there to the scalable highly parallel architectures
of modern data centres for online services and cloud computing.

The co-evolution of operating systems and LANs spawned an explosion in
new network protocols and services. The greater bandwidth and reliability
of LANs compared to earlier wide area telecommunications overlaid on the
telephone network removed many of the constraints that had driven the design
of the OSI standards. The relevance of OSI was further diluted by the growing
adoption of the Internet protocols IP and TCP as UNIX emerged as the
dominant workstation operating system of the time. At the same time, the
implementation of TCP/IP for the personal computer displaced proprietary
client-server protocols, making TCP/IP the de facto standard.

With the growth of LANs and client-server computing, the emphasis for
standards moved from the protocols as networking functions like file trans-
fer to more generalized access to operating system services and libraries for
building distributed applications. For example, Remote Procedure Call (RPC)
protocols allowed functions on remote machines to be invoked through pro-
gramming language procedure calls, albeit with more complex failure modes.
It was a small step from RPC to Network Objects, which generalized the model
to method invocation on remote objects and introduced the concept of a Re-
mote Object Reference as a pointer to an object that could be given to other
computers to enable them to invoke the methods of the object. With these
facilities, it became common to talk of a network object as something that
provided a service defined in terms of the set of method calls provided by the
object.

A number of RPC and network object systems were constructed building
on these ideas, and standards began to emerge both for the programming inter-
face and the protocols for interworking. First to appear was the Open Soft-
ware Foundation’s Distributed Computing Environment (OSF/DCE) based
on RPC and then subsequently the Object Management Group’s Common
Object Request Broker Architecture (CORBA) and associated CORBA ser-
vices. Both were examples of what came to be commonly described as mid-
dleware — a layer of distributed computing infrastructure that sat between
the basic machine operating system and the (distributed) application.

As these technologies were applied to practical distributed applications, it
became clear that while RPC and network objects were useful basic system
components, they didn’t address the need to build dependable systems and
so further developments in middleware provided more advanced facilities such
as atomic transactions, support for service replication, service migration and
so forth. Generally, these took one of two forms: explicit, in which the capa-
bilities were exposed to the application programmer or transparent, in which
the capability was hidden behind the RPC or network object model. The

Foreword xvii

explicit model was more complicated to program, but offered greater control
and the ability to exploit application-specific knowledge to improve system
performance, whereas the transparent model, as its name suggests, required
no special intervention on the part of the programmer.

All these technology developments defined the context in which RM-ODP
was developed, with the ambition to define a reference model that would
provide a descriptive framework for creating standards for interoperability
between systems, to allow for the construction of such systems from compo-
nents glued together by middleware and for (distributed) applications to be
portable between different vendors’ technologies.

During this period, I had personally been involved in several of the tech-
nological developments, first as an academic researcher in the Computer Lab-
oratory at the University of Cambridge, England helping build the Cam-
bridge Distributed System [86] and then subsequently as the Chief Architect of
ANSA, a project funded by a consortium of computer and telecommunications
suppliers. ANSA started as part of the UK government Alvey Programme,
and subsequently became part of a European Union funded project called In-
tegrated Systems Architecture. Starting slightly earlier than OSF and OMG,
the vision for ANSA had been to develop a practical architectural framework
and supporting components that could encompass the new distributed com-
puting concepts demonstrated in research prototypes at that time. Alongside
the architecture, the ANSA project also developed a reference implementa-
tion, called ANSAware, which was used by many of the project partners to
build, evaluate and deploy practical distributed systems.1

Concepts from ANSA found their way into OSF/DCE, OMG/CORBA
and ISO/RM-ODP, and there was close cooperation between the three orga-
nizations and the teams involved in each activity, with some overlap in mem-
bership. While OSF and OMG focused on producing standards for specific
distributed computing functions, the RM-ODP gravitated towards providing
a higher-level reference model into which such technical standards could be
placed and with which the means of interoperation between systems using
these standards (or others) could be discussed.

Possibly the most important idea to come to RM-ODP from ANSA was
the concept of viewpoints (which in ANSA were called projections). These
arose initially from a desire to separate discussion of the engineering structure
of a distributed system as a composition of computers, communication links,
operating systems and middleware components from the abstract distributed
computational model seen by the programmer in terms of network objects,
interfaces, concurrent threads and so forth. We also recognized that the ANSA
computational model could be instantiated over several different engineering
models, depending on what kind of transparency was required. This led to
the concept of having separate languages for describing systems from each
viewpoint and the need to be able to show consistency between models of the

1An archive of ANSA project documents can be found at http://www.ansa.co.uk

xviii Building Enterprise Systems with ODP

same system expressed in each such language. To do this, ANSA borrowed
from Sowa’s work on conceptual structures [93] by treating the architecture
as an existential graph in the form originally proposed by the logician C. S.
Pierce. The graph showed relationships between concepts in the architecture
and the term projection was taken for its mathematical interpretation as a slice
through the graph that included every architectural concept in the graph, at
some level of abstraction. This gave us the means to explain correspondences
between viewpoints, and the adoption of a logic-based approach opened the
door for other colleagues with an interest in formal methods to apply rigorous
mathematical specification techniques to the development of RM-ODP.

In adopting ideas from object-oriented programming as the basis for the
ANSA computational model, we struggled with concepts such as inheritance,
class versus type, object versus interface and so forth, not helped by great
debate about the relative importance and relationship between these ideas in
the programming language community. In the end, we settled on objects as a
unit of modularity and encapsulation as the key property in distributed sys-
tems and relegated class and inheritance to be software engineering concepts
relating to how specifications are organized. We further took the view that
an object could exhibit multiple interfaces, with different interfaces possibly
encapsulating different partitions of the object state and giving different kinds
of service to different types of client. We talked about selective transparency
as the abstraction of engineering viewpoint capabilities, controlled by engi-
neering (that is, system management) interfaces in the computational view.
The computational viewpoint turned out to be a very powerful system mod-
elling tool but gave problems to colleagues who wanted to implement ANSA
directly in object-oriented programming languages, forcing them either to re-
strict the ANSA model or to use programming language objects to represent
both ANSA interfaces and ANSA objects.

The two initial viewpoints were not sufficient for the needs of ANSA or
RM-ODP. Taking ideas from colleagues working on OSI protocol conformance
testing, we introduced a technology viewpoint to give us the means to state
which standards applied to specific interfaces in a system and how to go about
testing for conformance at those points. To talk about topics such as system
management and security we found the need for a language to describe the
purpose for which a system was intended, the system’s boundaries and the
roles undertaken by people using the system. This led us to introduce an en-
terprise viewpoint. Additionally, we wanted to be able to look at a system in
high-level terms as an information processing system, without committing to
a specific computational structure, leading us to add an information viewpoint
that allowed for specifications in terms of a conceptual schema for the infor-
mation handled by a system and an information flow model for the processes
by which that information is processed.

The enterprise viewpoint gives terms for describing organizational struc-
tures, policies for security, dependability, quality of service and other so-called
non-functional requirements and the roles of human actors in the system. The

Foreword xix

organizational concepts centred on the notion of federation representing the
notion that many systems arise from the interconnection of previously au-
tonomous systems (for example, as in enterprise application integration). In
a federation neither system is subordinate to the other; rather, there must
be an agreement of what is interconnected, what interactions can occur at
those interconnections, and the meanings that are given to the interactions.
In this last respect, ANSA work based on Searle’s [90] development of Austin’s
speech act theory [48] provided some of the foundations. It gave RM-ODP the
concepts of performative actions (ones that change the state of affairs in the
system, such as making an online purchase) versus purely informative actions
to exchange data (for example, looking up prices in an online catalogue). By
expressing system behaviour in terms of its effect on the external environment,
the enterprise viewpoint provides tools needed to express system policies and
the desired outcomes and impact of system behaviour. Expressing correspon-
dences between the enterprise viewpoint of a system and the other viewpoints
is then essentially an exercise in showing how the technical system meets the
external requirement — in other words, showing its fitness for purpose.

An associated concept that came with federation was the engineering view-
point concept of interception to capture the idea of system components that
allow bridges to be built between systems based on different infrastructures.
Through the related concept of selective transparency, there was a similar
decoupling between the computational (or programmatic) interfaces of the
system — and the selection of engineering mechanisms that provided the nec-
essary infrastructure to deliver the non-functional requirements set out in en-
terprise viewpoint policies. This was a contentious approach, standing against
the philosophy at the time of seeking a universal set of standards to which all
vendors and users would adhere. Recognizing that a model that could talk
about interoperability between diverse systems run by separate authorities
would be more general, the RM-ODP community embraced the ANSA feder-
ation and interception concepts and by that means ensured the model would
remain relevant beyond the lifetime of many of the technologies that inspired
it.

There were areas where ANSA was deficient and others in the RM-ODP
community developed new ideas (several of which were pulled back into ANSA
and ANSAware). Perhaps the most significant were concepts added to allow
the modelling of other than RPC-based interaction. This need came from
representatives of the telecommunications industry who wanted RM-ODP to
be able to accommodate the signalling systems used to control switched net-
works and the need to carry synchronous streams of voice or video traffic as
well as asynchronous data. To fill the gap J-B Stefani, at the time with France
Telecom, introduced the concept of signals as synchronous atomic communi-
cation events from the Esterel [50] programming language into the RM-ODP
computational viewpoint. This opened a broad vein of further development of
rich multimedia systems based on RM-ODP and spawned a further industry
consortium, TINA-C, which explored the application of RM-ODP ideas to

xx Building Enterprise Systems with ODP

the design of intelligent telecommunications networks to support new kinds
of telecommunications services being offered by the increasingly deregulated
and privatized telecommunications industry.

Looking back now, some 20 years later, the obvious question is what impact
RM-ODP had on subsequent developments. Certainly it provided ISO with
a necessary tool-box for further work on distributed computing standards, al-
though, with some exceptions, the momentum moved away from ISO to the
industry consortia, with new ones springing up alongside OSF and OMG as
distributed computing moved to new technologies such as web services. RM-
ODP had a strong influence on the Object Management Group’s CORBA
and CORBA service standards, which then went on to strongly influence the
distributed computing provisions of the Java programming language and vir-
tual machine and, in turn, from there through to web services. Certainly
the ODP work helped educate many in the computer and telecommunications
industries, whether as supplier or customer, on how to exploit distributed
computing during rapid evolution of networks from early LANs to today’s
global Internet.

What of the future? RM-ODP remains of significant value — the concepts
are general and powerful enough to describe current systems. Moreover, as we
come to grow ever more dependent on computers to run the modern world and
need to manage the complexity of these systems and the rapid evolution of the
technologies they use, the ability to model and specify them accurately and
completely remains a key challenge. Looking further ahead, in the Microsoft
Research laboratory where I work, some colleagues are using concepts from
distributed computing to construct computational models of DNA replication,
splitting, and recombination along with the systems biology of human cells
driven by a vision of being able to program theranostic molecules to diagnose
and treat genetically based conditions. Perhaps one day we will see humans
modelled in the computational and engineering viewpoints of RM-ODP as
well as the enterprise viewpoint where they mostly live today!

In terms of RM-ODP itself, the enterprise viewpoint has remained an
active area of development through to the current day linked to work in for-
mal methods for system design and specification used in approaches such
as Model-Driven Architecture where the collaboration between the RM-ODP
community and the OMG remains vigorous and productive.

I commend the authors for continuing with the RM-ODP agenda from
the early days when we worked together and I welcome the opportunity to
acknowledge the contributions of all those who have participated in RM-ODP.
In this book the authors have done an excellent job in relating the concepts
to modern systems and needs, retaining the rigour of the model found in the
ISO documents but with a refreshing and informative style to make them more
approachable.

Andrew Herbert
Cambridge

Preface

The Reference Model for Open Distributed Processing (the RM-ODP) is an
international standard created by the standardization bodies ISO and ITU-T.
It gives a solid basis for describing and building widely distributed systems
and applications in a systematic way. Emphasis is placed on the need to build
such systems with evolution in mind by identifying the concerns of major
stakeholders and then expressing the design as a series of linked viewpoints
representing these concerns. Each stakeholder can then develop an appropriate
view of the system with a minimum of interference from the others.

Although ODP has been available as a standard for more than 10 years,
standards are not easy bedtime reading. The ideas presented have an en-
thusiastic following, but, outside of it, many practitioners are still unaware
of them. This book aims to provide a gentler pathway to the essential ideas
that make up ODP and to show how they can be applied when designing and
building real systems. It offers an accessible introduction to the design prin-
ciples for software engineers and enterprise architects. In addition, it explains
the benefits of using viewpoints to produce simpler and more flexible designs.
It is not limited to any single tool or design method, but concentrates on the
key choices that make an architectural design robust, flexible and long lived.
The book also shows the power of enterprise architecture for the design and
organization of complex distributed IT systems.

The book has been prompted by the recent revision of the standard, during
which ISO has incorporated experience from the application of ODP to many
different domains and has taken account of new technologies and fashions. We
cover the most up to the minute developments in the ODP standards, includ-
ing the recent updates to the ODP reference model and the ODP enterprise
language. The book provides fresh insights into the design of enterprise sys-
tems. Another reason for producing this book is to mark the publication of the
ISO/IEC 19793 standard (known as UML4ODP), which uses the Unified Mod-
elling Language (UML) notation to provide a familiar and accessible way of
expressing ODP designs; it does this by defining a standardized UML profile.
The book also provides guidelines for using the UML notation for structuring
and writing system specifications and for fitting such specifications into the
Model-Driven Engineering toolchain. This gives users of the ODP ideas a
simpler way of expressing them with existing design and modelling tools.

Finally, there is an ongoing interest in using ODP when addressing new
standardization approaches and interoperability frameworks such as those in

xxi

xxii Building Enterprise Systems with ODP

e-government, e-health, and the energy and transportation industries. The
book shows how the RM-ODP ideas can be applied to modern movements
such as service engineering, cloud computing and the creation of the open
enterprise.

This is the first book to introduce the ODP material in language that
is common to software engineers and software architects. It offers a short,
concise and focused presentation of the essentials of RM-ODP and shows where
it fits within today’s software processes. The book describes all the major
concepts and mechanisms of the ODP framework, explains how to use them
in a practical way for the specification of large open distributed systems, and
presents the basic notation used for creating the specifications. It follows the
standards faithfully, but provides extra information on the thinking behind
them, and on how they should be interpreted. The reader can get acquainted
with the best design concepts and practices, which are essential to anyone who
designs large software applications professionally.

The Roadmap

The book is targeted at a number of different audiences. It has been
written to be attractive both to the technical experts working on system ar-
chitecture and to a much broader audience working on realizing such systems.

The book is divided into four parts, each having a different focus and each
exploring progressively more detail of the different concepts and their use.
There are also two appendices. The four parts provide

• An extended executive summary introducing the basic structuring ideas
of ODP, particularly the central idea of there being a set of viewpoints.

• A more detailed explanation of the five ODP viewpoints and of the
correspondences between them. Reading this part gives an idea of the
style and use of the main elements of the ODP architecture.

• An explanation of the way these concepts are used to solve a number
of the common problems met in the development and evolution of dis-
tributed systems. This part will help the reader to understand how use
of the structure results in more flexible and adaptable systems.

• A discussion of some of the subtler ideas underlying this kind of system
modelling and the new requirements they place on the supporting tools.
This part answers some of the immediate questions people often want
to ask about why the framework was defined in the way it is.

The first appendix brings together all the example model fragments used
in the book to provide a single overview of a simple ODP-based design. Space

Preface xxiii

limitations mean that even this needs to be selective, and a fuller version is
available from the authors’ website (see http://theodpbook.lcc.uma.es/).

The second appendix presents some questions and scenarios that can be
used to support teaching and training using this book. In addition to provid-
ing information for practicing professionals, we expect the book to provide a
resource for graduate students and researchers who want to understand the
main problems and principles involved in the design of large software systems;
the book can also be used in Masters or Doctorate courses for teaching the
concepts and design principles of ODP and for preparing students to research
new problems in this area.

The whole structure is unified by the use of a single running example
describing the IT support needed by a medium-sized company as it grows and
develops. One of the problems in understanding a system’s architecture is
in seeing just how it helps the day-to-day activities of the system builders.
Abstract structures in their purest form can seem dry and remote, so we have
tried to relate them to the problems developers face by including a series of
short vignettes illustrating why the various aspects of the architecture are
needed. These fragments support, but do not form an essential part of, the
main exposition. The individual chapters generally start with one of these
fragments to give an informal introduction to the problem to be solved.

The book is targeted at three groups of readers. It is primarily intended for
enterprise architects and software engineers who want to understand the con-
cepts, mechanisms and problems involved in the design of complex enterprise
systems and to use this knowledge in establishing a tool-based approach to
documenting, evolving and testing systems. Readers will become more aware
of the issues and options available for designing within a strong architectural
framework. They can apply the ideas in general terms, or study the full detail
further in the standards or in one of the reference books based on them.

A second target audience includes IT project managers and CIOs, who
will be able to understand the possibilities of the RM-ODP framework and a
viewpoint-based design approach, and the potential benefits that the adoption
of this approach can bring to their companies and organizations. There are a
growing number of large, multi-organizational information systems projects,
for example in the aerospace and healthcare areas, and the designers involved
are seeking urgently for a systematic architectural approach. ODP provides
such an approach.

A third group, CEOs and business architects, can get an overall idea of this
design approach and be able to evaluate the advantages of the use of a ma-
ture set of ISO and the ITU-T standards within their organizations, and also
for interoperating with the IT systems of their customers, providers, financial
services, and so on. The use of international standards is now essential to
achieve (and to guarantee) the level of interoperability required in these large
and complex IT systems with hundreds of customers, providers and devel-
opers, which need to exchange data and services with other IT systems in a
seamless way.

Preface xxv

Trademarks and Copyright

UML R©, CORBA R©, XMI R©, MOF
TM

, MDA R©, OMG R©, Object Manage-
ment Group

TM
, and Unified Modelling Language

TM
are either registered trade-

marks or trademarks of Object Management Group
TM

, Inc. in the United
States and other countries.

Java
TM

and Java EE
TM

are trademarks of Oracle or its affiliates in the
United States and other countries.

Unix R© is a registered trademark in the United States and other countries,
exclusively licensed through the X/Open Company, Ltd.

Figures 1.5, 7.2 and 7.3 are reproduced from ISO/IEC 19793:2008 with
permission of the American National Standards Institute (ANSI) on behalf
of the International Organization for Standardization (ISO). No part of this
material may be copied or reproduced in any form, electronic retrieval system
or otherwise or made available on the Internet, a public network, by satellite
or otherwise without the prior written consent of the ANSI. Copies of this
standard may be purchased from ANSI, 25 West 43rd Street, New York, NY
10036, (212) 642-4900, http://webstore.ansi.org.

Acknowledgements

The ODP standards are the result of the efforts of a great many experts
working within the standards process over many years. There is not room
here to give credit to all of these people, but we should like, in particular, to
acknowledge the contribution of the ISO conveners and document editors in
leading the effort, particularly Joost J. van Griethuysen, Eng Chew, Bryan
Wood, Jean Bérubé, Fausto Caneschi, Jean-Bernard Stefani, Andrew Her-
bert, Richard Sinnott, Mirion Bearman, Pramila Daryani, Peter Furniss, Lea
Kutvonen, Laurent LeBoucher, Joaquin Miller, Kerry Raymond, Gerd Schür-
mann, and Sandy Tyndale-Biscoe. Arve Meisingset played a pivotal role in
coordinating our link with the ITU-T, and Tom Rutt provided vital liaisons
links with the OMG.

A number of people have read drafts of this book and provided us with very
useful suggestions; in particular, our thanks go to Andy Bond, Fred Cummins,
Andrew Herbert, Jishnu Mukerji, Bruno Traverson and Bryan Wood.

The authors would also like to thank No Magic, Inc. for making their
UML tools available to facilitate the production of this book, and José Raúl

xxvi Building Enterprise Systems with ODP

Romero and Juan Ignacio Jaen for building and maintaining the ODP plug-in
for MagicDraw, and for maintaining the RM-ODP website.

Finally, we would like to thank all those involved at CRC Press, partic-
ularly Randi Cohen, Amber Donley and Karen Simon, for their expert help
and advice throughout the publication process.

Peter F. Linington
Zoran Milosevic
Akira Tanaka
Antonio Vallecillo

xxiv Building Enterprise Systems with ODP

Historical Background

The requirements for ODP and its reference model can be traced back a
long way, from the earlier work on Open Systems Interconnection. It became
clear to experts working on application protocols that the prevalent focus on
peer-to-peer communications was not enough and that distributed systems
design needed to take a more holistic approach, starting from the structure
of the organizations involved. It was necessary to begin with a thorough
understanding of the enterprise before proposing any technical solutions.

At the same time, there was considerable work in progress on the idea of
middleware supporting a uniform distribution platform, leading, for example,
to the ANSA architecture [72] and to early Object Management Group (OMG)
specifications. The work on ODP started by harvesting the current research
ideas available at that time and then used them to construct a vendor-neutral
architecture. This principle of maintaining a broadly applicable framework
by using the best current thinking has continued to be the basis for work on
ODP.

Currently RM-ODP is being maintained and developed by an ISO/IEC
Working Group (JTC1/SC7/WG19: Techniques for the Specification of IT
Systems). This group works in close cooperation with ITU-T on the joint
publication of a series of standards, and also maintains strong collaborative
links with other international bodies, such as the OMG. These links help to
provide the intelligence for continuously updating and improving the frame-
work as new technologies and paradigms emerge, and for maintaining the
consistency of a broad range of specifications and standards.

Conventions Used

Much of the explanation of architectural elements is about the way dif-
ferent concepts are represented and what artefacts might result from their
application. It is easy to lose track of which use falls into which category, so
we introduce some graphical conventions to help sort things out. Throughout
the book, we will use the following typographical conventions:

• A bold italic font highlights a word that is an ODP concept.

• A sans serif font indicates that an element is from a UML model.

• A typewriter font flags an item as being a concrete instance.

Part I

The Framework

This page intentionally left blankThis page intentionally left blank

3

About Part I

This first part explains the objectives of ODP and gives
an initial introduction to the common concepts on which the
framework is based. In particular, it describes the idea of
viewpoints and how this idea is used to structure system spec-
ifications. It also introduces the taxonomy for supporting func-
tions, which is used to establish a common vocabulary and, us-
ing human-computer interfacing as an example, indicates how
planning for distribution interacts with other facets of system
design.

Finally, notations are discussed, and a particular standard-
ized profile for a UML-based notation is introduced. This no-
tation will be used in the rest of the book.

Throughout the book, the problems being solved are put
into context by a series of dramatized vignettes showing the
everyday activities within the PhoneMob organization, a fic-
tional company whose activities provide our running example.
These are not, in general, essential to the technical points be-
ing made in each chapter, but you should certainly read the
first episode, since it introduces the broad structure of the
example to be used in the rest of the book.

This page intentionally left blankThis page intentionally left blank

Chapter 1

What Is ODP About?

Marcus Steinberg was a self-made man, and he had built his business on
his ability to select a strong team. As he walked into the executive meeting
room, he wished that events had not moved quite so quickly, but he would
be a fool not to take advantage of the current state of the economy. He had
snapped up the PhoneMob, a promising startup with a cash flow problem and
a serious need to automate its working methods. Their business, providing
a complete facilities management package to mobile phone owners, was close
enough in concept to his current camera rescue empire for there to be some
real opportunities for synergy, but PhoneMob would need sorting out first.
Still, this acquisition would give him the platform he needed to make a real
impact as the recovery kicked in.

Marcus knew the IT team he was about to address was technically solid,
but he had begun to think that they needed a new approach. Recent projects
seemed to have taken longer than expected, with too many last-minute snags
and small misunderstandings. He liked a well-oiled machine, and their current
performance grated. He had decided to call in some favours and had, as a
result, been introduced to Alex Wren, a consulting enterprise architect whose
new approach was, he had been told, finding favour in all the right places.

“Good, you’re all here.” He looked round the room and noticed his people
had grouped themselves, as usual, into the primarily technical and the pri-
marily business oriented. He also noticed the empty seats on either side of
Wren; there was a job to be done there in getting Wren accepted. “You all
know we have a big job on our hands in bringing the PhoneMob up to date,
and I want to make this happen fast and efficiently. We need the relaunched
organization to make a mark as a modern outfit, without losing its existing
customers.”

“I know you already have a lot on your plate, and it would be unfair to
saddle any of you with the responsibility for coordinating this,” — he wished
this was his real reason — “so I have asked Alex Wren here to join us and help
pull things together.” He could see from their faces that some of the business
team would happily have done without this help. Eleanor Hewish, his volatile
but ambitious CIO was staring directly at him, while the fastidious compliance
officer, Ivor Davies, was looking critically at Wren, who still seemed relaxed
and confident. The technical side seemed less threatened. Claire Moss, the
lead system analyst, was still studying her papers, while Trevor Clark, the

5

6 Building Enterprise Systems with ODP

configuration manager and Trudy McNeal of procurement were giving him
their polite but guarded attention. Nigel Oliver, the infrastructure manager
was sketching some sort of diagram on his pad, although Marcus couldn’t
make out whether it related to this meeting or to something else on Nigel’s
mind.

He turned towards the other member of the meeting, who was from out-
side his core team. “I’m assuming you already know Edward Faversham, from
the PhoneMob; you must all have had some dealings with him during the
negotiations. He is here to give us his experience of their current services and
processes, and his view of the requirements for the merged system.” Faver-
sham shifted nervously and looked round the table, acknowledging the nods
of recognition. “So, let’s get down to business. Edward, perhaps you can give
us a quick run-through of the main business units to get us started?”

Faversham flicked the remote control to display a picture of a dishevelled
businessman jumping up and down on his mobile phone. “As you know,” he
said, “our mission is to take the hassle out of owning a mobile. We get the
phone fixed if it breaks, and we provide a replacement if we can’t get it going
again straight away. We have outlets all over Europe, so we can help while
you are travelling and return the repaired phone to you at your home base.”
He clicked, and the view changed to a map spattered with dots, although,
Marcus thought, not that many, yet.

“To be honest,” Edward said, “our main problem at present is that these
sites are not that well integrated, but so far we have grown from a base where
each local office franchise did its own thing, and had its own PC-style support,
and we can’t grow any more without a proper infrastructure.”

He clicked again, revealing a complicated block diagram on the screen,
and pointed to a set of paths highlighted in red. “This,” he said, “is the work
scheduling and logistics. That’s where there is the main scope for automation.
This other area over here covers the liaison with the handset suppliers, and
at present is mostly person-to-person negotiation; and this is the corporate
relationship management, which is one of the areas we need to put on a much
firmer basis. Down here are the charging and account management processes.
No, it’s the logistics that we should concentrate on here, at least initially.”
He paused and considered his chart, as if seeing it for the first time. “I guess
the main difference from what you are used to is the complexity of the data
management involved.”

Eleanor interrupted. “What’s the problem?” she asked sharply. “It looks
simple enough.” “Oh no,” he said, “far from it. Think about the investment a
user has in the content of his mobile phone. The SIM is bound to the number,
and can be swapped, but the contact lists and the message and call history
are needed to keep things moving, and all that data is potentially sensitive.”

This brought Nigel in. “So your service engineers have access to sensitive
customer data? Isn’t that a security problem?”

What Is ODP About? 7

“Well, at present we don’t provide the flexibility customers want, but data
privacy certainly will be an issue in what you are planning now. Let’s look at
the most common use case,” Edward said. “A corporation takes out a contract
with us to support its salespeople. One of its representatives is in Stuttgart,
and his phone keypad fails. He visits our Stuttgart office, and we put his
phone into a test harness to bypass the keypad and download the state into a
courtesy unit; we swap the SIM into this new unit, and the salesman can go
on his way. Before he leaves we estimate the time to repair, and he tells us
that by then he will be in Berlin. We commit to deliver the repaired phone
to his Berlin hotel.”

“What about if there is some extra delay?” Eleanor asked. “Suppose there
was a deeper problem requiring a return to the manufacturer that didn’t show
up until you had done the keyboard replacement?” “Well, then we send an
SMS giving a revised estimate. He can then reply to the SMS, or access our
website, to confirm the new time.” Claire leaned forwards. “But he might
have returned home by then.” “Yes, but he can change the delivery address
if necessary. He can also do that if his own plans change.” Claire was not
satisfied. “What happens if the phone is already in transit to Berlin when
he makes the change?” “Well, our logistics support has to cope with that.
We do a confirmation check before the phone leaves the local depot, and the
couriers are instructed to ensure the customer has not yet checked out before
they complete the delivery.”

“The loan phone is returned using a prepaid wallet; the user’s information
was copied to the repaired phone before it is dispatched. After all this, the
corporate account is billed for the work.” Nigel frowned. “What about the
state in the loan phone?” “Well,” Edward spread his hands. “If the user
needs complete synchronization, he can come in to the local office to make
the exchange; that also means we can do the SIM swap for him. But we find
people are generally happy to make separate records if they know they are
using a loan phone. We can e-mail the state back to them after return of the
phone if they want.”

Marcus looked around the group. “Well, any comments on what we have
heard so far?” Nigel looked up. “It seems to me that there is a huge piece of
design work to do here,” he said. “We need to look at a number of different
infrastructure use cases, and it will take my team some time to understand
the application structure, plus the security aspects, and the user interface
issues, just for starters.” “Hang on,” interrupted Eleanor, “we need a design
the business side can understand; we have got to keep it simple for them,
or we can’t have a meaningful discussion about the processes they need.”
Ivor frowned. “But we need to check over precisely that detail to pick up
inconsistencies that would give us compliance problems later.” Trudy nodded.
“And we need to think from the start about whether our corporate standards
and procedures will be suitable. We need to have all the detail there,” she

8 Building Enterprise Systems with ODP

said. “But look here,” said Claire, “we can’t add all that into the application
design, or we will lose sight of the application architecture. It will be a mess.
And we don’t need the application and infrastructure teams to duplicate each
other’s work.”

Marcus banged the table. “Hold on now. You are all talking at once. Alex,
you haven’t spoken yet. What’s your take on what you have just heard?”

Alex stood up and walked over to the flipchart. “I think you have all made
good points.” He said. “This is a very large design, and there are conflicting
requirements, needing different focuses and levels of detail. The best way to
handle it is to divide and conquer; you should identify the key stakeholders,
and then describe the problem from their points of view. If you can identify the
right stakeholders, the different views can be largely independent, and so they
can be worked on in parallel. The framework I want you to work with is called
ODP, and it stresses five such viewpoints.” He sketched a diagram on the chart
with five arrows converging on the design problem. “These correspond roughly
to organizational responsibilities in a situation such as yours, namely business
processes, systems analysis, data integrity, infrastructure and intellectual or
physical resources. If you each start with your own focus and the level of
detail you need, we can then link the different views together to describe the
complete problem.”

“What I would like each of you to do is prepare an outline of the require-
ments as you see them, and then we can see how they fit together and move
on from there.”

“OK then,” Marcus said, “let’s do it, and meet again on the 28th to see
how well it works. That’s all for now; I’ve got to talk to the finance people
again.” He stood up and stalked out of the room, leaving the discussion going
on; it was still going on hours later.

1.1 The ODP Reference Model

The aim of the Reference Model for Open Distributed Processing (the RM-
ODP) is to provide a framework for specifying and building large or complex
systems; we call the systems being produced ODP systems. These systems
may be classical IT systems, information systems, embedded systems, business
systems, or anything else in which we are interested.

If a system is at least moderately complicated, it is useful to extract the
description of its structure and external properties from the details of its com-
ponents or subsystems. If this abstract view concentrates on the distillation
of general principals, it is called an architecture . When presented in a way
that is useful for the derivation of a whole family of future systems, it is called
a framework. Hence, when describing a business system supporting a broad
range of applications, it is common to talk of an enterprise architecture or an

What Is ODP About? 9

enterprise framework. However, of late, these terms have been over-used and
now lack focus. In these terms, the RM-ODP is an architectural framework
for the design of any distributed system, particularly those whose complexity
poses a challenge.

The Reference Model was published in the mid 1990s, following almost 10
years of work in the International Standards Organization to harvest the best
architectural work up to that time. The results were published as common
text by both ISO and the ITU-T (the telecommunications standards forum).
The RM-ODP was published in four parts [2–5]. These four parts provide
an introduction, a set of rigorous basic concepts, the architectural framework,
and a link to supporting formal techniques. The users of this framework
are expected to be system designers, but it is also intended to help people
who build tools to support such design activity, or who produce standards to
capture best practice and reusable mechanisms in this area.

The RM-ODP defines a framework, but not a methodology. It gives the
designer a way of thinking about the system, and structuring its specification,
but does not constrain the order in which the design steps should be carried
out. There are many popular design processes, and the framework can be
used with practically any of them.

Since ODP system designs are typically large collaborative efforts, it is
likely that the actual process will be iterative, filling in detail in different parts
of the specification as ideas evolve and requirements are better understood.
However, the sequence in which this is done will depend on circumstances. In a
green field, design may follow a classical top-down, waterfall-style pattern. In a
legacy migration exercise, it will start by capturing existing constraints. In an
agile or rapid prototyping environment, design will stress modularization and
fine-grained iteration. The ideas for structuring specifications presented here
can be applied within any of these methodologies. They remain valid if the
design approach changes, and provide a common framework and vocabulary
for collaboration between designers using different processes.

Many competing architectural frameworks have recently been proposed,
and some of the better-known ones are reviewed in section 16.5. However,
ODP offers a set of distinguishing features that make it particularly relevant
for the specification of open distributed systems for enterprise and informa-
tion handling applications. First, it has the authority and stability that goes
with its status as an international standard. You can use it with the confi-
dence that it is controlled by proven international processes, and will not be
unilaterally changed by some individual group or private organization. Sec-
ond, it is based on a rigorously defined set of formal concepts, and so has a
precision that positions it in close alignment with the current software engi-
neering and model-driven trends within the industry. Third, it is based on
well-developed enterprise modelling languages and a distributed system archi-
tecture, which jointly position ODP as a perfect framework for modelling large,
cross-organizational and cross-jurisdictional systems that communicate over
the Internet. Finally, it has a well-integrated and fully developed treatment of

10 Building Enterprise Systems with ODP

conformance and compliance that makes it a practical tool, feeding naturally
from design to development. All these factors contribute to ODP’s position
as the most effective architectural vehicle for understanding and achieving
system interoperability.

1.2 Viewpoints

1.2.1 The Idea of Viewpoints

The RM-ODP is perhaps best known for its use of viewpoints. The idea
behind them is to break down a complex specification into a set of coupled
but separate pieces. This is a very old idea, used, for instance, to simplify en-
gineering drawings (as shown in figure 1.1) and in the building plans produced
by architects.

The writers of the reference model were keenly aware of the need to serve
different stakeholders, and introduced the idea of there being a set of linked

frontsideplan

plan

sidefront

FIGURE 1.1: A traditional use of viewpoints in a mechanical drawing with
first-angle orthographic projection.

What Is ODP About? 11

viewpoints to maintain flexibility and avoid the difficulties associated with
constructing and maintaining a single large system description.1

The idea is that, because the viewpoints in the set are interlinked (as
explained in section 1.2.4) they are equivalent to a notional single large model.
This equivalent model is not presented to any one user, since it would be too
complex to be useful. However, tools may construct part or all of such a model
where they need to manipulate information from more than one viewpoint.

Indeed, the idea of having a well-integrated set of tools, or toolchain, is fun-
damental to the success of the viewpoint approach. Without such a toolchain,
it would be necessary for programmers to consult every viewpoint to discover
all the constraints on the code they are to write, largely nullifying the advan-
tages of the approach.

The viewpoints are coupled to form a complete system specification, but it
is not necessary to use the same techniques when expressing each member of
the set. Each stakeholder will be familiar with languages and notations well
tuned to handling their particular interests, and so the techniques used will
often be different. Of course, the more similar the techniques, the simpler it is
to correlate the various views, so there is a trade-off between ease of solution
to the specific constituent problems and ease of integration.

One of the aims in selecting a set of viewpoints is for them to be as loosely
coupled as possible. A benefit of using viewpoints is that they allow parallel
activity in different teams, and so allow some parts of the specification to reach
a level of stability and maturity before others. It takes skill to pick a good set
of viewpoints; if two viewpoints are linked in too many ways, independent ac-
tivity will be difficult, and if they do not reflect common groupings of activity
in the industry, they will not belong to clearly identifiable stakeholders.

Thus we can see that, for example, separate descriptions of system state
and behaviour would be poor candidates for viewpoints; they are linked by a
fundamental duality and so closely intertwined. On the other hand, service use
and service provision are good candidates because, for a well-chosen service,
they each deal with independent detail; as long as the right service is provided,
the details of how it is provided and how it is used do not interact and can be
handled by different teams. The two sets of concerns are nearly orthogonal.

1.2.2 A Specific Set of Viewpoints

The idea of separating concerns by using a set of viewpoints can be ap-
plied to many design activities. However, components are more likely to be
reused if the same set of viewpoints is accepted by many different teams. The
largest possible degree of commonality is needed to support the creation of an

1The idea of providing a set of viewpoints has arisen in a number of different de-
sign and software engineering areas, and an attempt has recently been made to capture
the general idea in IEEE 1471, Recommended Practice for Architecture Description of
Software-Intensive Systems [75], which has recently been refined within ISO as the stan-
dard ISO 42010 [24].

12 Building Enterprise Systems with ODP

international standard, where a single approach is needed to cover a large and
long-lived community of users. The ODP reference model therefore defines
five specific viewpoints (see figure 1.2), intended to appeal to five clear groups
of users of a whole family of standards.

Your
System

Your
Business

Your
Information

Your
Software
Design

Your
Technology

Your
Middleware

Enterprise

In
fo
rm

at
io
n

C
o
m
p
u
tatio

n
al

Technology En
gin

ee
rin
g

FIGURE 1.2: The five ODP viewpoints.

These five viewpoints are each the subject of a subsequent chapter, but
they are introduced briefly here, concentrating on the broad objectives and
areas of concern they cover.

The enterprise viewpoint focuses on the organizational situation in
which the design activity is to take place. It concentrates on the objectives,
business rules and policies that need to be supported by the system being
designed. The stakeholders to be satisfied are therefore the owners of the
business processes being supported and the managers responsible for the set-
ting of operational policies. The emphasis is on business and social units and
their interdependencies.

Note that the use of the word enterprise here is intended to cover any ac-
tivity of interest; an enterprise can be whatever the specifiers have been tasked
to describe. It can be a single product and its users, or a commercial organi-
zation, or a larger social structure involving many corporate or governmental
entities. It captures whatever field of application we are currently focusing
upon in this particular design activity.

What Is ODP About? 13

The information viewpoint concentrates on the modelling of the shared
information manipulated within the enterprise of interest. The creation of an
information specification has broadly the same objectives that creation of a
data dictionary had for previous generations. By providing a common model
that can be referenced from throughout a complete piece of design, we can
ensure that the same interpretation of information is applied at all points.
As a result, we can avoid the divergence of use and incomplete collection of
information that would result from separate members of the design team each
making their own decisions about interpretation.

As an ideal, we would like there to be a single universal information model,
but this is clearly not practical. The aim here, therefore, is to achieve a shared
model for the particular design activity, but we shall see later that even this
may not be achievable when we are considering federation of systems or legacy
integration. The best we can achieve is a single model used within the scope of
a particular design authority. However, this is already sufficiently challenging,
while giving potential for huge quality improvements.

The computational viewpoint is concerned with the development of the
high-level design of the processes and applications supporting the enterprise
activities. It uses the familiar tools for object-oriented software design, ex-
pressing its models in terms of objects with strong encapsulation boundaries,
interacting at typed interfaces by performing a sequence of operations (or
passing continuous streams of information). The computational specification
makes reference to the information viewpoint for the definitions of data objects
and their behavioural constraints.

The computational design is abstract in that its objects are not placed at
specific locations and allocated particular resources to run on; this is done
elsewhere. The same design can be implemented in many different ways by
placing its objects on different platforms.

The engineering viewpoint tackles the problem of diversity in infrastruc-
ture provision; it gives the prescriptions for supporting the necessary abstract
computational interactions in a range of different situations. It thereby of-
fers a way to avoid lock-in to specific platforms or infrastructure mechanisms.
A particular interaction may involve communication between subsystems, or
between objects co-located in a single application server, and different engi-
neering solutions will be used depending on which is currently the case. The
engineering specification is akin to the specification of how middleware is pro-
vided; there are different solutions for use in different operating environments,
but the aim is to provide a consistent set of communication services and other
supporting services that the application designer can rely on in all cases.

The engineering viewpoint in ODP is also concerned with the provision
to the computational designer of a set of guarantees, called transparencies.
Providing a transparency involves taking responsibility for a distribution prob-
lem, so that the computational design does not need to worry about it.

Many of the mechanisms needed are nowadays available in the form of
standard middleware or web services components, simplifying the engineering

14 Building Enterprise Systems with ODP

specification, since it can reference the existing solutions and merely state how
they are combined to meet the infrastructure needs of the system.

The technology viewpoint is concerned with managing real-world con-
straints, such as restrictions on the hardware available to implement the sys-
tem within budget, or the existing application platforms on which the appli-
cations must run. The designer never really has the luxury of starting with a
green field, and this viewpoint brings together information about the existing
environment, current procurement policies and configuration issues. It is con-
cerned with selection of ubiquitous standards to be used in the system, and
the allocation and configuration of real resources. It represents the hardware
and software components of the implemented system, and the communication
technology that provides links between these components. Bringing all these
factors together, it expresses how the specifications for an ODP system are to
be implemented.

This viewpoint also has an important role in the management of testing
conformance to the overall specification because it specifies the information
required from implementers to support this testing.

1.2.3 Viewpoint Languages

We can think of any mechanism for conveying ideas as being a language,
be it written, drawn or spoken. The communication can be between people,
between machines, or understood by both.

Thus, we can speak of the set of concepts, conventions and constraints
expressed in a particular viewpoint as forming a viewpoint language . The
rules of interpretation for such a language can, in a particular instance, be seen
as representing a viewpoint virtual machine. We can think of the supporting
tools as parsing the language’s grammar and checking its semantic rules, or as
implementing the equivalent virtual machine; these are just two sides of the
same coin.

From an architectural point of view, we need not be concerned with the
physical representation of this language as marks on paper or encoded in
messages. An abstract language can be represented by a number of different
concrete notations, suited to use in different situations. Many tools, for exam-
ple, can work with either a graphical or a textual notation, and store designs
in a third, machine-oriented format, such as a dialect of XML. These are all
different notations expressing the same abstract language.

Thus for each of the five viewpoints being considered here, we have a
corresponding viewpoint language. We talk about the viewpoint when we wish
to stress the perception of the stakeholder concerned, and about the language
when we want to emphasize the way the ideas are communicated, but the two
aspects are intimately coupled; one cannot express the ideas without using
the language.

Because the different viewpoints stress different aspects of the design, and
do so using different techniques, the stakeholders will each be most comfort-

What Is ODP About? 15

able working with their own style of language and notation. For example,
someone writing a business policy may be happier expressing goals in a declar-
ative way, saying, perhaps, that a target level of production should always be
achieved, while someone documenting a process may naturally think in im-
perative terms, expressing what has to be done as a sequence of instructions.

As another example, a business process may involve extended activities
with real-time deadlines and have measures of the fraction of work completed,
while a computational task may concentrate on sequences of events that are
considered indivisible (or atomic), with deadlines expressed by equivalent
events, with no model of continuous time at all. Working with sequence, but
without continuous time like this simplifies analysis, but makes the expression
of continuous properties of the system, such as quality of service, more difficult.

1.2.4 Viewpoint Correspondences

Although we achieve a powerful simplification by dividing a system spec-
ification into the views seen by different stakeholders, the specification must
continue to be a coherent description of a single target system. If we had no
links between the viewpoints, this would not happen; what was intended to be
a single design would just fall apart into five bits. It is therefore vital that the
viewpoints be linked, and this is done by establishing a set of correspondences
between them, as visualized in figure 1.3.

In current software tools that present different user views, this linkage
is often derived from the names of objects. If the same name appears in
two diagrams, they are assumed to represent two aspects of the same thing.

enterprise

information computational

engineeringtechnology

viewpoint

terms

correspondence

FIGURE 1.3: How correspondences link terms in different viewpoints.

16 Building Enterprise Systems with ODP

However, if the viewpoints are to be developed by loosely coordinated teams,
it is not safe to assume they share a single namespace; it is just too expensive
to ensure that name assignments are unique. It is also often the case that the
correspondences are not simply one-to-one; the relationships will generally be
more complex.

This can be seen by considering the correspondences between the compu-
tational and engineering viewpoints (a situation similar to that between the
user and provider of middleware). The computational viewpoint takes a very
simple view of interactions, abstracting away from the platform-specific de-
tails of particular interactions; the engineering viewpoint, on the other hand,
abstracts away from most of the detail of the computational design, distin-
guishing just a few categories of interacting objects, not worrying about why
the interactions take place. Thus, the correspondences between computational
object types and basic engineering object types representing them are typically
not one-to-one. The correspondences often involve some level of abstraction
or filtering in one direction or the other.

1.3 Fundamental Concepts

Part 2 of the ODP Reference Model sets out a family of basic concepts,
explaining precisely what is meant when we say that ODP is based on an object
model. This is particularly important when dealing with the coordination of
a number of tools that all share the general idea of an object and an interface
at a ball and stick level, but often diverge in subtle ways when the fine detail
is examined.

Precision is essential when we are trying to bring together multiple view-
point languages, together with the languages implicit in the available tools, to
create a consistent framework. This integration depends on knowing exactly
what the basic concepts used are, and where they vary between languages.

The fundamental concepts are defined in a general way, and they can then
be used in any of the ODP viewpoints. Often, a concept is further specialized
in a particular viewpoint, but always in a way that is entirely consistent with
the basic definition. For example, the concept of an interface is defined in full
generality as one of the fundamental concepts, but viewpoints specialize it, so
that we have engineering interfaces, computational interfaces and so on.

This book does not go into all the detail; that can be found in the stan-
dards. However, there are some fundamental concepts that are used in all the
viewpoint languages; these deserve to be discussed here. They are presented
in outline in this section, and more detail can often be found when they are
used later in the book.

What Is ODP About? 17

1.3.1 Object Model

ODP system specifications are expressed in terms of objects. Objects are
representations of the entities we want to model, including physical elements
(mobile phones), human beings (John, the repair centre clerk) or more abstract
entities (a pending repair order). An object contains information and offers
services. In other words, an object is characterized by its state or, dually,
by its behaviour . Depending on the viewpoint and the style of the notation
used, the primary emphasis may be placed either on behaviour or on state.

The use of the object paradigm provides abstraction and encapsula-
tion , two important properties for the specification and design of complex
systems. Abstraction allows highlighting of those aspects of the system rel-
evant from a given perspective, while hiding those of no relevance. Encap-
sulation is the property by which the information contained in an object is
accessible only through interactions at the interfaces supported by the object.
Because objects are encapsulated, there are no hidden side effects outside the
object arising from the interactions. It also implies that the internal details
of an object are hidden from other objects, which is crucial in ensuring the
interchangeability of alternative implementations, and in providing the basis
for dealing with heterogeneity, interoperability and portability.

Behaviour is expressed as a collection of actions. Actions can be anything
that may happen, and can be classified into interactions (which involve
participation from the object’s environment) and internal actions (which
take place without such participation). An example of an internal action is
the one that models the sudden breakdown of a mobile phone. Interactions
are used to model, for instance, a customer’s request to the PhoneMob clerk to
have his handset repaired, or the act of transferring the data from one phone
memory card to another. Each of the objects involved in an interaction plays
a particular action role characterized by the information it contributes or
accepts and by whether or not it originated the action.

A system is composed of a configuration of interacting objects. Objects
interact at interfaces, which are subsets of their possible interactions with
other objects, together with the set of constraints on when they may occur. An
event is the fact that an action has taken place. When an event occurs, the
information about the action that has happened becomes part of the state of
the system and may thus subsequently be communicated in other interactions.
Such a communication is called an event notification.

The specification of an interaction concentrates on the objects participat-
ing in it. However, in some circumstances, we may want to focus on exactly
where the interaction takes place and how it might be observed. This is done
by introducing the concept of an interaction point , which is concerned with
where, in time and space, the interaction happens. We shall see later, in chap-
ter 8, how this concept leads to the more specific ideas of reference point
and conformance point when we are concerned with ensuring that some
interactions are observable during testing.

18 Building Enterprise Systems with ODP

Finally, a service is a behaviour, triggered by an interaction between
provider and consumer objects, that adds value for its users by creating, mod-
ifying or consuming information.

1.3.2 Types, Classes and Templates

As in most object-oriented modelling and programming languages, ODP
objects, actions and interfaces are generally specified in terms of their types.
In ODP, a type is a predicate that characterizes a set of elements, and serves
to identify and describe them. For instance, type Customer describes the
common characteristics of the company’s customers that are relevant to the
system. Similarly, type RepairOrder captures the information that any repair
order in the system should have. Predicates can be expressed in many different
notations, from textual languages to graphical modelling notations (a UML
class is a typical notation for representing types, describing both the state
and the behaviour of the corresponding objects in terms of attributes and
operations).

Types help to classify entities into categories, which form collections of
objects that satisfy a given type. Such collections are called classes. Note,
however, that the UML concept of class differs from the ODP concept of class.
A UML class is a description of a set of objects, while an ODP class is the
set of objects itself. Therefore, the UML concept of class is closer to the ODP
concept of type. There is no UML concept that is similar to the ODP concept
of class.

In addition to types and classes, ODP also uses the concept of template ,
which refers to the specification of an element, including sufficient detail to
allow an instantiation to take place. For example, object-oriented program-
ming language concrete classes are templates. Types can only be involved
in testing whether instances satisfy them or not; templates can be used to
create instances. Templates may also include parameters, which will need to
be bound to specific values at instantiation time.

1.3.3 Composition

Composition and its inverse, decomposition , are key concepts in ODP.
We have already mentioned that systems are composed of interacting objects.
The composition of two or more objects is itself another object (called the
composite object). The characteristics of the new object are determined by the
objects being combined and by the way they are combined (the composition
operator used).

Behaviours can also be composed, yielding a new behaviour. This can
apply either to behaviour fragments or to the behaviour of complete objects.
Thus, the behaviour of a composite object is the corresponding composition
of the behaviour of the component objects, possibly hiding some interactions
to make them internal actions.

What Is ODP About? 19

Action compositions can be specified to form processes. A process is
a collection of steps taking place in a prescribed manner and leading to an
objective . A step is an abstraction of an action, used in a process, that leaves
unspecified the objects that participate in that action. Steps are introduced
in the definition because not all the action details need be specified in the
composition. The objective is present because the goal of a process should
always be made explicit in its specification. In ODP, the objective of an
element expresses its practical advantage or intended effect. It is expressed as
preferences about future states.

1.3.4 Grouping Objects Together

ODP distinguishes different ways of organizing sets of objects. In the sim-
plest case, objects can be organized into groups, which are sets of objects
with a particular relationship that characterizes either some structural in-
terdependence between them, or an expected common behaviour. Examples
are the group of all the information objects, or the group of engineering objects
that are related to a given computational object.

Domains are often used in describing these groupings; a domain is a set of
objects related by a characterizing relationship to a controlling object. Every
domain has its associated controlling object, which is not generally itself a
member of the domain. One example of this is a naming domain, in which a
set of names are associated with objects by the controlling object. Another
is a management domain in which a set of printer objects is managed by a
controller.

Objects can also be organized into configurations, which are collections
of objects linked by their interactions at particular interfaces. Examples are
the configuration of objects that together provide a given service, or the con-
figuration of engineering objects that implements a channel.

These concepts can be specialized in specific viewpoints. For example, in
the enterprise language, a community is a configuration of enterprise objects
formed to meet a particular objective , as specified in a given contract . In
our PhoneMob example, one community is the configuration of objects that
together provide the basic repair services to customers. Another community
is the logistics organization formed by a set of objects with the objective of
providing delivery services to users in a secure and timely manner. A third
example is the banking community, which is a configuration of enterprise
objects that together provide a set of banking services (payments, money
transfer and so on) to its customers.

Finally, a federation is a community of domains formed to meet a shared
objective. It models many commercial situations, such as the setting up of
partnerships and joint ventures; examples are the federation of a set of air-
lines that agree to work together to provide transportation services to their
customers by means of code-shared flights, or a federation of banks that share
their ATMs so that customers can use any of them interchangeably. In our

20 Building Enterprise Systems with ODP

example, the PhoneMob company and a large insurance firm can federate to
provide a wider range of services to their individual customers. Each mem-
ber of a federation agrees by participating in the federation to be bound by
the contract and policies of the community (which may include obligations
to contribute resources or to constrain behaviour) so as to pursue the shared
objective. At the same time, a federation preserves the autonomy and inde-
pendence of the original participants.

1.3.5 Contracts

As a general concept, a contract defines the rules governing the collective
behaviour of a set of objects. It specifies obligations, permissions and prohi-
bitions that apply to these objects when they act as a group. These could
express, for example, quality of service constraints, indications of duration or
periods of validity, behaviour that invalidates the contract, or liveness and
safety conditions.2

The contract concept can be used in any viewpoint. In the enterprise
viewpoint, we have community contracts (see chapter 2) reflecting a business
context for interactions. For example, the community contract representing a
repair organization expresses obligations on its service centres, their staff and
customers, as well as conditions about efficiency, security, response times and
confidentiality to be met when delivering the repair services.

There are several uses of the concept of a contract in the computational
viewpoint. One example is its use to describe a service contract, which defines
the obligations that an object makes when providing an interface with which
arbitrary other objects will interact. Another is the binding contract which
captures the properties agreed upon when a particular binding is established
(this may be either a primitive or a compound binding; see chapter 4).

Finally, any computational object interacts within an environment repre-
senting its place in a configuration, and an environment contract states
non-functional properties of the interactions in which an object participates,
such as response time, throughput or resource consumption. These computa-
tional environment contracts reflect constraints on the corresponding objects
and interactions in the engineering viewpoint.

1.3.6 Policy Concepts

Policies provide a powerful mechanism for declaring business rules, and
also for specifying and implementing the structural and behavioural variability
required in any open distributed system. Policies serve to identify the pieces
of behaviour that can be changed during the lifetime of the system, as well as

2Liveness is the property of a system that says it will eventually do what it is supposed
to do, and safety is the property that says it will never do something it is supposed not to
do.

What Is ODP About? 21

the constraints on these behaviours. In other words, a policy can be seen as
a constraint on a system specification foreseen at design time, whose details
can be modified to manage the system to meet particular (and changing)
circumstances. More details are given in chapter 10.

Policies are defined in terms of rules. A rule is a constraint on a system
specification. Rules are normally expressed as obligations, permissions, au-
thorizations or prohibitions. For instance, one rule may say that any phone
user associated with a customer can place an order to have a mobile phone
repaired (permission), while another rule may dictate that the repair cen-
tre must repair the handset or provide a substitute phone within 48 hours
(obligation); a further rule may state that VIP customers are entitled to get
substitute phones immediately (authorization); a fourth rule may say that,
for security reasons, a SIM memory must not be returned to any customer
other than the one who placed the original repair order (prohibition).

1.4 Useful Building Blocks

One of the aims of the reference model is to promote the use of common
terminology for describing distributed architectures, particularly with regard
to the functional elements needed to support and manage distributed appli-
cations. Many vendors have their own names for these functions, making it
more difficult to draw parallels between different solutions, and to find vendor-
neutral terms to describe interworking mechanisms.

The reference model therefore provides a catalogue of architectural func-
tions needed to support distribution. This vocabulary can be used in any of
the viewpoints, but it concentrates on giving full coverage of the engineering
viewpoint and many of the functions identified are normally contained within
the system’s infrastructure. However, some may be available as services for
use in the computational specification, and others may be exploited in a more
abstract form, for example when modelling repositories in the enterprise spec-
ification.

The catalogue covers four main areas. The first is the management
of different groupings of engineering objects, providing control of resourcing,
protection and activation. Then it categorizes synchronization mechanisms,
followed by various repository functions, together with different specialized
features to aid resource discovery and interworking. Finally, it identifies im-
portant building blocks for the provision of a range of distributed security
functions.

Use of this taxonomy helps different teams to understand the functions
offered by existing components and so aids reuse. The functions can be used
as keywords to index catalogues of components or collections of higher-level
technical design patterns, aiding design. This provides a common vocabulary

22 Building Enterprise Systems with ODP

for explaining a system’s architecture to potential users or external assessors
or conformance testers. It also allows the expression of platform-independent
designs in a commonly understood way without reference to specific techno-
logical choices, making it easier for teams using a model-driven engineering
approach to exchange ideas on requirements and solutions.

1.5 Service Orientation

In recent years, much play has been made of the use of service orientation
as a design principle. From an architectural point of view, however, there is
no significant difference between service-oriented architectures (SOA) and the
architectural framework defined in ODP; current service-oriented schemes can
be seen as a subset of the more general ODP approach.

The main tenets of SOA are that functions should be packaged into loosely
coupled units that provide clearly defined services, and that applications
should be constructed by composition of services that can be discovered dy-
namically based on some form of publication or brokerage mechanism. More
recent SOA activities add to this a distinction between services offered from
different design perspectives, yielding different flavours of service, such as
business services, technical services and so on.

ODP defines service as a fundamental concept, representing the added
value offered as a result of interaction at some interface. Since the ODP ob-
ject model is based on strong encapsulation, this means that there is a close
alignment with the SOA view of service. The discovery and dynamic use as-
pects are covered by the ODP binding model and the definition of common
functions such as the trader. The different types of services are captured by
the ODP viewpoints, with business services being expressed in the enterprise
viewpoint and the technical services being expressed primarily in the compu-
tational viewpoint. However, in the ODP enterprise viewpoint, as we shall
see in the next chapter, there is a greater emphasis on declarative expression
and flexible structures, so the definition of a business service is only one of the
available design tools. Correspondences defined between the different aspects
of a service in different viewpoints are also needed to provide a consistent
specification of the service as a whole.

So what differentiates a service-oriented architecture? The main differ-
ences are not architectural, but are more concerned with raising the engineer-
ing expectations about openness and resilience, largely as a result of years
of implementation experience with web-based systems and of striving for the
widespread adoption of open resource identifiers like Uniform Resource Iden-
tifiers (URIs).

What Is ODP About? 23

1.6 Human Computer Interaction

An essential aspect of the design of any information system is the specifi-
cation of the interfaces the system offers to the people that will interact with
it, something that is normally called human-computer interaction. In this
design field, the user interface (or UI for short) is where interactions between
humans and machines occur.

A typical enterprise design will be concerned with many kinds of activity.
Some of these will involve people, some will involve automated solutions, and
some will involve human-computer interaction. However, these categories are
not fixed; there will be a progressive migration towards automated solutions,
without there necessarily being major structural changes in the design.

While, in a sufficiently abstract description, the functions performed can
remain the same when such changes are made, the disciplines involved in
expressing their detail are quite different; middleware providers and user in-
terface designers use different tools and techniques. However, both disciplines
make heavy use of tools. In the middleware world, tools automate generation
of stubs from interface definitions and handle the incorporation of mechanisms
to ensure reliability and fault tolerance. Tools applied to the user interface
design, on the other hand, can produce software components to act as user
proxies within the system and manage user dialogues in terms of interaction
with, for example, a sequence of web forms and other pages. These tools can
also be used to apply a uniform look and feel across the organization.

In the descriptions that follow, we will focus primarily on system structure,
but we will indicate how the approach also enables the management of human-
computer interaction, using either the same information that captures the
system structure or specific information added to support this aspect of the
design.

Thus, the enterprise description can be used to identify interactions be-
tween human and system-supported activities, while the information view-
point can define data types that can be used either in system-to-system in-
teractions or in user interfaces and the computational viewpoint can contain
details of the dialogue needed to support human-computer interaction.

Introducing the support of user interfaces into the design will, in general,
result in the inclusion of distinct objects into the computational design to
represent each user and the proxies for these users within the supporting
system. Doing so adds precision to the specification of the user interactions
expected and, as we shall see in chapter 8, provides a basis for testing the
correctness of conformance to the user interactions specified.

The support for user interaction is thus incorporated within the viewpoint
framework, but we shall return to this topic to bring out the consequences for
the individual viewpoint languages as they are discussed in following chapters.

24 Building Enterprise Systems with ODP

1.7 The Right Tools for the Job

1.7.1 Reusing UML via UML4ODP

Although, as we indicated earlier, the ODP viewpoint languages are de-
fined in an abstract way without commitment to a particular concrete nota-
tion, we do need to select such a notation before we can write a real, useful
model. It does not matter particularly what notation we choose, as long as
our toolchain can handle it and integrate it with others already in use, but it
will help the designers to get started if the notation is already familiar.

UML [30] is currently the most popular modelling language in the industry,
and most designers have some familiarity with it. Its expressive power can
be increased by using the associated object constraint language (OCL) [36].
So why not use it here? The problem with UML as it stands is that it does
not support the separation of concerns we want, or the structuring concepts
ODP introduces to support it. UML has functional views, expressed in its
diagram types, but they are closely coupled, and there is a single hierarchical
namespace underpinning them. This makes the separation we want difficult
to achieve.

What about model-driven engineering, then? Many MDE prototypes use
UML for expressing their source and target models, don’t they? Yes, they
do, but that’s the point. They work by translating between quite separate
models, each with its own internal consistency and its own namespaces. The
transformations provide the level of decoupling that is needed (see chapter 15).

With the development of these technologies, and of an increasing number
of domain-specific dialects of UML, the originators of ODP returned to UML
and decided that, because it was now widely accepted, it could be used in
many cases to provide a familiar notation for the individual ODP viewpoint
specifications. In consequence, they produced a new standard, ISO 19793:
Use of UML for ODP system specifications, or UML4ODP for short [22].
This standard provides a profile that maps the ODP concepts to the UML
notation,3 so that they can be manipulated with conventional UML tools. A
suitable plug-in to a UML tool allows consistency checking across multiple
viewpoints.

Of course, ODP can be supported by other notations, tailored to other user
communities, such as business process designers, as long as a similar level of
tool integration can be achieved. However, in this book we will keep things
simple and concentrate largely on the UML4ODP notation.

3The UML4ODP standard is based on UML 2.1.1 [30].

What Is ODP About? 25

1.7.2 UML4ODP in a Nutshell

The UML4ODP standard defines both a UML-based notation for the ex-
pression of the ODP system specifications and an approach for structuring
them using that notation, thus providing the basis for model development
methods. This makes the UML4ODP notation useful not only to ODP mod-
ellers who want to use UML to describe their ODP systems, but also to UML
modellers who have to deal with the specification of nontrivial systems and
need some approach to structure their large UML system specifications.

UML4ODP uses standard UML concepts and relies on the standard exten-
sion mechanisms provided by UML for defining new languages and, in partic-
ular, on UML profiles. More precisely, UML4ODP defines seven related UML
profiles: one for each ODP viewpoint, one for describing correspondences and
one for modelling conformance in ODP system specifications (see chapter 8).
All the model diagrams shown in this book are drawn using these profiles.

Thus, an ODP system specification expressed in UML4ODP consists of
a single UML model stereotyped «ODP SystemSpec» that contains a set of
models, one for each viewpoint specification, each stereotyped «<X> Spec»,
where <X> is the viewpoint concerned (see figure 1.4). Each viewpoint spec-
ification uses the appropriate UML profile for that language.

«ODP_SystemSpec»

PhoneMob

«Computational_Spec»

PhoneMob (C_Spec)

«Engineering_Spec»

PhoneMob (N_Spec)

«Technology_Spec»

PhoneMob (T_Spec)

«Enterprise_Spec»

PhoneMob (E_Spec)

«Information_Spec»

PhoneMob (I_Spec)

FIGURE 1.4: The viewpoints contributing to an ODP system specification,
expressed using UML4ODP.

In the profiles, stereotypes are used to represent the ODP concepts as
specializations of the appropriate UML metaclasses. For example, figure 1.5
shows the UML profile for the information viewpoint language, as specified
in the UML4ODP standard. It defines eight stereotypes and the UML meta-
classes they extend. Some of the stereotypes have associated icons (shown in
the right upper corner of the stereotype box). Icons are very useful because
they provide an intuitive notation to the users of the ODP specifications.
This becomes particularly important in some viewpoints, such as the enter-
prise viewpoint. The designer must decide how much of this information to
show in any particular diagram. In this book, for example, we generally show
the icons, and include stereotype names where doing so helps understanding,

26 Building Enterprise Systems with ODP

«profile»

IV_Profile

«stereotype»

IV_InvariantSchema

«stereotype»

IV_Object

«stereotype»

Information_Spec

«stereotype»

IV_Action

«stereotype»

IV_DynamicSchema

«stereotype»

IV_TypeObject

+locationInTime : date

«stereotype»

IV_StaticSchema

«stereotype»

IV_TemplateObject

«metaclass»

Package

«metaclass»

Class

«metaclass»

Model

«metaclass»

Constraint

«metaclass»

StateMachine

«metaclass»

Signal

FIGURE 1.5: The UML profile for the information viewpoint.

Taken from the UML4ODP standard; for copyright, see Preface.

but omit them where the meaning is already clear, so as to avoid cluttering
up some of the more complicated diagrams.

Tag definitions are also used to specify stereotype properties. For exam-
ple, the tag definition locationInTime of stereotype IV StaticSchema allows the
specification of the exact location in time of the static schema being modelled.
Figure 3.4 in chapter 3 shows an example of how this tag definition is used in
the specification of a concrete static schema.

1.7.3 The Integrated Toolkit

Most software development now uses some form of integrated development
environment (IDE), which takes care of much of the routine housekeeping con-
cerned with building and archiving complex project structures. Eclipse [65],
for example, is a particularly popular environment because of its extensibility.
The same principle applies to other areas, such as business planning, and the
trend is towards greater integration of the tools used, forming them into a
single integrated toolchain.

What Is ODP About? 27

One area where there has recently been a step forward in this respect is the
development of model-driven engineering solutions, in which transformational
techniques are applied to a quite abstract design, filling in detail to generate
code suited to a particular environment. This process is generally not com-
pletely automatable, but reports based on test cases show that up to 85%
automatic generation can be achieved in a typical database application [56].
OMG maintains an interesting library of such case studies [38].

This kind of integration is essential for the effective exploitation of a multi-
viewpoint framework. Information needs to be taken from each viewpoint
and combined to create a running system. As the design evolves, there need
to be simple ways of checking that its parts have at least a basic level of
consistency (just as compilation of a multi-package program gives some check
on its structural coherence). All this requires the tools used in the different
viewpoints to interwork so that checks can be made to see that the rules in
the different viewpoints do not lead to contradictions.

Model-driven tools offer not only a much smoother pathway from design
to implementation, but also a much more efficient basis for the management
and evolution of large systems.

Marcus was sitting in on the design review to support Alex. Although the
consultant was now known to the team and largely accepted, there had been
teething troubles and a few bruised egos, so that support was still needed.
Marcus had to admit he didn’t follow a lot of the detail, but he could see that
the main features of the new PhoneMob system were coming together.

It always intrigued him to see how the different groups imposed their own
style on their models. He could recognize the organic style of the data mod-
ellers, with the branches and leaves growing and unfolding across the page,
and could distinguish it from the Norman crypt style of the platform people,
with whole solid blocks of function stacked up into stocky columns leading
up to a broad vault of interconnections. The applications designers favoured
tight modular balloons, kissing to exchange their messages. And the business
analysts, with their narrow striped shirts, favoured road maps with the main
routes and the special byways picked out with graphical symbols for all the
world like service stations and tourist attractions.

But, putting aside these speculations, he knew it was not all going
smoothly. There were rough edges and there were disputes. Even Marcus
could see from the presentations that some things were being repeated by the
different groups, but each in their own way. This needed to be sorted out.

“Look,” said Alex, “there is excellent work here, but you need to move
towards seeing what you are doing as part of a bigger whole, and exploit it to
simplify your lives.” He turned to Claire. “Here, in the initial client registra-
tion, you have a big set of classes dealing with identity, account and contact
details. And here, in the billing step, you have a different presentation of

28 Building Enterprise Systems with ODP

roughly the same stuff.” She looked hurt. “Yes, but this is a first cut; I would
expect to refactor those into a common set of classes when the structure is
clear.” “But remember Ivor’s presentation. He has exactly the same informa-
tion in his customer object already. You can just reference it.” “But he has too
much information, and his names don’t correspond to the way we look at the
process.” Alex smiled. “Remember what I said earlier about correspondences.
You can refer to the classes in your design as being in an abstract package.
Then, if you have a correspondence with the information view that renames
and selects items as appropriate, the tools can construct the correct concrete
classes in your view for you, based on that linkage. You don’t need to do it
all from scratch again.”

Ivor scowled. “But then, if I change that part of my design, I might break
the computational view.” “Certainly, it’s possible,” said Alex, “but when you
ask for a global check before committing, you would get a warning. However,
that should be rare, and if it happens, it probably means there is a shared
issue you should be discussing anyway. Without that linkage, you would still
be thinking about that common part of the design in different ways, but no
one would know.”

Nigel waved his pencil in the air. “But that means that when the business
analysts have a bright idea and decide to add a video feature to customer
notifications, it ripples all the way down to the infrastructure, and the nightly
builds will break! That would be ridiculous.” “Of course,” said Alex. “That
would be silly. But what happens at the moment?” “Eleanor raises it in the
weekly meeting, Claire looks at the application implications and sends me
a memo, and I cost the deployment change with Trevor and Trudy. That’s
generally the end of the matter.” Everybody laughed, except Marcus. “And
we don’t improve our market position,” he growled.

“But hang on,”said Alex,“you still have the version management to protect
you from any real damage. The business guys try the change, do a check, and
get a red flag. They can then start the consultation process; maybe Eleanor
starts a thread to discuss it, and everyone can contribute. You can all see the
branch with the new change in it and trace the flags it has generated in your
own view to see the consequences, so the resolution should be much quicker
and the results more reliable. In the end, you all win. And we can do the same
sort of thing with most of the other overlaps we have found this afternoon.”

Part II

The Viewpoints

This page intentionally left blankThis page intentionally left blank

31

About Part II

This part introduces the five ODP viewpoints one after an-
other. In its final chapter, it then explains how the family of
viewpoints is bound together into a coherent whole by estab-
lishing a set of correspondences between terms in the different
viewpoints.

Although a book imposes a linear structure, and its se-
quence could be read as a journey from requirements to imple-
mentation, this structure is not intended to suggest any partic-
ular design methodology. The development of the viewpoints
is best seen as consisting of a set of concurrent but interacting
design processes.

Each chapter explains the concepts most central to the view-
point concerned, and then illustrates their use by working
through elements from the running example. Finally, there
is some guidance on how the viewpoint specification might be
structured and the way in which it relates to the other view-
points.

This page intentionally left blankThis page intentionally left blank

Chapter 2

Enterprise Viewpoint

“I still don’t quite see why we are going into so much detail on this,” said
Eleanor. She was meeting with Alex to work on an enterprise model for the
PhoneMob, and they had started off with a fairly stressful cross-examination
by Alex about its likely structure after the reorganization.

Alex looked up sharply. “Have all your projects come in on time in the
last couple of years?” he asked, “or have there been any that slipped?” “Well,
we are getting pretty good at predicting the development time needed. There
have been a few occasions when Marcus has given us a hard time, but it’s gen-
erally not really been our fault; the requirements have changed in midstream.”
“What was the worst slippage?” “Well, I guess last June, when we got the first
release of the new system for handling e-mail acceptance of repair quotes into
prerelease test before someone pointed out that a manager approval step was
missing; it had never been captured in the requirements review.” “Didn’t your
people know it was done that way?” “No; it had been in a manual part of
the process, so we knew nothing about it, and didn’t know to ask the right
questions. We had to rework a significant part of the workflow design because
just sticking the extra step in would have violated the response requirements.
We missed the release target by over a month.”

Alex leaned back. “And the customer design review didn’t catch it?” “No,
worst luck. In the old process, that step was the point where responsibility for
the work moved from front office to workshop, and both thought it was being
handled by requirements from the other.” It was clear this whole incident was
one Eleanor was still angry about, although she could understand how it had
happened.

Alex smiled ruefully. “It can easily happen,” he said. “Working on a small
piece of the activity in isolation just isn’t enough.” His voice was sad and
a little wistful, and he smiled sympathetically at Eleanor. “If the company
had maintained a proper enterprise description of how its organizational units
related to each other, and a proper view of its business processes, including
all the manual parts, then you could have seen there were things not being
covered. You might even have got a red flag from your design tools if some
obligations were not being fulfilled. Of course, the whole idea is not just about
preventing disasters — having a clear view of the organization helps improve
quality generally.”

33

34 Building Enterprise Systems with ODP

“OK,” said Eleanor, “I’m beginning to see how it might help, but how
do you express the interplay of responsibilities between different parts of the
business?” “Well, we need to focus on how business units interact. We can
do that by treating them as participants in a community. This involves each
participant playing a role that defines its expected behaviour and its interac-
tions with the rest of the participants. Some assignment policies could then
specify how the different participants in the organization could fulfil the roles,
and who becomes responsible for what.”

“That sounds like sociology to me.” “No,” said Alex, smiling a little, “but
it’s better to talk in these terms than to overload names that are already in
use within the organization; doing that just causes confusion.”

He turned back to the whiteboard and started to sketch out a structure.

2.1 Designing with Communities

The enterprise viewpoint defines the organizational, business and social
context in which an ODP system is designed and deployed. It is primarily
through using the enterprise language that the business stakeholders and the
design team develop the shared understanding they need if the system is to
be fit for purpose. The enterprise viewpoint should be able to help answer
a set of questions about the ODP system, such as: “What is the purpose of
the ODP system?” “What are the business requirements for the system?” or
“Who are the key stakeholders and how do they interact with the system?”

Business processes are more flexible and less cleanly delineated than soft-
ware processes, so a more flexible structuring principle than traditional modu-
larity is needed. The right thing for a business system to do in some particular
circumstances is determined by a number of overlapping sets of rules, rather
than by a single algorithm; some constraints will come directly from the busi-
ness process, but others will come from organizational norms, like security
policies, or from agreements with trading partners, or even from legal con-
straints. We need to merge these various kinds of constraints. This is achieved
by basing the enterprise specification on an interrelated set of communities.

A community defines how some set of participants should behave in order
to achieve a particular objective . To make the rules reusable, they are ex-
pressed in terms of interactions between roles in the community, decoupling
their definition from the details of the resources available and the responsibil-
ities in effect at a particular instant. This is like using roles when writing the
script of a play, where the author states what each character should say, but
the actor actually playing a particular role is not determined until a particular
performance takes place. Note that, although in this chapter we just speak of
roles without always saying that they are community roles, the idea of a role

Enterprise Viewpoint 35

«EV_CommunityContract»

Phone Repair

«EV_Objective»

Phone Repair Objective

Enterprise Object Types

«EV_Process»

Phone Repair
Community Behaviour

Policies

Roles «EV_Community»

Phone Repair

«EV_ObjectiveOf»

FIGURE 2.1: Anatomy of a community specification.

is general, and is used in structuring other kinds of collaboration; for example,
we can also speak of roles in an interaction.

Figure 2.1 illustrates the main elements involved in specifying a commu-
nity; more detail of the relationship between these key concepts is given af-
ter this initial introduction. Here, and throughout the book, the PhoneMob
specification is used as a running example; further supporting detail from this
specification can be found in appendix A.

First, we have the behaviour of the community, which is normally de-
fined as a composition of processes addressing separate business concerns.
This composition itself results in a process, and is represented in figure 2.1 as
a UML activity stereotyped «EV Process». The process is parameterized by
the community’s roles. In addition, the community will generally also have
a number of policies, which allow aspects of its behaviour to be modified to
react to changing circumstances. These policies perform an important func-
tion in allowing the community’s behaviour to be modified dynamically to
satisfy changing requirements. The way policies allow controlled flexibility so
that the objectives can still be guaranteed as situations change is discussed in
detail in chapter 10. Finally, there are declarations of a number of support-
ing enterprise objects owned by the community and used to represent its
internal state and resources.

The community is described by a community contract . Making this
description (which is effectively a community type) explicit in the specification
helps the design to capture dynamic processes, such as negotiation of the rules
under which the community operates; it gives a reflexive representation of the
behaviour and of the roles in it, the policies and the local objects. The contract
also includes a declaration of the objective of the community.

The high-level description typically states the scope and field of appli-
cation for the enterprise specification in question. The scope is expressed in
terms of the behaviour the system is to exhibit. For example, the PhoneMob
ODP system may have a scope that expresses its key functions such as keep-

36 Building Enterprise Systems with ODP

ing track of all repair orders, customers, users and user locations. The field of
application of the PhoneMob enterprise specification might state properties of
a franchised business to which the enterprise specification applies, for example
indicating that this is not, and will never be, a safety critical business system.

2.2 Identifying Roles

A community is, in essence, a collaboration; the objects fulfilling its roles
agree that their objective is to achieve a stated business purpose. In simple
cases, the parties performing roles in the contract, and the behaviour expressed
in it, can remain the same throughout its lifetime. Alternatively, the contract
may define behaviour that modifies the community membership, or changes
details of its behaviour. One way of modifying behaviour dynamically is to
define mutable policies (see chapter 10) for the community. Note that the
community concept can be used to model the structure of a particular orga-
nization, or a collaboration between different organizations stated in terms of
business contracts, service level agreements (SLAs) or as a federation between
different legislative domains (see chapter 11).

«EV_Role»

Phone Repair
Provider

«EV_Role»

Logistics
Provider

«EV_Community»

Phone Repair

«EV_Role»

Phone
Supplier

«EV_Role»

Customer

«EV_Role»

User

«EV_Role»

Bank

has role

FIGURE 2.2: The business and its partners.

Figure 2.2 shows the roles involved in the top-level view of the PhoneMob
business.1 This first representation deals primarily with the positioning of the
business in its environment. There is a role for the business as a whole (called
the Phone Repair Provider) and roles for the main external players with whom
the business deals — its customers, suppliers, banks and the PhoneMob’s sub-
contractors, such as the logistics suppliers. When using UML4ODP, these roles

1In this book, we have chosen to use the hat as an icon for role, rather than the theatrical
mask suggested in the UML4ODP standard; we feel this icon and the metaphor of “wearing
a hat” are more immediately recognizable.

Enterprise Viewpoint 37

are represented by the stereotype «EV Role», which are referred to in the be-
haviour definition of their owning community (stereotyped «EV Community»).

In more detail, the roles are:

• The Phone Repair Provider role, which represents the PhoneMob orga-
nization as a whole. In this case we are defining a singleton entity, but
in other circumstances we might be defining an organizational unit that
could be instantiated many times.

• The User role, representing the actual user of the phone.

• The Customer role, representing the party that has a contractual rela-
tionship with the PhoneMob, and is responsible for paying the bills. We
shall see later how separating customer and user roles lets the commu-
nity definition cover a wider range of customer organizations. In some
cases, both these roles may be filled by the same person.

• The Logistics Provider role, which models the use of a subcontractor to
transfer the broken or repaired phones between other role players, such
as users or suppliers.

• The Bank role, representing a financial institution providing billing and
payment services for the customer.

• The Phone Supplier role, representing the party responsible for perform-
ing return-to-manufacturer repairs.

2.3 Organizational Structure

Later, we will look at expressing the business processes as activities within
this high-level view, but, for the moment, we will concentrate on the organiza-
tional structure. Having established the environment, we now want to expose
the structure of the organization, which is done by refining the community to
yield a concrete service provider community. This is done by replacing the
single service provider role with a number of smaller units. In this case, we
can do so in two stages; first, we identify the business units involved, and then
we make distinctions within them. The business units involved are based on
both function and location:

• A headquarters (HQ) role, representing the central activities of the com-
pany, such as accounting and customer and supplier relationships. Poli-
cies set by this role constrain the individual branches when offering ser-
vices to their users.

38 Building Enterprise Systems with ODP

• A number of Branch roles, representing offices located around the world,
each of which deals directly with users and their broken phones, diag-
nosing them and either carrying out simple repairs directly or arranging
for their return to the supplier if things are more serious.

The second distinction we want to make is between the automated and
manual systems within the organization. We need to make this distinction
because we need to position the automated systems and user interfaces, which
will be the main focus of other viewpoints, within the business activities. In
our simple example, we divide each of the business units into a staff role and
a system role. Note that this refinement step is applied just to the PhoneMob
itself; the business partners are seen as black boxes here, since we do not wish
to make any assumptions about their internal structure. These two refinement
steps lead to the set of roles shown in figure 2.3.

«EV_Community»

Detailed Phone

Repair

«EV_Role»

Logistics

Provider

«EV_Role»

Branch

system

«EV_Role»

Phone

Supplier

«EV_Role»

Branch

staff

«EV_Role»

HQ system

«EV_Role»

Customer

«EV_Role»

HQ staff

«EV_Role»

User

«EV_Role»

Bank

created by

refinement of the

Phone Repair

Provider role

has role

FIGURE 2.3: The roles of the Detailed Phone Repair community.

The design is already getting quite complicated, so we divide the system
into a number of distinct activities, seen as smaller subcommunities. Each
of these subcommunities must operate in a way that is consistent with the
contract of the complete community and this will be expressed by associating
each of them with a specific simplified contract. The key activities are repair,
customer liaison, performance review and negotiation of contracts with the
subcontractors dealing with logistics and supply. Each can be described by a
simplified view of the complete community, containing just the roles engaged
in the particular activity. For example, the repair process does not need to be
concerned with the negotiation of customer contracts, and local branch repair

Enterprise Viewpoint 39

centres delegate financial concerns, like contact with a customer’s bank, to
be handled centrally in headquarters. As a result, the community directly
involved in the repair process at a local centre, which we call the Branch
Repair Provision community, can be reduced to having the set of roles shown
in figure 2.4.

«EV_Community»

Branch Repair

Provision

«EV_Role»

Logistics

Provider

«EV_Role»

Branch

system

«EV_Role»

Phone

Supplier

«EV_Role»

Branch

staff

«EV_Role»

HQ system

hidden

Bank

hidden

HQ staff

hidden

Customer«EV_Role»

User

created by

refinement of the

Phone Repair

Provider role

has role

FIGURE 2.4: The roles of the Branch Repair Provision community.

The whole sequence of developing the local repair process roles thus starts
with the abstract role set for the Phone Repair community, introduced in
figure 2.2. This is transformed to give the Detailed Phone Repair community,
in figure 2.3, by replacing the single repair service provider with the interaction
of headquarters and local branch roles and by differentiating between staff and
system participants. In a second step, just the roles concerned with the local
repair process in the branch are selected, yielding the Branch Repair Provision
community, with the role set shown in figure 2.4.

2.4 Roles and Role Filling

Roles are the glue that holds the enterprise specification together. There
is some similarity between the use of roles in a community and the software
concept of formal parameters for a procedure. Both enable reuse by providing
a local identity that can be referenced in the reusable part of the specification

40 Building Enterprise Systems with ODP

and which is then linked to an appropriate external item at the specific point
of use. In this case, a role is referenced in the community behaviour and linked
to the objects filling the role in each particular instance of its use. As a result,
these objects are required to satisfy the behaviour of the community.

The objects filling a community’s roles will, in general, each have their
own lifecycle; they may already be engaged in other activities in the enter-
prise before they fill a particular role, and may go on with other activities after
they have ceased to play that role. On the other hand, the responsibilities
of a role may be transferred from one object to another, if the rules of the
community allow. As long as an object satisfies the behavioural conditions
stated in the role definition, it can be assigned to the role and thus partici-
pate in the community, contributing to the community objectives (and also
helping to achieve its own goals). These conditions can be related to certain
competency requirements for joining the community (for example, only an
accredited logistics organization can fulfil the role of logistics provider), to se-
curity policies covering authentication and access control and to performance
obligations such as might be found in the repair services SLA between the
phone repair service and its customers. Formally, this corresponds to each
role having an associated role type, and there being a requirement that the
object filling the role should satisfy this type. Again, we can draw a parallel
here with the rules governing type checking and implicit casting when using
formal parameters in a programming language.

There is a question of modelling style that arises when deciding whether
model elements are expressed in terms of instances or types. An enterprise
modeller may often use a shorthand style, referring simply to the object type,
talking about a Phone User object as filling the User role when they really mean
that there exists some anonymous enterprise object whose type is Phone User
and which fills the User role.

A community’s behaviour is stated in terms of actions that the enterprise
objects assigned to the roles are expected to exhibit — that is, constraints on
when the actions may occur. The way this is expressed depends on the style
adopted; some possible techniques are to use state machines, event sequencing
or a process-oriented style.

A role is always defined with respect to its containing community, which
owns the namespace for its roles. This means that roles in different commu-
nities can be distinct in spite of having the same name; for example, it is
legitimate to define a Customer role in both the Phone Repair community and
the Logistics Provision community. However, these will each have their own
behaviour, which is derived in each case from the community in which they
are defined.

At any point in time at most one enterprise object can fill a particular role
in a community, but different objects can fill the same role at different times;
for example, a specific logistics organization is assigned the Logistics Provision
role, as a result of an underlying business contract with the PhoneMob, but
different contracts can be established in different epochs, each with a distinct

Enterprise Viewpoint 41

logistics organization. Note, however, that a community may define several
roles of a specific role type, each with the same behavioural constraints, allow-
ing for multiple objects to share responsibilities in a community. This can be
specified by associating an appropriate cardinality constraint with the role, as
is the case with the Branch staff role in the Detailed Phone Repair community.

In general, one object can play several roles in the same community. For
example, in the PhoneMob scenario, an individual can play both the User
role and the Customer role in the Phone Repair community, although, for
organizational customers, these will usually be filled by separate objects (see
the following section).

Finally, the community specification may include additional constraints
on the filling of roles. The most familiar example of this is the requirement
for dynamic separation of duties, in which there is a requirement that two or
more roles must be filled by different objects; for example, where a financial
transaction cannot be both proposed and approved by the same individual.

2.5 More than One Community

Any problem of significant complexity will generally require the use of
flexible structuring techniques, and this is particularly true of enterprise spec-
ifications. If communities are to be kept sufficiently simple to be understood,
they need to be combined, and this can be done in a number of ways.

The way communities are combined will be chosen to support the mod-
elling of complex organizational structures, closely reflecting the real-world
environments within which ODP systems are positioned. These structures
can be expressed in terms of relationships between communities and of the
policies that govern their establishment and change.

A community as a whole can be seen as an enterprise object, and so can
itself fill a role in some higher-level community. Thus, in a top-down design
approach we can start with a general view and then refine it by using sub-
communities to fill the top-level roles. The object resulting from considering
a community as a whole is called a community object .

For example, we can capture the behaviour of a logistics provider, perhaps
to express details of their collection and delivery procedures, by introduc-
ing a Logistics Provision community; the community object representing this
can then fill the Logistics Provider role in the Phone Repair community (see
figure 2.5). Note, however, that there are some additional constraints that
need to be stated in making this linkage. Consider the Green Transport ob-
ject, which is the community object that is going to be refined when defining
the Logistics Provision community. This fills the Logistics Provider role in the
Phone Repair community, and the way that some of its own roles are filled
is already determined as a result. The Customer role in the Logistics Provi-

42 Building Enterprise Systems with ODP

«EV_CommunityObject»

Green Transport

«EV_Role»

Phone Repair

Provider

«EV_Community»

Logistics Provision

«EV_Role»

Goods Destination

«EV_Object»

Phone User

«EV_Role»

Logistics

Provider

«EV_Community»

Phone Repair

«EV_Role»

Goods Source

«EV_Role»

Phone

Supplier

«EV_Object»

PhoneMob

{singleton}

«EV_Role»

Customer

«EV_Role»

Customer

«EV_Role»

Bank

«EV_Role»

Manager

«EV_Role»

User

«EV_Role»

Carrier

«EV_FulfilsRole»

«EV_FulfilsRole»

«EV_FulfilsRole»

has role

has role

«EV_FulfilsRole»«EV_FulfilsRole»«EV_FulfilsRole»

«EV_RefinesAsCommunity»

FIGURE 2.5: Using role filling to link two communities.

sion community is no longer just any object, but becomes the object filling
the Phone Repair Provider role in the Phone Repair community, which is the
PhoneMob itself. Since the customer is, in this case, having their own goods
shipped, they also fill either the Goods Source or Goods Destination role, with
the corresponding destination or source being filled by the Phone Supplier or
User. In figure 2.5, the User role is the destination and the PhoneMob is the
source. As long as these constraints are satisfied, we can use any logistics
provider able to offer a community object whose type matches the role type
in our higher-level community.

Another way in which two or more communities can interact is by having
one or more roles from the different communities filled by a single shared
object. Since the behaviour of this object is constrained by each of the roles it
fills, there is then an indirect linkage of the various communities involved. This
can be used to merge constraints arising from different organizational units.
For example, the Phone Repair community in figure 2.2 distinguished two
roles relating to their clients: a Customer role concerned with the agreement
to use and pay for the service, and a User role concerned with using a phone
and requesting specific repairs. A simple community called the CustomerOrg

Enterprise Viewpoint 43

community is introduced to capture the linkage of these roles. This allows
us to express how the organization’s contract manager constrains who can
request work to be done under the repair agreement.

If a single enterprise object, such as a salesman, fulfils the Employee role
in the CustomerOrg community and, at the same time, fulfils the User role in
the Phone Repair community, then the behaviours of the two communities are
coupled. Similarly, a single infrastructure manager object might fill both the
Contract Manager role in the CustomerOrg community and the Customer role
in the Phone Repair community. This linkage might, for example, model the
need for the user to be authorized by the contract manager in the customer
organization, and to have this checked against the customer contract held by
the Phone Repair Provider role (see figure 2.6).

In some cases, we want to couple two communities in such a way that two
roles are always linked, whatever object fulfils them. This is often the case
when building a hierarchy of communities. In our scenario, for example, there
is a requirement that a particular HQ system enterprise object fulfils the HQ
system role in the Detailed Phone Repair community and also the role with
the same name in the simplified Branch Repair Provision community; this is
achieved by placing a role-filling constraint on the role in the Branch Repair
Provision community. We require the HQ system role there to be filled by

«EV_Role»

Contract

Manager

«EV_Object»

Phone User

«EV_Role»

Logistics

Provider

«EV_Community»

CustomerOrg

«EV_Community»

Phone Repair

«EV_Role»

Phone Repair

Provider

«EV_Role»

Employee

«EV_Role»

Phone

Supplier

«EV_Object»

Manager

«EV_Role»

Customer

«EV_Role»

User

«EV_Role»

Bank

has role

«EV_FulfilsRole» «EV_FulfilsRole»

has role

«EV_FulfilsRole» «EV_FulfilsRole»

FIGURE 2.6: Linking the Phone Repair and CustomerOrg communities.

44 Building Enterprise Systems with ODP

whatever object fills the HQ system role in the Detailed Phone Repair commu-
nity where the Branch Repair Provision community object fulfils the Branch
role. There will also be a refinement relation between the two role types.

Finally, a community can, as part of its behaviour, create another commu-
nity, possibly, but not necessarily, to fulfil one of its own roles. This is similar
to the familiar factory design pattern; for example, a headquarters commu-
nity can create a new Branch Repair Provision community when expanding its
territory.

2.6 Community Behaviour

So far, we have concentrated on the way objects are linked to community
behaviour by using the concept of a role. We now turn to the way in which
such behaviour is specified. But first, it should be noted that the behaviour
is not just concerned with actions performed by players of roles. Roles are
concerned with linking the behaviour into a broader picture, but, as we saw
previously when introducing the elements of a community, the community may
also introduce additional enterprise objects that are only of concern within its
specification, and so have a scope local to it.

For example, a particular realization of a branch might have internal proce-
dures involving some actor, such as a storekeeper, without this object actually
being exposed in the broader specification as a role. The fact that there is a
storekeeper is not visible to objects filling roles in the Phone Repair community,
and is a purely local matter for the branch concerned. People sometimes ask
whether such local objects should be seen as roles, but doing so complicates
the external view of the community without bringing any real benefit, so they
are better kept as having a local scope and can therefore be simple enterprise
objects.

Roles or local enterprise objects can be involved in behaviour in a num-
ber of different ways. Firstly, the enterprise language allows distinctions to
be made regarding the way enterprise objects participate in interactions. If
an object participates in performing the action, it is termed an actor with
respect to that action. For example, the object fulfilling the Branch staff role
is an actor who initiates the Inspect Phone action. If an object is essential for
the performance of an action, requiring allocation or possibly being used up,
it is termed a resource with respect to that action. For example, the Loan
Handset objects form a pool of resources; so do various spare parts. Further,
if an enterprise object is mentioned in an interaction, but is not an active
participant in it, then the object is termed an artefact with respect to that
action; one example is the User Handset enterprise object. All these qualifica-
tions are with respect to particular actions; an artefact in one action may be
an actor in another.

Enterprise Viewpoint 45

Secondly, the enterprise language accommodates the expression of business
services. A business service is a particular description of behaviour that
focuses on the functionality or capability provided by one party to the others
who can then use the service to satisfy their own business needs, resulting in
some added value to them. A business service can be provided by a single
role in a community or it may involve several roles; for example, the phone
repair service of the Phone Repair community is provided by the Phone Repair
Provider role (encompassing HQ system and Branch staff roles of the Detailed
Phone Repair community jointly), which both interact with the service users.
This business service is the central part of the Phone Repair community and
can be used by other members in the Phone Repair community, such as the
Customer and the User.

Business services can be made public by a community; that is to say, they
can be used not only by the objects filling other roles in the same community
but may also be accessed by the behaviour of different communities. Note
that a business service can be supported by one or more technical services,
described in the computational viewpoint, and that these different uses of the
concept of service are in line with the current SOA frameworks, such as the
OASIS Reference Architecture [46].

A process is a specific form of behaviour expressed in terms of sequential
or concurrent ordering between steps. Each business step may consume and
produce information. A process will thus involve one or more community roles,
which perform actions associated with business steps. Each process is aimed
at satisfying an objective, and many processes can be defined in a community,
each of which contributes to the overall objective of the community. This
abstract definition of the process can be further refined to give more detailed
process definitions represented in notations such as BPMN, or UML activity
diagrams (as in UML4ODP).

Interactions are the basic elements of the community behaviour. Each
interaction indicates which roles it involves, and what part they each play in
it. For example, in a message exchange requesting a repair, the community
roles of User and Branch staff may be involved, with the user acting as initiator
and the branch as responder (where initiator and responder are interaction
roles, not community roles). Multiple interactions can then be composed
into sequences or concurrent activities, forming extended pieces of behaviour,
building up first steps and then complete processes. Thus, simple interactions
can be used to build up control flows, yielding a style of behaviour familiar
from process modelling.

The complete behaviour of a community can generally be decomposed into
a number of distinct processes. In the PhoneMob (see figure 2.7), we have,
for example, the repair process, concerned with dealing with a faulty phone,
and two separate administrative processes, one dealing with the negotiation
of service levels with a logistics provider and the other providing assessment
and reporting of key performance indicators. Finally, we have a management
process concerned with the maintenance of the phone loan policy.

46 Building Enterprise Systems with ODP

«EV_Community»

Phone Repair

«EV_Process»

Phone Repair Community

 Behaviour

«EV_Process»

Phone Loan Policy

Setting Behaviour

«EV_Process»

Repair Process

«EV_Process»

Review

Performance

«EV_Process»

Establish

Repair SLA

....

FIGURE 2.7: Community behaviour expressed as a set of processes.

2.6.1 A Community Process

Let us look further at one of the constituent processes in the community
behaviour. Figure 2.8 shows the definition of the process concerned with the
lifecycle of a single phone repair, in the case of a VIP user who is entitled to

«EV_Step»

Acceptance

and Payment

«EV_Step»

Return Loan

«EV_Step»

User

Confirms

Return

Address

«EV_Step»

Request

Repair

«EV_Step»

Local Repair Attempt

«EV_Step»

Handset Reception

«EV_Step»

Completion Tasks

«EV_Step»

Return Handset

to User

«EV_Step»

Get Loan Phone

«EV_Step»

Handle Request

«EV_Step»

Prepare Return

«EV_Step»

Generate

Repair Order

«EV_Step»

Billing

«EV_Step»

Handset Pickup

and Return to

Service Centre

Handset Pickup

 and Delivery to

User

«EV_Step»

Handset Pickup

 and Delivery to

Supplier

«EV_Step»

«EV_Step»

Fix Handset

«EV_Role»

Phone Repair Provider

«EV_Role»

Logistics Provider

«EV_Role»

Phone Supplier

«EV_Role»

User

«EV_Artefact»

User

Handset

[Unfixable]

«EV_Artefact»

User

Handset

[Under Repair]

«EV_Artefact»

Loan

Handset

[Operational]

«EV_Artefact»

User

Handset

[Broken]

«EV_Artefact»

User

Handset

[Under Repair]

«EV_Artefact»

Loan Handset

[Operational]

«EV_Artefact»

Loan Handset

«EV_Artefact»

User Handset

[Operational]

«EV_Artefact»

User Handset

[Operational]

«EV_Artefact»

User Handset

«EV_Artefact»

User

Handset

«EV_Artefact»

User

Handset

[canFixIt] [cannotFixIt]

 [cannotFixIt]

 [canFixIt]

FIGURE 2.8: The Repair Process in the Phone Repair community.

Enterprise Viewpoint 47

Operational

UnfixableUnder Repair

Broken

This state machine includes both

the operational status of the

handset and its servicing status.
Fixed

UnableToFix Disposed

Fixed

ToBeFixedByManufacturer

Fault

Purchased

FIGURE 2.9: The handset state machine.

be issued a loan phone while her own is being dealt with. The roles involved
are the user, phone repair provider, logistics provider and phone supplier. The
Phone Repair community has other roles, but they are not directly involved in
this process.

Several of the flows in this figure are marked as referencing a user handset
as an artefact, shown as an «EV Artefact»; the flow from the Request Repair
step is one example. In this specification, we have chosen to use an artefact
reference to highlight the fact that the flow is associated with the physical
transfer of the handset concerned between roles. After the request repair step
not only does the process flow transfer to the phone repair provider, but also
responsibility for the broken handset is transferred. Note that the artefact
is decorated with its assumed state [broken]; this state is drawn from the
state machine defined for handsets (see figure 2.9). In places where the state
is uncertain, such as on the return of the loan handset, this decoration is
omitted.

The steps in this representation of the process are comparatively coarse
grained. Thus, for example, the detail involved in saving the user’s state and
SIM is subsumed into the Handle Request step when the phone is first received,
and the restoring of this state forms part of the Prepare Return step. These
details are important in ensuring the user receives a high quality experience,
but the choice of exactly what order the necessary actions are taken in is not
of concern to the user or customer roles.

2.6.2 Refining the Process

The behaviour shown in figure 2.8 is generic; it applies to all repair ac-
tivities in the organization and is expressed in terms of the roles shown in
figure 2.2. It can be refined by each branch independently, in ways that suit
their local situation. Figure 2.10 shows one such refinement, defining the

48 Building Enterprise Systems with ODP

«EV_Step»

Monitor Repair Progress

«EV_Step»

Check User Identity

«EV_Step»

Prepare Billing Info

«EV_Step»

Completion Tasks

«EV_Step»

Arrange Repair

By Supplier

«EV_Step»

Arrange Repair

By Supplier

«EV_Step»

Start Monitoring

«EV_Step»

Allocate

Phone Loan

«EV_Step»

Close Order

«EV_Step»

Advise User

«EV_Step»

Get Contract

Info

«EV_Step»

Billing

Operations

«EV_Step»

Update

Customer

Account

 Handle

Request Task

 Get Loan

Phone Task

«EV_Step»

Acceptance

and Payment

Completion

Estimate

Time

Notification

«EV_Step»

Return Loan

«EV_Step»

User

Confirms

Return

Address

«EV_Step»

Request

Repair

«EV_Step»

Handset Pickup

and Delivery

to Supplier

«EV_Step»

Handset Pickup

and Return to

Service Centre

«EV_Step»

Handset

Pickup and

Delivery to

User

«EV_Step»

Check Handset

«EV_Step»

Fix Handset

«EV_Step»

Local Repair Attempt

«EV_Step»

Handset Reception

«EV_Step»

Return Handset

 toUser

«EV_Step»

Prepare Return

«EV_Step»

Inspect Phone

«EV_Step»

Give Phone

Billing Tasks

«EV_Role»

Branch system

«EV_Role»

Phone Supplier

«EV_Role»

Branch staff

«EV_Role»

Logistics Provider

«EV_Role»

HQ system

«EV_Role»

User

«EV_Artefact»

User

Handset

[Broken]

«EV_Artefact»

User

Handset

[Under Repair]

«EV_Artefact»

User

Handset

[Operational]

«EV_Artefact»

User

Handset

[Unfixable]

«EV_Artefact»

Loan Handset

[Operational]

«EV_Artefact»

Loan Handset

[Operational]

«EV_Artefact»

User Handset

[Operational]

«EV_Artefact»

User Handset

[Under Repair]

«EV_Artefact»

User Handset

«EV_Artefact»

User

Handset

«EV_Artefact»

User

Handset

 [late]

Start repair

 [CannotFix]

 [canFixIt]

FIGURE 2.10: The repair process as seen from one of the branches.

Branch Repair Provision community. This community has a community object
that offers one way of fulfilling the top-level branch role.

This process adds detail; it now distinguishes between the different internal
roles of the PhoneMob organization, using the refined roles shown in figure 2.4.
However, the process as seen by the external parties should be essentially

Enterprise Viewpoint 49

unchanged. In fact, this is not the case, since some additional detail of the
user interaction has been made visible, which involves providing the user with
up to date progress information about the repair. This in turn requires that
additional progress signals and a query facility need to be provided by the
Phone Supplier role so that progress of return to manufacturer repairs can be
monitored. These have been added at this stage to underline that, although
ideally this part of the design would be a transparent process from the point
of view of the external parties, in practice it will be an iteration, and in the
real design we would expect tooling facilities to assist in propagating these
additions back into the abstract view.

We mentioned previously that community behaviour could be managed by
the definition of mutable policies (see chapter 10). Doing so narrows the gap
between specification and implementation, since a policy needs to be updated
at runtime, either by replacing some code fragment or adding indirection, so
that the policy is accessed as a separate service. Often, the policy is written in
a separate language, designed to make runtime interpretation straightforward.
A policy may take a number of forms, being either a small fragment of be-
haviour, controlling a particular decision, or a constraint or invariant applied
to a broader behavioural scope. In either case, the way the policy is to be
changed forms part of the community behaviour.

2.7 Accountability and Related Concepts

The enterprise language includes a family of concepts for expressing re-
sponsibility, called accountability concepts. Their aim is to support the trace-
ability of obligations in the overlapping and interacting communities that
make up the enterprise. The basic idea here is that, despite a significant
amount of automation and use of supporting agents, there are parties that
have broader responsibilities derived from some social or legal framework.
These may be natural persons, such as the Phone User, or organizations, such
as the logistics provider Green Transport in figure 2.5. In either case, we need
to be able to trace the way that their rights and responsibilities are linked to
individual system actions and to their consequences.

To help do this, the enterprise language defines a number of kinds of action
that have different consequences for the future behaviour of the system; dis-
tinguishing these different kinds of action provides a framework for analysing
the way responsibilities evolve. First, a commitment is an action that re-
sults in the object performing it undertaking some obligation. Obligations
can then be passed on by their current holder (the principal) performing a
delegation in which obligation is passed to an agent . An object can also
make facts known in its environment by performing a declaration . This may
be the result of some analysis of available information to derive more general

50 Building Enterprise Systems with ODP

information by performing an evaluation . Finally, an object may perform
an action which is a prescription , creating a rule that constrains the future
behaviour of the community. Prescriptions provide a flexible and powerful
mechanism for changing the system’s business rules at runtime, enabling its
dynamic adaptation to respond to business changes and new needs.

Expressing accountability for actions allows the party responsible for the
changes in the rules to be identified, which is something that fits well with the
deontic nature of enterprise policies, because the party must be authorized
in order to perform the prescription. These concepts can be used to express
various governance frameworks. We can see these mechanisms at work in the
PhoneMob example when a new contract is established with an organization
fulfilling the role of Customer. The contract may be enacted by clicking on
a button in some web page, but it is binding on the PhoneMob because the
organization has performed a delegation to the Chief Information Officer,
who is the party taking responsibility for the information system that acts as
her agent in accepting the web interaction that enacts the agreement.

2.8 Quality of Service and Other Constraints

So far, the treatment of behaviour has concentrated on the sequence of
tasks to be performed — the so-called functional aspects of the processes.
However, we also need to be able to place constraints on various aspects of
the quality of performance, such as how quickly things are done, how low
the failure probability should be, or how good the security properties should
be. This typically involves decorating the basic behaviour, which is a set of
permitted event sequences, with conditions on what variations in performance
are allowed.

For example, there will be policies that arise from a service level agree-
ment between the PhoneMob and a VIP customer, such as obligations on the
PhoneMob to observe response times for repairs and, in the case of violations,
to provide compensation, such as arranging for replacement of a troublesome
user handset.

This is a complex issue because there are many dependencies between
the parties, and any quality guarantee asked from one community member is
contingent on proper behaviour by others. For example, a requirement that
the logistics provider shall deliver a shipment within 12 hours is contingent
on the receiving party being available to take delivery before the end of the
period. In general, any obligation placed on an object depends on guarantees
of support given by its environment.

The details of how such quality constraints are expressed depend on the
property being considered, and would take us beyond the scope of this book,

Enterprise Viewpoint 51

but this is an area where much research is currently underway, and new pro-
posals are emerging [51,68,69].

2.9 Identifying the System’s User Interfaces

The enterprise specification identifies the points at which users interact
with the supporting system. For example, figure 2.10 shows a process defini-
tion that contains interactions between the role Branch system and the roles
User, Branch staff, HQ system, Logistics Provider, and Phone Supplier. In this
diagram, at least the interactions between the User or Branch staff (roles that
are filled by human beings) and the Branch system (fulfilled by a computer
system) occur at a visible user interface. We will concentrate on these because
the other roles are not expressed in sufficient detail in this figure to determine
whether the interactions are between humans and machine or machine and
machine.

The nature of the interactions can be expressed in many different ways, but
a common approach is one that divides the design activity into three separate
but related aspects (or, in our terminology, viewpoints), which are concerned
with content, navigation and presentation.

• Content focuses on the persistent information handled by the system.
In hypermedia systems, the content viewpoint may include not only
raw data about the entities managed by a traditional system (orders,
customers or inventory items) but also more complex entities, such as
images, video clips, audio tracks and animations.

• Navigation deals with how the content can be accessed; it covers which
content items can be visited and how a user can move from one to
another. Navigation thus establishes the possible paths that the user
can take through the content maintained by the system.

• Presentation deals with the visualization of the content and of the
various interactive elements that support the functionality of the system.

These views can be mapped into the RM-ODP viewpoints in quite a nat-
ural way. In the enterprise viewpoint, we are concerned primarily with an
abstract view of navigation. The other aspects are dealt with in different
viewpoints. The content elements are precisely those represented in the infor-
mation viewpoint and the computational viewpoint will address how the broad
navigational flows are realized. Presentation is described in the engineering
viewpoint, where the presentation styles and templates are specified — at the
end of the day these elements belong to the same category as the message

52 Building Enterprise Systems with ODP

Registered with

Replacement Suggestion

Replacement Request

Registered with

Completion Date

Repair Notified

Repair Request

Inquire Status

Create

User
Login

FIGURE 2.11: Navigation state machine.

data formats that need to be specified for the computer-to-computer interac-
tions. Finally, the ODP technology viewpoint imposes some constraints on
the presentation, including, for instance, usability and accessibility standards
that need to be considered in the specifications.

In the enterprise viewpoint, we are concerned with the functionality avail-
able for obtaining and manipulating data, and the actions that the system
will take as a result. Intuitively, navigation deals with the sequence in which
enterprise objects and artefacts will be visited and modified.

A navigation specification can be obtained from the models of the en-
terprise specification by focusing on the interactions between the role pairs
identified previously and extracting the state machine describing just these
interactions (see figure 2.11). Such a diagram indicates the sequence in which
information is requested and provided in the steps of the dialogue between
the user and the machine. Each state will correspond to a group of pages or
forms, displayed to the user or soliciting information from them. The transi-
tions mark the stages in the progress of the dialogue.

2.10 Writing Enterprise Specifications

The ODP enterprise language does not prescribe any particular method
for building the enterprise specification of a system, as the approach taken
will depend very much on the system being specified, the business that it
will support and the constraints that arise from the environment in which the
system will operate. For this example, the following process has been followed:

Enterprise Viewpoint 53

1. Identify the communities with which the system is involved, their objec-
tives and the roles involved in them.

2. Identify the enterprise objects within each community.

3. Define the behaviour required to fulfil the objectives of the communities.
This may be in the form of processes, their constituent actions and the
community roles or local enterprise objects performing them.

4. Define any constraints on the way roles can be filled by enterprise ob-
jects.

5. Identify the policies that govern the behaviour.

6. Identify any behaviours that may change the rules that govern the sys-
tem, and the policies that govern such behaviours (changes in the struc-
ture, behaviour or policies of a community can occur only if the specifi-
cation includes some behaviour that can cause those changes).

7. Identify the actions that involve accountability of the different parties,
and the possible delegations.

8. Identify any behaviour that may change the structure or the membership
of each community during its lifetime, and the policies that govern such
behaviour.

Of course, the order of these activities need not necessarily be linear, and
not all activities will be appropriate in all modelling situations.

Alex held open the swing door, with its engraved glass panel decorated
with climbing plants — hops, he supposed — and Eleanor walked past him
into the bar, her three-quarter length dark tan jacket speckled with rain. It
had been a long session struggling with their enterprise model, and they were
both in need of a break. They took their drinks to a corner table. The place
was in traditional city style, divided into small bays by plush bench seats,
upholstered using small brass tacks, and with backs rising to form shoulder
height screens of machine-turned wooden columns finished in a heavy light-
devouring varnish.

“Here’s to modelling,” she said, sipping her Shiraz, “although I still don’t
see how all this organizational stuff is really going to help us build the systems.”

He sighed. “How long have you been in this business?” “About ten years,
and before that five as an analyst.” “Well then, were the systems you started on
giving the same support we are aiming for today?” She thought briefly. “No,
they were pretty basic separate applications; what we do now is much better
integrated.” “And you must agree that trend will continue.” She nodded, the
light glinting from the jewelled lizard that was frozen climbing the contour of

54 Building Enterprise Systems with ODP

her right ear. “That means time invested in capturing organizational detail
today is an investment in making it easier to introduce tomorrow’s systems,”
he said. “Besides which, it helps promote understanding between business
types and systems designers — avoiding what the trendies would call the
cognitive dissonance.”

She looked thoughtful. “But where do you stop? You could just go on
adding business rules and goals, and it would get harder and harder as you
tackled the less tangible aspects like legal and social responsibilities.” “You
have to be pragmatic, of course, and look just a little bit further into the
future than the minimum, but think where we may be going. What will
you be doing in twenty-five years time?” “Enjoying a world cruise on a fat
pension, I sincerely hope,” she said. “But I see what you are getting at. And
the emphasis on roles in communities rather than individuals is for the same
reason?” “Yes,” he said, “and on a quite short timescale, so that you end
up with a set of reusable building blocks, and can respond to organizational
change. This is helped, of course, by taking a model-driven approach, so that
changes to business models can be applied to the running systems with a
minimum of recoding.”

There was a pause while she went up to the bar for more drinks. “Isn’t
there a problem here?” she asked as she opened a packet of crisps, neatly
slitting the aluminized Mylar with one burgundy nail. “If we build everything
from business models, aren’t the technical designers like us heading for a more
mundane job?” “I don’t think so,” he mused, selecting one of the few unbroken
crisps, “the way I see it, the really accurate enterprise models are going to be
the crown jewels of the organization; building and maintaining these models is
not easy and their custodians will have a central role in the business, probably
more so than at present.”

“What about the architectural consultants, then?” she asked, with a chal-
lenging tilt of her head. “What does the future hold for them?” He grinned.
“Personally, I’ve always fancied myself as a jewel thief,” he said, taking a deep
swallow of his warm, dark beer.

Chapter 3

Information Viewpoint

“Come in, Ivor,” Marcus said. “You want to talk to us?” He was sitting not
behind his clear, stylish light-ash desk, but by a long table under the window,
which supported a huge flat screen and was covered in piles of reports, pert
charts and trade magazines. Eleanor was already occupying one of the chrome
and leather visitor’s chairs. Ivor took the other and turned towards Marcus.
He looked tense.

“I think we need to talk about how we organize things. This new approach
is changing the balance and our way of working, and that has consequences.
I’ve been Compliance Officer for three years, and I’ve been very happy to be
responsible for seeing that we had the right type and quality of information to
fulfil our statutory obligations. I came into the current project with that brief,
but the information modelling that is going on here is much more central to
the design activity. It just doesn’t fit under compliance.”

Marcus and Eleanor exchanged glances. “Yes, we can see that,” Marcus
said, leaning back in his chair. “The emphasis is changing and we must make
the organization respond. What do you suggest we should do about it?” “Well,
I think we should establish a new responsibility for creating and maintaining
the necessary information models. It will need dual reporting, looking to both
the CIO and the Compliance Office to ensure all the requirements are covered.”

Eleanor looked at her folder of notes. “I agree we need a new responsibil-
ity,” she said, “and that it needs the muscle to make our developers take the
centrally defined types seriously. But the skills needed are about maintaining
a repository that plays an active role in the development, not a monitoring
role. We should pick one of our proven developers who is sympathetic to
the approach and give them the brief of establishing the necessary processes.
They would need at least two staff reporting to them initially.”

Marcus stood up and walked over to his desk. “OK, so we are in agreement
that a new structure is needed. I don’t buy the dual reporting idea, though;
that kind of structure has all sorts of problems. We will bring the new position
in at planning group level, reporting to the CIO, like the other development
and operation leads, but with an obligation to get model sign-off with your
people, Ivor, before key design commitment steps.” Ivor was tight-lipped, but
not devastated; he had expected this ruling, but he knew in his heart that

55

56 Building Enterprise Systems with ODP

something along these lines was going to be needed. “Do you have someone
in mind?”

Eleanor smiled. “I was thinking of Ira Vernon; he has the modelling expe-
rience and was Release Manager for the Janus Two project — he did a good
job there.” “What? The guy with the bootlace ties and that pretentious blue
and silver clip? He’s from Texas, isn’t he? Seems rather detached.”

“I think he is from Arizona, and very proud of his family; I know the bolo
clip is Zuni; I’d like some of their fine turquoise stuff myself.” Marcus cut in.
“How he dresses is not the issue; would he make a commitment to the job?”
“Yes, I believe he would. I think he can really see the benefits and wants to
make it happen.” “OK, he’ll be reporting to you, so I trust your judgement.
We’ll meet with him and then you do an initial job description for the internal
announcement and we’ll work on procedures. Do you see any problems with
implementation? You first, Ivor.”

“Well, as always, the problem is in stopping people from taking well-
intended shortcuts, and so duplicating definitions. We need to stress the
importance of having a single source for data items in our code review pro-
cess, and in staff induction.” Eleanor nodded. “Yes, training is important, but
so is responsiveness. One of the things Ira will have to do is ensure people
don’t see common models as a nice ideal but a practical bottleneck. There
have to be rapid change processes for the information view.”

“But we are also facing a culture change in the content of the models. Peo-
ple just aren’t used to centralized behaviour constraints; they are always more
prepared to use templates for data structures than for interaction sequences.
We need to work on the tool vendors for better ways of refactoring behaviour;
there may be some useful plug-ins out there that would help.”

“OK,” Marcus said, glancing out of the window at the gathering clouds,
“you have an intern starting — why don’t you set them on to doing a search.
One final thing; are we sure that taking this direction will improve quality?”

Eleanor paused. “Well, you know Alex did a trawl through our trouble
tickets when he was first getting involved. He reckoned almost 60% of our
faults fixed were attributable to errors in code that duplicated something
already done correctly elsewhere in the system. Mostly the smaller things, of
course, but still a major hassle taken overall.”

Marcus nodded. “Fine, let’s do it. Eleanor, you’ll let me have that draft
job spec by this evening? Then I think we are done.” He turned to his screen
to check for messages; the meeting was over.

3.1 The Primacy of Information

The goal of the information viewpoint is to model the shared information
that is manipulated by the system, in order to provide a common understand-

Information Viewpoint 57

ing to all parties. In this viewpoint the focus is on the information itself,
without considering further platform-specific or implementation details, such
as how the data is represented, implemented or distributed. The information
viewpoint is also independent from the computational interfaces and functions
that manipulate the data, or the nature of the technology used to store it. In
this way, what we get is a common abstract model for the shared information
in the system, which can be used to ensure its consistent interpretation by all
stakeholders.

Thus, the objective of this viewpoint is similar to the aim in having data
dictionaries for achieving interoperability between all interested parties, or the
goal of ontologies for providing a common and unique interpretation of the
shared information entities of a particular domain.

The information viewpoint should be able to answer a set of questions
about the system, such as: “What are the data types of the information that
the system will handle?” “What are the relationships between these types?”
“How will the state of the data in the system evolve as the system operates?”
“What are the allowable actions that the system will accept, and how will
they affect the state of the data?” or “What are the constraints on the data
and its processing?”

To respond to these questions, the information viewpoint uses the infor-
mation language , which provides a set of elements and constructs to model
the information specification of a system.

3.2 The Elements of the Information Language

An information specification defines the information handled by the system
and the rules governing the processing of such information. It does this by
defining a configuration of information objects, the behaviour of these objects,
the actions that can happen and a set of constraints that should always hold
for this collection of elements. Let’s describe each of these elements, one by
one.

Information objects model the data handled by the ODP system about
entities in the real world. Information objects, just like any other ODP objects,
exhibit identity, state and behaviour, and interact with other information
objects. Examples of information objects are the handset with serial number
"SN33433/09", the user called "Joe Smith", or the repair order with number
"2010-VIP-0003".

Every information object has a type , which is a rule (strictly speaking, a
predicate) that characterizes the set of objects that share a common set of
features and a given behaviour. Information object types can be considered
to be similar to abstract data types in programming languages. Examples of
information object types are Handset, User or RepairOrder.

58 Building Enterprise Systems with ODP

Information actions model the information processing in the system.
Every action of interest for modelling purposes is associated with at least
one object. Actions also have types, which characterize the sets of actions
that share particular properties. An example of an information action is the
request by user "Joe Smith" for the repair of the user handset with serial
number "SN33433/09" at the PhoneMob service centre in downtown Amster-
dam. The corresponding action type is RepairRequest, whose parameters are
a user handset, a user and a PhoneMob service centre. Note that this is an
abstract action, independent of the more detailed functional specification to
be dealt with in the next chapter.

Actions cause state changes in the objects that participate in them. For
example, after a RepairRequest action the state of the information object User
Handset is initialized to Broken — see figure 3.3. These state changes are
described by means of dynamic schemata,1 as discussed later.

Apart from these elements, the information language also defines three
kinds of structure (called a schema); this allows us to organize the infor-
mation specification in terms of the behaviour of the information objects,
described by a set of dynamic schemata ; the constraints that apply to the
objects and their behaviours, described by a set of invariant schemata ;
and a configuration of information objects at some moment in time, described
by a set of static schemata .

The different kinds of schema may apply to the whole system, or they may
apply to particular domains within it.

A dynamic schema specifies how the information evolves as the system
operates, describing the allowable state changes of one or more information
objects. A dynamic schema can, for instance, describe what happens when a
valid request for repairing a handset is added to the system (figure 3.3), or
express the overall behaviour of User objects. A state change involving a set
of objects can be regarded as an interaction between those objects.

In addition to describing state changes, a dynamic schema can also describe
the creation and deletion of information objects. For example, a RepairRequest
action results in the creation of a RepairOrder information object and, option-
ally, of a Loan object if the user is allowed to have a loan handset during the
repair process and there is a free loan handset in the shop.

An invariant schema is a set of predicates constraining one or more
information objects that must always be true, for all valid behaviours of the
system. It can describe the types of the information objects, their relation-
ships, and the constraints on those types and those relationships. The pred-
icate constrains the possible states and state changes of the objects to which
it applies. The behaviour specified in any dynamic schema is subject to the
constraints of the invariant schemata. For instance, an invariant schema can
constrain the values of a given information object, or the occurrence of an
action, such as “Repair orders can only be placed by users whose companies

1In English, the plural of schema is schemata.

Information Viewpoint 59

are known by the system.” An example of such an invariant schema is shown
in figure 3.1.

A static schema models assertions that must be true at a single moment
in time. A common use of a static schema is to specify a given state of a set
of information objects, in situations of particular interest to the modeller. For
instance, it might describe the final state of a successful repair order.

3.3 Writing Information Specifications

This section describes how to use the concepts and structuring rules of the
information language to write an ODP information specification. We need
to describe the process of developing the specification, and the notation to
use. RM-ODP does not impose any methodology to build the information
specifications, but, to illustrate the ideas, we will follow a simple process by
which we specify:

1. The types of the information objects and the types of the relationships
between information objects.

2. The types of the information actions that can happen during the oper-
ation of the system.

3. A set of dynamic schemata that describe the behaviour of the objects
when the actions occur.

4. A set of invariant schemata that describe the constraints on the system
elements.

5. A set of static schemata which provide instantaneous views of the system
or of any of its constituent objects.

There are many possible options for representing the information language
concepts, depending on the experience and skills of the information modeller;
Entity-Relationship Models (ERM), Object Role Models (ORM) or UML class
diagrams can all be used. In this book, we will make use of the corresponding
UML4ODP profile, which provides a set of UML elements to write information
specifications in UML.

3.3.1 Information Object Types

In the first place, we need to specify the types of the information objects
that model the data being handled by our ODP system. Information objects
are generally specified in terms of their types, which in UML are expressed by
classes stereotyped as «IV Object».

60 Building Enterprise Systems with ODP

«IV_InvariantSchema»

InformationObjectTypes

HandsetWithManufacturer
HandsetReturnedToUser
Closed

Open

«enumeration»

OrderStatus

+when : date
+action : ActionTakenKind
+description : String

ActionTaken

+MaxOpenOrders : int = 50

ServiceCentre

AssignedRepairHandset

SentToManufacturer

InternallyTested
Received

«enumeration»

ActionTakenKind

+number : String
+IMSI : String
+MSISDN : String
+contacts : Contact [0..*]

SIM

+capacity : int
+contacts : Contact [0..*]

Memory

+orderNumber : String
+open : date
+closed : date
+estimatedClose : date
+status : OrderStatus

RepairOrder

{open <= closed}

+serialNo : String
+status : PartStatus

Part

UnderInspection
Operational
Unfixable

Broken

...

«enumeration»

PartStatus

«dataType»

Address

+starts : date
+ends : date
+returnTo : Address
+courier : Courier

Loan

{starts <= ends}

+name : String
+phone : String
+address : Address

Company

Manufacturer

LoanHandset

Performance

Info

+IMEI : String

UserHandset

+startDate : date
+expiryDate : date
+billingInfo : String

Contract

Component +name : String
+number : String

«dataType»

Contact

Customer

Company

User

Handset
Courier

Staff
SLA

1..*

0..*

1..*

0..1

+performer

0..*

0..1

1..*

0..1

0..*+sla

0..*

0..1

0..1

+worksFor
0..*

0..1

0..*

0..*

0..*

0..1

0..*

0..*

1..*

FIGURE 3.1: Invariant schema showing information object types.

Figure 3.1 shows the ODP information object types of the PhoneMob in-
formation specification. Note that the information specification captures the
information handled by the system, and there is no need to represent the com-
puterized system itself (in contrast to the enterprise viewpoint specification).

The class diagram in figure 3.1 also expresses the allowed relationships
between the information object types. For example, it defines that an infor-
mation object representing a service centre should be related to the informa-
tion objects that represent its staff, to the set of loan handsets owned by the
shop (either in stock, or given to VIP users while their phones get fixed), and
to the set of repair orders for which the centre is responsible. In turn, the
information objects that represent such orders are related to the information
objects that represent the broken handsets, the users that took them to the

Information Viewpoint 61

shop, and the records logging the different actions that have been performed
on the broken phone since the repair order was opened.

Furthermore, the model specifies constraints on the kinds of objects and
the kinds of associations that can appear in a valid information object config-
uration for the system (in terms of the multiplicities of the association ends
or specific constraints on some of the objects, for instance).

All of these elements are defined within a UML package that is stereotyped
as an «IV InvariantSchema», which represents an ODP information invariant
schema.

3.3.2 Information Action Types

In the information viewpoint, actions are used mainly for describing events
that cause state changes of information objects. Figure 3.2 shows some of the
action types of the PhoneMob system.

«IV_InvariantSchema»

InformationActionTypes

«IV_Action»

ReturnHandset

+user : User
+order : RepairOrder
+newDestination : Address

«IV_Action»

ChangeDeliveryAddress

+name : String
+company : CustomerCompany

«IV_Action»

AddUser

+user : User
+centre : ServiceCentre
+handset : UserHandset

«IV_Action»

RepairRequest

«IV_Action»

InitialTests

+part : Part
+from : Address
+to : Address

«IV_Action»

SendByCourier

«IV_Action»

FixedByStaff
+when : date

«IV_Action»

CloseOrder

....

FIGURE 3.2: Invariant schema showing selected information action types.

In the UML representation, the information actions are expressed as ac-
tion types within the invariant schema package. Information action types are
expressed by UML signals stereotyped «IV Action». Attributes of the signals
represent the information conveyed by the ODP interactions expressed by
such signals. Thus, the instances of the classes that represent the action oc-
currences will be expressed by signals, sent or received by the state machines
of the corresponding information objects (see next section). Internal actions
are expressed as internal transitions of the state machine for the information
object concerned.

3.3.3 Dynamic Schemata

UML state machines can be used to describe the behaviour of informa-
tion objects; state changes are triggered by signals that express information
actions. Thus, the state machines express dynamic schemata. Note that a
signal causes changes in all the state machines that define a transition for it,
reflecting the fact that an ODP interaction may cause state changes in all the

62 Building Enterprise Systems with ODP

objects involved in it. In other words, an ODP interaction is a piece of shared
behaviour.

Figure 3.3 illustrates the state machine of the Handset information object.
This diagram shows not only the effect of the actions on the corresponding
information objects, but also the states in which the actions are allowed,
serving as pre- and post-conditions for those actions.

UnderManufacturerRepair

UnderInspection

UnfixableOperational

Broken

CloseOrder Dispose

FixedByStaff SendToManufacturer

FixedHandset UnableToFix

InitialTests

RepairRequest

FIGURE 3.3: State machine for the Handset information object.

3.3.4 Invariant Schemata as Constraints

We have seen how invariant schemata can be used to specify the informa-
tion object types and their relationships, but they can also be used to express
other kinds of constraints on the information handled by the system.

For example, we may need to express the fact that no handset can be
referenced simultaneously by more than one repair order, or that users should
have unique names in the system. These kinds of invariant have already been
incorporated into the UML class diagram that describes the information object
types by choosing the multiplicity of the association ends, or adding some
OCL constraints to the elements (see, for example, the constraints specified
for classes User or RepairOrder in figure 3.1).

Other OCL constraints can be used to specify further restrictions on the
model, or to express integrity constraints. For example, we could restrict
the number of repair orders currently open in a centre, in accordance with
a possible enterprise policy stating such a business rule, by simply adding
an OCL constraint to the ServiceCentre information object type, as in the
following fragment.

Information Viewpoint 63

context ServiceCentre inv:

self.repairOrder->select(status <> OrderStatus::closed)->

size() <= MaxOpenOrders

Further invariant schemata can be specified in this way, defining the in-
tegrity constraints and well-formed rules of the information model that spec-
ifies the shared data model handled by the system.

3.3.5 Static Schemata

Sometimes it is very useful to be able to describe instantaneous views of
the information, for example at system initialization, or at any other specific
moment in time that is relevant to any of the system stakeholders. This
specification of the instantaneous state of the objects is precisely the one

handset = MT−Handset

repairHandset = rh1

returnTo = "10 Downing St, London, England"

starts = "2010−07−01"

s : Loan

«IV_StaticSchema»

PendingOrderExample

{locationInTime = "2010−07−01, 12:00 UTC" }

MaxOpenOrders = 50

name = "221b Baker St., London,

England"

repairHandset = rh1 , rh2, rh3, rh4, rh5

repairOrder = ro0 , ro1, ro2, ro3

staff = s1, s2

LondonRC1 : ServiceCentre

actionTaken = a1 , a2, a3

estimatedClose = "2010−07−05, 9:55"

handset = MT−Handset

open = "2010−07−01"

orderNumber = "2010−VIP−0003"

repairCentre = LondonRC1

status = Open

user = MarkTwain

ro0 : RepairOrder

action = AssignedRepairHandset

description = "Handed to user"

performer = s2

repairOrder = ro0

when = "2010−07−01, 10:35"

a3 : ActionTaken

address = "Windsor Castle.

Berks. England"

contract = BestCoDeal

name = "The Best Co. Ever, Inc."

phone = "+44.555.1234"

BestCo : CustomerCompany

loan = s

repairOrder = ro0

serialNo = "SN33433/09"

status = Operational

user = MarkTwain

MT−Handset : UserHandset

actionTaken = a2 , a3

name = "Laura Stilton"

servicerCentre = LondonRC1

s2 : Staff

actionTaken = a1

name = "Joe Smith"

servicerCentre = LondonRC1

s1 : Staff

action = Received

description = "Registered"

performer = s1

repairOrder = ro0

when = "2010−07−01, 10:00"

a1 : ActionTaken

action = InternallyTested

description = "SIM does not

work. Test#1234 fails"

performer = s2

repairOrder = ro0

when = "2010−07−01, 10:30"

a2 : ActionTaken

loan = s

repairCentre = LondonRC1

serialNo = "SN89355/10"

status = Operational

rh1 : LoanHandset

billingInfo = "..."

company = BestCo

expiryDate = "2099−12−31"

startDate = "2005−01−01"

BestCoDeal : Contract

handset = MT−Handset

name = "Mark Twain"

repairOrder = ro0

worksFor = BestCo

MarkTwain : User

FIGURE 3.4: Current state of an example RepairOrder.

64 Building Enterprise Systems with ODP

provided by static schemata, which in UML are expressed by means of object
diagrams.

For instance, the UML package shown in figure 3.4 expresses a possible
state of one repair order, in which the order has been registered, the telephone
tested and found faulty, and a loan handset has been assigned and given to the
user. No further actions have been done for that order so far — for example,
the faulty handset has not yet been sent to the manufacturer for repair.

3.4 Structure of the Information Specification

All the elements that constitute the information specification of the system
are gathered together within a single model, stereotyped «Information Spec».
This model contains the set of packages that express the invariant, static
and dynamic schemata of the information specification, structuring them
in different packages for organizational purposes. Figure 3.5 depicts the
«Information Spec» model for the PhoneMob system.

StaticSchemata

«IV_StaticSchema»

PendingOrderExample

{locationInTime = "2010−07−01, 12:00 UTC" }

«IV_StaticSchema»

InitialSystemState

{locationInTime = "2010−06−01, 10:00 UTC" }

InvariantSchemata

«IV_InvariantSchema»

InformationObjectTypes

«IV_InvariantSchema»

InformationActionTypes

«Information_Spec»

PhoneMob (I_Spec)

FIGURE 3.5: Structure of the PhoneMob information specification.

Note that in this figure there is no package for the specification of dynamic
schemata. Given that they are modelled in UML as state machines associ-
ated with the corresponding object types, splitting their specification across
different packages does not make much sense.

Information Viewpoint 65

3.5 Relationship with Other Viewpoints

Although the different ODP viewpoints can be defined independently and
there is no explicit order imposed by the RM-ODP for specifying them, a
common practice is to start by developing the enterprise specification of the
system, and then prepare the information and computational specifications.
These specifications may place constraints on each other, and usually each
viewpoint specification is revised and refined as the others are developed.

In the case of a notional incremental development process of the ODP view-
point specifications, whereby the information specifications are developed tak-
ing into account the previously defined enterprise specifications, information
objects may be discovered through examination of an enterprise specification.
For example, each artefact referenced in any enterprise action in which an
ODP system participates will correspond in some way with one or more infor-
mation objects. Similarly, computational objects, interfaces and interactions
can be derived from information objects and their associated information ac-
tions.

In general, not all the elements of the enterprise specification of a system
need to correspond to elements of its information specification. For exam-
ple, not all role types in the enterprise specification correspond to object
types in the information view. Likewise, not all information objects or ac-
tions correspond to enterprise elements. One example is the decomposition of
the handset into individual parts in the information viewpoint specification;
these parts are abstracted away in the enterprise view. Similarly, the Logis-
tics Provider enterprise community and all its constituent elements correspond
to the single Courier information object type and the Branch enterprise com-
munity corresponds to the ServiceCentre information object type. In every
case, the information viewpoint complies with the policies of the enterprise
viewpoint and, likewise, all enterprise policies are consistent with the static,
dynamic and invariant schemata of the information specification.

In chapter 7, we will describe how the relationships between the elements
of two different viewpoint specifications are explicitly specified and described
in terms of correspondences. For the moment, let us simply highlight the fact
that both viewpoint specifications are views of the same system, and therefore
what is specified in one viewpoint specification about an entity needs to be
consistent with what is said about the same entity in any other viewpoint
specification. Any two views should not make mutually contradictory state-
ments; that is, they should be mutually consistent. The correspondences will
be used to check that this is so.

This page intentionally left blankThis page intentionally left blank

Chapter 4

Computational Viewpoint

Claire looked across at Ira as he bent over his laptop, navigating through
the information model to find the diagram dealing with phone properties. She
had seen him around the office, of course, but this was the first time she had
worked with him directly. He was tanned with fair hair and was dressed in
a slightly formal ranch style with a strongly patterned shirt and had a self-
confident, but rather reserved air. He certainly seemed to have picked up the
ideas quickly enough, and his modelling background was strong, but he didn’t
seem so familiar with implementations.

“Here it is,” he said, switching the diagram to the projector. “You can see
that the definition here breaks down into owner and organizational properties
on this side, and hardware structure and replaceable units over on the other
side. We can derive the different specializations you have been talking about
from this.” “OK, but there are items in our design that are not here.” “Sure,
that’s fine. There are bound to be elements describing the process details
that would only be of local interest. I would expect your model to import a
selective view of this, and then extend it to include new material.” He traced
one subtree of the diagram. “Here is the structure concerned with the SIM and
its properties. Suppose we want to order a replacement for a faulty SIM. That
requires a message containing the SIM’s description, which means transferring
an object of this SIM type, with fields to give the required capacity. You just
have to pick an encoding for it.”

“Not me,” laughed Claire; “that’s Nigel’s problem, not mine. The models
I’m building are platform independent, because we want them to be valid
across a lot of different technologies. My group really shouldn’t be concerned
with the engineering detail.” “Hang on, though,” Ira said, “if we want to hide
the engineering detail, why am I being asked to describe SIMs?” Claire smiled.
“But your description is of the phone as a business object, which we need to
repair, not as part of our infrastructure that supports the business. Unless
you are a network operator, you should try to keep the two topics separate.”

“And if I were a network operator?” asked Ira. “Well, then you would
be using the network, which is your main product, to manage itself, and the
same network components are both business objects and part of the supporting
infrastructure. You would still try to compartmentalize these roles, though.”
Ira loosened the top of the coffee flask. “OK then, Claire, how do we know

67

68 Building Enterprise Systems with ODP

where to draw the boundaries?” “Well, that’s one of the value judgements that
an architect has to make, isn’t it? What do we want to treat as a platform?
Whatever we choose, below it multiple technical solutions can be selected to
suit different situations. Over time there is a gradual upward movement, as
we understand how to standardize and integrate more complex technologies.”
She held her cup out for a refill.

“All right then,” he said, picking up an oatmeal biscuit, “what about the
boundary between the information and computational models?” “Well, we
know it’s normal to import chunks of the information specification and ex-
tend them in the computational view, but computational objects are generally
coarser grained, so there are information objects that become just properties
in the computational view. Actually, I should have raised this just now when
you were talking about the SIM object as a parameter; it’s not actually a
computational object.” He frowned and looked straight at her over his cup.
“But why? What’s the basis for making the distinction?

Claire thought for a moment, then leaned back, running her fingers through
her hair. “What’s the smallest object in your models?” “Well, I guess it would
be a specialization of one of the basic types; let’s say an integer specialized
as an employee’s age.” “OK, and would you expect to migrate the age object
to a different system and interrogate it remotely?” “No, that would be much
too inefficient.” Claire smiled. “Well, that’s the basis of the distinction. A
computational object is a candidate for distribution. That doesn’t mean it
will actually be moved about on it’s own, but that we would be prepared to
consider doing so at the design stage.” “That seems a bit vague to me,” he
said. “Yes, it’s another architectural judgement call, and depends on what’s
reasonable use of the technology available, but it’s generally pretty clear in
practice. We tend to be a bit generous in making the decisions, because
there are ways of constraining groups of objects so that they are managed
together when the actual distribution decisions are taken in the engineering
and technology models.”

“Don’t you sometimes feel a bit frustrated not to be making hard and fast
decisions about that sort of thing?” “Goodness, no,” she said, “I’m aiming for
stable designs that don’t have to be revised every time there is a new wave of
technology to cope with. The applications are too complex to keep reinventing
them all the time.” She sat up and looked back to the screen. “What about
the set of identifiers on the SIM. Do we need a common model of the roaming
control data?”

4.1 Designing with Computational Objects

The goal of the computational viewpoint is to model the basic functional-
ity of the application, the services it offers, and how these services are realized

Computational Viewpoint 69

internally in terms of components and connectors; in other words, this view-
point focuses on the system functionality and on the software architecture that
realizes it. Other concerns, such as the distribution of software components
to platform nodes or the technology used to implement the functionality, fall
outside its scope.

In this way, the software architecture of the system becomes distribution
and platform independent, and therefore it can be reused across different
platforms, and can have a much longer lifespan than the technologies used to
implement it. This separation of concerns also allows incorporation of those
aspects at a later stage and in a modular fashion, as we shall see in chapter 5.

The computational language allows system architects to express their de-
signs using a set of basic elements, which are common to most software ar-
chitectures and languages. More precisely, a computational specification de-
scribes the functional decomposition of an ODP system as a configuration of
computational objects, the interactions that occur between those objects
at their interfaces, and the environment contracts for them. This chapter
describes these elements in more detail.

4.2 Computational Objects

Computational objects model the basic functional elements of the system,
offering services to other objects and using services from them, but without
considering their distribution across networks and nodes. Thus, computational
objects each encapsulate part of the system state and functionality, allowing
a modular system design. One way to choose the computational objects for
your specification is by identifying the basic pieces of work that are candidates
for separate development and are thus the building blocks of your software
architecture.

The set of interface types a computational object has specifies the ser-
vices it provides and requires. Each service is in turn characterized by the
behaviour involved in its use and by the syntax of its elements. The syntactic
aspects are expressed in the signatures of the operations, streams or signals
that it supports (see section 4.4 for a definition of these concepts). For exam-
ple, figure 4.1 shows two UML components that represent two computational
object types (UserOperations and CorporationDataMgmt); these interact be-
cause the UserOperations component requires a service that is provided by the
CorporationDataMgmt component. Each object declares one ODP interface
(iUser2Corporation and iCorporationMgmt, respectively). The signature of the
operations that comprise the services are specified by a UML interface called
IUserMgmt. The compatibility between the required and provided services
is ensured because the signatures of the operations coincide (both services

70 Building Enterprise Systems with ODP

«CV_OperationInterfaceSignature»

IUserMgmt

«CV_Object»

User
Operations

«CV_OperationInterface»

iUser2Corporation

«CV_Object»

Corporation
DataMgmt«CV_OperationInterface»

iCorporationMgmt

FIGURE 4.1: The concepts involved in connecting computational objects.

share the same signature specification, IUserMgmt), but with complementary
causalities, reflecting their client and server roles.

UML (enhanced with the appropriate stereotypes defined by UML4ODP)
provides a natural and faithful representation of the computational language
concepts. Thus, UML components can be used directly to represent compu-
tational objects, their interfaces and the signature of their operations. UML
components represent computational object types, UML ports are used to
represent ODP interface types, and UML interfaces represent the signatures
of computational signals and operations.

UML is not the only way to specify the interfaces of computational ob-
jects in a platform-independent way — that is, without committing to a par-
ticular programming language or implementation technology. For example,
CORBA [31] is a specification from the OMG that, amongst other things, pro-
vides a platform-independent language to describe object interfaces. This lan-
guage, called CORBA IDL (Interface Definition Language) was also adopted
as standard ISO 14750 [12] as part of the RM-ODP family. It offers a textual
notation for specifying object interfaces and operation signatures. Therefore,
if you take an ODP computational specification, it is not that hard to create
a mapping onto CORBA. ITU-T has another interface definition language,
called eODL (ITU-T Rec. Z.130, ITU object definition language [26]), which
provides some facilities additional to those in OMG’s IDL. In the realm of
service-oriented architectures, the interfaces used to represent web services are
specified using WSDL [100]. This can be considered as a specialized version
of an interface definition language for web-based services, which also allows
expression of the ODP computational language concepts in a textual man-
ner. It is therefore also relatively straightforward to create a mapping from a
computational specification to a web service specification.

The ability to specify interfaces precisely is extremely valuable. In the
first place, it allows users and other IT systems to exploit a specification that
describes both the services provided by our computational objects and the
way they should be invoked. These technical services can then be exposed as
discussed in section 1.5. In the second place, service descriptions can be used

Computational Viewpoint 71

for locating and discovering services in repositories or via the web. Service
descriptions are already used in existing middleware service registry mech-
anisms, such as the JINI lookup service. To provide a shared terminology
and common functionality across service search solutions, RM-ODP defines
the ODP trading function. This function is further elaborated in an interna-
tional standard for the description of service types and the discovery, within
distributed and heterogeneous service repositories, of objects that provide par-
ticular services [9]. This standard was also used by the OMG as the basis for
its object trading service [27].

Finally, if we consider interfaces as types we can make use of existing type
theory to reason about service (or object) substitutability and compatibility.
The former refers to the ability of one object to replace another in such a way
that the change is transparent to external clients, while the latter defines the
requirements for two or more objects to work properly together, if connected.
These concepts can be considered as two sides of the object interoperability
coin. This is critical for connecting independently developed parts and services
in a predictable way and without undesirable errors, something that is essential
in most SOA and cloud systems.

4.3 Bindings

Apart from the computational objects that encapsulate the system func-
tionality, there is a need to represent the bindings between these objects.
This is particularly useful for modelling connections that have nontrivial be-
haviours, such as ones that report exceptions to other parts of the system.
Connecting two or more objects in a seamless way is not a trivial task, and
therefore the RM-ODP is very careful about how a binding is specified and
realized. In ODP, a binding is a context created by establishing a commu-
nication relationship between two or more objects, and a binding is created
by a binding action . Normally, a computational object initiates its interac-
tion with another computational object by performing a binding action that
allows them to connect to each other and start exchanging services and data.
However, in some cases, particularly where multimedia communications is in-
volved, one object can initiate a binding between a number of other objects;
this is known as third-party binding.

RM-ODP distinguishes two kinds of binding: primitive and compound. In
a primitive binding, the connection between the objects is direct and does not
require the use of any other object between them; this is the situation when
we connect the required and provided services of two components by simply
sharing the UML interface that defines the signature of their operations. This
is shown, for instance, in figure 4.1, where the UML ball-and-socket notation
is used to indicate the binding.

72 Building Enterprise Systems with ODP

There are other situations in which a compound binding action results
in the creation of an explicit binding object . A binding object is a particular
kind of computational object that encapsulates the functionality required to
connect two or more further computational objects. The object itself provides
a control interface to allow these connecting mechanisms to be configured and
managed. Binding objects represent the architectural connectors in the ap-
plication’s software architecture. They are needed, for example, in the case
of multi-party interactions, or when the connection between the two compo-
nents is not trivial. In this case, a binding computational object links the
participants, acting as an architectural connector that provides the binding
functionality. Binding between computational objects is only possible if, for
each participant, their interfaces match with the defined interfaces of the bind-
ing object.

Binding objects are useful to encapsulate and reify the communication
media that two computational objects use to interact, especially when such
a medium exhibits a complex behaviour (as happens with any LAN or WAN
connection between two objects) or when we want to model the connection as
an independent entity (to allow QoS constraints to be attached to it, such as
requirements for throughput or bounds on jitter, for instance). Alternatively,
compound bindings can be used to represent more abstract groupings reflect-
ing, for example, contracts or other forms of collaboration. Figure 4.2 shows
how a binding object can be used to encapsulate a publish and subscribe event

binding object

Source1 Listen1 Listen2

Listen3 Source2

The binding object’s behaviour
queues any event that is re-
ceived from a registered source
(at one of its put interfaces)
for delivery to any of the lis-
teners that have registered for
that event class (at their get in-
terfaces).

An object can register as an event gener-
ator or as a listener by calling the appro-
priate operation on the control interface.

The binding can be dissolved by
calling a discard operation on the
control interface.

put get get

get put control

FIGURE 4.2: A compound binding object encapsulates an event channel.

Computational Viewpoint 73

channel, in which any number of computational objects can register either as
sources or listeners for various kinds of event.

4.4 Interactions between Computational Objects

The interactions between objects are described using a number of standard
interaction types: operations, streams and signals. These types of inter-
action are supported by the corresponding computational object interfaces:
operation , stream and signal interfaces.

The most primitive interaction type is the signal , which is defined in a
signal interface . A signal is an atomic shared action resulting in one-way,
localized communication from an initiating object to a responding object. For
example, a message that passes from a computational object to its local infras-
tructure can be modelled by a signal, as can a local exception. Sequences of
signals can also be used to define the properties of more abstract interactions,
such as operations or streams (see figure 4.3).

Operations are probably the most common form of interaction between
computational objects. An operation is an interaction between a client object
and a server object, which is either an announcement or an interrogation. In
this way, we distinguish between one-way and two-way (request and response)
interactions.

Announcements are one-way interactions in which a client object re-
quests a function to be performed by a server object, such that there need
be no response from the server. The request is modelled by an invocation .
In more detail, one signal marks the passage of the announcement from the
client object to the infrastructure, and another signal marks its passage from
the infrastructure to the server object. Using this fine-grained representation
with signals, we can describe, for example, the transit time of the announce-
ment, but for most purposes we can consider the announcement as a single
nonlocalized interaction.

Interrogations are two-way interactions, in which a client object requests
a function to be performed by a server object, and the server sends a response
to the client, as in many RPC styles of interactions. The requests are mod-
elled by invocations, and responses are modelled by terminations. The
notion of a termination generalizes results and exceptions as found in many
programming languages. Where necessary, operations can be defined in de-
tail in terms of signals. For example, an interrogation operation between two
objects that communicate through an infrastructure can be detailed as a set
of four signals, which specify the sending and receiving of the invocation and
termination individually.

The level of abstraction at which interactions are modelled depends on the
specific needs of the system designer at each moment, and for each situation.

74 Building Enterprise Systems with ODP

An announcement is made up of two
signals, a request at the initiator,
then an indication at the responder.

An interrogation is made up of four
signals; a request and then an indi-
cation pass the operation from the
initiator to the responder; later, a
response and then a confirmation
pass the termination from the re-
sponder to the initiator.

A stream flow involves a sequence of
signals from the producer, resulting
in a sequence of signals to the con-
sumer; each signal gives a sample
from the continuous flow; depend-
ing on the properties of the stream
binding, there may or may not be a
one-to-one relationship between the
signals in these two sequences.

time

infrastructure

producer consumer

initiator responder

initiator responder

request
signal

indication
signal

request
signal

indication
signal

response
signal

confirm
signal

flow sample
signal

flow sample
signal

flow sample
signal

FIGURE 4.3: Expressing operations and stream flows in terms of signals.

The RM-ODP provides various types of interactions to enable designers to be
precise at any required level. One example is the way that an operation can
be refined into the set of atomic signals describing the individual interactions
happening during the operation’s invocation and termination. Another is the
way a complex event distribution system can be modelled as a compound
binding managing sequences of announcements, abstracting away from all the
low-level details involved in the communications between the objects involved.
The linkage of separate event management domains can then be modelled as
a concatenation of compound bindings.

Finally, streams and their component flows are used to model continuous
transfers of information, such as those used for exchanging videos and other
kinds of multimedia streams. You can think of receiving a YouTube video or
an internet radio broadcast as examples of this kind of interaction. A flow is a
continuous transfer of typed information in one direction over a period of time.
Flows can also be used to represent regular data flows, such as monitoring
reports or the continuous flow of periodic sensor readings in a process control
application, without explicit modelling of the steady sequence of messages
involved. Properties of various kinds of continuous media are specified by

Computational Viewpoint 75

stream interfaces that describe the nature of the data exchanged. This is done
by declaring a collection of flows, each with an associated direction of transfer.
This means that a conversational audio application could be described using
stream interfaces in each of which there is a pair of flows, one in each direction.

ODP distinguishes three different kinds of communication pattern, each
consisting of a pair of matched roles. In the first, the initiator is an object
causing the communication, while the responder is an object that communi-
cates with the initiator in consequence. Next, the producer is an object that
is the source of the information conveyed, while the consumer is the sink for
that information. Finally, the client is an object that requests that a service
be performed by another object, while the server is an object that performs
some service on behalf of a client object. Selecting the appropriate pattern
lets us emphasize the most important properties of the communication being
described.

4.5 Environment Contracts and Transparencies

The computational language also allows the specification of non-functional
properties of computational objects and their interactions. Examples of such
non-functional properties include quality of service (QoS) requirements, usage
or management constraints, service level agreements (SLA) and so on. These
requirements are specified using environment contracts.

The way to specify and represent environment contracts depends on their
nature and on the notation available for this task. For instance, in UML,
environment contracts can be specified in various ways, ranging from timing
constraints associated with object interactions to more sophisticated require-
ments expressed using any of the existing UML profiles for specifying QoS
and real-time properties. One example is the UML profile for MARTE: Mod-
elling and Analysing Real-Time Embedded Systems [35] proposed by the OMG.
In addition, transparency schemata let us express quality of service require-
ments for objects. RM-ODP defines different kinds of transparency, including
access transparency, failure transparency, location transparency, migration
transparency, persistence transparency, relocation transparency, replication
transparency and transaction transparency. Each of these allows the masking
from the computational specification of the problems arising from the aspect
named while still placing a requirement that these concerns should be ad-
dressed somewhere else in the system specifications. In ODP, the engineering
viewpoint is the main place that provides the appropriate mechanisms for
implementing them, and therefore it is normally responsible for clearly spec-
ifying how the requirements imposed by the transparencies selected in the
computational view are fulfilled. Two of the set of transparencies defined by
RM-ODP (the access and location transparencies) are always implied in every

76 Building Enterprise Systems with ODP

computational specification, and should therefore always be addressed by the
engineering specifications. A more detailed discussion of transparencies can
be found in chapter 9.

The selection of these transparencies simplifies the computational speci-
fication, hiding the problems and complications of having to deal with the
replication of some components or connectors to increase the overall system
reliability and availability, or with the need to know the location of services
before you can invoke them, for example. In this respect, transparencies pro-
vide a very effective mechanism for achieving a sensible separation of concerns
between the basic functionality of the system and other aspects that can be
specified in a modular way and plugged-in according to particular user re-
quirements.

ODP defines standard functions and structures to realize distribution
transparencies, so that a conforming ODP system can implement those trans-
parencies in accordance with the relevant standards. However, there are per-
formance and cost tradeoffs associated with each transparency and only a
selection of the transparencies will be relevant in many cases. Thus, not all
transparencies are required for every system. It is up to the designer to se-
lect the specific distribution transparencies that need to be applied to each
computational specification.

4.6 Writing Computational Specifications

Apart from relying on a set of well-defined concepts and mechanisms for
expressing computational objects, interfaces and interactions, the designers
also need some guidelines and structuring rules for writing the computational
specifications of their system. This section offers some guidelines on how to
do it.

4.6.1 Division into Components

We normally start by specifying the high-level software architecture of the
application. Such an architecture will provide the big picture of the system,
describing the key computational objects in the system, and how they interact
to achieve the application’s goal.

By software architecture we mean the structure and organization of the
system, defined in terms of software elements (components, connectors), the
externally visible properties of those elements, and the relationships among
them [49]. This structure also defines the principles and guidelines governing
how the design is to be allowed to evolve over time [71]. It provides the
basis for satisfying both functional and non-functional requirements on the
system [81,82].

Computational Viewpoint 77

There are different approaches to designing the software architecture of
the system. The first step is to select the architectural style that best suits
the target application and user requirements (pipes-and-filters, client-server,
multi-layer, blackboard, toaster and so on). The selection of the architectural
style and the software methodology that helps the system designer make such
a selection are outside the scope of this book. However, the RM-ODP is
independent of these processes because it was designed to work with any of
them.

In the case of the PhoneMob system, we can use a simple three-layered
software architecture, which is typical of many web-based and SOA systems.
This is an architecture in which the interfaces to users, the business logic
and the persistent data storage are separated in independent tiers (or layers).
Objects in each layer offer services to the other layers, creating a natural
organization of responsibilities and separation of concerns for this kind of
system.

However, in the enterprise specification we dealt with humans playing staff
roles, and modelled their interactions with the ODP systems supporting them.
We need to carry these interactions through into the computational specifica-
tion, where they are refined to give more detail of the human-computer inter-
face. To do this, we add a fourth layer to the architecture. Thus, the human
interface layer represents human actors, and the presentation layer holds the
software components responsible for interactions with the human users. The

GUI2RepairCentre
Staff

Manufacturer
Operations

RepairCentre
Staff

Logistics
DataMgmt

Courier
Operations

Login
Function

Application

Human

DataMgmt

Presentation

FIGURE 4.4: Division on one computational use case into the chosen tiers.

78 Building Enterprise Systems with ODP

presentation layer communicates with the business logic layer, which provides
the services that users require. The business logic layer controls the applica-
tion’s functionality by performing detailed processing. Whenever necessary,
it accesses the data layer, where the persistent information of the application
is stored and made available. This layer keeps data neutral and independent
from application servers and from business processes and rules. Giving data its
own tier also improves scalability and performance. The use of this structure
to express a single use case concerned with organizing some logistics support
is shown in figure 4.4.

Figure 4.5 shows a larger part of the software architecture of the PhoneMob
system, described in terms of computational objects interacting at interfaces.
Objects are grouped here in packages for organizational purposes, although the
packaging is not critical: it is mainly used as a reference to identify the separate
layers. The outer packages correspond to the architecture layers. Inside them,
objects are grouped depending on the kind of services they provide. Auxiliary
services (such as login, for instance) have been included because they provide
a set of common functions to the rest of the objects. UML dependencies
between the ports of the UML components that model the computational
object types represent the requirement for bindings between them. Such UML
dependencies are an abstraction of the more detailed way of expressing the

DataMgmtObjects

RepairOrder

DataMgmt

Logistics

DataMgmt

Corporation

DataMgmt

Stock

DataMgmt

HR

DataMgmt

Financial

DataMgmt

HumanObjects

ManufacturerStaffRepairCentre

 Staff Administrators

CourierStaffUser

....

BusinessFunctions

RepairCentreStaff

Operations

Manufacturer

Operations

User

Operations

Courier

Operations

ApplicationObjects

AdminFunctions

Login

Function

UserInterfaces

GUI2RepairCentre

Staff

GUI2Manufacturer
AdminInterfaces

GUI2CourierGUI2User

....

PresentationObjects

SoftwareArchitecture

FIGURE 4.5: Part of the software architecture of the PhoneMob system.

Computational Viewpoint 79

+getPendingRepairs(c : CompanyId) : Part [0..*]
+setNewRepairDate(p : PartId, newDate : date)
+closeRepairOK(p : PartId, when : date, comment : String)
+closeRepairWithProblems(p : PartId, when : date, comment : String)

<<CV_OperationInterfaceSignature>>

IManufacturerOps

+pendingOrders(u : UserId) : RepairId [0..*]
+changeReturnAddress(r : RepairId, newAddress : Address) : boolean
+closeRepairRequest(r : RepairId, result : boolean, comment : String)
+getDetails(u : UserId) : User
+getEstimatedClose(r : RepairId) : date
+repairOrderInfo(r : RepairId) : RepairOrder

<<CV_OperationInterfaceSignature>>

IUserOps
+addOrder(order : RepairOrder) : boolean
+addAction(r : RepairId, action : RepairAction) : boolean
+updateOrder(order : RepairOrder) : boolean
+getOrderDetails(r : RepairId) : RepairOrder
+removeOrder(r : RepairId) : boolean
+getOrders(searchCriteria : StringExpression) : RepairId [0..*]
+getRepairActions(r : RepairId) : RepairAction [0..*]

<<CV_OperationInterfaceSignature>>

IRepairOrderMgmt

+login(name : String, pwd : String) : UserId
+getPwd(eMail : String) : String
+setPwd(name : String, newPwd : String) : boolean

<<CV_OperationInterfaceSignature>>

ILogin

+addStaff(staff : Staff) : UserId
+addRepairCentre(centre : RepairCentre) : CompanyId
+removeStaff(s : UserId) : boolean
+removeRepairCentre(rc : CompanyId) : boolean

<<CV_OperationInterfaceSignature>>

IHRMgmt

+addCompany(company : Company) : CompanyId
+removeCompany(c : CompanyId) : boolean
+updateCompany(company : Company) : boolean
+getCompany(c : CompanyId) : Company

<<CV_OperationInterfaceSignature>>

ICorporationAdmin

+addUser(user : User) : UserId
+removeUser(u : UserId) : boolean
+updateUser(user : User) : boolean
+getUser(u : UserId) : User

<<CV_OperationInterfaceSignature>>

IUserMgmt

FIGURE 4.6: Detailed specification of operation interface signatures.

bindings that we showed in figure 4.1 or that we use later in figure 4.7, where
the signatures of the interfaces are explicitly specified.

4.6.2 Object Interfaces and Action Signatures

Once the software architecture is defined, the next step is to refine the
specific services that each object will provide to, or require from, other objects
by specifying the interfaces of the computational objects. This involves both
declaring the signature of their operations (see figure 4.6) and defining their
behaviour (which will be discussed in the next section).

Computational interfaces are represented in UML4ODP by means of UML
ports (see figures 4.5 and 4.7). The signatures for the services provided and
required by each port are specified in UML4ODP by using UML interfaces.
Thus, figure 4.6 shows the UML interfaces that specify the ODP interface
signatures characterizing some of the system interactions. The use of these
interface signatures is illustrated in figure 4.7, where the UML ball-and-socket
notation is used to express primitive bindings between the corresponding com-
putational objects.

Figure 4.7 includes further information about the components, such as
some of their internal realizing classifiers. For example, component Corpora-
tionDataMgmt manages the information about corporations that are clients of
the PhoneMob company. It represents a database that stores and manages
the relevant information about them and thus contains a realizing classifier
(the CorpMgmt «focus» class), which specifies its behaviour. This classifier
owns the information about the set of companies and customers known by the
system.

Note the use here of standard UML concepts and stereotypes for expressing
some of the model details, in addition to the UML4ODP stereotypes. For
example, UML classes stereotyped «focus» and «dataType» are used to make

80 Building Enterprise Systems with ODP

Courier

Operations iCourier2Order
iCourierOps

ITrader

iTrader

ITransaction

iTransaction

RepairCentreStaff

Operations iRepair2Order
iRepairOps

ITrader

iTrader

ITransaction

iTransaction

Manufacturer

Operations iManufacturer2Order
iManufacturerOps

ITrader

iTrader

ITransaction

iTransaction

User Operations iUser2Corporation

iUser2Orders
iUserOps

ITrader

iTrader

ITransaction

iTransaction

BusinessFunctions

IManufacturerOps

IUserOps

ICourierOps

Transaction

Mgmt Object

ITransaction

ODP Functions

ITransaction

Trader

Object

ITraderITrader

AdminFunctions

Login

Function

IPersonInfo

iCorpiLogin

ILogin

ApplicationObjects

Stock DataMgmt

«focus»

StockMgmt

«dataType»

Handset

«dataType»

Memory

«dataType»

SIM

iStock

RepairOrder

DataMgmt

«focus»

RepairMgmt

«dataType»

RepairAction

«dataType»

RepairOrder

iOrders

iStockMan

Corporation

DataMgmt

«dataType»

CustomerCompany

«focus»

CorpMgmt

«dataType»

User

DataMgmtObjects

IStockMgmt

....

ICorporationMgmt

IRepairOrderMgmt

IUserMgmt

IPersonInfo

0..*

0..*

0..*

0..* 0..*

0..*

0..*

FIGURE 4.7: Refining the architecture by showing the operation interface
signatures for the computational interfaces.

explicit at this level the internal classes that provide the core logic of some of
the components and the main data types that they use.

The structure and contents of the data types representing the informa-
tion managed by the computational objects are specified in the DataTypes
package, which is shown in figure 4.8. These data types are derived from the
corresponding information object types (which in turn came from the enter-
prise artefacts, roles and objects). However, this is not simply a matter of
copying the model elements concerned. The types do not need to be exactly
the same as in the other viewpoints, since refinement or abstraction may be
involved. For instance, some additional information has been added in this
viewpoint to store usernames and passwords of customers and other stake-
holders. Identifiers have also been added to simplify object reference.

Just as in other viewpoints, computational objects introduced in the early
stages of the design can later be rewritten as smaller computational objects (by
refinement or decomposition), or combined with other computational objects
to form a larger computational object (composition). These mechanisms allow

Computational Viewpoint 81

DataTypes

+id : PartId
+serialNo : String
+status : PartStatus
+manufacturer : CompanyId

Part

+id : RepairId
+user : UserId
+handset : PartId
+open : date
+estimatedClose : date
+status : OrderStatus
+closed : date
+loanHandset : PartId
+delivery : DeliveryId

RepairOrder

+id : ContractId
+startDate : date
+expiryDate : date
+feePerPhone : Money
+MonthlyFlatRate : Money
+company : CompanyId
+billingInfo : BillingInfo

Contract

HandsetWithManufacturer
HandsetReturnedToUser
Closed

Open

«enumeration»

OrderStatus

PerformanceFigures

+id : CompanyId
+name : String
+addr : Address
+phone : String
+contact : UserId
+contract : ContractId

Company

Operational

Unknown
Unfixable

Broken

...

«enumeration»

PartStatus

+contractStart : date
+contractEnd : date
+salary : Money

Staff

+id : UserId
+name : String
+email : String
+phone : String
+username : String
+password : String

Person

+isLoan : Boolean

Handset

+id : DeliveryId
+part : PartId
+from : Address
+to : Address
+comment : String

Delivery

+number : String

SIM

+name : String
+number : String

Contact

Manufacturer

RepairCentre

+by : Staff
+when : date
+detail : String

RepairAction

+capacity : int

Memory

CompanyId ContractId

Customer

Company

DeliveryId

BillingInfo

UserId

Address

RepairId

Courier

User

Money

Id

PartId

SLA

0..*

0..*

0..*

+sla

0..*

0..*

+worksFor 0..1

0..*

+worksFor 0..1

0..*

0..*

0..1

0..*

0..1

0..*

0..*

FIGURE 4.8: Data types used by the computational objects.

a computational specification to be created either top-down or bottom-up, or
even from both sides using an iterative process (sometimes called middle-out).

So far, we have concentrated on a static structure to keep things simple,
but a computational design typically involves a dynamically evolving struc-
ture. This involves the computational objects in instantiating further com-
putational objects or computational interfaces, performing binding actions,
using the control functions of binding objects, dissolving bindings, deleting
computational interfaces or discarding computational objects. These mech-
anisms are modelled in ODP using the factory concept, which introduces
an object that, when given an object type and any necessary qualifying pa-
rameters, creates a new object and returns a reference to it. This pattern
is commonplace in systems nowadays, and found, for instance, in component
factories in platforms such as .NET or JEE.

For example, the login process for a staff member typically involves an
initial exchange with a generic presentation object, followed by the creation
of a specific proxy object in the presentation tier to manage the interactions
with that particular staff member. When the staff member logs out, the proxy
object is discarded. Similarly, an object managing some volatile grouping may
create a new interface instance for each new group member, thus enforcing

82 Building Enterprise Systems with ODP

separation of responsibilities, and it will delete this instance when the member
leaves the group.

4.6.3 Behaviour: Operations

Apart from the structural aspects, we also need to specify the behaviour
of the elements of a computational specification. UML state machines can be
used to express the internal behaviour of any of the computational elements:
ports, components and realizing classifiers. State machines are used to rep-
resent such behaviour, as has already been illustrated in the enterprise and
information specifications.

UML activity diagrams are often used to express object interactions in
this viewpoint because they provide the kinds of abstraction that we need to
model the different ways in which messages are exchanged between objects.
This is especially true when the interactions are defined in terms of signals
or operations. Alternatively, when messages and interaction protocols are the
focus of design, UML interaction diagrams can be more appropriate.

For example, figure 4.9 shows a sequence diagram expressing the interac-
tions that occur between the components of the computational specification
when a customer requests information about a pending repair order. The
precise way in which the user interacts with the system and the information
that is presented to her is encapsulated in the GUI2User object, and is not
described here. Only the communications that result from those interactions
with the system GUI are shown.

Figure 4.9 shows that, when the user decides to login, the presentation ob-
ject (the GUI2User object) sends a request to login to the appropriate object
in the business logic layer (the LoginFunction). That object consults with the
corresponding database access object to check the username and password for

 : GUI2User : RepairOrder
DataMgmt

 : Corporation
DataMgmt

 : Login
Function

 : User
Operations

 : User

[0..*]

loop

uid6:

login(name=n, pwd=p)2:

repairOrderInfo(r=rid)14:

rid[]12:

order18:

pendingOrders(u=uid)8:

rid[]10:

order16:

uid4:

{uid<>null}

getId(userName=n, pwd=p)3:

uid5:

getOrders(searchCriteria="user == uid")9:

getOrderDetails(r=rid)15:

rid[]11:

order17:

getRepairOrders()7:

login(name=n, pwd=p)1:

getRepairOrderInfo(r=rid)13:

«CV_EnvironmentContract»

{<1 sec}

FIGURE 4.9: A computational interaction diagram, showing the steps in the
processing of a query.

Computational Viewpoint 83

the customer, which returns the customer identifier to be used during that
session (the alternative behaviour that happens when the name and password
provided are incorrect is not shown for the sake of simplicity). The presen-
tation object then enquires about the pending orders for the customer and
presents these to the user. The customer selects one of them (which is identi-
fied by the appropriate RepairId) and the system is queried about this specific
order.

It is also possible to incorporate environment contracts in the specification,
expressed in terms of constraints stereotyped «CV EnvironmentContract». For
example, the duration constraint in figure 4.9 expresses the fact that the delay
in receiving the response to the login operation should not exceed 1 second.
This approach allows non-functional properties to be expressed so that they
can be checked by supporting tools.

4.6.4 Behaviour: Flows

So far we have used operations to specify the interactions between the
objects of our system. However, other forms of interactions are also possible.
For instance, streams can be used to model continuous flows of information
that are transferred from one object to another over an extended period of
time.

Suppose that in the PhoneMob system there is the need for a dedicated
teleconference application linking the service centres and the phone manufac-
turers. If we make this a videoconference, it becomes possible to show the
handset and its parts to the manufacturer and to get advice, saving the time,
effort and money involved in dispatching the handset to the factory, waiting
for them to repair it, and then bringing it back to the service centre.

We will look at two ways of describing this, first by using primitive bind-
ings, and then showing how the use of a compound binding can simplify the
description.

The diagram shown in figure 4.10 represents the architecture of such a
videoconference system, described using just primitive bindings; it is com-
posed of two kinds of computational object (the repairer and the adviser).
Each of these has three interfaces, two for control of the session and one for
multimedia exchange. The control interfaces (named “ctrl”) are like those
we have seen before, and offer the operations described by the operational
signature IControl.

There is also a stream interface (named “media”) whose signature is spec-
ified by the interface signatures RepairerStream and AdviserStream. These
stream interfaces define four flows for producing and consuming audio and
video. The two interfaces form a complementary pair, with flows in the adviser
stream interface being opposite in direction to those in the repairer stream in-
terface. The repairer and adviser need separate complementary stream inter-
faces, so that audioIn, for example, is produced by the adviser and consumed
by the repairer.

84 Building Enterprise Systems with ODP

«CV_Flow»+videoOut : Video{causality = consumer}
«CV_Flow»+audioOut : Audio{causality = consumer}
«CV_Flow»+videoIn : Video{causality = producer}
«CV_Flow»+audioIn : Audio{causality = producer}

«CV_StreamInterfaceSignature»

AdviserStream

«CV_Flow»+videoOut : Video{causality = producer}
«CV_Flow»+audioOut : Audio{causality = producer}
«CV_Flow»+videoIn : Video{causality = consumer}
«CV_Flow»+audioIn : Audio{causality = consumer}

«CV_StreamInterfaceSignature»

RepairerStream

+pause()
+resume()

«CV_OperationInterfaceSignature»

IControl

«CV_OperationInterfaceSignature»

IControl

«CV_OperationInterfaceSignature»

IControl

«CV_Object»

Repairer

media : RepairerStream

ctrl : IControl

«CV_Object»

Adviser

media : AdviserStream

ctrl : IControl

«CV_FlowSignature»

Video

«CV_FlowSignature»

Audio

«CV_PrimitiveBinding»

FIGURE 4.10: Using streams when specifying a multimedia application.

In this example, we assume that the control interfaces are bound by the
infrastructure, whilst the stream interfaces are bound using an explicit binding
action; in this first case, both of these are primitive bindings.

To create the configuration, the system at the service centre should initiate
an interaction with the system at the manufacturer; this interaction causes the
creation of the repairer and adviser proxy objects on each side, and exchanges
the interface references of the control and stream interfaces on the created
objects; the performance of the binding actions by the repairer completes the
configuration. Either party can control the media flows by calling its peer’s
control interface. Once the conference is over, the proxy objects would be
instructed to remove themselves and the references and resources used by
these objects cleaned up.

Now let us look at the same application, but this time introducing an
explicit binding object. The resulting configuration is shown in figure 4.11.
There is a trade-off here; another object is added to the design, but the number
of interface types defined by the application can be reduced. Now both the
application components offer the same interface, MediaUserStream, so that
both send audio out on their audioOut flow. The binding object offers a
pair of complementary interfaces, with signature MediaBindingStream, which
is derived from MediaUserStream by reversing the directions of all the flows in
it. This signature is shown in grey in the figure to indicate that it is derived
when the binding is created. The binding object would then have behaviour
that consumes samples from audioOut on one side and produces it as audioIn

Computational Viewpoint 85

«CV_Flow»+videoOut : Video{causality = consumer}
«CV_Flow»+audioOut : Audio{causality = consumer}
«CV_Flow»+videoIn : Video{causality = producer}
«CV_Flow»+audioIn : Audio{causality = producer}

«CV_StreamInterfaceSignature»

MediaBindingStream

«CV_Flow»+videoOut : Video{causality = producer}
«CV_Flow»+audioOut : Audio{causality = producer}
«CV_Flow»+videoIn : Video{causality = consumer}
«CV_Flow»+audioIn : Audio{causality = consumer}

«CV_StreamInterfaceSignature»

MediaUserStream

+pause()
+resume()
+removeBindingObject()

«CV_OperationInterfaceSignature»

IControl

«CV_Object»

Repairer

data : MediaUserStream

ctrl : IControl

«CV_Object»

Adviser

data : MediaUserStream

ctrl : IControl

«CV_BindingObject»

Media Channel

 : MediaBindingStream : MediaBindingStream

ctrl : IControl

«CV_FlowSignature»

Video

«CV_FlowSignature»

Audio

IControl

«CV_PrimitiveBinding» «CV_PrimitiveBinding»

FIGURE 4.11: Using a binding object in a multimedia application.

on the other, and similarly for the other three flows, so that its two stream
interfaces are cross-linked.

The binding action by the repairer creates the binding object, which then
in turn creates the two primitive bindings to the media interfaces. The binding
action returns a reference to the binding object’s control interface, which is
then provided to both the repairer and the adviser. All binding objects have
such a control interface, which allows the binding to be shut down when no
longer needed, but here we can enhance it to support the control operations.
This is actually a cleaner structure than previously, since the binding object
encapsulates the mechanisms supporting the flows, and it is these that we
are trying to control. The repairer and adviser can independently bind to
the control interface when necessary to gain access to the pause and resume
functions.

The same system behaviour is being described here as in the first design,
but the focus has moved to the binding object, which is generic, and so more
likely to be derived from a reusable library.

The advantage of introducing the binding object becomes even clearer if
the requirements evolve so that a multi-party conference is needed rather than
just a two-way communication. If the description uses a binding object, all
the parties involved can still use the same stream interface, while the rules
for selecting or combining inputs are defined within the reusable conference
binding object type, making the system design more flexible.

In more complicated applications, we can also use the ability to specify
arbitrary behaviour as part of the binding type to define other useful building

86 Building Enterprise Systems with ODP

blocks that modify or filter the stream being carried. One can, for example,
define bindings that link stream interfaces with different properties, so that,
for example, a colour video source is linked to a black and white presentation
object. If the flows are continuous sequences of report data, perhaps in a
telemetry application, we can define bindings between flows of different data
types to select a specific view, merge streams from different sources, or convert
between different data formats. In this way, typed binding objects offer a
powerful technique for structuring and reuse in application design.

4.7 Relationship with Other Viewpoints

As we have seen, the computational viewpoint specification is not normally
designed in isolation, but is typically created after first drafts of the enterprise
and information specifications are available (or, at least, in parallel with them).

For example, a first step in producing the computational specification of
a system consists of deciding the right configuration of computational ob-
jects and the interactions among those objects that guarantee that the system
functionality is fulfilled, as prescribed by the enterprise specification. The de-
scription of these computational objects and interactions should also be done
at the appropriate level of abstraction, and they need to manipulate the infor-
mation handled by the system as prescribed by the information specification.
This is why the elements in the enterprise and the information specifications
can be used effectively for identifying the computational objects and their
interactions.

A different designer could also use a bottom-up approach if there are al-
ready good commercial off-the-shelf (COTS) or legacy components in the or-
ganization that can be used in the new system. Computational objects en-
capsulating the functionality of such legacy or COTS components are perfect
candidates for the specification.

Once identified, computational objects may be grouped into packages fol-
lowing a particular software architecture, such as collecting business-oriented
objects within the same layer, and common functions or UI objects in oth-
ers. Such a structure is what constitutes and defines the software architecture
of the system. For the behaviour, many of the computational interactions
will be derived (using refinement, for instance) from the dynamic schemata in
the information viewpoint specifications. Finally, enterprise policies relating
to the system’s business rules, together with information invariant schemata
that control the state changes and integrity constraints on the system data,
can serve as a starting point to specify the environment contracts for the
computational objects and their interactions.

Where a policy is identified in the enterprise viewpoint, the associated
behaviour is expected to be mutable, so the computational structure must

Computational Viewpoint 87

reflect this fact. One possible technique is to introduce an explicit indirection,
which invokes a policy value object that interprets the policy. The behaviour
defined as part of the policy (see the description of the policy envelope in
chapter 10) can then modify or replace this object without affecting the rest
of the design. For example, a policy may be identified, based on marketing
decisions, that varies the charge for repairs when the work is completed late.
If there is a change in this policy from offering an immediate discount to giving
credit for future repairs, the object that calculates the charge will need to be
modified; this will be easier to do if the object is clearly separated from other
parts of the billing process.

Of course, the three viewpoint specifications considered so far have con-
straints on each other, and usually each viewpoint specification is revised and
refined as the others are developed.

Finally, not all elements in the computational specification need to corre-
spond to elements in either of the other two viewpoints, and not all objects
in the other specifications have computational equivalents. Each viewpoint
focuses on a different aspect of the system, and is expressed using a different
language. Therefore, their elements are different. However, they are all views
of the same system, and therefore many of their elements represent views of
the same system entities. This means that the view should be consistent and
no views can impose contradictory requirements on the system. For example,
the enterprise policies should be consistent with the invariant schemata of the
information viewpoint, and with the computational environment contracts. In
ODP, correspondences (see chapter 7) are used to specify in an explicit way
the relationships between the elements of two different viewpoint specifica-
tions. Therefore, correspondences become essential elements for checking the
consistency between the views.

This page intentionally left blankThis page intentionally left blank

Chapter 5

Engineering Viewpoint

“I’ll have the ginger and mango sausage baguette with a latte,” said Nigel,
“and I’ll pay for all four of us. We will be out on the terrace.” This was one
of his favourite places, just a little way upriver from the office, with a view
across the broad sweep of the reach as it swung south away from the high-level
bridge. They often came here on a Friday after the technical design reviews.
Claire, Alex and Trudy were already walking down the short brick-vaulted
passage leading to the old wharf that now formed the cafe’s terrace.

“But if we have a stable middleware, why do we need to create a separate
engineering specification?” asked Trudy, as they settled round one of the
heavy scrubbed wooden tables. “Isn’t all the information implied by selection
of the middleware?” “Well,” said Alex, “that depends on whether you have
just one middleware, and on how stable you think your middleware choice is.
A few years ago we thought we might use CORBA everywhere, but then web
services and .NET came along. And you are still using much older ubiquitous
platforms in the hardware repair workshop, with little prospect of any change.
Who knows what another five years of innovation will bring?” “So how does the
creation of another competing specification help?” “It’s not direct competition,
because the engineering language is taking a more abstract, architectural view
of how the system is put together. What we want is a roadmap to guide system
maintenance and transition planning if we do need to integrate a different
middleware solution.”

“What exactly do you mean by architectural, here?” asked Trudy. “It’s
not the same as a system configuration description, is it?” “No. It’s more like
a set of templates for solving the various platform problems found at different
points in the configuration; and these solutions will depend on the level of
reliability or robustness needed. Each actual interaction between the objects
in our computational design needs to follow the appropriate prescription.”

He looked across the terrace. “Hello, this looks like our order now.” The
waiter had come out with a loaded tray, and they were soon all eating. A
tug with two barges worked its way up river, while a commuter ferry headed
rapidly downstream.

After a bit, Claire put down her panini. “So if you want to change the
requirements, you may end up using a different template?” Alex nodded.
“Yes, the template selection can often be done by the tool chain, based on

89

90 Building Enterprise Systems with ODP

the properties required for the interaction; this is usually done based on the
transparencies requested and the actual deployment details, since you need
to know whether the objects involved are on the same system or on different
ones, and if so what sort of communications are available.” Nigel thought for
a moment. “But that may change if the placement of the objects changes.”
“Sure, you need to know what changes can be foreseen. If an object is made
mobile, for example, communication can change as it moves from using local
access to interaction across a firewall.” “So you have to plan for the worst?”

“Up to a point. But you may want to fix some configuration aspects in the
design.”

“I don’t understand that, Alex,” said Trudy, “don’t you want to keep your
options open?” “Not always. Think about cases where you want to express
parts of the computational design using fine-grain data objects; a configuration
of these objects may be generated by a factory object and may then be kept
together throughout its life — a bit like a database table row. You know that
these objects can always interact locally, wherever they are, because you have
decided individual members of the configuration should not migrate away
from the rest. The group form a unit, and are created together, migrated
together, and checkpointed together. In cases like this, you can optimize the
communications support.”

“And how does this affect the engineering specification?” “Well, Claire,
the engineering language offers a number of concepts relating to such group-
ings. A group of objects that share the same lifecycle is called a cluster, and
the whole group can be manipulated by talking to a special cluster manager
object. There are other useful grouping concepts — the capsule for relating
objects with similar fault management and the node for relating objects shar-
ing resources at the lowest level.” “And the engineering language concepts let
you express these as architectural requirements to be mapped onto whatever
platforms you decide to use?” “Yes, Nigel, that’s more or less how it’s done.”

They all thought about this while they finished their meal. At the end,
Nigel pushed his chair back. “Well, this has turned out to be a very instructive
lunch.” Alex grinned. “Both tasty and profitable; oh, the joys of bookable
time!”

5.1 What Is the Engineering Viewpoint For?

The goal of the engineering viewpoint is to identify and specify the sup-
porting mechanisms for distributed interactions between objects. The focus
is on specifying how distribution works — how objects are distributed over
nodes, and how the structures of the nodes, and of the channels linking the
nodes, are going to be modelled. It also defines common functions needed
to support the required distribution transparencies. Clearly, this viewpoint is

Engineering Viewpoint 91

used by system designers who are particularly concerned with the infrastruc-
ture of systems.

Since this area has been a target of standardization for quite some time,
a number of standards or specifications already exist to provide such mecha-
nisms for specific technologies, such as Web Services, .NET, JEE or CORBA.
The main value of the engineering viewpoint is in providing a technology-
neutral architectural framework or reference architecture that can be used as
a basic tool for designing new systems or comparing existing infrastructure
technologies for distributed processing. In this way, infrastructure designs can
have a much longer life than the technologies that support them; this allows
these technologies to evolve without invalidating the system designs, which
are a company’s major asset.

Another important feature is that the information necessary for confor-
mance testing originates in this viewpoint. Although the actual conformance
testing may be performed against software and hardware artefacts specified
in the technology viewpoint, the basic test requirements are defined in the
technology-independent engineering viewpoint. For instance, observation of a
SOAP message passing from a client PC technology object to a departmental
server technology object may be used to check conformance by comparing it
to the interactions expected at an interface between the corresponding engi-
neering objects that has been identified as a conformance point.

5.2 Objects and Distribution

The major objective of the engineering design is to support the distribution
transparency requirements of the computational objects. As explained in the
previous chapter, computational interactions are at least access and location
transparent. However, more transparency attributes may be specified in the
computational transparency schema specification.

Basic Engineering Objects (or BEOs for short) are a special kind of engi-
neering object, which are used to give a representation of each computational
object in the engineering viewpoint. We are concerned here primarily with
the engineering of machines and of network communication. Some computa-
tional objects may represent human actors, but for these there is just a simple
placeholder BEO; the engineering of communication with them is a matter for
HCI standardization, but is not detailed in this reference framework and so is
not discussed further here.

The set of BEOs can be seen as abstractions of the computational de-
sign. The resulting description hides distinctions between objects with sim-
ilar communications requirements, and retaining only the information about
the computational objects that characterizes them as users of the distribution
platform being provided. Therefore, the BEO is the primary object to be

jorge
Realce

jorge
Realce

jorge
Realce

jorge
Realce

92 Building Enterprise Systems with ODP

placed on a particular node, and which initiates communication across the
network. All other engineering objects are secondary elements defined in a
node or channel architecture, whose goal is to provide the functions necessary
to support distribution. This includes a variety of supporting objects, like
repositories or directories, which are drawn from a set of common functions
called the ODP functions.

In the PhoneMob computational specification, we established a multi-tier
design (see figure 4.5) in which human objects were supported by presentation
objects, which in turn used application objects that accessed data manage-
ment objects. In the engineering viewpoint, we place these objects on specific
nodes (see figure 5.1).1 Thus, the User and RepairCentreStaff objects will each
be supported by their own presentation objects, and these will be on different
nodes. This is done by placing the BEOs corresponding to the computational
presentation objects on nodes that are local to the people concerned. Al-
though this sounds complicated, in practice, it will generally happen quite
naturally because these objects are created by an initial login agent object on
the appropriate node that acts as a local factory.

The BEOs representing the application and data management objects are
then placed on suitable backend service nodes; these may be replicated to
achieve enhanced performance or reliability. They are generally placed ex-
plicitly for reasons of performance and load balancing. This distribution of
engineering objects and the way they are connected through different channels
has a strong influence on many other key concerns about any system and, in
particular, on most of the so-called non-functional aspects (such as reliability,
high availability or security).

For instance, the diagram in figure 5.1 shows a design with a dedicated
node for interfacing to each business activity at the branch repair centre.
The rest of the business objects are run on a separate node. Similarly, there
are dedicated channels via which the repair centre interface objects access
the main server and others to support backend distribution. This allows the
imposition of different requirements for each one. There is a channel (the
PhoneMobDedicatedChannel) with strict security requirements and high per-
formance to connect the repair centre interface objects with the PhoneMob
main node, in order to guarantee fast and secure communications between
them, instead of using the same kind of channel as the other presentation
objects.

The performance requirements are specified in an environment con-
tract . Environment contracts are expressed in UML4ODP using OCL or
timing constraints attached to the appropriate nodes or channels. Alterna-
tively, use can be made of a dedicated UML profile such as MARTE [35] to
specify these non-functional requirements.

The actual nature of the nodes is not determined here, but will be identified
in a technology viewpoint configuration, identifying the customer or courier

1In UML4ODP, NV is used as an abbreviation for engineering viewpoint.

jorge
Realce

jorge
Realce

Engineering Viewpoint 93

«NV_BEO»

 : RepairCentreStaffOps

«NV_BEO»

 : ManufacturerOps

«NV_BEO»

 : TransactionMgr

«NV_BEO»

 : CourierOps

«NV_BEO»

 : Login

«NV_BEO»

 : Trader

«NV_BEO»

 : UserOps

«NV_Cluster»

 : ApplicationCluster

«NV_BEO»

 : Corporation DataMgr

«NV_BEO»

 : Financial DataMgr

«NV_BEO»

 : HR DataMgr

«NV_Cluster»

 : CorporationCluster

«NV_BEO»

 : RepairOrder

DataMgr

«NV_BEO»

 : Logistics

DataMgr

«NV_Cluster»

 : DataCluster

«NV_Object»

 : Stock DataMgr

«NV_Cluster»

 : StockCluster

«NV_Capsule»

 : PhoneMobCapsule

«NV_Node»

PhoneMobNode

«NV_BEO»

 : GUI2RepairCentreStaff

«NV_Cluster»

 : RepairCentrePresentation

«NV_Capsule»

 : PresentationCapsule

«NV_Node»

RepairCentre Presentation

«NV_BEO»

 : GUI2User

«NV_Cluster»

 : User Presentation

«NV_Capsule»

 : PresentationCapsule

«NV_Node»

UserPresentation

«NV_Channel»

PhoneMob

DedicatedChannel

«NV_Channel»

PhoneMob

GeneralChannel

NOTES:

1. The diagram does not show

inter−capsule usage

dependencies between BEOs.

2. All dependencies shown are

stereotyped as <<use>>

dependencies

«use»

FIGURE 5.1: A high-level description of engineering object distribution.

support as thin clients running on a PC, Mac or smart phone, and the nodes
supporting the application objects as resources within the PhoneMob service
centre, where a web server validates and, when appropriate, forwards those
incoming requests to services running behind the firewall. These nodes might,
for example, be enterprise systems running PhoneMob applications on top of
JEE or various other frameworks with legacy database systems connected.

5.3 Node Architecture

The node architecture identifies a number of functions that are commonly
found in the platforms supporting application objects. Providing a technology-
neutral architecture for describing them helps to identify the commonalities
between different infrastructure solutions, such as JEE or .NET, and so makes
the integration of different platforms simpler. Several of these functions are
concerned with groupings of objects that are important when managing es-

jorge
Realce

94 Building Enterprise Systems with ODP

sential system properties, such as resource consumption, fault tolerance or
persistence. These groupings (illustrated in a much simplified configuration
in figure 5.1), include such elements as nodes and, within them, sets of clus-
ters, with cluster managers, sets of capsules, with capsule managers, and a
nucleus.

These concepts are used to define the logical structure of the node. These
days, there are many complete packages of infrastructure support available,
but it is still important to have a common functional architecture for the infras-
tructure to support interoperation and interworking between these products,
or to extend it to new technologies as they appear.

It is important to understand the kinds of functionality required to sup-
port provision of distribution transparencies, the basic mechanisms needed to
achieve those functionalities, and how they can be structured and assigned
to the architectural elements of the engineering viewpoint. This provides a
reference architecture, against which existing distributed processing systems
can be compared and evaluated, or with which tomorrow’s systems can be
designed. Using it helps technical architects specify or select required infras-
tructure characteristics.

The first two concepts make the distinction between provision and use of
resources, as follows:

• A node represents a physical object that has computing, communication
and storage capabilities, and generally has connections to other nodes. A
node will therefore have one or more network addresses, and the elements
deployed on the node can become network accessible. Your laptop, your
office PC, your mobile phone and your organization’s server machines
are all nodes. However, this is a slight simplification because a node
does not actually have to be a separate, physically tangible object; a
virtualization of such a resource (see section 9.1) can also be considered
to be a node.

• An engineering object is any object of interest in this viewpoint.
These objects support computational requirements, distribution trans-
parencies or infrastructural aspects of the system. We distinguish here
between BEOs, which represent computational objects, and other en-
gineering objects, whose aim is to provide basic engineering functions,
such as managers, interceptors and directories.

The engineering viewpoint language also defines three other concepts that
describe the principal controlling elements involved in any engineering speci-
fication:

• A nucleus represents the basic mechanisms needed to make a node
function at the lowest level, typically representing an operating system
kernel that manages and allocates processing capabilities, communica-
tion capabilities and storage capabilities. Fair scheduling and accurate

jorge
Realce

jorge
Realce

jorge
Realce

jorge
Realce

jorge
Realce

jorge
Realce

Engineering Viewpoint 95

timing both depend on the centralized control of the node’s resources
offered by the nucleus.

• A capsule is a unit of independent processing and storage. Faults within
a capsule can affect all of the objects in it. The capsule supports a collec-
tion of engineering objects managed by a capsule manager . Capsules
are isolated from one another by some protection mechanism, so that
incorrect behaviour in one capsule does not damage other capsules. One
of the consequences of this is typically that, because of the extra check-
ing involved, communication across capsule boundaries is much more
expensive than communication within a capsule. An example of a set of
capsules is the set of independent processes, each with its own address
space, run by an operating system (a nucleus). Another example of a
capsule is a JEE or CCM [29] component container.

• A cluster is a collection of BEOs that have closely coupled lifecycles,
and so can be activated, deactivated or migrated as one single unit. The
record of objects that makes up a JEE or .NET component is a cluster.
Another example is the aggregation of small primitive objects into a
larger configuration to form a row for database update.

Every nucleus, capsule or cluster contains a managing object that is re-
sponsible for it and which controls its membership. An outline of this structure

Node

Communications and Resource Pools

N
u

cl
eu

s

Capsule

Address Space, Processor Slice

C
ap

su
le

M
an

ag
er

Cluster

Common Lifecycle, Local Binding

C
lu

st
er

M
an

ag
er obj.

obj.

obj.

obj.

Cluster

Common Lifecycle, Local Binding

C
lu

st
er

M
an

ag
er obj.

obj.

obj.

obj.

obj.

obj.

obj.

Capsule

Address Space, Processor Slice

C
ap

su
le

M
an

ag
er

Cluster

Common Lifecycle, Local Binding

C
lu

st
er

M
an

ag
er obj.

obj.

obj.

obj.

Cluster

Common Lifecycle, Local Binding

C
lu

st
er

M
an

ag
er obj.

obj.

obj.

obj.

obj.

obj.

obj.

FIGURE 5.2: The structure of an engineering node into managed containers,
each with associated properties and resources.

jorge
Realce

jorge
Realce

jorge
Realce

jorge
Realce

jorge
Realce

96 Building Enterprise Systems with ODP

is shown in figure 5.2. The nested components are typically instantiated in
sequence as the system is initialized.

At first, the node is configured by its nucleus. The nucleus then allocates
resources to a capsule and its capsule manager. The capsule manager then
creates any necessary clusters with their cluster managers. When doing this,
the capsule manager allocates resources to the cluster manager. Finally, BEOs
are instantiated, either inside a cluster or directly in a capsule, to perform the
tasks specified for the computational objects they represent.

When a BEO’s work is done, its resources are returned to its direct man-
ager. If this is a cluster, the cluster manager may decide to terminate and,
when all its work is done, a capsule may terminate, releasing its resources
back to the nucleus for reallocation so that the system returns to the initial
state in which there is just a node and a nucleus.

5.4 Channel Architecture

The second main set of concepts in the engineering language is concerned
with defining a channel architecture that represents the communication in-
frastructure, which allows engineering objects to interact.

The basic element is the channel , which is the engineering equivalent of a
computational binding. A channel consists of stubs, binders, protocol objects
and interceptors and links communicating basic engineering objects, generally
residing in different nodes. Figure 5.3 shows an example of the channel that
connects the GUI2User and UserOps BEOs of the PhoneMob application.

Normally there is no need to specify these elements in detail because they
are provided by the underlying middleware platform (some of which are them-
selves standardized [13]). However, there are occasions in which we want to
model them functionally, in order to specify some of a channel’s properties,
or to express requirements on it — such as performance requirements on the
channels or security constraints on the protocol objects or interceptors.

All channels involve the same functions, using specialized engineering ob-
jects to implement the required functionality in an ordered manner. However,
different specific communication architectures may each organize or interleave
these functions in their own way.

• Stubs transform or monitor information in the channel. This includes,
for example, the marshalling and unmarshalling of message elements,
the translation of local interfaces into interoperable interface references,
or provision of message content encryption. Stubs are the elements that
enable access transparency in the communication between two objects
written in different languages (such as C++ and Smalltalk). The client
object talks to its local stub, which is in charge of translating the request

Engineering Viewpoint 97

«NV_ProtocolObject»

GUI2UserProtocol
Object

«NV_ProtocolObject»

UserOpsProtocol
Object

«NV_Binder»

GUI2UserBinder

«NV_Stub»

GUI2UserStub

«NV_Interceptor»

GeneralChannel
Interceptor

«NV_Binder»

UserOpsBinder

«NV_Stub»

UserOpsStub

«NV_BEO»

UserOps

«NV_BEO»

GUI2User

«use»«use»

«use»

«use»

«use»

«use» «use»

«use»

FIGURE 5.3: A channel from the GUI2User BEO to the UserOps BEO.

into a neutral format that is sent along the channel and that the server
stubs understand. The received request is then translated by the server
stub to the language of the server, and passed to it. The response from
the server follows a similar route back to the client, with the stubs again
translating the messages. The result is that the client and server objects
both think that they are talking to local objects written in their own
language.

• Binders provide services to establish a distributed binding between the
BEOs communicating through the channel and to provide the trans-
parency functions that coordinate replicated object instances. There
can be a number of different dialogue styles involved in this. Thus, for
instance, the client and server binders can set up the communication
channel and the server binder can wait for requests before activating the
server object. In fact, the server binder can exhibit different behaviours
depending on the activation policy required for the server object; the
binder can create one object for every request received, or instantiate
only one object to take care of all incoming requests when the channel is
started, or it can create one server object that takes care of all requests
received during a period of time, but which terminates if it receives no
requests for a while; many other instantiation policies are possible.

• A protocol object is an encapsulation of the communication capabil-
ity of the protocols, which may be a full stack of layered protocols for
a specific task, such as support for the Web Services protocol SOAP.
At a lower level, protocol objects might exploit IPv6 roaming support

98 Building Enterprise Systems with ODP

to keep in contact with mobile devices in a way that does not involve
the recreation of bindings. A protocol object may also encapsulate an
implementation of some special purpose protocol, such as a driver for a
noise resistant satellite link or a quantum cryptography channel.

• When there is a need to cross any organizational, security, system man-
agement, naming or protocol domain boundary, some kind of gateway
is needed. Interceptors are the elements provided by the engineering
language for this purpose. The fact that all the messages exchanged go
through the channel interceptor also enables the addition of interesting
management functionality to the system. For instance, messages can
be observed in order to carry out quality of service and performance
monitoring, or even reordered or filtered for security or other reasons.
Another use is where two objects live in different networks, each fol-
lowing some local communication protocol; one uses OSI’s seven layers
architecture and the other one follows a vendor’s proprietary protocol,
for instance. The task of bridging these differences can be carried out
by an interceptor within the engineering channel that connects them.
Interceptors need not analyse all the layers of encapsulation in the com-
munication; they can just pass on information unchanged if it is already
understandable to both sides. This is discussed further in chapter 11.

Each of these objects usually has a control interface to allow the coordi-
nated management of the different aspects of the channel and the dynamic
reconfiguration of the communication facilities.

5.5 Common Functions and Processes

In addition to allowing the engineering objects to be placed on different
nodes, the engineering viewpoint identifies some common functions, called
ODP functions, that are needed to support the transparency requirements.
Broadly similar sets of functions are found in the various distributed systems
available today, although they are generally implemented in a technology-
specific way. The engineering viewpoint defines an independent vocabulary,
offering a technology-neutral description of them. These functions allow the
hiding of system failures, resolving the location of objects from their names,
finding service offers (by trading), managing events and so on. Some of the
ODP functions can be considered as providing basic processing patterns to
achieve the common functionalities for distributed systems, and the basic
building blocks for designing distribution infrastructures in a reusable manner.

ODP defines a set of fifteen common functions, organized in four main
groups:

Engineering Viewpoint 99

• Management functions: the node management, object management,
cluster management and capsule management functions.

• Coordination functions: the event notification, checkpoint and recovery,
deactivation and reactivation, group, replication, migration, transaction,
ACID transaction and engineering interface reference tracking functions.

• Repository functions: the storage, information organization, relocation,
type repository and trading functions.

• Security functions: access control, security audit, authentication, in-
tegrity, confidentiality, non-repudiation and key-management functions.

This book cannot deal with the detailed definition of the full set of func-
tions, so we restrict the description to a selection of them, which we use to
illustrate how they can be combined together to provide useful composite
functions to the application designer.

Let’s take a look first at the transaction function. Note that this function
is more general than the ACID transaction function that is normally used
in most bank account management systems. In a real distributed processing
environment (think, for instance, of any system built over the Internet), parties
involved in a transaction may be spread over different cities or countries, and
the transaction may be a long-running process, lasting for days or even weeks.
An object providing this function, therefore, will need to communicate with
all the participating objects or parties involved in the transaction to monitor
the relevant actions and to check for possible inconsistencies.

If an inconsistency is detected, the object will schedule the initialization
of some compensation actions, which are usually local transactions at each
node to remove the changes and effectively bring each object back to its ini-
tial state. For instance, if some money is withdrawn from an account in a
transaction, the compensation action means explicitly depositing the same
amount back into the account, which is different from the typical implicit roll-
back action defined in an ACID transaction. With this approach, the states
of the objects may become temporarily inconsistent but will eventually be-
come consistent again. This function has been defined in detail in several
subsequent standards including a part of the CORBA specifications called
Additional Structuring Mechanisms for the OTS Specification [39] and OASIS
standards called Business Transaction Protocol [42] and Web Services Coor-
dination Framework [43].

Another relevant example is the ODP trading function. This function orig-
inated from the idea of a Yellow Pages service provided by telephone operators;
it allows service providers to export their services to a trader (representing
the set of objects providing the ODP trading function). The consumer objects
can then look up the service, based on a given set of constraints, to get refer-
ences to the objects providing it. This function will sound familiar to many
readers because it has since been at the heart of the SOA architecture and
is the basis for the Web Services specification for UDDI. The ODP trading

100 Building Enterprise Systems with ODP

function standard was also adopted by OMG, becoming the CORBA Object
Trading Service [27].

ODP functions can also be combined to implement certain transparencies.
For example, let us look at how system failure can be hidden from computa-
tional objects in two different ways by using a selection of the ODP functions.

• One approach is to save the state of the system from time to time, and
restore operations from this saved copy whenever necessary. To do this,
the checkpoint and recovery function is used to checkpoint a key part
of the application state (held, for example, in a cluster), and then later
recover the information when it is needed.

• Another approach is to use the replication function; this allows the man-
agement of a behaviourally compatible object group. If one replica fails,
it is replaced by a new replica that is integrated into the group. Mean-
while, the service is maintained by the remaining members of the group.

ODP functions can also be used to provide other transparencies. For ex-
ample, the migration function allows an application (cluster) to migrate to
another process (capsule). This can be done in two ways. One is to use the
replication function to extend a service into a new node by forming a group
of two objects, and then removing the original member, leaving one provider
at the new node.

Alternatively, migration can be achieved by using the deactivation and
reactivation function. A cluster manager first deactivates its cluster, which
is then checkpointed. The checkpoint is moved to a new node where it is
reactivated in a new capsule.

...

«NV_Cluster»

 : ApplicationCluster

«NV_Cluster»

 : CorporationCluster

«NV_Cluster»

 : DataCluster

«NV_Object»

 : Stock DataMgr

«NV_Cluster»

 : StockCluster

«NV_Capsule»

 : PhoneMobCapsule

«NV_Node»

PhoneMobNode

«NV_BEO»

 : Stock DataMgr1

«NV_Capsule»

«NV_Node»

Stock DataMgr1

«NV_BEO»

 : Stock DataMgr0

«NV_Capsule»

«NV_Node»

Stock DataMgr0

«NV_Channel»

Stock Data

Channel

«use» «use»

«use»

FIGURE 5.4: A storage object is replicated on separate nodes to increase its
availability.

Engineering Viewpoint 101

Another use of replication transparency, this time to increase both avail-
ability and performance, is shown in figure 5.4. This is a refinement of fig-
ure 5.1 in which the original Stock DataMgr basic engineering object has been
decomposed into a supporting object that remains in the PhoneMob node and
coordinates two replicas of the original BEO, each in separate nodes.

Further details of the selection and use of transparencies and migration
functions are given in chapter 9.

5.6 Writing Engineering Viewpoint Specifications

The RM-ODP is agnostic with respect to the methodology used to develop
the system viewpoint specifications. However, in the following list we provide
some guidelines that could be used when writing engineering specifications:

1. Examine the computational viewpoint specification of the system and
identify the computational objects needing support; define BEOs corre-
sponding to each of these computational objects.

2. Analyse the required transparency schemata and identify any necessary
transparencies and the ODP functions required to implement mecha-
nisms for handling them.

3. Identify the nodes and elaborate the node structures.

4. Associate the BEOs with nodes.

5. Associate the ODP functions with nodes.

6. Add engineering objects where needed to support the groupings of ob-
jects identified above (cluster managers, capsule managers and so on).

7. Identify channels and design channel structures.

8. Identify basic conformance points where testing is to be carried out.

The last of these steps forms an important link to the testing process. Con-
formance points are positioned primarily in terms of interfaces in the engineer-
ing viewpoint, although sometimes they may be identified in more abstract
viewpoints. Where this is the case, the abstract model elements concerned
must be linked by a chain of correspondences to engineering interfaces. RM-
ODP defines four kinds of conformance point: interworking, programmatic,
perceptual and interchange conformance points (see section 8.3 for details),
any of which can be nominated and positioned in an engineering viewpoint
specification.

102 Building Enterprise Systems with ODP

As we will see in the next chapter, the technology viewpoint then says
how conformance requirements are to be documented and what additional re-
quirements for conformance to implementable standards should apply. This
involves making reference to the conformance points defined here and provid-
ing statements about how tests are to be carried out at them.

The full list of steps will lead you to an initial version of the engineering
viewpoint specification, following a top-down approach. However, you may
also have requirements on artefacts in the engineering and technology view-
points that require a bottom-up approach. For instance, you may need to use
given COTS packages, legacy systems or sets of network channels existing in
your organization, or developed for it by third parties, and then include them
in your engineering specification.

5.7 Incorporating Current Technologies

When some of the ODP functions and their associated mechanisms are
embodied in a specific technology, they are refined to meet the additional
requirements originating from the target technology. We have seen that some
of the ODP functions, or their adaptations, are found in CORBA, Java or Web
Services technologies. These include, for example, naming, event notification,
trading, transaction and security support.

There are other situations in which the distribution infrastructure is pro-
vided by a third-party organization or company. This happens, for instance,
when cloud computing is used. The implications of the adoption of this tech-
nology are simply that our engineering specifications should be mapped to
the specifications of the transparency mechanisms and common functions im-
plemented and offered by the cloud provider. The details of how they are
provided are encapsulated within the cloud provider and so do not form part
of our design.

5.8 Relationship with Other Viewpoints

The engineering objects play a part in fulfilling the objectives established
in the enterprise viewpoint by supporting the interaction and management
of computational objects, which are represented in this viewpoint as Basic
Engineering Objects. In addition to this indirect coupling, the various engi-
neering objects will also be subject to generic rules and policies established
in the enterprise viewpoint, which control the configuration of the system as

Engineering Viewpoint 103

a whole. Thus, an enterprise policy may determine performance or security
goals affecting the behaviour of nodes, nuclei, capsules, clusters or other ODP
functions. In particular, enterprise artefacts may need to be represented by
basic engineering objects so that references to them can result in implicit
interactions to determine their state or properties.

The designers producing a computational specification focus on compu-
tational objects representing the basic functionality of the system, and the
interactions at the interfaces of those objects. They do not care how this ba-
sic structure is distributed, replicated, migrated or made persistent. It is in
the engineering viewpoint that this distribution and the mechanisms necessary
to support it become the principal focus.

In general, a computational object has one corresponding basic engineering
object, and a computational interface will have one corresponding engineering
interface. However, there are exceptions:

1. When a computational object is a binding object, that computational
object will result in a corresponding local engineering binding or engi-
neering channel instead of a basic engineering object, and

2. When the given transparency schema requires use of a replication func-
tion, multiple basic engineering objects will be introduced to support
the required transparency.

Finally, the objects and interfaces in the engineering specification need to
be grounded in real resources, such as processors and networks. This involves
declaring a set of correspondences between, for example, the engineering nodes
and suitable technology objects defined in terms of implementable standards.
This is the subject of the next chapter.

This page intentionally left blankThis page intentionally left blank

Chapter 6

Technology Viewpoint

“The King is dead; long live the King,” muttered Alex as he stared at
the huge notched axe in its glass case. He had insisted on coming here when
Trevor and Trudy had admitted that neither of them had ever been inside the
White Castle, even though they worked only three blocks away. It was well
worth a Saturday morning to see their reaction to the scale of the place.

“I never did understand that saying,” said Trevor. “Surely either he’s dead
or he isn’t. He can’t be both.” “It’s making a deliberate contrast between
two views of kingship,” said Alex. “The office of king continues, with the heir
taking over instantaneously when the old king dies. So one instantiation of
the king terminates, but there is still a king, even though it’s not the same
individual.” Trudy grinned. “It sounds more like a Hydra in this case,” she
said. “But it seems a bit of a funny way of looking at it.”

“Do you think so? Think about the specification of a call centre operator
we were reviewing on Friday. The operator deals with one customer at a
time. A particular dialogue is terminated and the customer description in the
operator’s state is destroyed. The immediately following action responds to a
new customer by instantiating a new description. In our specification, it was
still a customer, but a different instance.”

“But hang on,” said Trevor, turning from an array of crossbows to join the
conversation, “aren’t both the operator and the customer just roles?” “Yes
they are, but my point is that rules for filling them are different, because one
operator deals with many customers over a session, but there is a level of
continuity in the model. Even if we bind a specific employee to the operator
role, there is still a steady flow of different customers, and their identities are
chosen by the environment.”

They walked through into the banqueting hall, its dark vaulted roof hung
with banners. “If you don’t like that one, think about the system configu-
rations we have been describing. The elements in the description have quite
different lifecycles and ownership. The main servers are fully determined, and
we know all about them, right down to their serial numbers and the colour of
the cabinets. The local networks are under our management, but are recon-
figured and upgraded all the time; we try to track the changes, but they are
largely self-configuring at the detailed level, so we concentrate on capturing
major properties, like VLAN structure and security domains. The customer

105

106 Building Enterprise Systems with ODP

systems outside, across the wide area, are beyond our control. We often don’t
even know what kind of equipment is involved, and must be satisfied with lay-
ing down minimum capabilities for things to work. Yet they are all elements
in the same configuration specification.”

“But if most of the configuration is shifting sand, how about testing? We
need a firmer handle on things to test and to monitor for correct operation on
a day to day basis.” Trudy paused to stare at the huge reveals, which showed
the full width of the massive walls. “Yes, the configuration detail influences
not just where to test, but also how to test,” added Trevor. “But that’s why
we need to declare conformance points explicitly in the specification, so that
we will know which points we have to make accessible in an agreed way. As to
how to test, we need information from others, either implementers or deployers
of parts not directly under our control. They must provide us enough detail
to access the conformance point and understand the choices they have made
so that tests can be interpreted correctly.”

“OK, Alex, I’m beginning to see now,” said Trudy, “but how do we ensure
that the right information is provided?” “Well, that’s part of procurement or,
internally, of direction by senior management. The first requirement is the
establishment of clear standards, which was traditionally one of the responsi-
bilities of the monarch. Long live the King!”

6.1 Linking to the Real World

Most software designers would prefer to live in an ideal world that allows
them to specify, develop and deploy their systems for any vendor platform
without any technological or cost constraints. However, we all know that
this is never the case, and the technology viewpoint addresses this problem.
In most situations, the designer needs to take into consideration the IT in-
frastructure already available in the company, their budgetary requirements
and the existing commercial policies or strategies that might force (or forbid)
the use of particular vendor technologies. For example, a particular corpo-
ration may require the use of the huge, shiny blade array that was acquired
only a couple of years ago. Given that such a large investment has just been
made, they cannot afford to buy different hardware machines or software ap-
plications not compatible with their current platform. Another company may
have a corporate policy that forces the use of open source software in all their
applications. Others may require the use of low-cost PCs for running all their
IT applications.

These requirements pose very strong constraints on the system implemen-
tation, and so, as a result, on its software architecture, the programming
languages in which applications are developed, and the way the system func-
tionality is distributed. However, such requirements do not form part of any

Technology Viewpoint 107

of the viewpoint specifications described so far, and are overlooked by most
specification approaches. Thus, they end up being incorporated very late in
the development process of the system. This is normally too late, when almost
no significant changes to the system specifications can be tolerated.

A second concern that is often ignored when preparing the specifications
of a large system is the need for establishing different conformance and com-
pliance criteria and tests. Conformance tests are those which check that the
components, languages and protocols used by an implementation conform
to the specifications and the standards listed in them as mandatory for the
system. For example, we may need to check that system services are im-
plemented as web services whose interfaces are described using WSDL and
which communicate using REST protocols, or that our operating systems are
ISO/IEC/IEEE 9945 POSIX conformant. Conformance tests are specified in
ODP using conformance points, where it is possible to check that the real
implementation matches the specification. Compliance tests are of a different
nature. They are concerned with checking that the system specification is
consistent with the architecture or design framework being used. Chapter 8
deals in more detail with these two kinds of tests.

Finally, any system specification should also include some plans for the
technology selection processes and for the evolution of the system parts (that
is, the software and hardware products that together comprise the system im-
plementation). We are all aware that current technologies change rapidly, and
therefore the kinds of changes foreseen and how to cope with them need to be
explicitly described and documented somewhere in the system specifications.

The developers of the RM-ODP introduced a dedicated viewpoint to ad-
dress these issues, namely the technology viewpoint, which is concerned with
all aspects related to the choice of technology to implement the ODP system.

6.2 The Elements of the Technology Language

The main goals of the technology language are to provide concepts and con-
structs to specify the hardware and software products from which the system
is built, to test that such an implementation complies with the specification as
prescribed by the rest of the viewpoints and to specify the plans and processes
for the selection, acquisition and evolution of the system parts (hardware and
software products) during its lifetime. The technology language defines four
main concepts: technology objects, implementable standards, implementation
and IXIT (Implementation eXtra Information for Testing — a name derived
from the earlier protocol specific OSI concept of a PIXIT).

108 Building Enterprise Systems with ODP

6.2.1 Technology Objects

The technology specification describes the implementation of the ODP
system in terms of a configuration of technology objects (representing the
hardware and software components of the implementation) and the interfaces
between them. These objects are constrained by the cost and availability of
satisfactory technology products.

Technology objects are normally specified in terms of their types. Exam-
ples of such types include the kinds of PCs, servers, ATMs, printers and other
hardware devices that can be used to implement the system and execute its
functionality. Giving a clear definition of these types helps in answering ques-
tions such as whether we are going to count on there being colour printers
available or not, or whether our system will run some particular services on
a central server, on a PC or from an external cloud computing system. The
technology specification also describes the types of operating systems and ap-
plications (such as browsers or text editors, for example) and the types of
connections (LANs, WANs, intranets and so on) that will be used for deploy-
ing the engineering channels.

For example, figure 6.1 shows the technology configuration of the
PhoneMob system using the UML4ODP notation. It is described using a
UML deployment diagram that specifies the deployment architecture of the
system by showing the different technology object types that will be used and
how they can be connected. In a deployment diagram, a computer node is
expressed as a node and lines are introduced to express interfaces between the
nodes. Different types of network are also depicted as nodes. The diagram
shows that there will be three different kinds of computing resource (PCs, en-
terprise application servers and backend business servers), two different kinds
of communication media (LAN and WAN) and, as special peripherals on the
PCs, printers and barcode readers. PCs and enterprise application servers can
be connected to LANs and WANs, whilst backend business servers can only
be connected to isolated LANs under the control of a firewall. Connections to
the WAN are also achieved through the firewall.

The technology selection has clear consequences. For example, the types
of the technology objects used may affect the provision of quality of service.
They determine the performance costs of interactions and thus, indirectly,
the quality of service which can be achieved by the behaviour defined in other
viewpoints. The selection may also affect the way in which functionality needs
to be developed, and even the software architecture of the application. For
example, some technological platforms such as JEE or .NET impose particular
architectural styles (such as client-server or multi-layered) and provide some
common functions and services. Other platforms may not provide all the
necessary services and thus any that are missing must be implemented by
adding code each time they are needed.

Technology Viewpoint 109

<<TV_Object>>

Remote System

<<TV_Object>>

Backend

Business

Server

<<TV_Object>>

Enterprise

Application

Server

<<TV_Object>>

DMZ LAN

<<TV_Object>>

WAN

<<TV_Object>>

Printer

<<TV_Object>>

LAN

<<TV_Object>>

Firewall

<<TV_Object>>

PC

<<TV_Object>>

BarReader

0..*0..*

0..*

1

0..1

1

1

0..1

0..1

0..*

0..*

0..*

0..*0..*

0..*

0..*

1

FIGURE 6.1: An overview of the node configuration.

6.2.2 Implementable Standards

Although the level of interoperability between vendor platforms is increas-
ing nowadays, there are still some incompatibilities that force the use of partic-
ular applications that match the operating system selected in the specification
(Linux, MacOS, Windows and so on). This is why there is the need to specify
the implementable standards to which technology objects must conform.
Examples of such implementable standards are the application programming
interfaces for ISO/IEC/IEEE 9945 (POSIX), or for ISO/IEC 9075-10, SQL
— Object Language Bindings (SQL/OLB) and media format specifications
like ISO/IEC 13490 CD-ROM filing systems. Figure 6.2 shows a schematic
view of the business server technology object, which contains other technol-
ogy objects that represent the CPU, memory, middleware and so on, and the
implementable standards to which some of these objects should conform.

Implementable standards are effectively templates for the technology ob-
jects. Thus, the technology viewpoint provides a link between the set of
viewpoint specifications and the real implementation by listing the standards

110 Building Enterprise Systems with ODP

«TV_Object»

Backend Business Server

Business Object

OperatingSystem Middleware

Memory
StorageCPU

«TV_ImplementableStandard»

StorageStandard

«TV_ImplementableStandard»

Linux
«TV_ImplementableStandard»

CORBA

«TV_ImplementableStandard»

EJB

«TV_ImplementableStandard»

Intel Core Duo

«TV_ImplementableStandard»

MemorySpec

FIGURE 6.2: Internal node structure and implementable standards.

used to provide the necessary basic operations using the chosen languages,
operating systems or hardware platforms.

6.2.3 IXIT

The technology language also plays a major role in the conformance testing
process. Conformance testing is based on the observation of the system im-
plementation at certain points defined in the specification to be conformance
points. These points are a subset of the set of reference points established in
the specification which need to be accessible for testing (see chapter 8 for more
detail). Although how they can be found is documented in this viewpoint,
the points themselves are typically associated with various kinds of accessible
interfaces defined in the engineering specification. Four classes of reference
point at which conformance tests can be applied are defined. The first is
a programmatic reference point representing a software interface, observable
via operating system logs or by the installation of portable interceptors. The
second is a perceptual reference point observed by direct inspection of the
physical system, looking at a screen or a mechanical actuator. The third is
an interworking reference point, checked by examining the messages passing
between systems, and the last is an interchange reference point, checked by
reading some portable medium produced, such as a CD-ROM or external hard
drive.

However, since a specification typically does not define a complete protocol
stack, but leaves some detailed choices to the implementer, an implementa-
tion needs to be accompanied by some extra explanation from the implementer
about how the implementation is structured and how the tester is to access

Technology Viewpoint 111

the conformance points declared in the specification. This body of informa-
tion is called the implementation extra information for testing, or IXIT. The
technology specification gives a proforma stating minimum requirements for
the information the implementer must include in the IXIT. This information
is then used to interpret the observations a tester can make in terms of the
vocabulary and concepts defined in the other viewpoints. For example, it al-
lows valid interactions to be recognized, so that their appropriateness can be
checked against some specified object behaviour (see chapter 8).

Proformas indicating the information that an implementer is required to
include when producing the IXIT can be attached to any technology object
or interface; figure 6.3 shows an example of the association of requirements
for this additional information with two technology objects. Another exam-
ple might involve the technology specification saying that the implementer
is required to state the precise version number of any mandatory platform
components provided, such as the EJB environment in an application server.

«TV_Object»

Business Object

«TV_Object»

OperatingSystem

«TV_IXIT»

The implementer shall state in the IXIT:

 − the maximum number of users that can be supported;

 − how internationalization is supported and managed;

 − the predicted mean time between failures (MTBF) for the system.

«TV_IXIT»

The implementer shall indicate in the IXIT the character coding to be

used in realizing these objects.

FIGURE 6.3: Some requirements for elements in the IXIT.

6.2.4 Implementation

The technology viewpoint defines an implementation as the result of a
process that instantiates a specification, the validity of which can be subject
to test. These processes not only cover development, but also other activ-
ities related to the system deployment, configuration and evolution. They
include, for instance, configuration guides, deployment plans, change manage-
ment plans, criteria for the selection of technology and of service providers,
maintenance processes, and so on. In UML4ODP, these processes are ex-
pressed using activity diagrams stereotyped «TV Implementation».

Figure 6.4 shows an example for the selection of a technology object. It
assumes that the owner and operator of a system need to add some functional-
ity; they perform a search for components that meets their needs and, if they
already have the elements of a suitable solution, they select and deploy them.
However, if nothing suitable is available, they specify their requirements as a
supply request and issue it to a subcontractor who will implement the com-

112 Building Enterprise Systems with ODP

Instantiate technology template

Modify implementation and IXIT

Provide IXIT

Acceptance testing
using the IXIT

Search technology assets for use

Analysis and design of
required technology

Deploy technology object

Use as technology object

Operator Implementer Tester

 [test passed]

 [test failed]

 [technology found]

 [technology not found]

FIGURE 6.4: A TV Implementation activity selecting a technology object.

ponents and describe the solution in an IXIT. An acceptance tester acting for
the operator then uses this information to test the new component. If the
test is successful, the component is deployed, but otherwise it is corrected and
tested again.

6.3 Relationship with Other Viewpoints

The technology viewpoint is primarily related to the engineering viewpoint
because it specifies the hardware and software components that have to im-
plement the engineering objects, including the nodes and channels identified
in the engineering specification. Thus, there is a technology object corre-
sponding to every atomic or composite engineering object. Note that the
relation goes both ways: engineering objects provide the entities that need
to be implemented, and technology objects provide the information on the
specific technology used to implement them and the standards to which these
implementations should conform.

Chapter 7

Correspondences — Joining It All Up

Nigel stepped back from the whiteboard. “Well, at least we agree we need
to have users and sessions in the specification.” Claire pursed her lips. “I’m
not sure we mean the same thing, though,” she said. “In my computational
model a user has a name and credentials, but in your engineering model it’s
just anyone sitting at a browser. My sessions can be suspended, but yours
map directly to network connections, if I understand this constraint here.”

Neither of them wanted to change the way they worked and they looked
defiantly at one another, each searching for an opening. This was going to be
difficult.

“Wait a minute, people,” said Alex, “this is quite usual, and it is exactly
why I said correspondences are not just a matter of matching names. It seems
clear to me that the correspondences you need here establish a subtype rela-
tionship.” They all relaxed slightly. “But how does that cover the difference in
session lifetimes?” asked Claire. “Well, look at your session states. If a session
exists, it can either be active or suspended. So Nigel’s sessions correspond to
your active sessions. We can handle that by putting an extra constraint on the
correspondence between the states.” “I think I see,” said Nigel, “so that means
we have a subtype relation between the session types and a constrained equiv-
alence relation between the states, but not a one-to-one relation between the
instances.” “Yes, that’s right. The instance relation is one to many.” Claire
smiled. “Actually it’s going to be many to many, isn’t it? My model has sign
out and sign in operations that can be used in a single communication session,
so that it can carry more than one user session, one after the other.”

Nigel walked over to the window and gazed out at the roofline opposite
for a moment; the sun picked out the brilliant orange of the rings of lichen
on the slates. This was another change the cleaner air was allowing back into
the docklands, and he wondered if the moths were changing back to their old
colour to compensate. “What I don’t see,” he said, turning back to face the
others, “is how changing these constraints works through into implementation
changes in the running system.” “Well,” Alex began, “there could be a number
of routes, but they all depend on the tools picking up the constraints and
deducing that they imply the choice of suitable engineering templates. The
simplest way is probably to make communications session reuse one of the
selection criteria for picking a binder template. If there is a computational

113

114 Building Enterprise Systems with ODP

action that changes the user identity, this will imply use of a multi-user binder.
And there will have to be such an action, because the detail of the sign-on
operation will involve it.”

“We are asking a lot of our tools, aren’t we?” said Claire, tilting her head.
The same sun picked out the highlights in her blond hair. “But we should!”
Alex replied. “The tools are much better than the programmers are at spotting
simple logical implications from different parts of the design, and for doing
boring but crucial consistency checks as the design develops.” “And if the
logic isn’t simple, or the side effects not obvious?” She was teasing him, and
he knew it. “Then heaven preserve us from clever programmers. If the system
depends on a line of code so obscure you want to put it on a T-shirt, I’m
betting the system will be a pig to maintain.”

7.1 The Need for Correspondences

So far, we have concentrated on the set of five viewpoint languages. It is
all too easy to leave it at that, but we need to relate the different viewpoints
so that they are woven together to give a unified system specification. This
chapter aims to redress the balance by concentrating on the correspondences
between elements in different viewpoints.

If the viewpoints are seen as representing the areas of concern of the differ-
ent stakeholders, then the correspondences represent the agreements between
these stakeholders about how their views of the world overlap and what enti-
ties are to be found in multiple views.

Each correspondence in ODP links a pair of viewpoints, and so has two
endpoints, one in each viewpoint. All the correspondences between a par-
ticular pair of viewpoints together form what is called a correspondence
specification . It would, in principle, be possible to define multi-way corre-
spondences, but these are more difficult to understand and manage, so a mesh
of binary relationships is used for simplicity. As a result, with five viewpoints,
there could be at most ten correspondence specifications, but there is not nec-
essarily something significant to say in every possible case, so in practice there
are less than ten. However, there cannot be less than four sets of correspon-
dences in total, or the overall specification will not be completely connected
and will fall apart.

The idea of a correspondence in ODP is deliberately kept quite general
because the various viewpoints may be specified using different languages,
satisfying their individual needs. A correspondence is therefore a general link
between specification elements with an associated rule or constraint indicating
the way the elements in the two different viewpoints are related. The linkage
of the two specification elements can be made independent of the languages
involved, although the expression of the additional rules to be applied generally

Correspondences — Joining It All Up 115

does require some knowledge of the languages being used. We shall return to
this point later.

The simplest kind of correspondence is to say that two elements refer to
the same thing. Thus, for example, we can state that the enterprise object
filling the role Branch staff corresponds to the computational object Repair-
CentreStaff, meaning that they are two representations in different viewpoints
for one and the same individual in the real world. Of course, in our simple
example, we could have aligned these names, but, in large-scale specifications
drawing on different existing libraries, this may be much more difficult.

7.2 Different Kinds of Correspondence

Most modern modelling languages have some concept of an object as a
representation of the entities that are being described, and an object has at-
tributes representing the properties of the real-world entities and behaviour
indicating how it interacts with its environment and evolves over time. While
the statement at the end of the previous section that a correspondence shows
that two descriptions are referring to the same entity may seem straightfor-
ward, it does not follow that the way the description is expressed is the same
in each case. The properties expressed may not be exactly the same; indeed,
they may be completely different.

So, even in the simple case of declaring that two objects represent the same
entity, we also need to be clear whether there is a correspondence between
their types as a whole or between individual attributes, and if so whether the
attribute types correspond. Even if two specifications are dealing with the
same entity, they may be describing quite different properties of it.

In fact, the types used in the different viewpoints will generally be different
because they will have been chosen to express different concerns, and so rep-
resent different abstractions of the same entity. For example, the enterprise
description of a phone may express its value, service bundle and ownership,
while an information description of the same phone may express its memory
capacity and SIM number.

Often, the two viewpoint specifications deal with similar properties but at
different levels of detail, so that an attribute in one description corresponds
loosely to a different attribute in the other, which may have a type that is a
subtype of the one used in the first description (because it needs to provide
more detailed information).

The correspondence can also add information to the specification by stat-
ing a correlation between attribute values. For example, we could make a
correspondence between phones with the premium service bundle and those
whose memory size is bigger than two megabytes. This now means that all
premium service users have phones with enough capacity, which is a fact that

116 Building Enterprise Systems with ODP

could not have been expressed in either of the viewpoints being linked on their
own.

Correspondences can, in fact, be established between pairs of specification
elements of any relevant kind. In addition to objects and attributes, we may,
for example, establish correspondences between actions or states, and here
it is more likely that the two viewpoints as a whole will be using different
levels of abstraction. One viewpoint may talk about broad business actions,
while the other expresses fine-grained computational actions. In such a case,
the correspondence will involve a part-of relationship, since we can say that
observing the business action implies that the computational action has oc-
curred, but the computational action just implies that the business action is
in progress, not that it has completed.

Another kind of correspondence is found between viewpoints that deal pri-
marily in specifying types (such as the information viewpoint) and viewpoints
dealing primarily with instances (such as the computational viewpoint). Here
the correspondence can be the familiar type-instance relationship. Examples
can be found in links between the types (or templates) defined in the infor-
mation and technology viewpoints and specific configurations defined in the
technology, computational or enterprise viewpoints.

7.3 Correspondences Required by the ODP Architecture

The ODP reference model defines the concepts and rules that make up
the five viewpoint languages, but it leaves as much flexibility as possible for
designers to use them freely to express the system that best meets their re-
quirements. One consequence of this is that it places very few constraints on
exactly what correspondences there should be; they will be decided primarily
by the properties of the problem domain. However, the reference model does,
itself, lay down a few mandatory correspondences, and these are the result of
areas where there are architectural concepts spanning or linking viewpoints.
These correspondences ensure architectural integrity.

We consider two areas where there are architectural constraints. The first
of the areas where correspondences are stated is between the information and
computational viewpoints. Here there is a requirement that the constraints
of the invariant and dynamic schemata, which represent required information
state transitions, should be traceable in the computational view as either
interactions or internal actions of the corresponding computational objects.
This is necessary to demonstrate that the requirements are being met.

The second area is between the computational and engineering viewpoints,
and deals with a set of constraints to ensure that transparencies can be pro-
vided without introducing unexpected snags or side effects as a result of un-
expected feature interactions. The resulting correspondences are sketched in

Correspondences — Joining It All Up 117

CO1

CO2

CO3

CO4binding object1

objects that
have similar
lifecycles

needs failure
transparency

computational viewpoint

BEO1

BEO2

BEO3a BEO3b

BEO4

cluster

replica
set

engineering viewpoint

ch1

ch2

ch3

ch4

ch5

CO

BEO

computational object

basic engineering object

engineering channel

binding object
object correspondence

binding correspondence

computational primitive binding

engineering primitive binding

computational binding object

FIGURE 7.1: Mandatory computational to engineering correspondences.

figure 7.1. The aim here is to create an engineering structure that will be able
to evolve in a flexible way to deal with changes in the environment and map
cleanly at all times onto the computational design it is supporting.

One of the mechanisms that may complicate this mapping is the support
of replication. The various constraints therefore enforce simplicity in the cases
where there is no replication so as to avoid adding extra complexity to the
replicated situations. This is achieved by saying that, unless there is replica-
tion, there is a one-to-one correspondence between computational objects and

118 Building Enterprise Systems with ODP

their supporting basic engineering objects. If there is replication, one com-
putational object corresponds exclusively to a single set of basic engineering
objects; in figure 7.1, for example, the computational object CO3 corresponds
to the set containing BEO3a and BEO3b.

This deals with most computational objects, but not all. Computational
binding objects are special because they encapsulate communications facilities.
Binding objects, or primitive bindings of interfaces, are required to correspond
either to engineering channels or to local interactions within clusters. There
are also rules to ensure that computational actions are refined in a consistent
way when elaborated as more detailed dialogues.

These are very simple constraints, but there will also be many more
domain-specific constraints. To help the specifier organize these, the
UML4ODP standard includes a number of checklists, in the form of metarules
for identifying the kind of correspondence statements needed to link the dif-
ferent viewpoints. As an example, it states that, for each enterprise object
in the enterprise specification, the specifier shall indicate the configuration of
computational objects that realizes the required enterprise behaviour. Simi-
larly, for each interaction in the enterprise specification, they shall provide a
list of those computational interfaces and operations or streams that corre-
spond to the enterprise interaction, together with a statement of whether this
correspondence applies to all occurrences of the interaction, or is qualified by
a predicate. It is then up to the specifier to apply these rules and, in doing
so, generate a set of domain-specific correspondences.

7.4 Anatomy of a Correspondence Specification

The UML4ODP standard brings all this together by defining a metamodel
for correspondence specifications. This is outlined in figure 7.2. The specifi-
cation itself is a separate model, linked to the viewpoint models but standing
outside of all of them.

The two viewpoints characterize the specification that is to tie them to-
gether. The specification itself is built up from a set of correspondence
rules, members of which are referred to from a set of correspondence links.
Every correspondence link has two correspondence endpoints, which are
each associated with some set of terms in the viewpoint concerned.

The element Term in this metamodel can be associated with any language
element in the viewpoint concerned. In the UML profile, this is done by
the use of tags, so that there is no commitment to the properties of the
namespaces concerned; this results in the minimum of impact on the writers
of the viewpoint specifications.

Correspondence rules express constraints that must be enforced for the
set of elements from the two viewpoints being linked. One example is the

Correspondences — Joining It All Up 119

CorrespondenceSpecification

CorrespondenceEndpoint

ViewpointSpecification

CorrespondenceRule CorrespondenceLink

Term

0..*

0..*0..1

20..*

0..*

1..*

2

FIGURE 7.2: The elements of a correspondence specification.

Taken from the UML4ODP standard; for copyright, see Preface.

constraint we mentioned earlier about phones with premium service bundles
needing to have a memory capacity above a certain threshold. In UML4ODP,
these constraints are usually expressed in OCL. Correspondence rules can
also serve to provide information about the kind of relationship that links the
elements; a few examples are use, runsOn, affects, implements, realizes and
replicates. These kinds of relationship are not predetermined, but are normally
defined by the system designers. This definition must include their semantics,
indicating what they are to mean in this system specification. For example,
in the PhoneMob specification we use a runsOn constraint to indicate the
technology object types used to run particular BEOs, or replicates to indicate
the correspondence that links a computational object with the set of replicated
BEOs that support it.

7.5 Taking a Formal View

The set of viewpoints defines an associated set of domain-specific lan-
guages. Each of these languages is formally defined in terms of a mapping of
its elements onto some very simple supporting model, often some form of la-
belled transition system representing the way the system’s state evolves. If we
are to unify the different viewpoint languages, we must first produce a unified
supporting framework. This brings us back to the importance of unifying the
set of primitive types assumed, and the combination of different languages is

120 Building Enterprise Systems with ODP

much simpler if they share a common set of primitive types. Fortunately, there
is now a quite broad consensus on the primitive types such as boolean, integer
and string; part 2 of the reference model also provides a uniform foundation
for the object modelling concepts needed.

We then need to express the evolution of the system as a whole by combin-
ing the interpretations of all the corresponding items in the different domain-
specific languages to give a set of rules for the evolution of the complete
system’s state.

It is important that the coupling between the viewpoint specifications
should be kept as lightweight as possible. This is why we have stressed the
need to separate the namespaces associated with the different viewpoints. We
need to be able to add elements to a particular viewpoint without incurring
the overheads of ensuring the names being used in the additions are unique
across the whole design, and we need to be able to carry out significant refact-
oring of the design within a viewpoint without requiring matching changes to
be made elsewhere.

All this may sound rather heavyweight, with the potential for more cor-
respondences than model elements in the viewpoints themselves. However,
things are not quite as bad as they may seem. Although there is a need for a
great deal of information in the correspondences, a very high proportion of it
can be inferred from some quite simple rules.

Firstly, despite what was said previously, we can identify certain contexts
in which name equivalence can be taken as implying correspondence. Al-
though, in general, the namespaces of the different viewpoints are unrelated,
and accidental name matches can occur, an organization will often choose to
align parts of these namespaces to aid its own internal communication. In
these situations, stakeholders agree that, as long as there are correspondences
at the type level, names will not be reused for different purposes within the
scope established by the type relations. If this is the case, two elements in
different viewpoints that have the same name can be taken to have an implied
correspondence.

Secondly, we can go even further by asserting correspondence not just
at the type and instance level, but at the level of a complete type system
or subsystem. This may be done by importing a family of type definitions
from one viewpoint into another (or into two viewpoint specifications from an
external library), so that there are automatic correspondences wherever the
shared definitions are used. This kind of sharing is often based on a set of
type definitions from the information viewpoint; these are then used either
directly or via local refinements in other viewpoints.

However, we cannot lose sight of the fact that the correspondences bind
the viewpoints together into a coherent whole, and that the whole, once con-
structed, shows the problems of scale and complexity that led us to opt for
viewpoints in the first place. So what have we gained, after all? Well, the main
design work is carried out in the viewpoints, where life is simpler, and we can
then exploit strong tools to check the consistency of, and derive implementa-

Correspondences — Joining It All Up 121

tion components for, the complete system. Once we have the correspondences,
either by explicit definition or by derivation from some higher-level rules, we
can use them to run checks and analyse the behaviour of the system we have
specified.

Correspondences also have other important uses. For example, since they
identify the related elements in a multi-viewpoint specification, they can help
to identify the elements that would be affected by a change. Thus, they
can be useful in performing some kind of what-if or impact analysis: which
information and computational elements will be affected if I decide to change
a policy in the enterprise viewpoint? Will a change in a set of engineering
objects affect any particular service level agreement or environment contract
in the enterprise or computational viewpoints?

Similarly, the constraints associated with the correspondence rules can be
used to maintain consistency in the viewpoint specifications. Consider, for
example, a consistent set of models related by a set of correspondences. If we
make a change in one of the models, in many situations it is possible to prop-
agate that change through the correspondences, thereby changing the other
models so that the consistency is restored. Think, for instance, of a correspon-
dence that establishes that the name of a binding object in the computational
viewpoint is the same as the name of the corresponding channel in the engi-
neering viewpoint. If the designer decides to change the name of the channel,
the change can easily be propagated to the computational binding object, and
vice versa.

«profile»

Correspondence_Profile

«stereotype»

CorrespondenceSpecification

«stereotype»

CorrespondingSpecification

+endPoint1 : Element [1..*]

+endPoint2 : Element [1..*]

«stereotype»

CorrespondenceLink

«stereotype»

CorrespondenceRule

«metaclass»

Class

«metaclass»

Usage

«metaclass»

Package

«metaclass»

Constraint

FIGURE 7.3: The correspondence profile from UML4ODP.

Taken from the UML4ODP standard; for copyright, see Preface.

122 Building Enterprise Systems with ODP

7.6 Examples of Correspondences

We can demonstrate the principles involved in defining correspondences by
looking at some simple examples. They are shown here using the UML pro-
file defined for correspondences in the UML4ODP standard, which uses four
stereotypes as shown in figure 7.3. Correspondence endpoints are represented
as tag definitions, providing great flexibility to refer to any model element in
the specification.

Let us show some examples of use. First, figure 7.4a shows the correspon-
dence between the binding object and the engineering channel depicted in
figure 7.1. Another correspondence (shown in figure 7.4b) establishes the re-
lationship between the Stock DataMgmt computational object from figure 4.5
and the replica engineering objects which support it, introduced in figure 5.4.

«CorrespondenceLink»

BOChannelCorrespondence

{endPoint1 = bindingObject1 ,

endPoint2 = Ch3 }

(a) A binding object and the corre-
sponding channel.

«CorrespondenceLink»

DataStockMgrReplication

{endPoint1 = Stock DataMgmt ,

endPoint2 = Stock DataMgr0 , Stock DataMgr1}

(b) A computational object and its engineering
replicas.

«CorrespondenceLink»

RepairOrderRegistration

{endPoint1 = Generate Repair Order ,

endPoint2 = registerOrder }

(c) An enterprise task and the computational
operation it uses.

FIGURE 7.4: Three examples of correspondences.

A more interesting correspondence defined for the PhoneMob system
(shown in figure 7.4c) establishes that a task defined in the enterprise view-
point is related to a specific operation signature defined in the computational
viewpoint specification. Here, the correspondence indicates that a particular
computational operation type is to be used to support the business process
step in the enterprise specification.

7.7 Tool Support for Specifying Correspondences

Usability is one of the limitations of most current UML tools. Writing large
systems specifications becomes a tedious and cumbersome task; in particular,

Correspondences — Joining It All Up 123

the specification of tag values of stereotyped elements normally implies a long
sequence of interactions with the tool. This is especially relevant in the case of
the specification of correspondences in UML4ODP, given that the number of
correspondences is normally large and the related elements need to be selected
individually for each correspondence. Tools can be a great help in such a
situation.

It is possible to define correspondences in a more succinct and visual man-
ner, using stereotyped dependencies between the related elements (although
the direction of the dependency is not significant). For example, a tool can
extend the UML4ODP standard notation for expressing correspondences, pro-
viding a shorthand notation that is easier and quicker to draw, while, at the
same time, providing a more intuitive representation. Using it would allow
the relations between elements to be shown very quickly, with the core facili-
ties available in most UML drawing tools. The diagram depicted in figure 7.5
shows an alternative representation of the correspondence between a binding
object and an engineering channel that was shown in figure 7.4a.

«CV_BindingObject»

bindingObject1

«NV_Channel»

Ch3

«CorrespondenceLink»

FIGURE 7.5: A simpler representation of the binding object to engineering
channel correspondence.

A tool can take care of the model transformations required to convert
automatically correspondences specified in this way to correspondence speci-
fications that conform to the UML4ODP standard notation, and vice versa.

Similarly, the user does not need to specify all correspondences manually
in all cases because a tool can easily specify all correspondences between the
elements in different viewpoints that are closely related according to some
given criterion (for instance, having the same name), or defined in an implicit
way using rules (expressed, for example, using QVT relations — see chap-
ter 15). It is normally easier to fine tune a set of correspondences produced
automatically from a small set of implicit relations than to start from scratch
and then have to specify a large number of individual correspondences one by
one.

This page intentionally left blankThis page intentionally left blank

Part III

Using ODP

This page intentionally left blankThis page intentionally left blank

127

About Part III

Building on the viewpoint structure, this part examines a
number of ways in which requirements can vary, and shows how
system designs can be made more resilient and more broadly
applicable by applying suitable architectural techniques.

To set the stage, chapter 8 explores the concepts of com-
pliance and conformance, which provide the bridges between
architecture, design and implementation. It shows how the
different levels of design can flow through naturally into con-
formance assessment and testing.

Following this, a series of chapters each examine different
kinds of variation and how they can be coped with. Chapter 9
looks at variation in the environment in which the system may
be deployed, and how the use of transparencies can decouple
the application-specific concerns from these variations. Chap-
ter 10 looks at the way changes in management thinking can
be accommodated by using the idea of mutable policies.

The following chapters, dealing with the federation of dif-
ferent organizations, incorporation of existing components and
response to changes in requirements, each look at different
ways the architectural framework can enable the smooth evo-
lution of systems. These aspects are all concerned with the
way systems change over time, and how the lifetime of a de-
sign can be extended in a changing environment.

This page intentionally left blankThis page intentionally left blank

Chapter 8

Conformance — Does It Do the
Right Thing?

Nigel had paused at Trudy’s cubicle to say hello, and had got more than he
bargained for. Her desk was covered with pieces from printed documentation,
and there were about a dozen windows open on her screens. They were all
covered with pieces of highlighting and notes, and the whiteboard was a tangle
of circled references linked by arrows. One particular looped set of arrows was
traced in red marker.

“It’s no good,” she said, “they just don’t say what the rules are.” “What’s
the problem?” “They claim to be market leaders for CRM systems, but they
don’t make it clear what the package really needs. It’s just like that trans-
action abort problem last year, where we found that all the messages had to
be mapped to full SOAP. The obvious REST equivalent just didn’t work, but
there was no warning in the installation guide.”

Nigel ran his fingers through his hair. Indeed he did remember. It had
delayed an important upgrade and Marcus had not been best pleased. “But
these aren’t transactional components you are looking at here.” He waved
towards the whiteboard. “No, this is a different problem, Nigel, to do with
registering interests. I just want to know whether this operation has to be
called by a descendent of one of the package’s workflows, or whether it can
be called by anyone. It all depends on the definition of parent activity and
propagating action here, but the definitions are circular, as you can see. But
the real problem is that this other step in the circle can’t be checked unless
we know what supporting mechanisms qualify — the same problem again,
really — and their documentation just does not say.” Her voice had a slightly
desperate edge to it as she hammered each word out.

“It sounds to me,” he said, “as if they don’t have a clear conformance
model for their product, which in turn means that the consortium writing
the so-called standard they claim to be following didn’t know they should be
insisting on one.” He thought for a minute. “Look, all you can do at this stage
is ask their support line what it does, and be sure the lawyers put the answer
into the Memorandum of Understanding so that we get some insurance. But
it’s a classic case of I wouldn’t have started from here. Come on, I’ll get you
a coffee.”

129

130 Building Enterprise Systems with ODP

8.1 Compliance and Conformance

When using a framework like the ODP reference model, we need to have
ways of assessing whether the interpretation being made is correct. There are
two concepts that can be used here — conformance and compliance . The
distinction depends on whether there needs to be some testing of a physical
product, or whether reasoning about the consistency between two pieces of
specification is enough (see figure 8.1).

Architecture

Design

Consistency
implies

Compliance

Specification

Implementation Observations

Trace

Consistency implies
Conformance

implement

.

interpret

FIGURE 8.1: Assessing compliance and conformance.

Whenever we take a reference model, such as the RM-ODP, and use it as a
starting point and create either a more detailed framework or a complete de-
sign, we need to check that the result complies with the reference model. The
same is true when we use any other similarly abstract architectural standard.
In effect, this involves looking at the reference model and the new material
together and asking whether they still make sense. A composite model is
formed by tracing every use of a concept back to the corresponding reference
model definition and then doing some logical analysis to see if there are any
contradictions. If there is a contradiction, then the new specification is not
compliant.

The situation with conformance is much more complicated. Here we want
to ask whether some product does what a specification says it should. This
cannot be done by reasoning about descriptions. It requires some kind of
testing .1 Testing is a process that involves observation of what a system
does; the result of the process is a set of test results — statements of what
was observed — and testing conformance is essentially equivalent to checking
the compliance of the test results to the original specification.

1Of course, we can only ask questions about conformance if the target specification is
itself consistent.

Conformance — Does It Do the Right Thing? 131

8.2 A Conformance Community

The idea of conformance can be applied very broadly in many different ar-
eas, from product manufacturing through service provision through to the ap-
plication of management guidelines. ISO work on conformity assessment [19]
aims to be sufficiently general to cover this entire range, but for our pur-
poses we want a more specific framework, concentrating on open distributed
systems.

Part 2 of the RM-ODP provides a conformance architecture, which you
can think of as an enterprise model of the design, implementation and testing
activity (see figure 8.2); it defines three main roles, identifying the specifier,
the implementer and the tester. As usual, an object can fulfil more than one
of these roles, but it is simpler to describe the case where the roles are distinct
— the so-called third-party testing scenario.

The specifier produces and publishes a specification. Not only does this
specification say what an implementation should do, but it also constrains
how the implementation can be tested by defining where its behaviour can be
observed. This is necessary because many different styles of specifications can
represent the same intended object, and the implementer should be left with
as much freedom as possible to produce something that works efficiently.

For example, a business process might describe the packing and dispatch
of a repaired phone as involving a sequence of steps: wrap the phone, print
a test report, print a label on the box, fill the box, perform a final check and
seal the box. It may or may not matter exactly in what order these happen. If
the specifier is just using the sequence for simplicity of description, but would
accept other sequential or parallel behaviour as doing the same job, we don’t
want to be unduly restrictive.

However, for assessing some of these activities, such as the final check, it
may really matter that all the earlier steps have been completed. In this case,
the specifier declares the interaction between the checker and the previous
steps as a reference point . This means that it is a place where correct
behaviour may potentially need to be observed.

UML4ODP provides a simple profile that allows elements in the specifi-
cation to be stereotyped as «ODP ReferencePoint» and qualified by suitable
comments stereotyped as «ODP ConformanceStatement».

A specification will generally be intended for reuse; the final decision about
what needs to be tested may vary when it is reused. A specification may
therefore identify quite a lot of reference points, indicating where testing is
possible, and the final integration of the full product specification will then
involve selecting a subset of these as conformance points, where it is stated
that final product testing is required.

The implementers obviously have to produce an implementation that
behaves according to the specification, and this involves them in making im-

132 Building Enterprise Systems with ODP

make implementation

choices

produce

implementation

document

implementation

choices in the IXIT

create component

designs

identify reference

points

select conformance

points

interpret results as

spec. events

check trace against

specification

test and observe

product

locate conformance

points

conformance

confirmed

test failed

test failed

«EV_Role»

tester

«EV_Role»

implementer

«EV_Role»

specifier

FIGURE 8.2: A simplified view of the testing activity.

plementation choices where the specification does not go into full detail. How-
ever, they also have various obligations to provide information about what
they have done. They have to declare what specifications, and what options,
they are implementing; this will often involve confirming what they have been
contracted to do, but it may not be so clear for off-the-shelf offerings. Secondly,
they have to declare how the conformance points can be located, in terms of
the access a tester has to the physical or software artefacts being supplied.
Finally, the implementer needs to say how the atomic concepts in the specifi-
cation are realized. This last obligation may involve them in providing a lot
of information. For example, a computational specification may be expressed

Conformance — Does It Do the Right Thing? 133

in a quite abstract way, in terms of high-level interactions or messages. The
implementer needs to state how these interactions are supported, which may
involve reference to other standards or provision of additional pieces of speci-
fication.

The tester stimulates and observes behaviour at the conformance points.
The observations are necessarily at a very detailed level, in principle observing,
for example, electrical or optical signals being exchanged with the system un-
der test. These have to be interpreted in terms of the symbols they represent,
and then these in turn interpreted as complete messages, and so on. Eventu-
ally, this process results in detection of one of the atomic concepts from the
specification being tested (or an error in the implementation being detected
if the observations cannot be interpreted or make no sense). The tester then
knows that an event in the specification has occurred, and the sequence of
events detected so far (called a trace) can be checked against the behaviour
that the specification allows.

8.3 Types of Reference Point

The testing process can take a number of different forms, depending on
the nature of the reference points involved. The RM-ODP identifies four
important kinds of reference point, as follows.

An interworking reference point is associated with some physical com-
munication channel, such as a network link or a connector between subsystems.
The physical signals passing between the communicating systems can be ob-
served. For instance, when a pair of protocol objects with SOAP interfaces are
bound together, an access cable to a network over which they communicate
can be specified as an interworking reference point.

A programmatic reference point indicates a software interface where
interactions can be observed for testing purposes. This implies some support
from the local system infrastructure to report events, such as calls to kernel or
middleware services, or provision for installation of some software monitoring
component, as might be provided by a modified class loader. For example, a
BEO may need to use an event notification service provided by an engineering
object within the same cluster. This interaction will be local and therefore
checks at the interface will involve use of a programmatic reference point.

A perceptual reference point is a point where the system interacts
with the real world. This may be via a keyboard and screen, or with some
more specialist device, like an ATM terminal, or through sensors and robotic
devices; there are many other examples. Testing at such a point involves
watching what happens when the system reports it is taking an action; if
the control system for a chemical plant reports a valve is being closed, can we
actually see this has in fact happened? Alternatively, a security audit function

134 Building Enterprise Systems with ODP

—-

0+

1oo 2abc 3def4ghi 5jkl 6mno7pqrs 8tuv 9wxyz

*

*
⇐⇒

—-

0+

1oo 2abc 3def4ghi 5jkl 6mno7pqrs 8tuv 9wxyz

*

*
⇐⇒

SIM

ARM

—-

0+

1oo 2abc 3def4ghi 5jkl 6mno7pqrs 8tuv 9wxyz

*

*
⇐⇒

Interworking
Reference

Point

Perceptual
Reference

Point

Interchange
Reference

Point

Interworking
Reference

Point

Programmatic Reference Point
(within software)

FIGURE 8.3: Conformance points for the mobile phone.

may be required to generate a pop-up message when it detects unusual event
traces. Checking that this actually happens must be performed at a perceptual
reference point.

An interchange reference point is a point where some portable medium
is read or written, and this process can be checked by observing the state of
the medium before and after a known series of operations. For example, the
specification might state that, in certain circumstances, configuration details
on a removable SD memory card are updated; the tester can remove this card
and see if the change has in fact been recorded. Or a customer’s confirmation
of order information may be written onto a smartcard, and subsequently this
recorded copy can be checked for consistency with the system’s state.

To illustrate these ideas, consider the provision of a phone tester by a sub-
contractor (see figure 8.3). A test SIM is loaded into the repaired phone, which
is then connected to the tester, using an external interface provided by the
handset manufacturer. A software harness is loaded into the phone’s memory.
The tester orchestrates a series of tests, in which the functions of the phone
are exercised, including reading and writing the SIM, presenting patterns on
the phone’s display and exercising the wireless receiver and transmitter. At
the end of the test, the SIM is plugged into the tester and its contents checked.

In this scenario, the tester is connected at an interworking reference point;
the wireless interface provides another interworking reference point. The load-
ing and running of the test software depend on there being a programmatic
reference point at which a particular set of operating system services are avail-
able. The checking of displayed patterns takes place at a perceptual reference
point, and finally the SIM checks require an interchange reference point.

Conformance — Does It Do the Right Thing? 135

8.4 Conformance to Viewpoint Specifications

We explained earlier how conformance test results need interpretation to
identify the actions that are defined in the standard. Nowhere is this more
important than in the enterprise viewpoint, which deals with quite abstract
actions and events. We therefore conclude this chapter by looking at how this
mechanism works in more detail.

Consider an interaction performed by a specific role in an enterprise speci-
fication — perhaps the transfer of billing information from the Branch system
to the HQ system. This interaction should be observable at a reference point
positioned on the communications path between the two systems, such as the
HQ system’s network access link. However, there is a big gap between the arc
in the activity diagram representing the enterprise behaviour and the optical
fluctuations on the access link.

Let us look first at the series of design steps involved in narrowing down
the requirements. Within the enterprise specification, we need to identify
the object that is playing the role that is being considered. The arc in the
enterprise behaviour can then be associated via some correspondences with
a transition in a state machine expressing the computational behaviour. In
fact, both the behaviour of the Branch system and the behaviour of the HQ
system will have such a transition, but, since we are focusing on the HQ system
in performing the tests, we will concentrate on its behaviour. Note, however,
that the transition may not be directly involved in a correspondence, but
might need to be inferred from correspondences involving the states it links;
even so, there is still a chain of logic pointing to it, which, in turn, identifies
a computational interaction.

The way this interaction is performed will depend on the selection of an
engineering template that satisfies the transparency requirements in the par-
ticular environment, and this will prescribe an appropriate message format,
protocol and series of message exchanges. How these exchanges are carried out
then depends on the implementable standards identified for communications
in the technology viewpoint. Each of these choices is recorded in the system’s
documentation, either in the viewpoint specifications, the correspondences or,
for the last stages, by the implementer making statements within the IXIT
(see chapter 6).

The analysis of the results of a conformance test reverses this sequence (see
figure 8.4). First, knowledge of the communications standards in use allows
the physical measurements to be interpreted, yielding a bit stream and then
a series of raw messages. Knowledge of the protocols and formats in use lets
these be interpreted to identify the computational actions being performed
and the parameters they convey. It is common for monitoring tools in current
use to do this; anyone who has carried out a hand analysis of a binary dump
knows how valuable such tools are.

136 Building Enterprise Systems with ODP

Make a series of physical
observations at the
conformance point

Identify the sequence of
computational object

interactions seen

Identify when each enterprise
step is completed, and what

artefacts are involved

Confirm that the step seen is
valid for the enterprise object

and role involved

Confirm that these interactions
 are valid in this

computational state

Interpret the messages to
yield interactions of Basic

Engineering Objects

Interpret this series of
observations as transport

messages

Implementable standards for

the network and transport

implementation are listed in the

technology specification.

The correspondences between

engineering and computational

terms establish the mapping.

The correspondences between

the computational, information

and enterprise specifications

provide the mapping

information.
The enterprise object

identities and role

memberships were deduced

from previous observations.

Middleware mechanisms are

defined in the engineering

specification.

The state is defined in the

computational specification

and is deduced from

previous observations.

The conformance point

location in the delivered

product is stated in the IXIT.

FIGURE 8.4: Checking conformance in the enterprise viewpoint.

We now have our observations in terms of a sequence of computational sig-
nals. The next step is to interpret these as operations performed by particular
processes. This is a nontrivial task, since it is necessary to pair-up requests and
responses and disentangle concurrent threads of execution, and it may involve
building up the necessary context by finding suitable correlators, like session
or transaction identifiers. Finally, these computational interactions must be
interpreted using the next set of correspondences to identify the enterprise
interactions and the roles that are responsible for them.

As we move up to progressively more abstract representations, we need
to draw upon knowledge of the context involved that has been acquired by
analysis of earlier observations. In some cases, the initial analysis may be am-
biguous, with further observation being necessary to determine, for example,
which of the roles an object holds is responsible for its rejecting a request.

Of course, anywhere in this chain, the analysis may fail. Such failures
indicate a failure to obey the rules of the view concerned, and so indicate a

Conformance — Does It Do the Right Thing? 137

fault in the system, making the communication meaningless before questions
about its relevance to the enterprise can be asked.

Finally we should note that paralleling this behavioural and observational
analysis, there is a chain of obligations relating to the testing process. Tests
can only be made mandatory if performed at conformance points, which must
have been declared as reference points in sufficient detail to allow the tester
to locate them. Thus, if the access link to the HQ system was declared by the
implementer as a conformance point, this percolates through to other views,
thereby making it possible for corresponding model elements to be involved
in the conformance assessment. On the other hand, if a conformance point
is declared in the enterprise specification, there is an associated obligation to
identify conformance points in other viewpoints so that chains of reasoning,
like that as outlined previously, can be constructed for all the valid refinements
of that enterprise design.

8.5 Claiming Compliance or Conformance

When a detailed specification claims compliance with a broader framework,
it should include a statement asserting this compliance and making it clear
which terms and concepts are derived from the framework. The claim should
indicate exactly what revision of the framework is being referenced.

A claim that a product conforms with a specification is made as a part of
the product documentation. This claim will generally form part of the IXIT,
and should include the instructions for locating all conformance points defined
in the specification. The specifications and the IXIT together must always
provide all the information needed for carrying out tests and interpreting
their results.

In this book we normally assume that a full set of viewpoint specifications
is being produced. However, in some cases where products are being targeted
at some existing environment, the specification may detail only a subset of
the viewpoints so that it includes, for example, full specifications for just the
enterprise information and computational viewpoints. In such cases, links to
the missing detail must be made via the IXIT, and there will always need to
be at least a vestigial technology specification for this purpose.

This page intentionally left blankThis page intentionally left blank

Chapter 9

Transparencies — Hiding Common
Problems

“It’s no good,” Trevor said, shutting his laptop with an air of finality.
“We just can’t meet the performance and availability targets with our current
server platform, and what’s probably needed is some kind of nonstop platform
that would put us well outside our budget.”

The four of them were struggling with resource plans in one of the small
meeting rooms. These rooms had been carved from the drawing office when
the old dockside works had been converted as a home for cleaner, higher tech
activities. There were windows on both sides, now partly blocked by extra
whiteboards, but still looking down, to the left over the cubicles of the open
plan development area and to the right over what was now the repair lab,
shipping areas and stores. The skylights that used to illuminate the drawing
boards now showed the hurrying streamers of mares tails, orange in the setting
sun.

“Well,” said Nigel, “what about sharing the load by replicating the logistics
server on independent platforms? We could put replicas at regional centres so
that no local service failure took everything out, and get better local response
at the same time.” “Please,” said Claire, bristling, “have you any idea how
much trouble we would have in coordinating and synchronizing those replicas?
Last time we tried to get our developers to produce a structure like that we lost
almost two months in test.” “And ended up needing three platforms rather
than two to compensate for the extra cost, as I remember,” added Trevor.
“Mind you, it would mean we could use the existing equipment, so it would
certainly be cheaper!”

“Hold on,” said Alex, who had been listening quietly for some time. “You
don’t want the application programmers involved in writing code to manage
replicas. That’s too hard a job to want to do it more than once. What you need
is an infrastructure solution. Put it in the engineering view and then use it as
a generic service.” Claire looked unconvinced. “But we would still need to get
the application people to pick the right style each time they call for an access;
any misunderstanding would result in chaos.” “But remember what I told you
about using transformational tools. Don’t worry about the accesses. Mark
the data objects that need special treatment and then use those markings

139

140 Building Enterprise Systems with ODP

to guide a transformation that rewrites all the critical accesses to use the
replication options.” “And we do that marking throughout the computational
view?” “Better still, mark the key types in the information view, if you can,”
said Alex. “That way there will be less scope for error, as long as the same
requirements apply whenever a sensitive type is used; and that’s often the
case.”

As if to punctuate the discussion, the buildings smart lighting system chose
this moment to respond to the gathering dusk by fading up the concealed
ceiling spots.

9.1 What Is a Transparency?

Distributed systems are inherently more complex and unpredictable than
monolithic ones. As Leslie Lamport is widely reported to have said, “A dis-
tributed system is a system in which I can’t do my work because some com-
puter that I’ve never even heard of has failed.” Distributed systems are subject
to all sorts of problems, from clock skew to uncoordinated change manage-
ment. There are well-known solutions to many of these problems, but some
of them are subtle and easy to get wrong, and all of them make the designer’s
life more difficult. There are just a lot more potential kinds of error to be
considered when distribution is present. It would be nice if we could hide
some of this complexity.

But there is no magic bullet. We can hide transmission errors by using ac-
knowledgements and repeating lost material, but the result is a less predictable
transit delay. We can safeguard against local power failures by keeping non-
volatile copies of data, but this slows the system down, and is unlikely to be
effective against flood or earthquake.

However, we can still make things simpler by reducing the number of kinds
of error, hiding some errors completely if we accept the potential costs, and
acknowledge that there will still be some rarer but more serious errors that
get through. We express this by using the idea of a transparency . When
designers request a transparency, they are stating that they wish to work in an
environment where a corresponding class of problem will not be seen. Either
the problem will be fixed by the infrastructure or, if this process fails, a single
more serious kind of error will be reported. More formally, this simplified
view of the infrastructure is requested by declaring a transparency schema
that says what language features used to express the design (or, equivalently,
the virtual machine supporting it) should hide selected exceptions from the
designer. Figure 9.1 illustrates how this hiding takes place.

The infrastructure then configures itself based on this request for the
transparency. What it actually does depends on the environment in which
it operates. Consider a request from an application designer that migration

Transparencies — Hiding Common Problems 141

Object

transparency

Error
Trap

Infrastructure components catch er-
rors hidden by transparency and in-
voke corrective actions. If successful,
these result in the return of a normal
termination to the object.

(iii) Infrastructure view of provision of the transparency.

Object

transparency
Interactions reporting the problems
masked by the transparency are hid-
den, but may be converted to other,
broader classes of error.

(ii) Consequence of requesting a transparency, as seen by the object.

Object

AB C

A. Interactions corresponding to
operations defined in the ob-
ject’s interfaces.

B. Error terminations defined in
the object’s interfaces.

C. Interactions reporting errors in
the environment, such as the
failure of other objects.

(i) Kinds of interaction between an object and its environment.

FIGURE 9.1: How transparencies change an object’s environment.

transparency should be applied to a particular server. That is to say, the ap-
plication should not need to take any special action if the server object moves
to a new network location, as might, for example, be necessary to balance
load. The infrastructure’s configuration control will assess the request. If the
server is indeed mobile, it will need to deploy extra components in the chan-
nel from this client to the server, perhaps to trap server-not-found exceptions,
search for the new server location and then reconfigure the communications
support to link to that location. On the other hand, it may be the case that
the server concerned is incapable of migration because it is closely coupled to
some physical resource, such as a huge data archive. If so, the infrastructure

142 Building Enterprise Systems with ODP

can omit the extra components, since it is clear they will never be needed, and
costs can be reduced by their exclusion. However, if in the future the server
is redesigned so that it does become mobile, the transparency schema for the
application is still on record, and so the infrastructure supporting it can then
be modified to include the recovery mechanisms needed.

This approach of separating the assumptions about the infrastructure from
the way they are satisfied is particularly useful when a widely distributed
application needs to operate in many different kinds of environment. For
example, a user interface client may operate on a desktop or within a mobile
phone. It has the same failure transparency requirements in either case, but
the complexity of providing them differs considerably, with more mechanisms
needed to compensate for the wider range of threats and failure modes in the
mobile case. This is not just a basic communications issue, as the mechanisms
needed to safeguard the persistent state in the client might be quite different in
the two cases, requiring completely new communication paths for the mobile
client to log its transactions at a base location; the static desktop could be
much simpler while providing the same quality of service.

This last example hints that figure 9.1 is an over simplification. Many of
the supporting mechanisms need some additional parameterization; for exam-
ple, transaction transparency mechanisms are likely to need to add transac-
tion identifiers to interactions under their control. Others need to transform
existing parameters; one example is location transparency, which will need
to transform naming parameters from a location-independent to a location-
specific form. In general, adding a transparency will involve the analysis and,
potentially, the modification of the parameters of any interaction for which the
transparency is responsible; this is equivalent to a set of interaction rewriting
rules applied by the supporting virtual machine.

It should be clear from these examples that there is a close relationship
between provision of transparency and virtualization, which is one of the basic
techniques for the support of cloud computing. Transparency aims to simplify
the virtual machine a designer sees, in terms of its management and failure
behaviour; virtualization does the same thing by providing a virtual machine
that offers a slice of some shared resource as if it were provided by a physically
separate platform, independent of other users. Both of these may involve pro-
viding software support that guarantees a particular user view of the services
or resources offered, simplifying the designer’s life.

9.2 Types of Transparency

There can be many types of transparency, some of them being domain-
specific or applicable to general aspects such as security. The RM-ODP itself

Transparencies — Hiding Common Problems 143

defines a standard set of transparencies covering common distribution prob-
lems. These are:

• Access transparency hides differences in representation and pro-
gramming model between different environments, allowing language-
independent distribution. Almost all popular middlewares provide ac-
cess transparency.

• Failure transparency masks failures of objects or their supporting
environment; its provision usually involves some mechanism, such as
checkpointing or replication, which allows the recovery of the object’s
internal state.

• Location transparency involves the provision of object identifiers or
other names in a form that is independent of the physical location of the
resources concerned, so that there is a decoupling between application
structure and the physical configuration supporting it.

• Migration transparency hides the fact that an object has been moved
from both its current and potential users. Thus, a management function
can move an object to a new platform without worrying about causing
errors elsewhere in the system.

• Relocation transparency is concerned with preserving the binding of
interfaces. It involves the updating of bindings so that existing commu-
nications are not disrupted when an object moves.

• Replication transparency hides the fact that a particular interface
is supported not by just a single object, but by a cooperating group
of objects in order, for example, to achieve increased performance or
availability.

• Persistence transparency hides from an object and its users the ac-
tions a system manager may take to temporarily suspend and then
resume execution of an object; the state of an object, or a container
for a whole collection of objects (such as a cluster), may be moved to
some secondary storage to conserve resources, or to give the impression
of continuous availability following system crashes. When persistence
transparency is present, the application’s state is nonvolatile, surviving
failures of the supporting platform.

• Transaction transparency conceals a whole group of concurrency
and consistency measures needed to ensure that independent threads
of behaviour can share resources in an orderly way. The transparency
schema identifies groups of related actions, leaving to the infrastructure
the bringing into play of appropriate transactional and compensation
mechanisms.

144 Building Enterprise Systems with ODP

9.3 Transparencies and Viewpoints

The transparencies play an important role in the linkage between the man-
agement of infrastructure mechanisms in the engineering viewpoint and the
design constraints established in the computational, enterprise and informa-
tion viewpoints. The relationship between the computational and engineering
specifications is particularly significant because the computational design es-
tablishes the potential for distribution by specifying the constraints on the
behaviour of specific implementable objects. The enterprise and information
specifications impose broader, more generic, constraints on this computational
structure. However, the shift from the computational to the engineering view-
point introduces the properties of particular infrastructures and distribution
environments.

The computational designers mark their objects or interfaces to indicate
any special properties they are to have. The engineering specification then
defines a set of templates that give reusable solutions to the various distribu-
tion problems, together with the necessary rules for selecting the appropriate
templates to satisfy the computational requirement in whatever environment
actually applies. Instantiating the selected templates produces the various
components needed to provide a binding and hence a supporting channel with
the right properties.

client
object

mobile
server

relocator

Trap any server not
found error, try to
find at new location
and retry action.

migrator

Save object’s state
and passivate it; re-
activate it at a new
location.

object
locations

object
state

FIGURE 9.2: The supporting objects that are needed to provide migration
transparency.

Consider, for example, the provision of migration transparency for work
tickets in the PhoneMob system (see figure 9.2). The aim, from the com-
putational point of view, is for the object representing a repair task to be

Transparencies — Hiding Common Problems 145

visible anywhere in the application, without worrying about its actual loca-
tion, which may change as the phone concerned is shipped between depots
or departments. The application designer simply marks this object as having
migration transparency by creating a corresponding transparency schema for
that object type, perhaps in the computational viewpoint, because, in this
case, the information type concerned is a supertype, which deals with a wider
range of task types. Note, however, that at this stage UML4ODP does not
support the specification of transparency schemata on individual objects or
types.

This results in the selection of a corresponding engineering template suit-
able for the platforms in use. It provides for the checkpointing, passivating
and reactivating of the object at a different location. It also requests the es-
tablishment of relocation mechanisms for each of the object’s interfaces, so
that existing clients do not see errors if they attempt to access the object
while it is moving or after it has moved. In addition, it may be necessary to
update registry or directory entries with the new location if the object was
offering published services.

Another example is the provision of persistence transparency. The
PhoneMob designers may decide that the state of a user dialogue in their
web interface should persist across session failures. This can be achieved by
asking for transparent persistence of this state, resulting in the recording of
the dialogue state to nonvolatile storage at each step and restoration of the
state at the start of any new session.

However, there may be a need for some additional computational design
features as a result. There may have been an implicit assumption that the
application starts in its initial state at the start of a session and that session
restart is the way to escape from consistency problems. If so, some addi-
tional interactions will be needed to allow for the explicit cancellation of the
dialogue to prevent the user being trapped in a neverending series of failed
sessions, in which some incorrect state is restored on every new attempt. Sim-
ilarly, if persistence across processor failure is provided by checkpointing, it
will be necessary to have some process that allows faulty checkpoints to be
abandoned.

Finally, we might ask whether there is really a need for the marking in
the computational specification. Migration transparency sounds like a useful
thing to have, so why not make it mandatory for all objects? Life would be
simpler. The answer is that there is no free lunch. Adding the additional
mechanisms has an associated cost, and so including these mechanisms every-
where, including between objects that are strongly interdependent, may result
in an unacceptable performance hit. By marking only those objects that the
designer can conceive of as moving at some stage, we can reduce cost, since
we can leave out a lot of expensive activity where it is not really needed.

This page intentionally left blankThis page intentionally left blank

Chapter 10

Policies — Tracking Changing
Requirements

“It still just says delayed,” said Nigel, after walking over to check the
monitors outside the departure gate. “I’m not sure we are going to get out of
here tonight. Anyone want a coffee?”

They were supposed to be on their way to a conference; Alex had persuaded
Marcus to let him take Nigel and Eleanor to attend the industry experience
track at EDOC, the premier event for the kind of enterprise modelling they
were now doing, and so expose them to more new ideas. However, there were
problems with an air traffic control centre on the route, and they had already
been waiting for almost two hours.

Alex opted for a cappuccino, and Eleanor a Christmas special crème brûlée
latte. Nigel got himself a plain filter coffee. “It’s interesting,” he said, as he
put the tray down, “when we got here the queues were much longer, and
everyone got two of those little almond biscuits. Now everyone gets the fancy
design stencilled on top of the coffee, but only one biscuit. It’s not random, I
watched four or five customers in front of me each time.” “It must be a policy,”
Alex said. “They let the duty manager vary the prescription depending on
the load.”

“We could use that idea,” said Eleanor. “We need to vary the discounting
algorithm every time marketing has a brainwave; now we can just tell them
they are changing a policy. It would be good for their egos.” “Any more ego
and those guys would explode,” said Nigel. “But I’ve heard that term used
in network congestion management, and in security. Is it the same idea?”
“Yes,” said Alex, carving a spoonful of chocolate and froth from his drink.
“It’s a common pattern that shows up all over the place. It’s really useful to
highlight the places where you expect to have to make changes. It lets you
make tomorrow’s job easier.” “But is it the same idea in the network and in
the enterprise?” asked Nigel. “Is Eleanor’s crème brûlée the same as the stuff
I had last night in a ramekin?” “Certainly not,” said Eleanor. “This is just
getting them to put brown sugar in and them not bothering to stir it.” They
all laughed, but Alex went on. “It’s the same pattern, but different detailed
mechanisms and timescales. But if you stick to the pattern, you don’t have
to reinvent all the possible mistakes people make.”

147

148 Building Enterprise Systems with ODP

Just then, the flight was called. “Just wait,” Alex said, as he picked up
his bag, “you will be hearing a lot more about policies in the conference, I’m
sure.”

10.1 Why Do We Need Policies?

Often, when working on a design, decisions need to be taken where the
designer is aware that the best answer will change as things develop. This may
be because of changes in the organizational goals, the supporting technology,
or the environment in which the activity is to take place. The designer can
insure against any of these changes by saying that the parts of the specification
that are likely to change involve policies. This is a warning that the system
should be constructed so as to make changes easy to incorporate, and lets the
designer make it clear how much freedom should be allowed when planning
subsequent changes.

A system’s properties do not generally change steadily throughout its life-
time. Rather, there are periods of stability punctuated by events in which the
rules governing system behaviour are modified. The ODP Reference Model
defines an epoch as being a period of time when something, be it an object, a
component or a system, has a particular kind of behaviour or obeys a partic-
ular set of rules. One example of an epoch is the period during which a policy
applies. Policy change events mark the boundaries between different epochs.

There can be many variations on this general picture. Occasional change
as part of the management of a running system is one, but similar considera-
tions apply when widely used components, such as beans or shrink-wrapped
packages, are deployed; the design envisages that the artefact produced may
be used in many different circumstances, and allows for a controlled degree
of tailoring as part of the deployment process when it is brought into use.
The adopter of such reusable components must define and install a set of
deployment policies. A typical system life history is outlined in figure 10.1.

Some of the things a system is expected to do are determined by broadly
based decisions about how the organization it serves is to operate. Thus, for
example, most organizations have some form of pervasive security policy de-
termining what level of control is to be applied in handling different kinds
of information, and who is to be trusted with what. The team that delivers
a major system that is unable to track changes in these access control rules
quickly and accurately as situations change will generally have a miserable
time, so tailorable security policies are almost, but sadly not completely, uni-
versal. There are many other examples, such as transaction approval policies,
discounting policies or delegation policies.

Another reason for introducing policies is to allow a system design to be
exploited in a number of different jurisdictions, or to respond to changes in

Policies — Tracking Changing Requirements 149

sy
st

em
sp

ec
ifi

ca
ti

on
in

cl
u
d
in

g
p

ol
ic

ie
s

D1

D2

P21

P22 P23

D3
P31

P32

P33

P34

E11

E21
E22

E23

E31
E32

E33

E34

time

This figure shows the way behaviour derived from a specification evolves. Here one specifi-
cation is instantiated three times, giving three distinct systems.

Di is the deployment of system i, with establishment of an initial set of policies for it.

Eij is the jth epoch of system i; it is drawn as a straight line because the behaviour specified
by the policy is constant.

Pij is the jth policy setting event for system i; the change in direction of the system’s
trace indicates that the system’s behaviour has changed at these points, but remains
constant throughout the following epoch.

FIGURE 10.1: Epochs and points where policies are asserted.

regulation affecting the system’s behaviour. Thus, for example, a financial
system may need to be tuned to satisfy a particular national tax law, or a set of
audit requirements. The original designer will be aware that there are certain
key points in a business process where tax is due and must be calculated, but
the details depend on the locale, and may be changed by legislation that was
not even drafted when the system was first created.

Policy is a general concept, applicable to any of the viewpoints. However,
as these examples have shown, it is particularly heavily used in the enterprise
language, where there is a need to satisfy requirements both for agile business
processes and for stable and reliable provision of IT systems.

Policies, then, are a vital tool to let an organization make changes to the
behaviour of a system or subsystem in a controlled way, and, by so doing, to
let it respond to changing requirements and challenges.

10.2 What Is a Policy?

Loosely speaking, a policy is any point of potential variation in a spec-
ification that has been identified by the designer or the other stakeholders

150 Building Enterprise Systems with ODP

concerned. The idea of introducing a policy to increase flexibility is generic,
and so can be applied in any viewpoint. Each policy has a number of pieces
of information associated with it, and these constrain the behaviour of the
system in different ways. We can distinguish the following terms.

• Policy is the term used when referring to the whole collection of infor-
mation or referring to a variation point in the specification.

• The affected behaviour is that part of the system behaviour that is
modified or controlled by the policy. A policy might, for example, control
the conditions that must hold before a loan handset is issued, perhaps
based on the previous reliability of the user. The step Get Loan Phone
would then be the affected behaviour.

• A policy value expresses the constraints applied at the variation point
during a particular epoch. Changing the policy value changes the sys-
tem’s behaviour. Policy values for an access control policy, for example,
might select suitable mechanisms, so that one policy value might require
password validation, while another that replaces it requires presentation
of a valid certificate.

• Policy-setting behaviour is the behaviour that modifies the policy
value. If no such behaviour is defined, the policy cannot be changed
by mechanisms within the running system. It could still be changed by
actions not forming part of the system’s specification, such as choosing
deployment information before the system is first started, or changing
it and then reinitializing the system. However, it is expected that most
systems will need to be able to evolve dynamically, and so there will be
definitions of the way policies can be changed, and of any constraints on
when such changes should take effect. For example, a change in financial
policy should not become visible within the scope of a compensatable
transaction! The designer also needs to decide what should happen if
a change of policy would leave the system in what has just become a
forbidden state; it may be necessary to define some transitional rules to
deal with such situations.

• A policy envelope indicates limits on what policy values are acceptable.
If system managers are given complete freedom to install absolutely any
policy value, it becomes impossible to reason about the correctness of
the system design. Any required system property may be invalidated
by sufficiently draconian policy values. However, if the policy envelope
expresses constraints that must be true for any acceptable policy value,
the impact of changing a policy can be limited and so meaningful de-
ductions about system behaviour can be made that are true whatever
valid policy value is applied.

Policy envelopes can be expressed in a number of ways. The most re-
strictive approach is to limit the setting of policy values to selection from a

Policies — Tracking Changing Requirements 151

declared enumeration of possible pieces of behaviour, although this is gener-
ally too inflexible. Other approaches limit the policy values to expressions in
a given language, or to restrictive classes of algorithms. Restrictions can be
placed on which aspects of the system state can be accessed or changed by
the policy value, or more complicated constraints applied.

«EV_PolicyEnvelope»

Phone Loan Policy
Envelope

«EV_Role»

User

«EV_Role»

Phone Repair
Provider

«EV_PolicyValue»

Phone Loan
Policy Value

Affected Behaviour

«EV_Process»

Phone Loan
Policy

Setting
Behaviour

«EV_Interaction»

Get Loan
Phone

«EV_Artefact»

Loan
Handset

{PolicyEnvelopRule=Policy Value must either allow or
block the Get Loan Phone interaction; it must do so on
 the basis only of the states of the User and the
Repair Request and values computed from them.}

{PolicyValueRule=Allow interaction if:
 - user is a VIP user; or
 - repair request is delayed by more than 24 hours.}

«EV_AffectedBehaviour» «EV_ArtefactReference»«EV_ControllingBehaviour»

«EV_InteractionInitiator»value within envelope

«EV_InteractionResponder»

FIGURE 10.2: A policy that controls the issue of loan handsets.

We can see these concepts at work in the example given in figure 10.2.
This shows the policy that controls the circumstances when a handset should
be loaned to a customer. All the related pieces of information are gathered
together into a single diagram, so that the policy can be seen as a whole.
The affected behaviour is identified as being a specific interaction, namely the
interaction in which the handset, seen as an artefact, is transferred from the
phone repair provider to the user. In any particular epoch, this interaction
is constrained to happen only if the guard expressed by the policy value is
satisfied. The policy value can be changed by the policy-setting behaviour,
represented in the figure as a process. The definition of this process will
state what roles can change the value, and in what situation this can happen.
This might involve an agreement between a branch manager and someone at
headquarters. Finally, whatever change is proposed, the policy value must
satisfy the constraints given in the policy envelope. Here, these state that the
value must be a boolean guard and must draw only on information about the
user and the progress of the repair request that the user has made. In the

152 Building Enterprise Systems with ODP

example, both the value and the envelope are expressed informally, but these
rules would have to be expressed in a more precise notation than this in an
actual specification.

The presentation of the policy concepts in figure 10.2 differs somewhat
from that given in UML4ODP, in that greater prominence is given to the
way that the affected behaviour is constrained by the policy value and the
way that the policy-setting behaviour is constrained by the policy envelope.
In UML4ODP, these were implicit, being derived from the transitive closure
of other relationships. The original version also showed the value as being
contained in the envelope, illustrating just the simplest situation, where a
specific list of values is given; here, we show that the relationship is, in general,
based on constraining the value with a statement in some policy language. The
enumeration of possible values would just be a trivial case of this.

There have been many proposals for languages to express policies. Many of
them are based on an event-condition-action model, in which the policy value
is a set of expressions stating what action should be taken (or forbidden) if a
given action occurs while an associated condition is satisfied. The same basic
structure can be used to express both permissions and obligations. One of the
best known of this family of languages is Ponder [64], which has a number of
useful features for structuring sets of policy rules. Other proposals have been
based on deontic logic (see chapter 14).

For communication between systems, eXtensible Access Control Markup
Language (XACML) [44] is an XML language specialized for the representa-
tion of access permissions in an event-condition-action style. It allows sets of
permissions to be constructed from individual statements, stating how they
are to be interpreted together; for example, access may depend on any state-
ment being true, or all may be required. Individual statements express details
about the subject requesting the action, their target and the nature of the
action to be performed. Subjects and targets are identified by the matching
of sets of attributes; again, various options for their combination are available.

The Semantics of Business Vocabulary and Business Rules (SBVR) [33]
is the result of recent work within the OMG, and provides a framework for
defining business vocabularies and business rules. As such, it has the potential
for expressing the supporting semantics of subject and targets that are often
glossed over by policy languages. It has been produced with use in a model-
driven environment in mind, making it a potentially useful element of tool
support for requirements capture and design.

10.3 Implementing Policy

To be an effective tool for system evolution, policy values must be easy to
change. This implies the selection of a structure that allows a loose coupling

Policies — Tracking Changing Requirements 153

of the policy representation to the rest of the system. This can be achieved
in a number of ways. One approach is to interpret the policy representation
at run time, so that it can be retrieved from a suitable repository (as, for
example, in directory enabled networking [59, 96]); this allows changes to be
made by updating the repository since the various system components will
retrieve the new version next time they need to interpret the policy. Another
alternative is to provide the policy as a plug-in object within a suitable com-
ponent management framework, or as a service identified by a reference that
can be rebound dynamically when necessary.

One well-known architecture for applying policies is defined by the IETF,
and involves the identification of sets of control points for each class of policy.
There are two kinds of control point (see, for example, figure 10.3).

video
client

network
control

access
control
PEP

account
manager

admission
control
PEP

pause /
rewind

video
store

access
control
PDP

admission
control
PDP

load
monitor

access
policies

admission
policies

FIGURE 10.3: The use of policy execution points and policy decision points
to control policies in a streaming video server.

The policy execution points (PEPs) are points at which choices have to be
made based on the policy in question. When a decision is needed, the PEP
communicates details of the request to a policy decision point (PDP) which
interprets or otherwise consults the policy and determines what the outcome
should be. It then returns the result to the PEP, which behaves accordingly,
permitting or prohibiting the request. The advantage of this structure is that
the policy value is interpreted by comparatively few PDPs, which may be
serving very many more PEPs, each associated with individual fine-grained
resources.

The PEP/PDP structure assumes that there is a need for controlled en-
forcement of a policy whenever it applies. This is what is known as a pes-
simistic policy enforcement approach. The system is constructed in such a way
that the enforcement points make it impossible to violate the policy. However,
this is not the only way of handling enforcement. There is another approach,
called optimistic policy enforcement, in which the policy is published and the
system then monitored, possibly on a sampling basis, to check that the policy
is being observed. If the policy is seen to have been violated, some corrective

154 Building Enterprise Systems with ODP

or punitive actions are taken. This is the case in many enterprise policies, and
also where policies take the form of legal regulations; the system is expected
to obey any relevant laws, and violation may lead to interested parties seeking
redress from its owners through the courts.

Chapter 11

Federation — Talking to Strangers

The sun glinted on the winding river in the valley below the hotel as
the group gathered round the table on the terrace. Marcus had specified
that this off-site planning weekend should be informal, but serious business,
nevertheless. They had spent the afternoon before reviewing their current
position, and had been treated to an excellent dinner as a thanks offering for
the progress they had made. The morning session was gnomically labelled as
new business models on the agenda, and frustratingly vague compared with
the clear topics of the previous day.

“Well, I hope you all enjoyed your breakfast,” said Marcus, “but I want to
share some important news with you now. I didn’t give you any preparatory
material because this is very sensitive, not for us, but for our new collaborators,
who could be in deep trouble with the market if their involvement became
known at the wrong time.” He certainly had their attention now, although
Eleanor had a self-satisfied look that indicated she knew what was in the wind.
“We have been in discussions over the last couple of months with Factotum,
the market leader in bespoke luxury travel packages. They want to include
access to our services in a portfolio of benefits to take the hassle out of travel.
They are making a big thing of these extras in their advertising; to be honest,
they are being hurt by the fringe benefits some of the top-end credit card
companies are offering to their platinum cardholders, and need to fight back.”

Claire looked puzzled. “I’m not sure I get it,” she said. “Will the volume
be enough to make a difference to us, and are they going to be in the centres
we are planning to cover? Aren’t they going to be in the tourist centres, not
the business hubs?” Marcus nodded. “Quite right, but think about it a bit
more. To take your second point first, a lot of their business is in historic
cities where we do have an interest, and they already have a very slick courier
network for handling tickets and delivery of luxuries to the isolated areas they
cover, so we can ride on that. As to the volume, that’s not really why we are
interested. To be perfectly honest, I don’t expect huge extra volume; we will
break even, but the real opportunity is that it’s a perfect opportunity for viral
advertising. We want people who matter in our real market — the CEOs and
CIOs of companies we want to sign up — to hear at dinner parties how their
friends had their holiday rescued from disaster by the PhoneMob. We want
them to look at the Factotum flyers and think they should be giving their

155

156 Building Enterprise Systems with ODP

sales teams support like that.” He paused while this sank in. “It’s a variation
on the exemplary service idea.”

“OK, Eleanor, tell us what is needed to make it happen.” She looked round
the table, and smiled. “It’s not that big a change, really. Most of what we need
to change is in the customer relationships area. We need to accept requests
based on the traveller’s Factotum identifier, and this needs to be validated
with their itinerary records. We will need to interface with the Factotum
courier services, and supply delivery details in their terms. And the billing
will be different, of course.”

“So, the two main external links into our system will be from their trav-
eller database into our headquarters customer accounts system and from their
courier workflow management into our logistics control subsystem.”

Nigel leaned forward, putting his elbows on the table. “What do we know
about their infrastructure? Can they handle inter-system links? Do they use
the same middleware we do?” Ira chipped in, “Do they have the information
we need in their systems already? Do we know what their information schema
looks like?” “What I want to know,” Claire added, “is whether they will be
committed to making any changes to their systems that are needed to make
it all work together.” “Yes,” Eleanor agreed, “are they really going to give this
the right priority — you said it was just part of a package of new benefits, so
they will be being pulled in different directions. Are they up to it?”

“OK, everybody,” Marcus spread his hands for silence. “That’s the aim
of this session, to brainstorm and find out what the issues are. I want to go
home with a list of questions for the management at Factotum and a rough
idea of the size of the task involved for us. But first, I would like to hear
something from Alex. In particular, do we have to talk them into using the
same framework that we have been working with?”

Alex leaned back in his chair and paused for a moment, looking out across
the valley. Then he glanced round the table. “This is a familiar kind of federa-
tion problem,” he said, “and it’s no different in principle from any other design
activity. We start with a federation community, with our two organizations
filling roles, and capture the obligations of each side in a federation contract.
This needs to be as formal as we can make it because it will form part of a real
legal contract this time. Then we can work through the viewpoints, looking
particularly for significant differences. At some level, we need to be sure that
we share an information model, but we must keep that as simple as possible,
and it’s up to each side to ensure this simple description is consistent with
both our local views.”

“And what if it’s not?” asked Ira. “ Are we going to have to slug it out until
someone changes their system?” “No, it’s not as bad as that. At least, not for
the detail. At some abstract level, we need to have a shared understanding
or we cannot communicate; after all, that’s how communication works. But
then if there are differences in how we express things, we have to fight about

Federation — Talking to Strangers 157

whose version we exchange, but it’s like arguing with a foreign partner about
who pays the translator; we don’t need to change the way we think, just be
sure the other side hears what they expect to hear.”

“But how does that work if the infrastructures are different?” Nigel asked.
“You remember those interceptors in the engineering channel model? Well,
that’s where the work is done. They are the translator, and they do whatever
jobs we find we need, subject to preserving our agreed high-level view. If the
middlewares are different, or the message formats, or any other detail, the
interceptor works its way up a process of interpretation to the point where
there is common agreement, and then works back down the stack translating
the common concepts into the other side’s concepts.”

“OK,” said Marcus, “that sounds simple enough; let’s just do it.” “Well,
we’ll find out, won’t we,” said Eleanor, “five gets you ten we aren’t finished by
lunchtime.” There were no takers.

11.1 How Does Interoperation Work?

The objective of a federation is to allow two or more separate organiza-
tions to cooperate while maintaining their fundamental independence. They
can each still go on doing what they want, managing their separate activities,
except that they must observe some minimum constraints in the narrow area
where these are needed to make the cooperation work. Generally, any of the
partners can opt out of the federation if it no longer matches their objectives,
although there may be some penalty, so as to compensate the other partners
if this happens.

Forming a federation is a particular case of forming a community, which
is the basic building block of the enterprise language. Like any community, a
federation is described by a contract — in this case, it is known as a feder-
ation contract . It also has an objective, representing the purpose for which
the cooperation was formed.

The necessary degree of independence is ensured because each of the par-
ties to the federation is an organization represented by its own community.
The federation community overlaps with these, so that the behaviour of the
complete system is the result of the composition of the constraints from the
federation with the constraints within each organization. Strictly speaking,
this is done by having the partners’ communities fill roles in the federation
community. The definitions of the roles to be filled by the parties in the fed-
eration contract are made as abstract as possible, so as to avoid unnecessary
constraints on their ongoing activities. Remembering that a role is a formal
parameter to be instantiated by some object, it is clear that the role type
constrains the type of the object that can fulfil it. In this case, the federation
role type is significantly less detailed than the object type of the community

158 Building Enterprise Systems with ODP

object for the party filling it, and abstracts away all aspects of the business
not involved in the federation (see figure 11.1). Each party should then only
depend on the abstract view of its peers captured by the role types found
in the contract; anything else may be changed without warning by the local
management.

«EV_Community»

Travel Organization

«EV_Community»

phone service

federation

«EV_Community»

Phone Repair

«EV_Role»

phone repairer

«EV_Role»

tour organizer

«EV_Object»

PhoneMob

«EV_Object»

Factotum

{Conforms to role type}{Conforms to role type}

«EV_RefinesAsCommunity»«EV_RefinesAsCommunity»

«EV_FulfilsRole»«EV_FulfilsRole»

has role has role

FIGURE 11.1: How organizations fill roles in a federation.

It is often helpful to use the concept of a domain to make issues of owner-
ship and accountability clear in these circumstances. A domain, in general, is
a set of objects with a characterizing relationship to some controlling object,
but the term can be used to express responsibility for resources, corresponding,
for example, to all or part of the area of authority of some partner. Defining
a suitable domain containing the resources to be committed to the federation
makes the scope of the contract clear.

The community behaviour of a federation covers two areas. First, it defines
the interactions between the parties that are necessary to achieve its objec-
tives. For example, Factotum sends a list of its customers to the PhoneMob,
requesting that they be given phone repair services for a specified period; later,
the PhoneMob bills for the cover and the actual repairs performed. Second,
the federation contract covers detailed responsibilities for establishing, main-
taining and terminating the federation. This covers organizational matters,
like periods of notice and penalties on withdrawal, but also defined technical

Federation — Talking to Strangers 159

responsibilities and infrastructure matters, such as interchange formats and
conversion responsibilities (see section 11.4).

Like any other community contract, a federation contract can include the
definition of policies, and these allow the management of the federation to
be carried out by changing some of the constraints placed on members dy-
namically during the federation’s lifetime. The policy-setting behaviour will
define the process for making changes, and what say the various parties have
in agreeing to the changes.

Because of the loose coupling between federated organizations, it is quite
likely that either the basic behaviour or the policies applied will give rise at
some stage to conflict and inconsistency. It is therefore usual to find that a sig-
nificant amount of a federation contract deals with the handling of violations,
exceptions and compensation terms.

11.2 Interpreting and Sharing Information

One of the main issues in establishing a federation is the decision of
what the form of the communication between the various parties should be.
Whether we are talking about humans or automated systems, any commu-
nication of information between two entities depends on a basic shared level
of understanding between them. The receiver of a message needs to be able
to interpret it, recognizing the terms it contains and the implications of the
context resulting from their position in both the message and the broader
dialogue. Without this understanding, no communication can take place.

We can express this by saying that the communicating entities must share
a common ontology, so that they agree what categories of things exist and
can therefore be referred to. They must also share some understanding of the
grammar or structure of their communications. If there is a core agreement,
it can be used to exchange further rules and definitions so as to broaden the
scope of the exchanges, although the state of the art only allows fairly straight-
forward enhancements of machine communications. Humans are much more
flexible, and use many subtle clues from the local context to remove ambigu-
ity. This can be seen in the extensive use made of local context in natural
language, as in Susumu Kuno’s [83] “Time flies like an arrow, fruit flies like
a banana,” or of wider context needed to understand Noam Chomsky’s [58]
“The police were ordered to stop drinking after midnight,” with its four pos-
sible interpretations.

At present, we rely on the federation contract to give us an agreed core
grammar and ontology, to which suitable domain-specific packages can be
added to cover the exchange of other categories of information. One of the
thrusts of current interoperability research is to develop more flexible exten-
sion mechanisms for use in loosely coupled communication.

160 Building Enterprise Systems with ODP

So far, we have concentrated on the interpretation of terms as having
intrinsic meaning, but there is another, equally important consideration, and
that is with the use of terms for referring to entities; that is to say, the
understanding of terms as names. The problem here is that, even within one
language community, there may be many local differences in the way things
are named. You may call your cat Fred, but in the house next door Fred may
be most immediately understood as the name of the householder. In such
cases, if I stand at my back door and call for Fred, I may get either the cat or
the neighbour.

Sorting the problem out lies at the heart of the so-called context-relative
approach to naming. This whole area is dealt with in detail in ISO/IEC 14771:
The ODP Naming Framework [16]. The standard gives a model of the passing
of names through a series of naming domains, explaining how the names should
be interpreted and transformed so that the communicating parties understand
them as references to the same thing, even though they have different forms
in each domain.

One particular topic described in the naming framework is the use of spe-
cial naming domains, or contexts, to support federation. These can be used
both to facilitate the intended communication within the federation and to
prevent unintended access by limiting the external visibility of local resources.

First, a partner in a federation can create a specific export context , which
contains the names of services it has agreed to make available. If all external
communication is restricted to be in terms of names in this context, any other
local services cannot be named, and so cannot be accessed by users outside
the organization.

To ease communication within the federation, a single shared naming con-
text, called the federation context , can be created as part of the federation
agreement. This context ensures that the various partners have a common set
of prefixes for each others’ resources, so that, in this form, their names are
never ambiguous.

Finally, an import context can be defined within an organization to
provide explicit control over the external services that local users can access.
In many cases, of course, an organization will forgo this level of control and
import the whole Internet naming structure into its local naming context, so
that all connected systems can be accessed by name, but there is a powerful
control mechanism available here for use if necessary.

11.3 The Basis of Interoperation

The full federation of separate organizations needs creation of a federation
contract which involves agreements in several viewpoints. Some aspects, given
in the following list, will be concerned with what the federation is for and how

Federation — Talking to Strangers 161

it will work, and others (in the second list) will be concerned with how the
activity is managed. Thus, there need to be, at least:

• An agreement in the enterprise viewpoint that the federation is neces-
sary, with a clear statement of its objectives and the level of resource
sharing and devolved control needed, in terms of management and se-
curity policies. This agreement needs to be confirmed at the highest
management level of the participating organizations. In the example,
a memorandum of understanding (or MoU for short) stating the objec-
tives is prepared by the two CTOs and signed by Marcus and his opposite
number.

• The agreement of the joint business processes, and of any associated
business services, that will articulate the federation. Eleanor works with
her counterpart to document the required business processes and the sit-
uations in which they are to be invoked.

• The development of a shared information model for the activities covered
by the federation agreement. Ira extracts a subset from the PhoneMob
information model, dealing with the properties of customers and users,
and agrees it with technical staff from Factotum, who do not yet have an
integrated information model for their systems.

• An agreement in the computational viewpoint on the resource discovery
mechanisms and the publication strategy for services and on the compu-
tational interfaces to be supported by each participant. This federation
links two specific parties, so open publication is not needed. The two
organizations can simply exchange service description, involving compu-
tational interface signatures in a suitable language, such as WSDL or
IDL specifications; there is no need for more visible publication mecha-
nisms in the computational view. The PhoneMob computational model
is extended to include a mapping to the agreed interface definitions.

• Decisions on the engineering and technology solutions to support the
actual communication between participants and assignment of responsi-
bilities for any message transformations required to match the internal
conventions of the participants. Nigel has no problem here at first be-
cause the communication between organizations uses normal web services
conventions, but some of the information items being transferred have
different representations from the PhoneMob’s internal usage. These
need to be transformed, and an interceptor is introduced into their web
services support platform, tightly bound to it.

These considerations are primarily concerned with the design of the federa-
tion. There also need to be plans for its deployment and ongoing management.
These include:

162 Building Enterprise Systems with ODP

• Agreement, in the enterprise viewpoint, of a maintenance procedure for
the federation contract; this should include the agreement of testing
and validation procedures and phased plans for implementation, initial
testing, deployment and use. A joint working party from the two orga-
nizations documents agreed procedures, and these are added as a codicil
to the MoU.

• The federation should also have an enterprise-level exit strategy, stating
what is to happen if the federation has to be wound up. Periods of notice
for dissolving the federation are agreed, and arrangement for completing
work in progress added. Penalties reflecting lost investment for termi-
nation within two years and lost opportunity for abrupt termination are
added. This is also attached to the MoU.

11.4 Engineering the Federation

Once the federation community has been defined, we know the abstract
view of the information to be exchanged and the structure of the dialogue.
However, we still need to establish the communication technology, the way
links are established, and how the communication formats to be used over
them relate to local usage in the systems run by the individual federation
members. There may be incompatibilities between the way types in the ab-
stract information model are refined to concrete representations, or differences
in local usage, either in the selection of middleware or in the supporting pro-
tocols. There may also be a need to invoke additional management functions
to ensure access or security policies are applied.

What is needed is a way of placing the necessary extra functionality for
access control or data transformation into the communications path. The
engineering channel architecture provides the concept of an interceptor for
precisely this purpose. An interceptor can act as an intermediate system
up to and including the highest level at which there is an incompatibility
between the engineering solutions in use. Messages received on one side of
the interceptor are interpreted using the rules on that side until an element
of the shared abstraction is recognized, and this is then recoded and sent on
its way in the format of the domain on the other side of the interceptor (see
figure 11.2).

The complexity of the conversion to be done by the interceptor depends
on the nature of the incompatibility to be dealt with. If the incompatibility
is at a comparatively low level, affecting only the supporting communication
protocols, the interceptor is reasonably straightforward because it does not
need to be concerned with application-specific aspects of the dialogue, and
can just pass application messages through without interpreting them. This

Federation — Talking to Strangers 163

Interceptor implements
transformations that preserve

the shared models

Domain A Domain B

D
om

ai
n

A
’s

ru
le

s
an

d
fo

rm
at

s

D
om

ain
B

’s
ru

les
an

d
form

ats
FIGURE 11.2: Operation of an engineering channel interceptor.

means that it maintains comparatively little state, and so the interceptor can
be placed anywhere between the domains, and can be restarted or migrated
easily.

If, on the other hand, the conversion involves the formats handled by the
stubs in the peer systems, the situation is much more complicated. In order
to be able to interpret and modify the messages being passed, the interceptor
needs to be aware of the interface types in use, and to maintain more dialogue
state. For example, it may need to transform between local representations of
some abstract type being communicated, and so must analyse the messages
and be prepared to reformat them. In some cases, there may be differences in
dialogue structure, where one system negotiates a local context, so that infor-
mation need not be repeated in a series of messages, while the other includes
the information explicitly in each message. In such cases, the interceptor must
be aware of the dialogue state and add or strip out information where nec-
essary. It needs to know the interface type to do this, which implies that it
must have an intimate involvement in the binding process.

If the domains use different publication and resource discovery processes,
the interceptor that is needed is even more complex because it must trans-
late between these different processes, acting as a proxy for the registry or
trading services involved in resource discovery. It must then be prepared to
maintain rather long-term state in the form of mappings between equivalent
services. If, for example, there is a need to map between a web services domain
and a CORBA domain, there is a need to collate information from a number
of different sources because the two resource discovery systems each package
together different architectural functions, with WSDL addressing more con-
crete information and CORBA IDL being more modular. In fact, the OMG
has produced a specification called CORBA to WSDL/SOAP Interworking
(C2WSDL) Version 1.2.1 [34] describing how to do this.

164 Building Enterprise Systems with ODP

11.5 Federating Type Systems

One way of simplifying the management of federated domains is to intro-
duce type repositories. The idea behind the type repository is to make all
the type definitions used in the domain accessible from a well-known service.
The same repository also registers the location of external type definitions,
indicating where the type repository for their local home domain can be ac-
cessed, and registers mapping information, in terms of subtype relationships,
so that potential users can reason about the types and deduce whether or
not an interceptor can be expected to convert them into a form that can be
understood locally.

The technical details of how this is done go beyond the scope of this book,
but details of the ODP type repository can be found in ISO/IEC 14769:
The ODP Type Repository Function [15], which is also available as ITU-T
Recommendation X.960 . This standard laid the foundations upon which the
OMG later defined its specification for the Meta Object Facility [28].

11.6 Federating Identity

Another area of considerable practical importance is the federation of iden-
tity, which allows the creation of broadly based single sign-on schemes. Here
the aim is to support the establishment of distributed trust models and the
management of access tokens or pseudonyms. The federation approach to
these requirements is supported by technologies like WS-Federation [45] and
WS-Trust [47].

The general structure needed is very similar to the model underlying in-
teroperation. First, there needs to be an agreed conceptual framework for
expressing identity and trust, and a negotiated set of trust relationships be-
tween the various domain authorities. These may be either direct or indirect;
they are indirect if domains are linked by some third party, such as a trusted
peer or an acknowledged authority.

A federation community is then formed involving roles for the domains and
for the third-party broker if there is one. The federation contract defines the
behaviour used to export names with appropriate credentials, or to generate
linked tokens of pseudonyms. It expresses the properties that generated iden-
tities will have, such as their lifetime and any constraints on whether further
federation steps should be allowed. It also captures the way violations are sig-
nalled and the penalties associated with them. These days there may also be
obligations to disclose identity mappings on demand to the legal authorities,
so that criminal activity can be traced.

Federation — Talking to Strangers 165

11.7 Legacy Systems

As well as their use in inter-organizational federation, it should be noted
that these ideas can also be used in the planning and execution of legacy
integration. Linking legacy services to a more modern infrastructure involves
management decisions about what services need to be retained and which are
obsolete and can be phased out [54]. The resulting decisions can be captured
by specifying what role the legacy system is expected to play and how this
relates to other roles within the organization.

The actual integration involves establishing a shared ontology and process
model, which may have to be reverse engineered from the existing usage of the
legacy components. Based on this, the nature and location of any necessary
converters are determined, and an engineering plan for their realization and
commissioning written. Finally, a plan for the eventual transition away from
the legacy components and for their decommissioning will be needed.

11.8 Interoperability or Integration?

How is the decision whether to federate or to integrate related systems to
be made? It is a difficult trade-off involving a variety of costs and depends on
assumptions about the way the organizations will evolve.

Firstly, stronger integration allows more informed management, which re-
sults in more efficient and more reliable operation. There will be more com-
plete sharing of information models (although legacy barriers will persist) and
so more consistency and better planning follow.

On the other hand, this close coupling means that the different systems
depend on each other, so that withdrawal of any party damages the remain-
der of the organization. If there is significant autonomy of the components,
changes of their objectives may result in the necessary level of cooperation
and sharing being lost. However, the strongest reason for concentrating on
interworking is that, as organizations evolve, their groupings change, and in-
tegration measures have to be repeatedly reworked, placing an intolerable
burden on an organization with many business links, while a good implemen-
tation of a standards-based interworking strategy will support an evolving set
of partners with lower maintenance and thus much lower total cost. Integra-
tion creates longer range ordering, which physics tells us is a sure sign that a
fluid system is about to freeze solid. In a nutshell, federation reduces threats
from changes of the partners’ objectives, and integration allows more ratio-
nalization, but limits the partners’ freedom of action and the system’s future
flexibility.

This page intentionally left blankThis page intentionally left blank

Chapter 12

Using Existing Products

“Next item,” said Marcus. They were back in the old drawing office area,
and had spent some hours working their way through a technical audit re-
port. This audit had been one of the results of the ongoing negotiations with
Factotum, and most of its concerns were about resilience.

“Recommendation 27b identifies problems of consistency between the in-
stances of repair orders that are duplicated in different service centres,”
Eleanor read from the pink sheet in front of her. “They are right; there is
potentially a problem here, but it means adding transactional controls to all
the order update steps. It will be a huge job, particularly when taken to-
gether with the improvements to archiving and disaster recovery we talked
about before coffee.”

“What about replication transparency? That worked well for the logistics
server, as I remember,” said Nigel, hopefully. “Maybe,” Eleanor looked out,
for a moment, over the cubicles on the floor below. “But I don’t think so; we
would still need to factor in the channels to archival, and linking that whole
subsystem with replication would be too damaging to performance.” “Just ex-
plain that to me again will you,” broke in Marcus, looking puzzled. “I thought
transparencies hid all that sort of thing.” “They hide complexity from the
programmer, but the problem here is the real runtime costs of coordinating
a larger number of objects. In any case, what we want from archival is re-
silience, which means keeping the boundary to it as clean as possible.” There
was another pause.

“We could try a different approach,” said Alex, quietly. “If we don’t want
the complexity of all these archive-based resilience mechanisms, can’t we avoid
them completely?” “But we spent half the morning identifying reasons why
we must have them,” snapped Claire. “Not quite. We have shown that we
need consistency and resilience, not that we need to implement all those horrid
mechanisms ourselves.” “So what’s the alternative?” “Don’t build the subsys-
tem; buy what you want as a service. There have been a lot of developments
recently in cloud computing. You could buy resilient, consistent storage from
one of the global suppliers and use it as a secure mailbox between the local
centres. That way the external supplier has to worry about the coordination
and the disaster recovery. You agree on a suitable SLA with them, and they al-
ready have all the resources needed to provide it. All you have to worry about

167

168 Building Enterprise Systems with ODP

is the local centre access, and you can still use the replication transparency
dodge to avoid visible complexity there.”

“OK,” said Marcus, “what’s the down side?” “You have to allow for the risk
and the recurrent cost. Costs shouldn’t be too far from a realistic total cost
of ownership for the in-house solution, and may well be cheaper. There are
always hidden costs you miss when assessing doing a job in-house. Risks are
more difficult. You have to plan for commercial failure of your supplier, but
they are a big player. You should look at a lower quality fallback system in
the local centres and set up a commercial hedge.” “You mean betting on the
commercial failure of the biggest bookseller on the planet?” asked Ira. “This is
serious dealing.” “Indeed, but it has to be considered. More important, I think,
are the risks to security, confidentiality and loss of control it implies. Do you
trust your supplier to maintain a really stable service offering without changes
in the specification? There is always the risk of over-enthusiastic upgrade.”
“Surely upgrades are safe?” Marcus looked puzzled again. “Improving a service
can’t be a problem, can it?”

“Oh yes it can,” said Eleanor, ruefully, “remember that online sales tax
system a couple of years ago? We had just got it nicely bedded down when
they upgraded it and added a whole extra level in their data model. It took
weeks to get the miscodings out of our financial data and the internal audit
people still remember all the special reconciliations.”

“OK, I remember that, but the idea still sounds interesting. Let’s talk
about the detail.”

12.1 What Does This Product Do for Me?

One of the practical problems in using an architectural framework like ODP
is that the world is seldom as simple as the textbooks assume. The picture
of development taking place in isolation, from requirements to deployment,
is far from reality. Rarely can a design team produce the specification of a
complete enterprise system as a self-contained activity. Usually, they identify
at least some components that are available elsewhere. The incorporation
of commercial off-the-shelf products (COTS subsystems) shows the clearest
separation of design responsibility and gives the best illustration of the issues.
However, use of legacy components involves the same problems.

In essence, the problem to be solved arises from the need to retain the
advantages of a clean architectural approach while incorporating subsystems
that have already been produced, outside your control, and based on a different
framework, or even with no clear framework at all. To be specific, how can
components from a non-ODP culture be incorporated into our ODP world?

When you purchase a COTS product to perform some function, you sur-
render control of the detailed design. On the other hand, you get a working

Using Existing Products 169

solution immediately and benefit from the supplier’s economies of scale. Or at
least, you do if you select a well-established, reputable supplier. You also get
ongoing support, maintenance and periodic upgrades. However, such upgrades
can be a mixed blessing because they may introduce changes that invalidate
the way you have integrated the product into your system.

There is certainly no magic bullet in this area. The customer wants guar-
antees of product stability from the supplier, but the supplier has to balance
the conflicting demands that many different customers place upon them. They
also need to innovate to attract new customers. The balance between these
conflicting requirements will depend on the nature of the supplier’s business.
A supplier who uses a family of components to offer individually tailored, be-
spoke solutions to respond to individual invitations to tender from their cus-
tomers will be more likely to take account of individual customer constraints
than one selling a generic product in shrink-wrapped form to thousands or
even millions of customers.

A lot depends on the way the suppliers document their products, and how
seriously they take the maintenance of this documentation, on the provision of
advanced warnings of changes in the product and on the supply of transition
tools to make the customer’s life easier. At the core of these documentation
issues is the need to create suitable models, both of the product and of the
way it is to be used; these models themselves need to be positioned within the
ODP framework.

12.2 Supplier and User Views

The supplier will have its own specifications used in designing and con-
structing the product, but these include much private detail, so we concen-
trate here on a set of models related to its use. These have a number of jobs
to do.

In an ideal world, the process of assessing the available products and de-
ciding which to use will involve confirming the relationships between these
various models (as well as many other factors involving value for money and
commercial credibility, of course). We illustrate these relations in figures 12.1
and 12.2, by showing the observable behaviour as Venn diagrams, so that
subsets of possible behaviour are shown as included within their supersets.
A product is suitable if the services it offers are a superset of those the user
requires, and if the infrastructure support available in the user’s environment
is a superset of the product’s requirements.

First, let us consider the infrastructure. The supplier will have a model,
in functional terms, that describes the infrastructure needed to support the
product; this model will, in general, describe several alternatives because it will
cover a range of different environments in which the product can be deployed.

170 Building Enterprise Systems with ODP

core infrastructure

op
ti

on
1

op
ti

on
2

op
ti

on
3

The supplier needs
the core infrastructure
facilities and at
least one option.

The user provides
at least the core
infrastructure
facilities and
support for their
chosen options.

FIGURE 12.1: The infrastructure services a product needs and the services
its user makes available.

However, there will be constraints on the choices of environment to ensure
that the choices made by the user result in consistent operation. For example,
the supplier may state that the necessary communications can be supplied in
a number of different ways, corresponding to a variety of common fixed and
mobile technologies the user may want to exploit. Figure 12.1 shows, in a
schematic form, that a product needs some core infrastructure and at least
one of three possible technology options.

The user will also have an infrastructure model, this time indicating the
supporting services that they actually make available when deploying the
product. This model will be more restrictive than the supplier’s infrastructure
model, since it only covers the specific choices of technology the user has made,
but, within these limits, it will be more general because it describes the full ca-
pabilities of the technologies chosen, which will generally be broader than the
specific requirements of the product. This is what is shown by the provision
contour in figure 12.1, which shows that the user can support the core facilities
and option 1, and more besides. For example, the supplier model may require
only point to point communication, while the actual infrastructure provides
both this service and some form of group communication or multicast.

The second model the supplier has is one describing what the product can
do for the user. This is a classical component model, indicating the widest
range of things the product can do in its least constraining environment; that
is to say, it describes the union of all the possible styles of use envisaged by
the supplier. The supplier may also provide as part of their documentation
a number of use case models, suggesting productive ways of exploiting the
product, but these are likely to be illustrative, rather than definitive, and
give no guidance as to why the user actually bought the product. There may
also be a basic core of mandatory user behaviour, such as initialization and
registration of security credentials, which must be engaged in if the product
is to function correctly. In our Venn diagram, this can be reorganized into a
separate region, separating behaviour the user must initiate from that the user
may initiate when it requires specific services. In figure 12.2, the inner contour

Using Existing Products 171

Behaviour
required

from user
Needs of
the user’s

application
Capabilities
of the COTS
component

FIGURE 12.2: Broadest and narrowest behaviour envisaged by the supplier
and the behaviour needed by the user.

shows the behaviour the user is obliged to initiate and the outer contour shows
behaviour the user is permitted to initiate.

The user will also have a model of what the product is to do for them.
Again, this is a subset of the actual capabilities of the product, this time
indicating what subset of the features available is actually to be used (see
the middle contour in figure 12.2). It may also indicate whether particular
features are essential to the user’s business processes or are merely desirable.

Of course, the supplier may not make the product models available in
a form suitable for assessment, or in extreme cases may only describe the
product in the broadest marketing terms. In such cases, the potential customer
will need to construct their own description of the product, filled in where
necessary by asking the potential supplier questions.

The provision by the supplier of a rigorous model showing what they claim
their product does is also important in considering conformance. Once the
supplier has claimed that a given model represents what their product does,
the user can apply it both as a conformance target, checking test observations
against it, and in the validation of their own designs, to check that the services
they are building on top of the component will match their business needs.

The above discussion gives an idealized and simplified sketch. For example,
each of the models described may be manifest in more than one viewpoint.
Using viewpoints will help to organize the required assessments, but there may
be differences in interpretation in the various supplier and user organizations,
reflecting their own internal structures and stakeholder responsibilities.

To position this information in the ODP framework, the product and user
models discussed previously will, in general, need to be restructured to create
the necessary sets of viewpoint models. We can consider the key features of
these for each viewpoint in turn. Firstly, this process will have little impact
on the enterprise viewpoint because most products will be generic from the
user’s point of view. The product’s information viewpoint will need to be
related to the broader user model by establishing a series of correspondences,
mostly in the form of subtyping relationships from general supplier definitions
to specific user ones. The computational model describing the intended uses of
the product will be a subset of the computational model for the application as
a whole, and the user technology model of support provided will be a superset

172 Building Enterprise Systems with ODP

of the product’s requirements. From an engineering point of view, there will be
correspondences at a broad functional level, but there is not much of an issue
here because the details of the product’s engineering will be largely hidden
from the users. The focus is on the support of the product’s interfaces.

The introduction of COTS products will also impact the tool chain; there
will be a need for tools to police all these new relationships, and for them to
provide planning support for the supplier’s commitments about the evolution
of the product.

12.3 Competing Sets of Viewpoints

So what happens if both the producer and the user of a component are
using ODP? They will each have a set of viewpoint specifications, but are
these aligned with one another? Each of a set of viewpoint specifications
contributes to a complete and consistent system specification. That is to say,
the set is concerned with the capturing of different stakeholder concerns, but
they are unified by being concerns about a single target system.

When two independent groups specify different systems, they each define
their own logically distinct viewpoint specifications. If the two groups are
operating within the same organization, the enterprise specifications may be
quite similar, but the emphasis and level of detail applied to particular aspects
will differ, and some features in one of the specifications may be omitted as
irrelevant in the other. Indeed, as we saw when discussing federation, one of
the problems in establishing interoperability between systems is that each of
the systems works with a view in which the other is expressed in quite abstract
terms as part of its environment.

The key point here is that the content and level of detail in a specification
is determined by the role the system is to play. If the system is to interact
with some other system in its environment, it is necessary for the nature of
these interactions to be expressed. If the system is to act as an intermediary,
perhaps receiving a reference in one interaction and passing it on to a different
partner in another interaction, then the details of the object referred to are
not of concern to the intermediary, so long as the reference type is correct and
any assertions about the quality of the object referred to are fulfilled. Again,
it all comes down to satisfying the stakeholders’ concerns.

12.3.1 Applying Viewpoints to Components

The analysis of incorporation of COTS components can be quite confusing
because the specification of a component required to provide services exists
in parallel with one or more specifications with broader scopes, each of which
describes one way it is to be used.

Using Existing Products 173

For example, an information exchange service component may be obtained
to integrate information provided by a group of contributing peers. From the
point of view of providing this service, it is the coordinating activity which will
form the focus of its enterprise specification; the objective is to generate and
distribute a common shared image from information contributed by members
of a group. Why they should wish to do this is not of any concern to the
component provider.

Associated with this view of the product, there will then be a set of shared
data types in an information view, a computational access procedure, and
supporting engineering and technology constraints.

Such a component could be used in many ways. In coordinating a com-
mittee, or a project group, the information exchange is a specific kind of
interaction between the community roles being specified, and the service for
doing so is therefore visible in the enterprise specification; however, the exact
way the service is accessed forms part of the computational specification. On
the other hand, in a survey application, the coordination may be implicit,
expressed via requirements on one particular role to provide statistical in-
formation, but without reference to the enabling service until the detailing
of the computational specification. Finally, if a scientific modelling activity
needs to exploit distributed simulation tools, the same coordination compo-
nent might be used as a collation mechanism in the engineering viewpoint but
be completely invisible in the computational design.

To achieve this, the viewpoints of the component and the user applica-
tions are related in different ways, but retain their independence. A practical
example of this can be seen in the standardization of the ODP trader func-
tion (ISO/IEC 13235-1), a general-purpose service publication and resource
discovery mechanism [9]. This standard describes enterprise, information and
computational specifications of trading, but leaves the engineering specifi-
cation to a platform designer (although one specific engineering realization,
supporting the use of directories, is standardized in ISO/IEC 13235-3 [10]).

The trader function is visible in application designs only in their computa-
tional view as a service accessed by well-known interfaces, and in the definition
of selected information data types and constraints. This reflects the difference
between the stakeholders involved in an organization that uses a service and
the organization that provides it.

12.3.2 Changing Technologies

As a product evolves, it acquires new features and exploits new supporting
services. The supplier maintains upwards compatibility if no service is with-
drawn and no additional demands are made on the infrastructure. At each
step in the evolution, there is a corresponding set of models describing capa-
bilities and requirements. In practice, many vendors offer a more restrictive
guarantee of compatibility, in which, at every release, a statement is made
about how many steps back down the release chain the compatibility relation-

174 Building Enterprise Systems with ODP

ship holds, perhaps with an associated warning about what the situation is
expected to be following the next upgrade, so that users have time to respond
to impending changes that would otherwise cause them problems.

If new product features become available, the user first has to decide
whether they offer sufficient benefits to merit a migration campaign. Such a
campaign will normally start with an assessment of whether the changes would
offer local usability improvements within the existing business processes, or
whether a change to the business processes themselves is going to be needed.
Consider, for example, a workflow management system. This might have its
user interface upgraded, replacing a coarse-grained web forms interface with
a more dynamic AJAX-basedinterface without making a significant difference
to the business process, but requiring changes to the interfaces of a number of
decision-support plug-ins. Or, on the other hand, dynamic work rescheduling
features might be added to the same service, resulting in significant changes
to the business processes because they make possible finer scale targeting of
premium services to critical markets.

Once a level of abstraction has been identified at which the proposed en-
hancement is no longer visible, this level can be used as an overarching in-
variant and the change becomes a refactoring exercise aiming to maintain this
target description. This analysis helps to identify the scope of the changes
with confidence, since the invariant elements essentially limit the degree to
which consequential changes can propagate in the design. There is clearly a
strong parallel here with the discussion of federation in chapter 11.

12.3.3 The Changing Views of a Stakeholder

One of the consequences of opting for the use of externally purchased prod-
ucts and services is that there is a shift in the local stakeholder concerns, and
this, over time, results in evolution of the viewpoints used to model the system
as a whole. Something that was previously a major concern for engineering
design may cease to be of interest at all if responsibility for some particular
set of mechanisms is outsourced.

Consider, for example, the change in emphasis if an organization decides
to buy in a trust management solution from one of the specialist suppliers. A
whole range of encryption key-management technologies for which local skills
had been needed in the past become simply background information required
for risk assessments of the use of the external supplier, and the servers and
plug-ins needed become just black boxes. However, in consequence, there is a
strong dependency on the external supplier, and, in some respects, a reduction
in agility. Accepting this is as much a business decision as a technical one.

Chapter 13

System Evolution — Moving the
Goalposts

Eleanor handed Claire a glass of chilled Sancerre from the tray by the
door and they both moved on into Marcus’s office. The papers from the side
table had been cleared away and in their place sat an architect’s model of the
proposed redevelopment of the east warehouse area.

“I think I’m going to like this new layout,” said Claire, “particularly the
way she has managed to stagger the floors in the main space, so that you
get both small-scale spaces and a share of the views.” “Yes, and without
losing all the original decorated ironwork; it’s a good thing we scotched the
misapprehension early on about programmers not wanting to be distracted by
outside views; she actually believed that we preferred to be staring at a screen
in an enclosed space.”

Marcus joined them. “Well, what do you think of the plans now? How
do you think your people took it? Was it what they were expecting?” Claire
thought for a moment. “I would say they are positive about it; I’m already
getting queries about who gets what space, but it’s cherry picking stuff, and
not at all defensive. When are we going to see schedules and transition plans?”
“When you’ve all contributed to writing them, of course. We have to be sure
the changes happen smoothly and don’t impact our work; we can’t afford the
muddle we had when we first moved here from the incubator site; we’ve got
real customers this time.” Eleanor grinned. “Don’t remind me — nobody
knew where anyone else was or who to go to for help. It was chaos.”

Alex joined them, twirling an empty glass. “We just treat it like a major
system enhancement. The same principles apply, you know; we identify depen-
dencies and get supporting services up and running first. Then we transfer
functions as their needs are satisfied. In fact, this is easier than most up-
grades we do because it’s just a migration and the business processes remain
the same.”

“Not like introducing a new travel booking system, then, is it Marcus?”
“OK, Claire, I should have told the finance people about the new forms before
you started submitting them, but I was negotiating for additional capital at
the time, as you well know; anyway, it’s not the same.” “Actually, I think
it is,” said Alex. “There is a key rule in migration planning that says you

175

176 Building Enterprise Systems with ODP

never send a message unless the recipient is already able to interpret it. It’s
called the no surprises rule, and is the key to the management of distributed
upgrades. You always upgrade the receiver before the sender, and only let
your clients make requests the server is able to satisfy. We always need to
keep the principle in mind.”

“Any more words of wisdom, Alex?” “I think that just about covers it;
now you just need to put it into practice. Always have the next bottle open
before the guests need it; I’d like some more of your fine Sancerre.”

13.1 Coping with Change

No organization remains unchanged, and so business processes and infras-
tructure requirements are continually evolving. The ODP architecture tries
to limit the impact of technical innovation to be within the engineering and
technology viewpoints, and this can be done as long as the basic functional-
ity provided to the organization remains the same. However, new technology
enables new ways of doing business, and so technology can be a stimulus for
business process reengineering.

More crucially, however, there are continual new opportunities for business
innovation, arising from the opening up of new markets, mergers or acquisi-
tions, and internal organizational changes. These all lead to changes in the
IT requirements, and are generally more pressing than the cycle of technology
adoption. No manager will willingly accept being told that they must wait for
IT changes before entering a new and potentially lucrative market.

The RM-ODP does not have a lot to say directly about such unforeseen
changes (as opposed to its provision of policies at predictable variation points,
as described in chapter 10) because it describes systems as they exist, not the
dynamics of the process by which they are developed. However, the reference
model is structured to make evolution easy; this is a result of the separation
of concerns it offers to the various stakeholders. Separating the system speci-
fication into a set of viewpoints, loosely coupled in a clearly understood way
by explicit correspondences, allows various aspects of evolution to be carried
out separately, as long as overall consistency is maintained.

13.2 The Importance of Tool Support

One of the problems with business-driven evolution is that it is difficult to
predict how pervasive the impact of a given change will be. Technology-driven
change usually involves the modification of the way some concept representing

System Evolution — Moving the Goalposts 177

a business abstraction is supported, and so the change is transparent as long
as the abstraction is unchanged. Business-driven change involves modification
to the goals and design of the system at a quite abstract level, and the changes
can trickle down to any part of the supporting infrastructure. A good design
will still be quite robust because the infrastructure will offer services that are
sufficiently general to support a large proportion of organizational changes,
but there is less confidence that the impact can be predicted; the acid test
involves extensive checking that the infrastructure is still fit for purpose.

If this checking has to be done by human beings, it is tedious and error
prone. However, if sufficiently powerful tooling is available, a large amount of
the checking can be automated. The same is true of the subsequent implemen-
tation. In cases where the change involves the application of a well-established
pattern to new abstract data structures, so as to generate appropriate storage
and access mechanisms, a very high proportion of the work can be automated.
It is where new logic is introduced that there tend to be more design decisions
to take, and so more human intervention needed.

It is here that the benefits of adopting a model-driven engineering approach
(see chapter 15) really show themselves. If changes in requirements can be
expressed in terms of modifications to abstract models, and transformations
to merge and refine such models have been established, then a great deal of
the work in creating the complete system specification can be automated.

This level of automation of specification management also allows evalu-
ating the impact of proposed changes to be made a much simpler and more
efficient process, so that it is possible to associate accurate transition costs
with proposed changes as part of the decision-making process.

13.3 Making Changes to Viewpoints

Some of the implications of handling system evolution in a framework of
linked viewpoints can be illustrated by considering a simple example. Suppose
that the PhoneMob organization decides to introduce a new business service,
in which repaired phones can be collected at the airport if doing so suits the
user’s plans better. An agreement with an established franchise for the supply
of mobile phone accessories is made to give access to suitably placed outlets.

First, the changes to the business processes are expressed in the enterprise
specification. This involves introducing an airport outlet role into the Phone
Repair community, and adding the logic to the repair process to decide whether
the logistics provider should deliver to the user directly, as at present, or to
the airport agent.

Supporting this change will have immediate consequences; new model el-
ements will also need to be added to the information model, representing the
new agents and extending the delivery information needed to describe a re-

178 Building Enterprise Systems with ODP

pair order. Some of the dynamic schemata will also need to be updated to
represent the new paths and artefact states in the enterprise processes.

The consequences of changes to the information objects will flow through
more or less automatically to the computational specification, which already
bases its view of business objects on the information objects. However, it
will also need to flesh out the dialogues involved in interacting with the new
agent role, and design work will be needed, for example, to extend scheduling
algorithms and interactions with the logistics supplier to support the new
activities.

In this particular example, the engineering specification is unlikely to be
significantly affected because it deals with reusable solutions to the problems
of providing interactions, and the kinds of interaction with the new agents
are not fundamentally different from those that are already being supported.
However, new solutions may be needed if introducing novel styles of compu-
tation implies that there are new problems to be solved. One area that might
need some extension is security, as the balance of trust and threat may be
different from what was previously accepted.

Finally, the technology specification will need to be extended to describe
the new form of terminal needed in the agencies and to capture the enlarged
configuration that results.

At each step in this process, change will be triggered by the discovery of any
inconsistencies. Where there are established patterns of correspondence, these
can be used to discover when new elements in one viewpoint require addition of
corresponding elements in another viewpoint to maintain the pattern. Again,
this change propagation can be automated using suitable tools.

13.4 Avoiding Synchronized Transitions

Even in the smallest distributed systems, it is difficult to make changes that
need to be applied to multiple components at the same time; for configurations
of any significant size the strategy of turning everything off, updating all
components and then restarting is both too disruptive and too high a risk to
contemplate. It is taking a step into the unknown, and is just too much like
a novice attempting Olympic ski jumping. Any practical evolution strategy
needs to be based on the application of incremental changes in such a way
that it is possible to introduce any particular kind of change to the individual
component systems one at a time. Even with the best planning, problems will
be encountered, and it must be possible to roll back local changes as these
problems are identified.

One way of achieving the required incremental development is to ensure
that the interfaces that are bound together in a design always comply with
the so-called no surprises rule. This states that no component should ever be

System Evolution — Moving the Goalposts 179

placed in a situation where another correctly functioning component sends it
a message that it cannot interpret. One example of the application of this rule
can be found in the computational language, where a series of constraints on
computational interface types is laid down in the reference model to ensure
that evolutionary changes in interface type can be carried out in a smooth
and orderly way. These rules describe the relationships between client and
server operational interfaces that must be satisfied in order for a binding to
be created between them; they state that:

1. The operations defined in the client interface must be a subset of those
defined in the server interface and must have the same number of pa-
rameters;

2. The parameters generated by the client must be subtypes of those ex-
pected by the server; and

3. The terminations issued by the server must be a subset of those under-
stood by the client, and their parameters must be subtypes of those the
client expects.

What these rules (summarized in figure 13.1) amount to is that neither
party will receive anything they are not expecting, although they may not re-
ceive things they could well handle because the sender still lacks the capability
to generate them.

Client Server

client
interface

server
interface

client
operation

set
<

server
operation

set

client
termination

set
>

server
termination

set

parameters sent
are subtypes

parameters sent
are subtypes

FIGURE 13.1: Computational interface type compatibility rules.

180 Building Enterprise Systems with ODP

So, how does this help? Well, suppose that, in the PhoneMob system,
changes in regulations governing the sending of phones to certain countries
result in a need to extend the list of repairOrder status values to include
awaiting export clearance. If we update some service centres before others,
the later ones may receive status messages with an unknown value. If, on the
other hand, we perform a two-phase update so that each service centre is first
updated to accept and store the new value but not to generate it, there will
be no problem with communication between new and old versions. Once this
change has been made and become stable, we can make a second change to
each system in turn so that they begin transmitting the newly defined value,
and the new functionality becomes effective.

Although this example is trivial, much more complex transitions can be
organized as a complex sequence of groups of updates, organized so as to
ensure that all subsystems are ready to handle new functions before they are
activated. This will generally involve quite a number of steps in order to
ensure that functional dependencies are observed. Checking that the update
schedule is sound and robust is a complex task, and is another area where tools
can be used to create and validate suitable sequences from the specifications
of the system before and after the change.

The computational language contains specific rules for supporting this kind
of evolution because it is by the creation of computational bindings that we
link subsystems that are at potentially different stages in the required sequence
of updates. However, similar analysis and reasoning can be applied in the other
viewpoints, although in the more abstract viewpoints we take a less localized
view of the system’s behaviour and so just have models of the states before and
after the change. It is in the computational viewpoint that we introduce the
interfaces at which distribution may potentially take place, and so it is here
that the management of system evolution has to take account of interaction
between domains in which different sets of updates have been applied. It is
therefore natural that this is where the corresponding rules are positioned.

13.5 Evolution of the Enterprise

So far, we have considered incremental modifications. Some of the changes
to an enterprise and its infrastructure can be much more drastic. Consider
the large-scale changes involved in the big events in an organization’s history,
such as mergers and acquisitions, or significant divestitures. At these points
there is a major upheaval in the provision of IT support, and sometimes this
severely damages the organization.

We can treat mergers in many ways as being similar to the establishment
of a federation. The key is to establish a clear enterprise model of the organi-
zations that are to merge, and use this as a reference throughout the process.

System Evolution — Moving the Goalposts 181

First, we need to build a plan based on the loose coupling of high-level views,
with conversion by interceptors at the domain boundaries to solve detailed
incompatibilities, and then follow this up with an incremental campaign of
rationalization and alignment. This is a good strategy because time is of the
essence. The CIO of a new telecommunications startup once told us, off the
record, that they had “the most modern legacy system in the business” be-
cause time pressure had forced them to clone the billing system of one of their
competitors, rather than deciding all the detail of what they really wanted.

The most difficult part of this process is likely to be predicting who the
major stakeholders will be and how responsibilities will be assigned in an
organizational structure that is very likely to be fluid for some time. This
suggests that there are benefits in aiming for a looser coupling than usual
between the viewpoints. It also places emphasis on tools again, this time in
support of the refactoring that is bound to follow.

Refactoring is also a key ingredient in divestiture, but here the sequence
is reversed. Once the possibility of detaching some business unit has been
identified, its interactions with the rest of the organization need to be codified
and then processes refactored to weaken mutual dependencies. Domains need
to be established clearly, and interceptors introduced, not because of any
deliberate intention to introduce incompatibilities, but because the domain
boundaries will become points at which the assumptions of trust change, and
so management controls will be needed.

It is clear that this topic is more a management issue than a technical one,
so the reader should look to sources in those areas and we say no more on the
topic in this book. However, we do stress the importance of having a proper
architectural framework, like ODP, providing a robust enterprise model for use
as a roadmap when planning and carrying out any such large-scale transition
activity.

13.6 Version Control

As we indicated previously, the management of system evolution takes us
beyond the scope of the ODP reference model, since the model concentrates
on capturing one particular design for the system. However, considering how
to support system evolution raises a number of significant issues, and it should
already be clear that there is a requirement for powerful modelling tools to
support evolution.

One of the limitations of current specification languages and tools is that,
like ODP, they concentrate on a single specification of the required enterprise
system. In the future, these tools will need to be integrated with powerful
version control mechanisms and evolution planning aids, so that a designer
can produce a revised version of the system specification to support proposed

182 Building Enterprise Systems with ODP

organizational changes. The designer can then be supported by their tools in
turning this target design into a series of safe migration steps which put the
changes into effect.

Such a version management system needs to be the point at which the
major development projects of the enterprise meet; the different development
activities will overlap and update key components in different ways. These
activities need to be merged and checked for potential conflicts. Senior man-
agement also needs to be able to set priorities, so that mission critical changes
are given priority in the deployment process. This whole area is one where
there are many opportunities for the introduction of new standards and prod-
ucts to support the complete process.

Part IV

Moving On

This page intentionally left blankThis page intentionally left blank

185

About Part IV

The last part takes us beyond the material contained in the
ODP reference model standard itself. It does this in two main
ways.

First, we look at the way the reference model is formu-
lated, aiming to answer some of the questions a reader might
have as to why particular approaches were taken and what
assumptions are being made about the conceptual framework
that underpins the various modelling activities. This gives a
brief glimpse of the theoretical basis of ODP, and raises some
fascinating questions, but is not essential reading for straight-
forward users.

Chapter 15 concentrates on the tool chain. The ODP work
assumes a powerful set of tools and a considerable degree of
automation in support of the design process, but the ODP
standards do not cover this area or indicate how such tools are
to be constructed. This chapter makes up for this by reviewing
some of the key directions taken in the rapidly moving world
of model-driven, tool-supported design and development.

Finally, chapter 16 looks briefly at where more information
on the topics covered can be found and identifies a number of
other proposals for enterprise architectures. This chapter also
mentions a number of areas of work that ODP has influenced
in recent years.

This page intentionally left blankThis page intentionally left blank

Chapter 14

Modelling Styles

“What kind of world do these people live in?” Claire asked. They were
still sitting in the back row of the lecture theatre, but most of the audience
was already filing out. A small group at the front were gathering round the
speaker, still carrying on a heated discussion. Alex grinned. “Didn’t you like
it? I thought he made a good case.” “But what use is it? I mean, does it
matter whether we distinguish between something being necessarily necessary,
or just necessary? And when he said ‘In a world with no future, everything is
necessary,’ I really wondered what the point of it all was.”

At Alex’s suggestion, they had come up to the University, on the hill
overlooking their office, to listen to an inaugural lecture in the Computing
Department by the new Professor of Modal Logic, who was well-known for
applying his theoretical ideas to industrial problems. He had talked about
the importance of putting modelling on a formal basis, illustrating his argu-
ment with examples of how simple statements about requirements could be
interpreted in many ways.

“I’m still not sure if some of the subtle points really matter,”Eleanor added.
“Can’t they be sorted out by applying common sense?” “Well,” Alex thought
for a moment before continuing, “a lot depends on what sort of cooperation
we are trying to support. If we are all sitting round a table talking about
a problem, any differences in the way we look at it can probably be sorted
out as we go, but if we are writing down a design for others to interpret,
it’s not so easy. And it really gets to be important when we start trying
to automate things, particularly if the misunderstandings are about how the
languages we use are supposed to work.” “But that’s why we use standardized
languages, isn’t it? Surely languages like Java are universal these days?” “Not
really, Claire; they are not as formally based as you might think, and the
real problems come when we look at languages that deal with requirements
and rules of behaviour. A statement that sets b to a + 1 is generally well
understood, but one that says the customer ought to pay within seven days
is much more difficult to be sure about. The closer to the real world we get,
the more difficult it is to be precise about how all the tricky cases are to be
handled. That’s why the lawyers rely on the idea of the reasonable man and
what such a man might do — it gets them out of a lot of difficult detail in
predicting all the possible situations. Our tool builders can’t do that.”

187

188 Building Enterprise Systems with ODP

Eleanor looked down at the worn wooden bench, where some young wit
had recorded his ignorance of biology. “But what about all that necessity of
necessity stuff? It can’t have any real effect, can it?” “Well, he was talk-
ing about the way the behaviour is modelled and how the way the model is
expressed changes the range of behaviours you would consider as being the
same. If you can show a rule for simplifying the description of behaviour
always holds, even if it is seemingly quite obscure, it may be the key to sim-
plifying the description and so proving it satisfies the objectives. If I know
that I can just replace necessarily necessary with necessary, then I’ve got a
tactic for rewriting the description in a simpler form, where it may be more
obvious that two terms are the same.” Eleanor was still not satisfied. “But
isn’t it obvious they mean the same?” “Unfortunately not. There are a num-
ber of formal descriptions of necessity and possibility, which can be arranged
as a family depending on the assumptions you make. Unfortunately, this very
point is one of the distinguishing features of subfamilies you get by including
or excluding particular axioms.”

By now it was dark outside the high windows and only the group round
the whiteboard remained, and it was thinning out. They were now drawing
complex expressions consisting almost entirely of stars, arrows and brackets.

“OK,” Claire said, “but what about the worlds with no future?” “One of
the ways of clarifying what possibility and necessity means is to talk in terms
of what is sometimes called a possible-worlds model. It is made up of nodes
representing possible states of the system as a whole, expressed as frames
giving a list of statements that say how the state is expressed and markings
saying which of these are true in a particular situation. These nodes are then
linked by arcs that indicate whether one description can evolve into another.
If we have such a model, we can define our terms in a simple way. Something
is possible in a given state if there is at least one way the system can evolve
that would make it true, and it is necessary if there is no way evolution can
make it false. This is a very powerful way of analysing properties of behaviour,
and is very important for toolbuilders. The tag he quoted is not very useful
in itself, but helps students remember the definitions. If a state can’t evolve
at all because it has no outgoing arcs, it clearly has no successor where a
statement is false, so anything you want to consider is necessary.”

A porter had come in at the lower door and was cleaning the boards.
“Come on, they want to turn the lights out, and I’ve talked for long enough.

Let’s go and have a drink.”

14.1 The Importance of Formal Models

So far, we have described the basic conceptual tools needed to describe a
system. Here, we look behind the scenes a little, to explain how some of the

Modelling Styles 189

assumptions made in this kind of modelling differ from those that are familiar
in traditional software engineering. In particular, this chapter looks at specific
requirements underpinning enterprise modelling. There is no room in a book
of this sort for a lot of supporting theory, so we concentrate simply on giving
the flavour of the issues that come up when we are designing a modelling
framework.

It should be remembered, however, that we are talking throughout about
formal systems; that is to say, we are concerned with use of a formal language
defined in terms of some symbols, their grammar, some axioms and a set
of inference rules. Any formal system is self-contained and must be related
where necessary to the real world by establishing correspondences between its
symbols and real-world entities.

The important thing here is that, being formal, their use involves manip-
ulating a language with a clear grammar, and this is what automated tools
are good at. If a problem can be stated in formal terms, then tools can check
consistency and, depending on the nature of the language, verify interesting
properties like termination and liveness.

In building a model it is vitally important that we have a clear idea of
what we are trying to cover; what is our target, what boundaries does it have
and what properties are we trying to capture? In the rest of this chapter, we
will look at some of the issues involved.

14.2 What Is a System?

If we are going to be talking about the modelling of systems, we had better
know what a system is. A system can be anything that is of interest to us
both as a whole and as a composition of smaller interacting parts. Where
appropriate, a system may be composed hierarchically from some collection
of subsystems (see figure 14.1). When we design something, we generally think
of it as a system because we are interested both in how it will perform as a
whole and how it is to be constructed from parts. The parts concerned are
not necessarily fabricated things; a system may involve humans or natural
resources.

However, an ODP specification is always concerned with the creation or
understanding of an ODP system. It is generally reasonably clear, at an
intuitive level, what this system is, which is why we have been able to leave
consideration of the question until so late in the book. The understanding of
the system is the aim when writing the specification. This does not mean that
the system is central to every element of the specification; some views may
be concerned only with the environment in which the system is to operate,
or may express the business requirements at such an abstract level that the
target system is not itself visible.

190 Building Enterprise Systems with ODP

social system

citizens organizations

organizational
units

subcontractors

project
units

IT systems

network
subsystems

IT service
systems

repository
systems

larger, softer
systems

smaller,
more mechanistic

subsystems

FIGURE 14.1: A hierarchy of systems.

In the PhoneMob specification, for example, the top-level community in
the enterprise viewpoint reflects the concerns of the PhoneMob management
in terms of the parties involved in their activities, without even mentioning the
target system. The target system then appears when the phone repair provider
role is refined to a level where the way the system supports individual activities
becomes visible. The initial emphasis of the ODP enterprise viewpoint is on
establishing the purpose, scope and policies governing the activities of the
system to be implemented, and on positioning it within the enterprise of which
it forms a part. Depending on the context in question, the term enterprise can
refer to a single organization or multiple organizations linked, for example, in
a supply chain arrangement or by a piece of legislation. The ODP system
can describe an existing system and its environment, an anticipated future
structure, some new behaviour extending an existing system or a completely
new system to be created within some environment.

14.3 Modelling Open or Closed Worlds?

One key question to ask when considering a model is whether or not the
model has an external boundary. There are two possible approaches (see
figure 14.2). In modelling a component, for example, the model expresses how
that component interacts with the rest of the world, but the world outside its
boundaries is not modelled. Instead, the component has interfaces where it
interacts with its environment. The interfaces and their types form a boundary

Modelling Styles 191

peer
object

target
object

peer
object

target
object

A closed-world model has no
free variables and no external
environment.

target
object
target
object

An open-world model has free
variables that are bound by
its external environment.

FIGURE 14.2: Defining open- and closed-world models.

to the model, but no further information about the world outside is given. This
is called an open-world model because there is an unknown environment
outside.

The alternative is to model the whole of some universe of discourse at
a suitable level of abstraction. The model represents a complete system, al-
though the detail becomes increasingly sketchy as we go further from the focus
of interest. The resulting model is a bit like the reflection of some scene in
a silver sphere; the whole world is in there, but only the major features of
distant objects can be made out; this is called closed-world modelling. In a
closed-world model, there is no boundary or external interface; remote parts
of the world are described, but only where this is necessary to account for the
interactions and internal state of the objects that are the primary focus of the
specification.

One of the main distinguishing features in enterprise modelling is that a
community expresses constraints and obligations on the things filling its roles,
rather than concentrating on the external interactions of some black box. In
other words, it focuses on the contract it embodies, not the interfaces of some
component providing a service. Thus, communities are normally expressed in
a closed-world style, where the specification covers the complete universe of
interest; however, parts of it may be represented in quite an abstract form.

In some situations, however, we want to produce a partial specification,
in which case we need to make the fact that some object provides a channel
to arbitrary remote parts explicit. This is done by introducing a so-called
interface role , fulfilled by any object of the appropriate type, whose identity
is not of concern in the community. The model is then of an open-world form.

This is not a very common requirement, but the final choice of style will be
influenced by the problem being solved. One situation where the open-world
style might be appropriate is where a community offers a business service to
the general public, without being concerned with the nature of its customers.

Chapter 11 deals with an intermediate situation — that of enterprise fed-
eration. In this case, two enterprises cooperate based on a loose coupling;
each takes a simplified, abstract view of the objectives, rules and processes of
the other. The key to successful federation is to ensure that there is sufficient
mutual understanding to see that the objectives will be met without applying

192 Building Enterprise Systems with ODP

unacceptably rigid constraints on the independence and evolutionary potential
of the federation members. Note that the federation itself can be considered
as a community at a higher level of abstraction, and thus can be reused in
higher-level specifications, like any other individual community.

14.4 Capturing Requirements

The formal approach taken in the enterprise language is aimed at improv-
ing communication between business stakeholders and designers of the system,
but, at the same time, bringing a level of rigour needed to link it to the de-
tailed design of the system. This is of particular importance when using tools
to support model-based development; these tools need to provide traceability
linking requirements, features in the design and elements of the subsequent im-
plementation. Rigour is achieved by the adoption of a precise set of modelling
concepts, carefully selected to reflect the typical business language and jargon,
such as the concepts of process, policy, party, accountability, delegation and so
on. These modelling concepts allow the expression of the expected structures
and behaviour of a projected enterprise or system, either a completely new
one or an intended extension of an existing system.

There are various techniques that can be used to facilitate the develop-
ment of business structures and processes based on the elicitation of business
requirements and business rules, making use of interviews with stakeholders.
For example, standard use cases or business scenarios provide a way of ex-
pressing business and system requirements using structured natural language,
reflecting a specific fragment of a system. Typically, several use cases can be
combined to arrive at a broader and more generic business model expressed
using the enterprise language concepts. These models are more amenable to
automated checking than loose collections of use cases. Ideally, a software
development tool should provide traceability between requirements and the
resulting elements of the enterprise model, to ensure that when requirements
change, the elements of the enterprise model that may be affected can be
highlighted; increasingly, tools are providing support for such features.

From a modelling point of view, requirements capture has two interesting
features. The first is that the relation between a requirements model and a de-
sign is a particularly extreme form of refinement, in which the assertions made
in the requirements must remain true when an initially underspecified system
element is completely replaced by a design compliant with some architecture
chosen by the designer. The second feature of requirements modelling is that
it will often bring into play some roles and responsibilities not appearing at
all in the eventual design, covering things like ownership of the system, its
associated runtime and implementation costs, and so on.

Modelling Styles 193

14.5 Expressing Obligations

As we have shown, the description of an enterprise involves more conflicting
constraints and trades-off than are found in the design of a software process.
This leads to emphasis not just on what happens next in a particular situation
(as is the case in traditional software design), but also to consideration of what
might happen, what can happen and what should or should not happen. We
are concerned not just with the rules of a deterministic automaton, but a web
of permissions, obligations and prohibitions. The result is a need for a much
more powerful set of modelling tools. Technically speaking, it takes us from
the world of predicate logic to the world of modal and deontic logics [74,89,99]
— giving the ability to reason about possibilities and conformance to accepted
norms.

This is a more fundamental change than many people realize. It involves
not just extensions to the notations we use, but changes to the way we interpret
existing notations. Instead of basing our assessment of a system on whether
what it just did is consistent with the specification, we need to ask whether
it did the right thing, given all the possible things it could have done in the
circumstances. This involves our tools in checking for optimal decisions (or,
more often, least bad solutions), rather than just checking for correctness, and
few tool builders have yet risen to this challenge.

A simple example can be seen in the treatment of obligations. If I have
an obligation, it is reasonable to assume that I should do the action needed
to discharge it; but it is not obvious, unless explicitly stated, how urgently I
should treat the requirement, or how hard I should strive to overcome other
factors that might currently be preventing the action. However, this is just the
beginning; it is much more difficult, for example, to see what I am expected to
do if I am one of a number of equal members of a community and an obligation
is placed on the community. If the thing is not getting done, what personal
costs should I accept so that the whole group meets its obligation? Why not
leave it to one of the others to do it?

One consequence of these complications is that the statements of expected
actions in our contracts are frequently accompanied by exception handling,
saying what should be done if an obligation is not discharged, or a prohibition
is violated. These may cover what corrective actions are needed or what
compensation becomesdue. For example, community contracts often detail
penalties for late delivery or processes for replacing faulty goods.

One particular set of concepts that must be treated in this way is concerned
with delegation. If an enterprise is to be robust, it must be clear what is
to happen when an object fails or when the demands on a role exceed the
capabilities of any single object. One solution is to introduce a special kind
of community, describing a delegation pattern, in which responsibility can

194 Building Enterprise Systems with ODP

be passed down to exploit a broader range of resources, or an authorized
replacement can be located for a failed actor.

These are areas where the current models are just the first steps towards
progressively higher-level descriptions of business practices, social norms, or
even aspects of the legal system. It is not inconceivable that, in the future,
legislation may be supported by suitable formal models of the community
concerned. There are already a number of examples of the formal modelling
of quite complex laws and regulations in the scientific literature [57,77,87,91].

14.6 Expressing Semantics

So far we have concentrated on issues about expressing behaviour, but
there are also many equally important issues in the field of information mod-
elling. Here again, the main issue is how to establish a robust link between a
formal model of knowledge and the real world with all its complexity and am-
biguity. The models used are generally based on the construction of a large
collection of terms, labelled with attributes and linked by relations. These
knowledge networks are often called ontologies. There is a great deal of judge-
ment and skill involved in constructing a good ontology because of the need
to balance coverage and precision.

As usual, there is a need to limit the resulting complexity, and this is
normally done by defining ontologies to cover specific subject domains. These
then need to be related, usually via an overarching upper ontology (sometimes
called a foundation ontology). This involves the specifier in facing problems
very similar to those occurring when creating a federation (see chapter 11).
The problem here is, again, that combining different domains can easily lead
to inconsistency and ambiguity.

Consider, for example, the interaction between a technical ontology for
the mobile phone industry and a general commercial ontology covering sale
of products. The mobile phone ontology might cover terms like handset and
SIM, and express the whole-part relationship between them. The commercial
ontology might describe spare-part, ownership and warranty, indicating that
ownership of a product implies ownership of its parts. However, when we
sell a mobile phone it often involves a preinstalled SIM, perhaps on a pay-as-
you-go basis. The simple composition of these ontologies as separate fields of
knowledge would conceal a whole range of issues around the more complex
relationship between phone supplier, carrier and customer.

Solving these problems requires a detailed analysis of what it means to
say a term applies to a real-world entity, and needs much of the same modal
machinery outlined previously for the handling of obligations.

Chapter 15

Sharp Tools

“Hello,” said Claire, “what are you doing? It looks grim.” Nigel was sit-
ting at a long table with two monitors and a laptop, surrounded by printed
lists and diagrams. “I’m rebuilding the firewall rules for the federation links
with Factotum. It all works OK on the test systems, but when we move to
production it is going to need a whole new set of permissions, and I’m going
to have to prove to internal audit that there are no loopholes.” “That doesn’t
sound too bad; why is there so much paper involved?”

“Because the configuration data comes from the network management sys-
tem, but the actual communication patterns are application sequence dia-
grams, and they are scattered about the different functional designs. To make
things worse, the actual data flows are not exactly as the designs say because
there are transparent caches in front of the interceptors, so the network flows
are broken up by that. The control rules are all in different formats and come
from different systems, too.”

Claire was getting interested. They worked through the different data
sources, and before lunch they had identified five different report types that
together held all the key information. After that, some simple shell scripts
had extracted a series of relationships and massaged the names into a more
manageable form. Claire had got Ira involved because she remembered an
open source ontology visualization tool he had been so pleased with earlier in
the week. It was now mid-afternoon, and they were gathered round a laptop
looking at a display dense with coloured lines.

“What a mess,” Nigel said. “It’s worse than all the paper.” “Yes, but
wait,” said Ira, pulling down a menu, “here’s the really clever bit. The tool
does cluster analysis and looks for relational closures that fit with the resulting
structure.” He clicked a couple of items and the picture writhed and settled
down to show a coarse mesh with a small number of lines cutting across the
main bundles. “Now then, we want to know about the authorized paths that
cross organizational boundaries.” After some more option selection, a few
bundles were highlighted in red.

Nigel took over and hovered the mouse over these groups, noting the net-
work routes involved. “Yes, that’s the structure I was working on, but what
about that group of flows up there? Oh, they all go through a thing called the
echo responder; what does that do?” Claire thought for a moment. “That’s

195

196 Building Enterprise Systems with ODP

part of the fault tolerance mechanisms; it lets objects check to see if their
references are operational.” Nigel’s eyes gleamed. “But don’t you see,” he
whispered, “it’s a backdoor. Anyone can use it and get at or modify any of
our data.”

There was a moment of stunned silence before Ira spoke. “That all goes to
show what happens when you have tools that bring your data together and
let you see it as a whole. It’s a good job we found it before we went live, but
what are we going to do about it?”

15.1 What Should a Tool Do?

We have repeatedly stressed the importance of having effective tools avail-
able when designing and implementing any reasonably large system. With-
out them, it is very difficult to ensure that structured designs are internally
consistent because, when compared to computers, humans are just not that
good at correlating information on paper. This is particularly true of systems
designed using a framework that supports separation of concerns. The sep-
aration makes it easier for different parts of the design to be progressed in
parallel, but also means that fewer people will have a complete view of how
all the parts interrelate.

In a viewpoint-based design, therefore, it is particularly important that
there should be continuously available checking mechanisms to ensure that
no inconsistencies are introduced when modifications are made. This should
cover at least the consistency of the viewpoints and correspondences, but
will usually also need to police additional user defined rules, such as global
uniqueness constraints.

Powerful tools let us automate the weaving together of information from
the various viewpoints, so that there is little need for manual processes to be
involved in combining information from the different views when constructing
the target system. Here we are talking about a toolchain involving various
types of tool, all working in a collaborative way to support system design and
specification. This includes traditional tools like editors and compilers, spe-
cialized design tools, transformational tools, and tools that check consistency
and correctness, like model checkers.

As we shall see, these tools need to come together in order to provide an
integrated design and development environment, including support for ver-
sioning, repository management and controlled collaboration and sharing of
information. This implies the introduction of what some authors have called
a tool bus [53, 79] allowing exchange of information, signalling of events and
provision of services. Just having a transfer format for models, like XMI, is
certainly a start but is not generally enough to provide the level of integration
and interaction that is needed.

Sharp Tools 197

15.2 Model Editors and Analysis Tools

The first level of tool support required for the development of large sys-
tems specification should be provided by model editors. The RM-ODP was
originally defined to be independent from any particular notation for express-
ing its concepts, so as to increase its use and flexibility. In other words, the
ODP viewpoint languages are abstract languages in the sense that they de-
fine what concepts should be used, not how they should be represented. This
lack of notations for expressing precisely the different models involved in a
multi-viewpoint specification is a common feature for most enterprise archi-
tectural approaches, including the Zachman framework, the 4+1 model and
the RM-ODP.

The problem with defining only the abstract syntax of a language is that it
makes the development of tools for writing the viewpoint specifications more
difficult. More information is needed to allow the formal analysis of what
is produced, and the possible derivation of implementations from the system
specifications, and to manage the myriad other details needed to complete the
specification.

There have been many different notations proposed as ODP specification
languages. The earlier ones came from academia, based primarily on for-
mal languages such as Z [95], Object-Z [67], LOTOS [1, 18], Alloy [76] and
Maude [61]. These notations provide precise system specifications and, more
importantly, they allow the rigorous analysis of the systems, with tools for
reasoning about the specifications including consistency checking, simulation
for prototyping or model checking. However, the precision inherent in formal
description techniques and the lack of industrial tool support has hampered
their wide adoption.

As we mentioned before, the acceptance of UML, the number of avail-
able UML tools, the increasing interest in model-driven development and
the model-driven architecture (MDA) initiative, all contributed to motivat-
ing ISO/IEC and ITU-T to launch the UML4ODP joint project in 2004. This
aimed to promote the use of UML for ODP system specifications. We have
already described the UML4ODP project and its notation in section 1.7.2.
The goal of this joint project was that ODP modellers should use the UML
notation for expressing their ODP specifications in a standard graphical way,
and that UML modellers should be able to use the RM-ODP concepts and
mechanisms to structure their large UML system specifications.

The fact that the UML4ODP notation is defined as an extension to UML
by means of a set of UML profiles makes its adoption easier. UML profiles
are available for all the major UML modelling tools, which enables the use of
the UML4ODP notation within them. Furthermore, specialized model editors
for UML4ODP have been created making use of these profiles and these are
also available as plug-ins for some of the widely used UML modelling tools.

198 Building Enterprise Systems with ODP

One example is the UML4ODP plug-in for MagicDraw. These domain-specific
tools allow users to work with the ODP concepts and mechanisms as first class
entities in their editors, and provide common skeletons and templates for the
specifications.

However, editing with a set of UML profiles may not be enough when
building large system specifications. There is also the need to check that the
structure and architecture of these specifications is correct. One of the benefits
of using a reference model such as the RM-ODP is that it allows structuring
the specifications according to a fully tested standard architecture. The fact
that the structuring rules of ODP viewpoint languages are explicitly defined
in the standard has enabled the development of tools that allow validation of
the models, checking that they comply with the ODP reference architecture.
This is already possible with some of the plug-ins mentioned previously, which
are able to detect missing parts of the specification, architectural problems,
conflicting elements or violation of the structuring rules.

Another key role for tools in this context can be seen in the validation
of the individual viewpoint specifications. We have mentioned that there
are notations for the viewpoints that allow their formal analysis and even
simulation. The question is how to connect the UML4ODP specifications
with these notations so as to be able to make use of their toolkits. This is
where model-driven techniques really come into play.

15.3 Model-Driven Approaches

There has been a great deal of emphasis in recent years on the develop-
ment of model-driven techniques for system design and development. This
movement is marked by a change of emphasis from a situation where models
were used primarily to capture requirements and set the scene for a creative
coding process to a situation where the models are the prime focus of the de-
sign and the source representation for design information, from which a largely
mechanical implementation process derives its steering information. The as-
sumption is then that the models are the place to go to answer any questions
about the system. Any modifications are carried out as changes to the models
followed by an incremental reworking of the implementation process. With
strong enough tools, this reworking can be cheap and quick to carry out.

We are all familiar with such almost total reliance on tools in the support of
high-level languages. The overwhelming proportion of program development
is now carried out in languages like Java, and hardly anyone gives a second
thought to the processes of compilation from high-level language to object
code, or JIT compilation of object code to machine code, that underlie the
execution of such code. Promoting this to start at the model level is not
entirely straightforward because the models are more abstract and one single

Sharp Tools 199

refinement route is not always appropriate, but the rewards of doing so are
considerable; this is what the model-driven approach is trying to do.

Work to raise the abstraction level at which designs are formulated has
been a major research thread for a long time and, as should now be clear, was
an important influence on the development of the ODP viewpoints. However,
the ideas gained prominence in 2001 when the OMG brought much of the ear-
lier thinking together in their MDA white paper [92]. This focused initially on
one particular problem, the decoupling of application designs from the details
of the growing number of middleware platforms available. The answer pro-
posed was to capture the application detail in a quite abstract model and then
provide tools that could specialize this single design for each of the platforms
available.

One of the main contributions was to recast thinking that had previously
been in terms of translation between languages with different grammars so that
the ideas were expressed as models whose form was governed by corresponding
metamodels (although a metamodel is still, basically, just a grammar). If the
transformation that was needed from abstract and concrete models could be
defined in terms of metamodels, a single tool generated from them could be
used for transforming the whole family of models that shared the same meta-
model (see figure 15.1). In practice, transformations need to be parameterized
to make them more widely applicable, so the process is steered by a combi-
nation of the material embedded in the transformation and some additional
information supplied when a particular transformation activity is performed.

Later, the OMG extended their architecture to support more than
one refinement step, and identified three major modelling levels, yielding

abstract
model

A

language
metamodel

for A

concrete
model

B

language
metamodel

for B

transformation
specification

transformation
engine

additional
information

FIGURE 15.1: A framework for model transformations.

200 Building Enterprise Systems with ODP

computation-independent models (CIM), platform-independent models (PIM)
and platform-specific models (PSM) [84]. Note that the terms PIM and PSM
are defined relative to some chosen concept of a platform, and may be ap-
plied recursively as the system design is refined. Researchers have suggested
that one approach to integration of, for example, non-functional aspects such
as security is to extend the chain to involve a whole series of transformation
steps [63,80], leading to a convergence with aspect-oriented programming.

It is tempting to try to draw parallels between this family of models and
the viewpoints, but there is an important difference that makes such connec-
tion inappropriate. This is the fact that the viewpoints are characterized by
stakeholder interest, while the ideas of CIM, PIM and PSM are relative to
technological detail. Thus, as technologies evolve and the design focus drifts
up to higher levels of abstraction, there will be a gradual relative drift between
the two systems.

15.4 Model Transformations

Models and transformations are the key ingredients of the model-driven
architecture approach. A model transformation is basically an algorithmic
specification (either declarative or operational) of the relationship between
models, more specifically the mapping of information from one model to an-
other. A model transformation involves at least two models (the source and
the target), which may conform to the same or to different metamodels. The
relationship defined by a model transformation determines the valid mappings
between models conforming to these metamodels, and can be of different types
depending on the nature of the relation: unidirectional or bidirectional, re-
fining or abstracting, endogenous or exogenous (depending on whether the
source and target metamodel are the same or not), and so on. The transfor-
mation specification is normally given by a set of model transformation rules,
which describe how a model in the source language can be transformed into
a model in the target language.

In addition to model-to-model transformations, it is also possible to define
text-to-model and model-to-text transformations, in which the language of
the source or target model is expressed using a textual notation. The former
are called injectors, and are very useful for converting programs or documents
into models that can be manipulated using model-driven techniques and tools.
Extractors are useful for producing structured documents (text, Word, Excel,
HTML, XML or program source code) from models.

A model transformation can also be considered a model in its own right,
which presents opportunities for higher-order transformations, that is, trans-
formations that manipulate models representing other model transforma-

Sharp Tools 201

tions [97]. The metamodel of a transformation corresponds to the language
in which the transformation is written.

The initial discussions of model-driven transformations focused on trans-
formations that are one-to-one, with each transformation linking precisely one
source to one target. In general, however, the development of structured spec-
ifications leads to more intricate patterns, where the transformations are typ-
ically many-to-many. One common pattern involves weaving multiple pieces
of specification together to yield a single target. Another is the derivation
of a number of implementation elements from a single design, yielding, for
example, both executable code and deployment control files, such as tailored
sets of firewall rules.

Another important use of model transformations is to define bridges be-
tween technical spaces or even semantic domains. For example, model trans-
formations can be used to translate specifications written in UML4ODP into
their corresponding specifications in Maude or in Alloy, in order to make use
of the analysis facilities and tools available in these target domains. Further-
more, model transformations are extensively used nowadays to build two-way
bridges between systems or applications that use disparate technologies or live
in different technical spaces (such as EMF [55], CORBA, Java or RDBMS, to
name but a few).

Finally, it is important to mention that model transformations are not
normally defined in isolation, but as part of a set of transformations that are
composed together into a model transformation chain that provides a more
powerful piece of functionality. This follows the typical pipelined approach
used, for instance, by the Unix shells, in which several commands are chained
together using pipes to form a specialized application.

15.5 Languages for Transformations

Having an architecture for transformations is not much good without
a corresponding language for defining them. The OMG has therefore de-
fined a recommendation known as QVT, or Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification in full [41]. This provides a spec-
ification toolkit with a range of features for transformation specifiers with
differing requirements.

One of the ongoing debates about the use of transformations has been
whether they should be defined in a declarative or imperative style. Some
claim that a declarative style is more suited to the expression of architectural
relationships because it is more abstract, while others prefer an imperative
approach as being easier to write and debug. QVT supports both styles
by providing two different languages, called QVT Relations and QVT Op-

202 Building Enterprise Systems with ODP

erational. Both of them are implemented on top of a low-level, imperative
language called QVT Core.

Just like programming languages, there are many other model transfor-
mation languages currently available, among which ATL (the ATLAS Trans-
formation Language) [78] is probably the more widely used. ATL is a hybrid
model transformation language containing a mixture of declarative and im-
perative constructs. ATL transformations are unidirectional, operating on
read-only source models and producing write-only target models.

In general, the model transformation language to use depends on the spe-
cific characteristics of the relationship we want to establish between the source
and target model, and the selection of the best way to express it.

There are also several languages for writing model-to-text transformations,
such as MOFscript, JET, TCS or Acceleo. The last of these is an implemen-
tation of the OMG MOF model-to-text (MOFM2T) language [32]. TCS (Tex-
tual Concrete Syntax) can be used for specifying both injector and extractors.
It enables the specification of textual concrete syntaxes for domain-specific
languages (DSL) by attaching syntactic information to metamodels. With
TCS, it is possible to parse (text-to-model) and pretty print (model-to-text)
DSL sentences. Again, the language to use in each case depends on our specific
requirements and preferences.

15.6 Viewpoints and Transformations

So, how does this transformation approach relate to the ODP viewpoints?
Firstly, it must be made clear that these techniques can be used to support
refinement or other automated design steps within a single viewpoint. They
could, for example, support the community refinement described in chapter 2.
However, the approach is particularly important for integrating and bring-
ing together information from different viewpoints. The transformational ap-
proach can be used to support the various steps needed to combine and refine
the different viewpoint models to yield a working system, but the nature of
the steps to be taken depends on the viewpoints concerned, and there is more
than one way of putting the pieces together. However, we can see a number
of styles depending on the viewpoints concerned.

In the current context, we can distinguish three kinds of transformation
pattern (although there are many more), which differ in terms of the roles
the viewpoint specifications play and the nature of the information flows (see
figure 15.2). These are:

1. Merging transformations, in which two specifications are combined to
generate a composition. This can be performed by following a set of
defined by correspondences. One example of this is the import of defini-

Sharp Tools 203

design
model

types
model

merged
model

transformation
engine

defined by
correspon-
dences

1: A merging
transformation.

transformation
engine

design
model

template
models

refined
model

2: A refinement
transformation.

transformation
engine

tasks
model

resource
model

allocation
policy

allocated to
correspon-
dences

3: An allocation
transformation.

FIGURE 15.2: A schematic view of different transformation types.

tions from one specification to complete another specification that uses
the definitions; it includes the well-known process of importing type
libraries. Another example is the weaving of different aspects.

2. Refinement transformations, in which one specification provides a set
of templates for replacing terms in another specification with specific
pieces of supporting mechanism. This includes the classic model-driven
transformation in which a platform specification is applied to a platform-
independent design to yield a platform-specific one.

3. Allocating transformations, in which some tactic is applied to two spec-
ifications in order to construct an optimal relationship between them.
This might involve resource allocation in which tasks defined in one
specification are associated with resources defined in another. The re-
sult could then be expressed by the creation of a set of allocated to
correspondences. Examples might be the deployment of tasks in an ap-
plication on available processors, or the building of execution schedules.

204 Building Enterprise Systems with ODP

Looking at the relationship between specific viewpoints, some follow a sin-
gle pattern, while others are composite in nature. The relationship between
the computational and engineering viewpoints is perhaps the simplest, be-
ing a straightforward refinement relation, in which the engineering viewpoint
provides a set of templates for refining the computational specification. This
results in an ephemeral specification that is not one of the ODP viewpoints,
but represents an abstract implementation. Since it will be regenerated afresh
whenever necessary, it will track changes in the computational and engineering
viewpoints as they occur.

The relationship between the information and computational viewpoints
involves a merge, in which information types are imported into the computa-
tional specification, where they will generally be used as a starting point for
further refinement as part of the computational design process.

The relationship between the enterprise specification and the others is
again primarily a refinement, but the rules to be applied depend on the orga-
nization and the methodology in use, so that many approaches to unification
are possible.

The involvement of the technology viewpoint is more complex because
it deals with several different kinds of information. The viewpoint covers
the available resources and their configuration, as well as catalogues of imple-
mentable standards and conformance requirements. One of the main activities
is the performance of an allocation step that associates tasks in the abstract
implementation to specific resources; the results of this allocating transforma-
tion is added to the technology viewpoint configuration information. There
is then an instance of relationship between technology viewpoint elements
produced and the engineering elements being supported.

These examples give an idea of how transformational tools can manipulate
viewpoint information and support the realization of the system that has been
designed. There are, of course, other information flows as part of the system
generation process, drawn from the patterns given previously, or otherwise,
but it should be clear that the tools will each need to act on and combine
information from different viewpoints to do their job.

Model transformations can also be very useful for keeping different models
synchronized. These models can be either two representations of the same
viewpoint specification, or two viewpoint specifications related by a set of
correspondences. The first case happens when the user applies two concrete
syntaxes to express one viewpoint language, for example a textual and a graph-
ical one. In the second case, changes in one of the viewpoint specifications
may need to be reflected in the rest of the related viewpoints. As indicated
in chapter 7, the correspondences can be used to propagate these changes,
and model transformations provide a natural mechanism for keeping these
specifications in step. For instance, think of two elements living in different
viewpoints, but related by a correspondence that establishes that their names
should coincide. Model transformations can be responsible for changing the
name of an element whenever the related one is modified.

Sharp Tools 205

Finally, correspondences can also be very useful in multi-viewpoint spec-
ifications for checking consistency between the different views. Part 3 of the
reference model discusses this problem and explains that, if two viewpoint
specifications S1 and S2 are related by a set of correspondences that can be
specified in terms of a model transformation T , the transformation can be
applied to S1 resulting in a new specification T (S1). This can then be com-
pared directly to S2 in order to perform different kinds of checks. Examples of
such consistency checks include, for instance, behavioural compatibility [60]
between allegedly equivalent sets of objects, or the detection of contradictory
constraints in one or another of the viewpoint specifications.

15.7 More Integration

We are a long way from a situation where a system can be deployed from
a set of viewpoint specifications at the press of a button. In fact, it is un-
likely that we will ever achieve this Utopian objective. Indeed, there are both
positive and negative aspects of the move towards greater integration.

On the positive side, there is the possibility of making more information
available about the way the organization actually works, and feeding this
information back into the system management and control processes. If some
information is available about actual patterns of usage, it can be fed back to
assist autonomous management mechanisms. We can optimize and balance
the use of resources by establishing new paths within the toolchain.

On the other hand, we need to retain a certain looseness of coupling and
compartmentalization to allow proper management. We do not actually want
changes in the enterprise models to feed through immediately into the running
system. We need to observe review processes before changes are accepted,
and to allow designers to experiment with, and assess the impact of, possible
changes before they are put into effect. One of the requirements that goes
hand-in-hand with the progressive increase in the level of integration is the
need for more powerful management tools for the whole process, allowing for
the exploration of options and the circumscription of activities a designer can
carry out, so that they do not exceed their authority.

This page intentionally left blankThis page intentionally left blank

Chapter 16

A Broader View

Marcus turned back at the door. “One final piece of news,” he said, “I’ve
just been told that the PhoneMob system has been nominated for an IT Guild
award. Well done everybody.” Eleanor looked up. “Have you told Alex yet?
And are you going to get him to advise on the new project?”

Marcus looked round the faces of the team, and thought how well they
were working together now.

“I’ll add a note to his Christmas card, and get my PA to send him a case
of his favourite Pinot Noir. But I don’t think we need trouble him again. I
think you all know how to do it yourselves, now.” He smiled briefly at them
and closed the door after him.

16.1 Where to Look Next

Having read this far, you probably want to know more; so what next?
One answer is to go to the standards themselves. The best place to start is
probably with the introduction to UML4ODP, which was the most recently
published, but before long you will want to read Parts 2 [3] and 3 [4] of the
reference model, as being the source of most of the ideas. These are publicly
available online from ISO or ITU-T, as are a number of the other supporting
standards. Part 2 explains the basic concepts and vocabulary used across
all the viewpoints, while Part 3 introduces the five viewpoint languages, the
transparencies and the supporting functions.

More detail of the business-facing aspects can then be found in the en-
terprise language standard [17]. Some additional detail of the key techniques
for supporting the building of configurations in the computational and en-
gineering viewpoints can be found in the Interface References and Binding
standard [14], while important general material on the manipulation of names
in situations where there are many federated domains is provided in the Nam-
ing Framework [16].

The reference model can be obtained free of charge from the ISO
publicly available standards pages at http://standards.iso.org/ittf/

PubliclyAvailableStandards/index.html. The ITU-T makes its versions

207

208 Building Enterprise Systems with ODP

of all the ODP standards freely available as part of the X series of recommen-
dations from http://www.itu.int/itu-t/recommendations/index.html.

A good source of news and general information is the ODP website at
http://www.rm-odp.net/, which provides links to current activities. You can
also download the model for our running example from the authors’ website at
http://theodpbook.lcc.uma.es/. This goes into more detail of the model
than is outlined throughout the book and brought together in appendix A.

There are not enough other books on ODP, but two notable ones are
Blair and Stefani [52], which deals with ODP largely from a computational
perspective, with emphasis on its use with real-time and multimedia systems,
and Putman [88], which works through the detailed concepts, following the
structure of the reference model closely.

16.2 Integration of Other Standards

The ODP reference model provides a conceptual framework, but concrete
notations are needed to express viewpoint specifications. In this book, we have
given pride of place to UML, but there are many other notations that can be
positioned and used within the framework. Some well-known standards from
the OMG that could be used are:

• The Business Process Model and Notation, BPMN [40], which provides
a graphical notation for expressing business processes, and so is a can-
didate notation for representing enterprise community behaviour.

• The Business Motivation Model, BMM [37], which provides a set of
concepts for expressing goals and objectives and so could be used to
express enterprise community objectives.

• The Semantics of Business Vocabulary and Business Rules, SBVR [33],
which says how business vocabularies, facts and rules can be expressed
and could be used to express business-oriented types, in either the en-
terprise or information viewpoints.

16.3 Uses of ODP

This section sketches a number of representative examples of areas in which
the ODP framework has been used. There are many more such examples, and
pointers to some of these can be found on the ODP website or in the academic

A Broader View 209

literature, particularly in the EDOC series of conferences or the associated
series of WODPEC workshops.

16.3.1 NASA RASDS

International collaboration on space exploration and the deployment of
space-based data collection platforms has led to a need to share facilities and
resources. As always, this has focused attention on the need for a framework to
promote interoperability, and the Consultative Committee for Space Data Sys-
tems has, as a result, proposed the Reference Architecture for Space Data Sys-
tems [62]. This has subsequently been published by the ISO as ISO 13537 [11].

This architecture is based on the RM-ODP, but with an expanded set of
viewpoints to take into account the special concerns with details of communi-
cation and spacecraft system engineering that arise from the special challenges
of the space environment.

16.3.2 Service-Aware Interoperability Framework

The RM-ODP has recently been used as input to the Health Level 7 (HL7)
standardization efforts. HL7 International is a not-for-profit, ANSI-accredited
standards development organization with members from over 55 countries,
dedicated to providing a comprehensive framework and related standards for
the exchange, integration, sharing and retrieval of electronic health informa-
tion. It aims to support clinical practice and the management, delivery and
evaluation of health services.

RM-ODP has been used to provide architectural underpinning to a broad
range of e-health interoperability problems. This part of the HL7 effort is
referred to as the Service-Aware Interoperability Framework (SAIF) [73].

SAIF provides a framework for ensuring interoperability when exchanging
documents, messages and services between health organizations. This consists
of four core subframeworks:

• The Information Framework (IF), which defines how the static informa-
tion of importance to a given domain is captured and refined through a
traceable process to yield an implementable or implemented information
artefact.

• The Behavioural Framework (BF), which provides a technology-
independent way of describing behaviour in e-health systems. Many
of the concepts from the enterprise and computational languages and
some of the foundational concepts have been adopted within the SAIF
behavioural framework.

• The Governance Framework (GF), which provides an abstract gover-
nance model. This can be applied within an interoperability community,

210 Building Enterprise Systems with ODP

within a standards development community, across standard develop-
ment communities or within a specific enterprise architecture. A subset
of the ODP enterprise language is used.

• The Enterprise Conformance and Compliance Framework (ECCF),
which provides an organizational framework in which interrelated e-
health architectural artefacts are categorized by content. It is used
to define conformance and compliance statements, and is based on the
treatment of conformance in the RM-ODP.

16.3.3 Use in Other Standards

In previous chapters, we described the main members that make up the
ODP family of standards. However, the influence of the ODP work is not
limited to this and, in addition, the ODP framework has also been used by a
number of other ISO projects.

The most prolific field of application has been in the ITU-T work in sup-
port of management of their transport networks. The recommendation G.851,
Management of the Transport Network [25] and a family of twenty-five associ-
ated recommendations dealing with different facets of management informa-
tion are all built using the ODP framework. Related work is continuing within
ITU-T Study Group 17 , concerned with Question 13/17 on Formal Languages
and Telecommunications Software.

An example of use in a quite different area is the standard ISO/TS 17573:
Systems Architecture for Vehicle-Related Tolling [20], which is currently being
revised after seven years of use. It uses the ODP reference model to provide
an architecture, a standard vocabulary and a modelling approach that allows
the system to be seen from different viewpoints, covering a wide range of
requirements, from hardware components and network protocols or interfaces
to enterprise roles and general policies of the system as a whole. This is
accomplished by applying different sets of concepts and terminologies that
make up the viewpoint languages. A complete description of a real system
is only achieved when all the viewpoint models are present. This allows the
experts in vehicle automation to achieve a clear separation of concerns and
gives an easier way to define conformant systems.

Another example can be found in the standard ISO 19119: Geographic
Information Services [21], which provides a framework for interoperability of
products involved in the access to and processing of data in geographic infor-
mation systems. This uses the ODP viewpoints to structure the framework,
and has chapters explaining the domain-specific detail associated with each
of the ODP viewpoints. Service composition is based on the computational
specification, and semantic interoperability on the information viewpoint. The
result is a modular, service-oriented toolkit for the construction of workflows
involving data repositories for geographic information associated and analysis
systems.

A Broader View 211

The trend is continued in a recent multi-part standard ISO 12967: Health
Informatics — Service Architecture (HISA) that provides an architectural
framework for healthcare informatics, which gives a set of ODP viewpoint
specifications for service definition and integration [6–8]. Its aim is to pro-
vide a single approach that unifies the integration of new developments and
commercial off-the-shelf products with existing legacy systems, so there is a
strong emphasis of federation. Each part of the standard addresses one of the
ODP viewpoints.

Turning to other architectural standards, the reference model for ODP is
called out in IEEE 1471 (and in its successor, ISO 42010) as a prime example
of a framework complying with the viewpoint-based architectural descriptions
it prescribes. In fact, the RM-ODP and these two standards for architectural
description have had a significant influence on each other, and the groups con-
cerned have maintained strong, active liaison to achieve consistency between
them.

The use of the RM-ODP continues in new work; a notable piece of work
in progress within ISO is concerned with the standardization of a metamodel
framework for interoperability, which is underway in ISO/IEC JTC1 SC32 .
This work is basing its description of services on the ODP metamodels, and is
likely to be exploited in further work on service equivalence in service-oriented
and cloud computing.

These are just a few of the ways the RM-ODP continues to influence and
support a broad range of standardization activities.

16.4 Tools

There are several UML tools that offer UML4ODP capabilities. For in-
stance, No Magic’s MagicDraw is a popular commercial UML tool, which we
used to develop the UML4ODP standard and which has also been used to
draw the various UML diagrams in this book. The Spanish team involved in
RM-ODP standardization developed a plug-in for this product, information
about which can be found at http://www.magicdraw.com/uml4odp_plugin.
The plug-in adds a custom menu item called RM-ODP, which provides access
to the basic ODP diagram templates and to some model checking tools. It
presents a custom ODP palette for each of the ODP diagram types, allowing
easy drag-and-drop diagram creation. The plug-in is easily installed with the
UML tool’s resource and plug-in manager, which is accessed from the tool’s
help menu.

Sparx System’s Enterprise Architect is another UML tool with which you
can add ODP functionality. After installing the ODP capability, users can
draw UML4ODP-based diagrams. Further information can be found at http:
//www.sparxsystems.com.au/products/3rdparty/odp/index.html. There

212 Building Enterprise Systems with ODP

are many more UML tools, such as PatternWeaver, with which readers can
work on ODP modelling. However, readers are advised to consult with their
tool vendors to see what plug-ins are available.

Many of the groups producing standards or other specifications maintain
lists of known products using them, and these lists are a fruitful source of
information about potential tool vendors and relevant groups in the open
source community. Tool vendors usually implement standards enhanced with
their own capabilities, look and feel and other special features to appeal to
their customers.

The open source community is a place where interested people get together
to implement something of common interest to them. In the case of UML and
the UML profile, OMG’s UML page (http://www.uml.org/) and MDA page
(http://www.omg.org/mda/) are good starting places to find such tool ven-
dors. As a good example of an open source community, you can look at the
Eclipse foundation (http://www.eclipse.org/). Within the Eclipse commu-
nity, there is specific support for the creation of modelling tools in the form
of the Eclipse Modelling Framework [55]. There are various implementations
in the Eclipse modelling projects (http://www.eclipse.org/modeling/), in-
cluding a UML 2 tooling project. You can also find implementations of dif-
ferent modelling styles.

16.5 Comparing Enterprise Architectures

A number of proposals for architectural frameworks have been made in
recent years; they all target the design and evolution of enterprise systems.
However, they are not easy to compare because they differ in their individual
scope and emphasis. This implies that each has its own areas of strength and
weakness.

We can divide the proposals into two groups. First, we have those frame-
works that aim to classify all the different artefacts, processes and people
involved in the specification of the enterprise system and its contents. The
earliest example of this style is the Zachman framework [94]. This was pro-
duced in the late 1980s and introduced the idea of an architectural framework,
which soon became popular.

The Zachman framework provides systematic guidance for organizing the
contents of an enterprise architecture and is often used to represent a portfolio
of the existing architecture artefacts within an organization. It has evolved
through several different revisions, which all use a two-dimensional matrix
to offer a taxonomy of architectural elements and processes; depending on
the version, this requires choices to be made between as many as 36 matrix
cells. However, it focuses on the categorization of the enterprise architecture

A Broader View 213

elements and does not cover other important aspects, such as conformance
testing and quality assurance, enterprise planning and federation.

The other group of frameworks focuses more on the processes and method-
ologies used to build the enterprise architecture. The most prominent example
here is The Open Group Architectural Framework (TOGAF) [98]. It divides
an enterprise information architecture by using four categories (the business,
application, data and technical architectures). However in TOGAF, the em-
phasis is placed on the ADM (architecture development method), which is the
process and methodology that creates the architecture. This methodology-
based view of an enterprise architecture is one of the major strengths of
TOGAF, which can be seen as complementary to more organizational-based
approaches such as the Zachman framework.

TOGAF first made use of a formalized architecture description language
in its latest version, TOGAF9, which also adds a certain level of formalism
for the relationships between various concepts, including links between IT and
business concerns.

There are also more specialized frameworks that concentrate on partic-
ular domains, such as defence or government. The Department of Defense
Architecture Framework (DoDAF) [66] and the Ministry of Defence Architec-
ture Framework (MoDAF) [85] are examples developed by the US and UK
governments, respectively. The Federal Enterprise Architecture Framework
(FEAF) [70] is an attempt by the US federal government to integrate all the
architectural activities in its multiple agencies under a single common frame-
work.

Unlike Zachman or TOGAF, this group of frameworks has a strong em-
phasis on high-level management because of the particular requirements and
concerns of the organizations being served. This results in reduced coverage
of the more technical aspects. In addition, the frameworks reflect the organi-
zational thinking of the domain in which they were developed, making them
difficult to reuse in a broader industrial context.

A common problem with all these frameworks comes from their complex-
ity. Although initially relatively compact, they have evolved over the years
to accommodate too many aspects and functions, making them hard to man-
age or to use in an effective way. In general, specifying an enterprise system
requires the balancing of many aspects that could be considered, and also
of the interests of a variety of different stakeholders. It is important that
any framework should allow each stakeholder to express their requirements
and solutions in a way that is familiar to them, by using their normal tools
and techniques. This means that the framework must allow the integration
of the specifications expressed in different ways. At the same time, it pro-
vides mechanisms for maintaining and ensuring the consistency of potentially
conflicting requirements or different views of the system. Thus, a key require-
ment for an effective framework is that its components should be cohesive,
with clearly expressed correspondences between the elements seen by the dif-
ferent stakeholders. In this respect, many of the proposed frameworks identify

214 Building Enterprise Systems with ODP

their component specifications without ever stating clearly how these should
interrelate.

The authors of the RM-ODP took great care to select a small set of view-
points that deals with the stakeholders commonly found when creating and
managing large distributed systems. They avoided the temptation to add
complexity by defining further viewpoints covering other less general concerns.
They also excluded unnecessary constraints on the way viewpoint specifica-
tions were to be structured.

The origins of the reference model as a framework for standardization
helped its developers draw on expertise from the different stakeholder areas
to ensure that each of the different viewpoint languages used the concepts
familiar to the teams producing that kind of standard. However, the writers
left flexibility within the viewpoint languages for users to select any appro-
priate notation and methodology, without imposing unnecessary taxonomic
constraints (such as mandatory use of a single set of dimensions) across all
the viewpoints.

The reference model is unique in having a well-developed and coherent
explanation of viewpoint correspondences, ensuring a consistent set of specifi-
cations and laying the foundation for an integrated tool chain. It also provides
a clear framework for the expression and assessment of compliance and confor-
mance, which is critical in a world where enterprise systems and applications
are not developed and maintained by isolated teams, but composed of multiple
models, applications and systems sourced from other companies.

Each of the viewpoint languages contains a precise set of modelling con-
cepts developed based on sound theoretical and engineering foundations,
drawn from both the organizational and distributed systems fields. It is the
combination of such organizational and technical concepts, and the correspon-
dence between these, that makes the ODP framework an excellent choice to
support the expression of various interoperability requirements from separate
perspectives, and at different levels of abstraction.

Supporting concepts and mechanisms such as transparencies, federation
and contracts also becomes essential for achieving smooth interoperability
between enterprise systems. This is particularly important where it involves
the crossing of boundaries between organizations or jurisdictions, needing the
exchange of information, provision of services and linking of processes in order
to do business with other enterprises.

Finally, the fact that the RM-ODP is an international standard ensures
vendor independence and long-lived specifications. These aspects are espe-
cially important for protecting the investment required for the adoption of
any enterprise framework. When augmented with strong links to the widely
used UML notation and tools based on it, they are precisely the strengths of-
fered by a mature framework such as the RM-ODP. In addition, the reference
model itself can be exploited and tailored for new standardization develop-
ments, such as the establishment of architecture frameworks and foundations

A Broader View 215

for new domains; this can be seen from its use in the telecommunications,
government and health sectors.

16.6 Coda

Since the RM-ODP was first published, many people have experimented
with the approach, and there are now many competing frameworks aiming
to satisfy the requirements of different communities and industrial sectors.
Indeed, there are now enough of them for interoperability between frameworks
to become an issue, so that, more than ever, users need to understand the
underlying concepts.

We hope that this description of the ODP architecture and the way it can
be used will help readers to understand the benefits of using such a framework,
and the importance of maintaining a clear awareness of the need to serve the
various stakeholders in the design process. The growing power of the tools
we use is opening the way to a much more clearly articulated separation of
concerns while, at the same time, ensuring coherence and consistency.

The use of a robust and consistent framework is essential when positioning
new technologies and planning their deployment to serve existing enterprises.
The ODP reference model can be used to analyse the implications of new
ideas, such as cloud computing, social computing and mobile computing. It
can help to distinguish what is genuinely new from what is simply differently
packaged, and help the understanding of new claims, as it has done for ser-
vice orientation, leading to a clearer comprehension of the significance of new
initiatives.

This is the way forward to the generation of flexible and evolving informa-
tion infrastructures that stand the test of time and do what their users really
need.

This page intentionally left blankThis page intentionally left blank

Appendices

This page intentionally left blankThis page intentionally left blank

219

About the Appendices

These two appendices contain some supplementary material
that complements the information provided in the main text
of the book.

The first offers a global view of the PhoneMob system speci-
fication, focusing on its overall structure. Space limitations do
not permit us to show the complete set of models that make
up the full system specification, but these are available from
the authors’ website at http://theodpbook.lcc.uma.es/.

The second appendix presents some questions and scenarios
that can be used to support teachers and trainers in introduc-
ing the concepts and design principles of ODP and for encour-
aging students to develop their own designs and specifications.

This page intentionally left blankThis page intentionally left blank

Appendix A

The PhoneMob Specifications

This appendix summarizes the specifications that make up the PhoneMob ex-
ample, focusing on their structure and organization. While the main text of
the book is primarily focused on the individual elements of the ODP specifi-
cations, this appendix gives the reader a more global view of its organization.

Overall structure. Figure A.1 shows the overall structure of the PhoneMob
specifications, expressed in the UML4ODP notation. It provides a complete
view of the UML model shown earlier in figure 1.4, but this time with all of its
constituent packages. There are five for the individual viewpoints, and six for
the correspondences between them (since, in this case, not all correspondences
are required).

«ODP_SystemSpec»

PhoneMob

«CorrespondenceSpecification»

C−N Correspondences

«CorrespondenceSpecification»

E−C Correspondences

«CorrespondenceSpecification»

E−I Correspondences

«CorrespondenceSpecification»

I−C Correspondences

«CorrespondenceSpecification»

N−T Correspondences

«CorrespondenceSpecification»

E−N Correspondences

«Enterprise_Spec»

PhoneMob (E_Spec)

«Information_Spec»

PhoneMob (I_Spec)

«Computational_Spec»

PhoneMob (C_Spec)

«Engineering_Spec»

PhoneMob (N_Spec)

«Technology_Spec»

PhoneMob (T_Spec)

All usage dependencies between

packages are stereotyped as

<<CorrespondingSpecification>>

(not shown in this diagram)

FIGURE A.1: The overall structure of the PhoneMob system specification.

221

222 Building Enterprise Systems with ODP

A.1 Enterprise Viewpoint Specifications

The enterprise language defines four key concepts: enterprise specifica-
tion , system , scope and field of application .

In our example, the system to be specified is a computerized system that
supports the operations of the PhoneMob company. The scope of this system
describes its expected behaviour, stating the way it is supposed to work and
interact with its environment in the business context. The scope of the system
is modelled in terms of the set of roles it fulfils (see section A.1.2).

The enterprise specification of the PhoneMob system is expressed by
one model, stereotyped «Enterprise Spec», which contains the contracts of all
the communities that make up the specification, as shown in figure A.2. This
also shows the field of application of the specification, which describes
the properties that the environment of the ODP system must have for the
specification to be used. It is expressed by means of a tagged value of the
«Enterprise Spec» model, giving the enterprise specification of the system.

«Enterprise_Spec»

PhoneMob (E_Spec)

«EV_CommunityContract»

Phone Repair

«EV_CommunityContract»

CustomerOrg

«EV_CommunityContract»

Logistics Provision

«Enterprise_Spec»

EV_FieldOfApplication = "This

specification assumes a

business environment, and can

be applied to most franchise

businesses. In particular, this

requires..."

FIGURE A.2: The structure of the PhoneMob enterprise specification.

A.1.1 Communities and Their Contracts

Figure A.2 shows that the enterprise specification of the PhoneMob system
is composed of the specifications of three communities: Phone Repair (shown in
figure A.3), CustomerOrg (shown in figure A.4) and Logistics Provision (shown
in figure A.5).

In general, all community contracts have the same structure: one objec-
tive (which in a real contract would be more specific and detailed) and four
main packages with the specification of the community roles, object types,
processes and policies.

The PhoneMob Specifications 223

MagicDraw UML, 1-1 C:\Users\Juan Ignacio\Desktop\PhoneMob-v6-1-icons.mdzip A-EV-PhoneServiceContract 05-abr-2011 17:14:27

«EV_CommunityContract»

Phone Repair

«EV_Process»

Phone Repair Community Behaviour

PhoneMob system

Paper Document

Loan Handset

User Handset

Manufacturer

Organization

e-Document

PhoneMob

Document

Company

Handset

Person

Enterprise Object Types

Phone Repair Provider

Logistics Provider

Branch system

Phone Supplier

Branch staff

HQ system

Customer

HQ staf f

Bank

User

Roles

«EV_Objective»

Phone Repair Objective

Phone Loan Policy

Billing Policy

Policies

«EV_Community»

Phone Repair

«EV_Objectiv e»

description = "Take the hassle out of

mobile phone support to customers"

«EV_ObjectiveOf»

FIGURE A.3: Community contract for the Phone Repair community.

A.1.2 Community Roles and Object Types

The roles of the communities have already been described in detail in
the chapter 2. For example, figure 2.2 showed the roles of the Phone Repair
community, which are summarized here within figure A.3. The roles for the
other communities are named in the Roles package included in the community
contracts (shown in figures A.4 and A.5).

Enterprise object types are described in their corresponding packages. For
example, figure A.6 shows the object types defined in the Phone Repair commu-
nity. Assignment policies constraining which enterprise objects can fill which
roles in the communities were shown in figures 2.5 and 2.6.

MagicDraw UML, 1-1 C:\Users\Juan Ignacio\Desktop\PhoneMob-v6-1-icons.mdzip A-EV-CustomerOrgContract 05-abr-2011 17:11:58

«EV_CommunityContract»

CustomerOrg

«EV_Process»

CustomerOrg Community Behaviour

Temporary Phone Request Policy

Repair Request Policy

Policies

Phone User

Document

Manager

Handset

Person

Bill

Enterprise Objects Types

«EV_Objective»

CustomerOrg Objective
Contract Manager

Employee

Roles

«EV_Community»

CustomerOrg

«EV_Objectiv e»

description = "To become the most

agile company in providing services."

«EV_ObjectiveOf»

FIGURE A.4: Community contract for the CustomerOrg community.

224 Building Enterprise Systems with ODP

MagicDraw UML, 1-1 C:\Users\Juan Ignacio\Desktop\PhoneMob-v6-1-icons.mdzip A-EV-LogisticsCommunityContract 05-abr-2011 17:13:42

«EV_Process»

Logistics Provision Community Behaviour

«EV_CommunityContract»

Logistics Provision

SecureTransport

Cheap Transport

Green Transport

Document

Transport

Company

Courier

Person

Goods

Enterprise Objects

Types «EV_Objective»

Logistics Provision

Objective

Goods Destination

Goods Source

Customer

Manager

Carrier

Roles
«EV_Community»

Logistics Provision

Policies

«EV_Objectiv e»

description = "To provide delivery services to customers,

as securely, confidentially and efficiently as possible."

«EV_ObjectiveOf»

FIGURE A.5: Community contract for the Logistics Provision community.

Enterprise Object Types

«EV_ODPSystem»

PhoneMob

system

Loan Handset User Handset

ManufacturerOrganization

e−Document
Paper

Document
PhoneMob

Document
Company

Handset Person

+user 1

0..*

+employer

0..1

+staff

0..*

+owner

1

0..*

FIGURE A.6: The enterprise objects in the Phone Repair community.

A.1.3 Behaviour

Behaviour can be modelled in the enterprise language in terms of pro-
cesses or, in a more fine-grained way, in terms of interactions. Processes are
expressed in UML4ODP as UML activities. Some of the processes for the
Phone Repair community were shown in figure 2.7, and one of them (Repair
Process) was further elaborated in figure 2.8, which showed the activity dia-
gram that expresses the steps of the process, and identified the roles involved
in each of these steps.

More detailed modelling of behaviour in terms of interactions between roles
in a community is appropriate when the modelling focus is placed primarily
on the roles and artefacts involved in the behaviour, and on the relationships
between them. Figure A.7 shows such an interaction in the CustomerOrg
community, in which the Employee and the Contract Manager agree to a repair
request.

The PhoneMob Specifications 225

«EV_Artefact»

Repair Request

Response

«EV_Role»

Contract Manager

«EV_Artefact»

Repair

Request

«EV_Interaction»

Request Repair

«EV_Artefact»

Mobile Phone

To Be Repaired

«EV_Object»

Document

«EV_Object»

Handset

«EV_Role»

Employee

«EV_InteractionResponder»

«EV_ArtefactReference»

«EV_InteractionInitiator»

«EV_ArtefactReference»

«EV_ArtefactRole»

«EV_ArtefactReference»

«EV_ArtefactRole» «EV_ArtefactRole»

FIGURE A.7: A Request Repair interaction in the CustomerOrg community.

«IV_InvariantSchema»

InformationActionTypes

+maxOpenOrders : int

UpdateServiceCentreDetails

+newEstimatedClose : date
+newStatus : OrderStatus

UpdateRepairOrderDetails

+name : String
+newCorp : CustomerCompany

UpdateUserDetails

+serialNo : String
+status : PartStatus
+components : Component [1..*]
+memory : Memory
+sim : SIM

RegisterUserHandset
+name : String
+company : CustomerCompany

AddUser

+user : User
+order : RepairOrder
+newDestination : Address

ChangeDeliveryAddress

+name : String
+serviceCentre : ServiceCentre

AddStaff

+pi : PerformanceInfo
+company : Company

AddPerformanceInfo

+name : String
+phone : String
+address : Address
+newContract : Contract

UpdateCompanyDetails

SendToManufacturer

+when : date
+kind : ActionTakenKind
+description : String
+repairOrder : RepairOrder

AddActionTaken

ReturnLoanHandset

+starts : date
+estimatedEnd : date
+courier : Courier
+returnTo : Address

LendLoanHandset

+name : String
+sc : ServiceCentre

UpdateStaffDetails

+user : User
+centre : ServiceCentre
+handset : UserHandset

RepairRequest

+open : date
+estimatedClose : date
+user : User
+handset : UserHandset

AddRepairOrder

RemoveCompany

+name : String
+phone : String
+address : Address
+contract : Contract
+type : CompanyType

AddCompany

+sla : SLA
+company : Company

AddSLA

+sla : SLA
+company : Company

removeSLA

+part : Part
+from : Address
+to : Address

SendByCourier ReturnHandset

FixedHandset

RemoveUser

RemoveStaff

FixedByStaff+reason : String

UnableToFix

+when : date

CloseOrder

InitialTests

+part : Part

Purchase

Dispose

FIGURE A.8: The Phone Repair information action types.

226 Building Enterprise Systems with ODP

A.2 Information Viewpoint Specifications

The overall structure and contents of the information viewpoint specifica-
tion of the system was shown in figure 3.5. This comprised a package with
the information object types (figure 3.1) and their associated attributes, as-
sociations and state machines (figure 3.3); other packages gave a selection of
the information action types (figure 3.2), and the specification of one of the
static schemata relevant to the system (figure 3.4).

Figure A.8 shows the complete set of information action types used in the
specification.

Another example of a static schema is shown in figure A.9. In contrast to
figure 3.4, which gave a snapshot of a particular repair order, we show here
the initial state of the system, when it has, for simplicity, been defined to have
just one service centre, one staff member and only two loan handsets.

address = "221b Baker St., London, England"

MaxOpenOrders = 50

repairHandset = rh1 , rh2

staff = s1

«IV_Object»

LondonRC1 : ServiceCentre

«IV_StaticSchema»

InitialSystemState

{locationInTime = "2010−06−01, 10:00 UTC" }

name = "Joe Smith"

servicerCentre = LondonRC1

«IV_Object»

s1 : Staff

repairCentre = LondonRC1

serialNo = "SN00676/10"

status = Operational

«IV_Object»

rh2 : LoanHandset

repairCentre = LondonRC1

serialNo = "SN64235/09"

status = Operational

«IV_Object»

rh1 : LoanHandset

FIGURE A.9: A static schema stating the initial state of the system.

Finally, chapter 3 also showed a UML state machine that represented the
dynamic schema of one of the objects. A different style of dynamic schema is
shown in figure A.10, which represents the state machine of the RepairOrder
information object. The possible triggers for the transitions are information
actions, whose types are defined in figure A.8.

The PhoneMob Specifications 227

Open

ChangeDeliveryAddress

UnableToFix UpdateRepairOrderDetails

LendLoanHandset FixedHandset

AddActionTaken

FixedByStaff

ReturnHandset

Closed
AddRepairOrder CloseOrder

FIGURE A.10: A dynamic schema for the RepairOrder information object.

A.3 Computational Viewpoint Specifications

The overall structure of the computational viewpoint specification of the
PhoneMob system is shown in figure A.11. It contains three high-level pack-
ages. One describes the software architecture of the application. The second
deals with the behavioural aspects of the system. The last one contains the
basic data types used in the specification (which were shown in figure 4.8).
In addition, the model for the complete computational specification has some
associated tag values that determine which transparencies are required for
the system. In this case, the transaction and replication transparencies are
needed (see the engineering specification in section A.4) together with the ac-

SoftwareArchitecture

PresentationObjects ApplicationObjects

DataMgmtObjects ExternalSystems

HumanObjects

Interactions Streams

Behaviour

«Computational_Spec»

PhoneMob (C_Spec)

DataTypes

«Computational_Spec»

failureTransparency = false

migrationTransparency = false

persistenceTransparency = false

relocationTransparency = false

replicationTransparency = true

transactionTransparency = true

FIGURE A.11: The overall structure of the computational specification.

228 Building Enterprise Systems with ODP

cess and location transparencies, which are mandatory for any computational
specification — and thus there is no need to specify them explicitly.

The internal packages of the computational specification were described in
chapter 4; figure 4.5 showed the structure of the SoftwareArchitecture package,
which was organized in four layers, and was later refined in figure 4.7. The sig-
natures of the services provided and required by each computational interface
were shown in figure 4.6. Finally, some examples of behavioural specifications
of the system were shown, using sequences of interactions (figure 4.9) and
flows (figure 4.10).

The rest of the computational specification of the PhoneMob system fol-
lows a very similar pattern, and hence is not included here.

A.4 Engineering Viewpoint Specifications

The ODP engineering specifications of a system describe how the engineer-
ing objects (that correspond to the computational objects that implement the

GUI2RepairCentreStaff

GUI2SystemAdmin
GUI2Manufacturer

GUI2HQStaff
GUI2Courier

GUI2User

PresentationBEOs

PhoneMobSystemAdmin

ManufacturerStaff
RepairCentreStaff

CourierStaff
HQStaff

User

HumanBEOs

ManufacturerSystem
CustomerSystem

CourierSystem
BankSystem

ExternalBEOs

RepairCentreStaffOps

ManufacturerOps

HQStaffOps
CourierOps

AdminOps

UserOps

Login

ApplicationBEOs

TransactionMgr
Trader

SupportingODPFunctions

RepairOrder DataMgr

Corporation DataMgr

Logistics DataMgr

Financial DataMgr

Stock DataMgr0
Stock DataMgr1

Stock DataMgr

HR DataMgr

DataMgmtBEOs

NV_Objects

ExternalServices Presentation
RepairCentre Presentation

UserPresentation

HQ Presentation

Stock DataMgr0
Stock DataMgr1

PhoneMobNode

Nodes

PhoneMob DedicatedChannel

ManufacturerSystemChannel

PhoneMob GeneralChannel

CustomerSystemChannel

CourierSystemChannel

BankSystemChannel
Stock Data Channel

Channels

ObjectDistribution

«Engineering_Spec»

PhoneMob (N_Spec)

FIGURE A.12: The overall structure of the engineering specification.

The PhoneMob Specifications 229

functionality of the system) are distributed to processing nodes and how they
interact through channels. Both the internal structural organization of nodes
(into capsules and clusters) and channels (into stubs, binders, protocol objects
and interceptors) are expressed in this viewpoint.

The overall organization of the engineering specification of the PhoneMob
system is shown in figure A.12. This contains two main packages, one with the
basic engineering object types and the other with the distribution structure.

Package NV Objects describes the basic engineering objects. They cor-
respond to the computational objects described in the computational speci-
fication. The same grouping structure is used again here, although just for
packaging purposes, since it does not imply any constraints on the distribution.
One package contains the ODP objects that implement either common func-
tions (such as the Trader) or services that provide the required transparencies

«NV_BEO»

 : RepairCentreStaffOps

«NV_BEO»

 : ManufacturerOps

«NV_BEO»

 : TransactionMgr

«NV_BEO»

 : CourierOps

«NV_BEO»

 : UserOps

«NV_BEO»

 : Login

«NV_BEO»

 : Trader

«NV_Cluster»

 : ApplicationCluster

«NV_BEO»

 : Corporation DataMgr

«NV_BEO»

 : Financial DataMgr

«NV_BEO»

 : HR DataMgr

«NV_Cluster»

 : CorporationCluster

«NV_BEO»

 : RepairOrder

DataMgr

«NV_BEO»

 : Logistics

DataMgr

«NV_Cluster»

 : DataCluster

«NV_Object»

 : Stock DataMgr

«NV_Cluster»

 : StockCluster

«NV_Capsule»

 : PhoneMobCapsule

«NV_Node»

PhoneMobNode

«NV_BEO»

 : GUI2Manufacturer

«NV_Cluster»

 : Manufacturer

Presentation

«NV_BEO»

 : GUI2Courier

«NV_Cluster»

 : CourierStaff

Presentation

«NV_Capsule»

 : PresentationCapsule

«NV_Node»

ExternalServices

Presentation

«NV_BEO»

 : GUI2RepairCentreStaff

«NV_Cluster»

 : RepairCentrePresentation

«NV_Capsule»

 : PresentationCapsule

«NV_Node»

RepairCentre Presentation

«NV_BEO»

 : GUI2User

«NV_Cluster»

 : User Presentation

«NV_Capsule»

 : PresentationCapsule

«NV_Node»

UserPresentation

«NV_BEO»

 : Stock DataMgr1

«NV_Capsule»

«NV_Node»

Stock DataMgr1

«NV_BEO»

 : Stock DataMgr0

«NV_Capsule»

«NV_Node»

Stock DataMgr0

«NV_Channel»

PhoneMob

DedicatedChannel

«NV_BEO»

RepairCentreStaff

«NV_Channel»

PhoneMob

GeneralChannel

«NV_BEO»

Manufacturer

Staff

«NV_Channel»

Stock Data

Channel

«NV_BEO»

CourierStaff

«NV_BEO»

User

The diagram does

not show

inter−capsule

Usage

dependencies

between BEOs

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»«use»

«use»

«use»

«use»

«use»

FIGURE A.13: The distribution of engineering objects.

230 Building Enterprise Systems with ODP

(such as the TransactionMgr; remember that the computational specification
stated that transaction transparency was required).

The distribution of the engineering objects is described by the elements
of the ObjectDistribution package, which defines seven nodes and seven chan-
nels. Some of these elements are represented in figure A.13, which provides an
overview of the distribution of the main system processing elements. Nodes
contain capsules and clusters that represent groupings of elements for pro-
tection and migration management purposes, according to the policies and
strategies defined for the system.

Finally, the engineering specification also provides the elements needed to
represent the internal elements of channels, as was discussed in chapter 5,
where figure 5.3 showed the architecture of one of the channels of the appli-
cation. The rest of the channels follow a similar pattern.

A.5 Technology Viewpoint Specifications

The technology specifications focus on four main issues: (1) identifying the
main types of technology objects used to implement the system; (2) describ-
ing the requirements on these objects in terms of implementable standards;
(3) stating the extra information for testing (IXIT) that needs to be associ-
ated with the technology objects; and (4) describing the relevant processes and
activities involved in the provision, deployment, maintenance and evolution
of the systems and its parts. In our example, the technology specifications
are structured accordingly, with packages for each of these descriptions (see
figure A.14).

The contents of these packages have already been described in chapter 6,
in figures 6.1, 6.2, 6.3 and 6.4, respectively.

ImplementableStandards

TechnologyProcesses

«Technology_Spec»

PhoneMob (T_Spec)

IXIT

TV_Objects

FIGURE A.14: The overall structure of the technology specification.

The PhoneMob Specifications 231

A.6 Correspondences

We need to specify not only the viewpoints, but also how the elements
in the individual viewpoints relate to each other. The PhoneMob system
specification defines six pairwise correspondences between the viewpoints (see
figure A.1). There is not room here to describe the detailed contents of all
these packages; instead, we will focus on how correspondences are identified
and expressed.

Chapter 7 explained that the UML4ODP standard provides checklists for
identifying the correspondences that should be specified for a system. Some
of them are mandatory for any ODP system specification, such as the ones
that link the computational and engineering objects. Others depend on the
system being specified. Examples of these optional correspondences are the
ones that link enterprise and computational objects, or enterprise interactions
with computational interfaces. Not every enterprise object or interaction has
a corresponding element in the computational viewpoint. The Paper Docu-
ment enterprise object type, for example, has no corresponding computational
element.

In general, we can identify two kinds of correspondences between viewpoint
elements, according to the type of relationship between them. In the first
place, we have the correspondences between viewpoint elements that represent
the same entity, such as a handset, from different perspectives.

Figure A.15 shows the representation of Handset objects in the enterprise,
information and computational viewpoints, each one focusing on different as-
pects, giving rise to slight variations. It also shows the correspondences be-
tween them. Note that a handset is an object in the enterprise and information
viewpoints, and a data type in the computational viewpoint. As a result, there
is no representation for it in the engineering and technology viewpoints.

+id : PartId
+serialNo : String
+status : PartStatus
+manufacturer : CompanyId

«dataType»

Part

INFORMATION

+serialNo : String
+status : PartStatus

Part

LoanHandset

COMPUTATION

+IMEI : String

UserHandset

+isLoan : Boolean

«dataType»

Handset

Loan HandsetUser Handset

ENTERPRISE

Handset
Handset

«CorrespondenceLink»
«CorrespondenceLink»

«CorrespondenceLink» «CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

FIGURE A.15: Correspondences between different views of the same entity.

232 Building Enterprise Systems with ODP

«CV_Object»

Transaction
Mgmt Object

«NV_Object»

TransactionMgr

«CV_Object»

Corporation
DataMgmt

«CV_Object»

Trader Object

«NV_BEO»

RepairOrder
 DataMgr

«CV_Object»

RepairOrder
DataMgmt

«NV_BEO»

Corporation
 DataMgr

«CV_Object»

User
Operations

«NV_Object»

Trader

«CV_Object»

User

«NV_BEO»

User

«NV_BEO»

UserOps

«CorrespondenceLink»
«CorrespondenceLink»

«CorrespondenceLink»«CorrespondenceLink»

«CorrespondenceLink»
«CorrespondenceLink»

FIGURE A.16: Correspondences from computational to engineering objects.

Another example of this kind of correspondence is the set of relationships
between engineering and computational objects. This is shown in figure A.16.
Note that object names do not always coincide.

The second kind of correspondence happens when the related objects do
not represent the same entity but there is still a relationship between them.
A typical example is an enterprise policy that affects several information or
computational elements. In this case, the purpose is twofold. Firstly, the
correspondences specify how the policy constrains the related elements and,
secondly, the correspondences provide the traceability mechanisms required
to identify the elements that are affected by the policy and, conversely, the
policies that affect an individual viewpoint element.

This kind of correspondence is also used to specify the choice of technology
required to implement and deploy the engineering nodes and channels. This
is illustrated in figures A.17 and A.18, where the correspondences represent

PresentationBEOs

«NV_BEO»

GUI2RepairCentre
Staff

«NV_BEO»

GUI2Manufacturer

«NV_BEO»

GUI2Courier

«NV_BEO»

GUI2User

HumanBEOs

«NV_BEO»

ManufacturerStaff

«NV_BEO»

RepairCentre
Staff

«NV_BEO»

CourierStaff

«NV_BEO»

User

«TV_Object»

Business
Object

«TV_Object»

Browser

All these <<CorrespondenceLink>>
dependencies represent usage relationships.

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

FIGURE A.17: Correspondences from engineering to technology objects.

The PhoneMob Specifications 233

Nodes

«NV_Node»

UserPresentation

«NV_Node»

PhoneMobNode

«NV_Node»

Stock DataMgr1

«NV_Node»

Stock DataMgr0

TV_Objects

«TV_Object»

Enterprise
Application

Server

«TV_Object»

Backend
Business
Server

«TV_Object»

LAN

«TV_Object»

DMZ LAN

«TV_Object»

Firewall

Channels

«NV_Channel»

PhoneMob
GeneralChannel

«NV_Channel»

PhoneMob
DedicatedChannel

«NV_Channel»

Stock Data
Channel

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

«CorrespondenceLink»

FIGURE A.18: Nodes and channels correspond to technology objects.

usage relationships between the related elements. In a real application, there
would be many more styles of access than those shown here, such as access
using SMS interactions, or access from programs running in smart phones.

Note that the correspondences shown in this appendix have been drawn
using the shortcut notation mentioned in chapter 7, which uses stereotyped
dependencies instead of the correspondence classes from the UML4ODP stan-
dard. A tool would be responsible for generating these classes from the short-
hand form and vice versa, which considerably simplifies the modeller’s job.

This page intentionally left blankThis page intentionally left blank

Appendix B

Selected Exercises

This appendix contains a set of exercises to allow the readers to check that
they are able to use the concepts, mechanisms and notations from the book
to develop their own designs and specifications. For this we suggest two kinds
of activity. First, we consider various situations where the RM-ODP concepts
and mechanisms can be used for structuring the specifications of open dis-
tributed systems. After this, there is a small set of additional questions to
check the understanding of some specific ODP concepts.

B.1 Selected Scenarios

Imagine that you are part of a design team that is faced with the following
scenarios. You should consider what form the viewpoint specifications might
take and make suitable proposals for an outline design. You should also exam-
ine the requirements and determine which viewpoints each of the statements
in a scenario have impact on.

The RM-ODP does not prescribe any particular method for building the
individual viewpoint specifications of a system. However, we suggest you
follow the indications given at the end of the chapters that dealt with the
individual viewpoints (chapters 2 to 6), which provided some guidelines on
how to proceed.

B.1.1 Twitter

Suppose that you have done a great job at PhoneMob, and other com-
panies are after you to develop enterprise architecture descriptions for their
businesses. In particular, Twitter

TM
requires documentation of its systems be-

fore embarking on a major IT reorganization.

For this reason, you are asked to write the ODP enterprise and information
viewpoint specifications of Twitter.

235

236 Building Enterprise Systems with ODP

B.1.2 A Web-Based Supermarket

A supermarket wants to start a subsidiary that offers web-based order
entry and delivery services to its customers. The way in which the system
for such a subsidiary should operate is as follows. The orders are picked from
stock in the existing stores, but the subsequent deliveries are carried out by
local subcontractors; these are engaged as necessary to meet demand. The
orders are transferred from the order entry website to mobile devices in the
stores, where staff assemble the order ready for delivery. Confirmation of the
order list is printed with the delivery instructions and passed to the delivery
drivers. Scheduling information about forthcoming deliveries is provided to
the delivery company while the orders are being assembled.

You are asked to develop the ODP enterprise, information and computa-
tional specifications for the system that will support this business.

B.1.3 Skype

Imagine that Skype
TM

plans to improve its teleconferencing services by al-
lowing large groups to divide and recombine during a session.

To support this, you are asked to write the ODP information, computa-
tional and engineering viewpoint specifications of Skype as it is now, and how
the specifications should be changed.

B.1.4 A Loyalty-Points System

A third-party company offers loyalty bonuses for a variety of existing ser-
vices. The aim of the scheme is to make the services of organizations that
participate more attractive. The loyalty-points company offers a package of
support to primary service providers, including software components that the
primary providers can incorporate into their designs. There is a requirement
for uniform rules for bonus collection to be applied in all affiliated services,
based on the distribution of common code. However, it must be easy to inte-
grate the support for bonus points into existing provider applications.

Write the enterprise specifications of the system, with particular emphasis
on its interactions with the communities that represent the rest of the affiliated
companies. Once the enterprise specification is written, you are asked to
develop the information and computational specifications, focusing on how
the system will interact with the IT systems of the affiliated companies.

B.1.5 Adding Share Trading to Automatic Teller Services

The provider of an existing instant share dealing service, currently op-
erating via a web interface, is undertaking a joint venture with a building
society that runs a network of ATM cash dispensers. In this scheme, shares
can be bought and sold by interacting with additional menus in the existing

Selected Exercises 237

cash dispensers. A strategy is needed that causes as little disruption to the
established three-tier architectures of the two organizations as possible.

You are asked first to provide a simple ODP specification of the two sys-
tems, and then to identify the minimum set of changes that will be required
to implement the modifications in both systems.

B.1.6 Google Search Engine

Imagine that you are hired by Google
TM

as Chief Architect for one of its
core products, the Google Search Engine, and that they want you to provide
an architectural description of that application, with the goals of:

• Relying on high-level models to understand this application, in a
platform- and technology-independent manner.

• Having a conceptual model of the data the application manages.

• Defining the software architecture of the application, for guiding subse-
quent developments and changes.

• Specifying the deployment architecture and communications infrastruc-
ture, expressed in terms of distributed servers, processes and channels, to
be able to have a global picture of the system workload, to perform load-
balancing improvements or to conduct end-to-end performance analysis
of the system.

• Describing the technology adoption, acquisition, provisioning and main-
tenance procedures for the hardware, software and communications in-
frastructure that should support the application.

Write the ODP specification of the Google Search Engine, including all
five viewpoints and the correspondences between them.

B.2 Some Additional Questions

Answer these questions based on the concepts presented in this book.

1. A designer says, “Now that we have decided to allow persistent data to
be stored on mobile devices in our system, the enterprise policy on required
availability levels means we will need to add engineering mechanisms sup-
porting replication transparency for all the computational objects, not just
those that are currently tagged as having critical requirements in the compu-
tational design.” Explain, to someone ignorant of the ODP architecture, what
the designer is saying, and what the concepts they have used mean.

238 Building Enterprise Systems with ODP

2. A legacy system consists of a database and a set of data entry, update
and query applications. It is necessary to upgrade it without interrupting
operation, moving to a new system with an object-based design and a richer
set of applications. The applications require transactional operation. Outline
the steps that might be taken to perform this transition in a phased way.

3. Two organizations need to interoperate but have commitments to different
kinds of middleware and different data formats. Indicate an approach that
they might take to establish interoperability, stating what agreements would
need to be established initially and how support for necessary protocol and
format transformations might be provided. Illustrate how this process might
be assisted if each of the partners used import and export naming domains and
they established suitable interceptors to provide the translation of structured
documents.

4. Avoiding unnecessary detail, but stating clearly the objects, interfaces,
operations and actions involved, outline how a design might use the idea of a
suitable binding to describe each of the following cases. Your answer should
cover both the initialization and the use of the configuration.

(a) A computational design in which errors in a client-server interaction are
signalled to a separate management object.

(b) A computational design in which a video multicast from a camera to
a number of displays is configured dynamically to vary the number of
displays and the quality of service provided.

(c) A computational and an engineering design in which a video binding is
created between a source and a sink in domains using different frame
rates for representing video.

5. What is a conformance point? Explain the main roles and activities in the
ODP conformance model, and describe how they can be used in the following
example.

A new computer games console is designed to have open interfaces and
to accept games produced by a wide variety of vendors. The console can
be connected to the Internet, or can load games from standard prerecorded
cartridges. Internally, its system provides a rich set of high-level graphics
methods that the game modules can use.

Discuss, with the aid of a functional block diagram of the system, the
different classes of conformance point that are likely to be involved in the
testing of the console and of the games that vendors supply to run on it.

Bibliography

[1] ISO IS 8807, Information Processing Systems — Open Systems In-
terconnection. LOTOS: A Formal Description Technique Based on the
Temporal Ordering of Observational Behavior, 1989.

[2] ISO/IEC IS 10746-1, Information Technology — Open Distributed Pro-
cessing — Reference Model: Overview, 1998. Also published as ITU-T
Recommendation X.901.

[3] ISO/IEC IS 10746-2, Information Technology — Open Distributed Pro-
cessing — Reference Model: Foundations, 2009. Also published as ITU-
T Recommendation X.902.

[4] ISO/IEC IS 10746-3, Information Technology — Open Distributed Pro-
cessing — Reference Model: Architecture, 2009. Also published as ITU-
T Recommendation X.903.

[5] ISO/IEC IS 10746-4, Information Technology — Open Distributed Pro-
cessing — Reference Model: Architectural Semantics, 1998. Also pub-
lished as ITU-T Recommendation X.904.

[6] ISO IS 12967-1, Health Informatics — Service Architecture — Part 1:
Enterprise Viewpoint, 2009.

[7] ISO IS 12967-2, Health Informatics — Service Architecture — Part 2:
Information Viewpoint, 2009.

[8] ISO IS 12967-3, Health Informatics — Service Architecture — Part 3:
Computational Viewpoint, 2009.

[9] ISO/IEC IS 13235-1, Information Technology — Open Distributed Pro-
cessing — Trading Function: Specification, 1998. Also published as
ITU-T Recommendation X.950.

[10] ISO/IEC IS 13235-3, Information Technology — Open Distributed Pro-
cessing — Trading Function: Provision of Trading Function using OSI
Directory Service, 1998. Also published as ITU-T Recommendation
X.952.

[11] ISO IS 13537, Space Data and Information Transfer Systems — Refer-
ence Architecture for Space Data Systems, September 2010.

239

240 Building Enterprise Systems with ODP

[12] ISO/IEC IS 14750, Information Technology — Open Distributed Pro-
cessing — Interface Definition Language, 1999. Also published as ITU-T
Recommendation X.920.

[13] ISO/IEC IS 14752, Information Technology — Open Distributed Pro-
cessing — Protocol Support for Computational Interactions, 2000. Also
published as ITU-T Recommendation X.931.

[14] ISO/IEC IS 14753, Information Technology — Open Distributed Pro-
cessing — Interface References and Binding, 1999. Also published as
ITU-T Recommendation X.930.

[15] ISO/IEC IS 14769, Information Technology — Open Distributed Pro-
cessing — Type Repository Function, 2000. Also published as ITU-T
Recommendation X.960.

[16] ISO/IEC IS 14771, Information Technology — Open Distributed Pro-
cessing — Naming Framework, 1999. Also published as ITU-T Recom-
mendation X.910.

[17] ISO/IEC IS 15414, Information Technology — Open Distributed Pro-
cessing — Enterprise Language, 2006. Also published as ITU-T Recom-
mendation X.911.

[18] ISO/IEC IS 15437, Information Technology — Enhancements to
LOTOS (E-LOTOS), 2001.

[19] ISO/IEC IS 17000, Conformity Assessment — Vocabulary and General
Principles, 2004.

[20] ISO/TS 17573, Road Transport and Traffic Telematics — Electronic Fee
Collection — Systems Architecture for Vehicle-related Tolling, 2003.

[21] ISO 19119, Geographic Information — Services, 2005.

[22] ISO/IEC IS 19793, Information Technology — Open Distributed Pro-
cessing — Use of UML for ODP System Specifications, 2008. Also pub-
lished as ITU-T Recommendation X.906.

[23] ISO/IEC IS 19793 Cor 1:2010, Corrigendum 1 — Information Tech-
nology — Open Distributed Processing — Use of UML for ODP System
Specifications, 2010.

[24] ISO/IEC/IEEE FDIS 42010, Systems and Software Engineering — Ar-
chitectural Description, 2010.

[25] ITU-T Recommendation G.851, Management of the Transport Network
— Application of the RM-ODP Framework. ITU-T, November 1996.

[26] ITU-T Recommendation Z.130, ITU Object Definition Language. ITU-
T, 1999.

Bibliography 241

[27] OMG Trading Object Service, Version 1.0. Object Management Group,
June 2000. Document formal/2000-06-27.

[28] OMG Meta-Object Facility (MOF). Version 2.0. Object Management
Group, January 2006. Document formal/2006-01-01.

[29] OMG CORBA Component Model Specification (CCM). Version 4.0. Ob-
ject Management Group, April 2006. Document formal/2006-04-01.

[30] OMG Unified Modeling Language 2.1.1 Superstructure Specification. Ob-
ject Management Group, February 2007. Document formal/2007-02-05.

[31] OMG Common Object Request Broker Architecture (CORBA): Core
Specification. Version 3.1. Object Management Group, January 2008.
Document formal/2008-01-04.

[32] OMG MOF Model To Text Transformation Language (MOFM2T).
Version 1.0. Object Management Group, January 2008. Document
formal/08-01-16.

[33] OMG Semantics of Business Vocabulary and Business Rules (SBVR),
Version 1.0. Object Management Group, January 2008. Document
formal/08-01-02.

[34] OMG CORBA To WSDL/SOAP Interworking (C2WSDL). Version
1.2.1. Object Management Group, August 2008. Document
formal/2008-08-03.

[35] OMG UML Profile for MARTE: Modeling and Analysis of Real-time
Embedded Systems, Version 1.0. Object Management Group, November
2009. Document formal/2009-11-02.

[36] OMG Object Constraint Language (OCL) Specification. Version 2.2.
Object Management Group, February 2010. Document formal/2010-
02-01.

[37] OMG Business Motivation Model Version 1.1. Object Management
Group, May 2010. Document formal/2010-05-01.

[38] The Architecture of Choice for a Changing World. Object Management
Group, 2010. http://www.omg.org/mda/products_success.htm.

[39] OMG Additional Structuring Mechanisms for the OTS. Version 1.0. Ob-
ject Management Group, January 2011. Document formal/2011-01-05.

[40] OMG Business Process Model and Notation (BPMN) Version 2.0. Ob-
ject Management Group, March 2011. Document formal/2011-01-03.

[41] OMG Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT). Version 1.1. Object Management Group, January 2011. Docu-
ment formal/2011-01-01.

242 Building Enterprise Systems with ODP

[42] Business Transaction Protocol. Committee Draft Version 1.1. OASIS,
November 2004.

[43] Web Service Coordination Framework (WS-CF). Committee Draft Ver-
sion 0.2. OASIS, December 2004.

[44] eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS, February 2005.

[45] Web Services Federation Language (WS-Federation). Version 1.2.
OASIS, May 2009.

[46] Reference Architecture Foundation for Service Oriented Architecture.
Version 1.0, Committee Draft 02. OASIS, October 2009.

[47] WS-Trust. Version 1.4. OASIS, February 2009.

[48] John Langshaw Austin. How to Do Things With Words. Harvard Uni-
versity Press, 1962. Second edition, 1975.

[49] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 1997.

[50] Gérard Berry and Georges Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Sci. Computer Pro-
gramming, 9(2):87–152, 1992.

[51] Stefano Bistarelli and Francesco Santini. C-semiring frameworks for
minimum spanning tree problems. In Recent Trends in Algebraic Devel-
opment Techniques (WADT 2008), volume 5486 of LNCS, pages 56–70.
Springer, June 2008.

[52] Gordon S. Blair and Jean-Bernard Stefani. Open Distributed Processing
and Multimedia. Addison-Wesley, 1998.

[53] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. Model Bus:
Towards the Interoperability of Modeling Tools. In Proceedings of the
European Model Driven Architecture Workshop: Foundations and Appli-
cations (MDA-FA 2004), volume 3599 of LNCS, pages 17–32. Springer,
2005.

[54] M.L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways,
Interfaces and the Incremental Approach. Morgan Kaufmann, 1995.

[55] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. Addison-Wesley, 2008.

[56] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Co-
mai, and Maristella Matera. Designing Data-Intensive Web Applica-
tions. Morgan Kaufmann, December 2002. http://www.webml.org.

Bibliography 243

[57] J. Chomicki, J. Lobo, and S. Naqvi. Conflict Resolution Using Logic
Programming. IEEE TKDE, 15(1):244–149, January 2003.

[58] Noam Chomsky. Topics in the Theory of Generative Grammar. Mouton,
The Hague, 1966.

[59] CISCO. Directory-Enabled Networking. In Internetworking Technolo-
gies Handbook. Cisco Press, 2009. Content also available as http://

docwiki.cisco.com/wiki/Internetworking_Technology_Handbook.

[60] Edmund Clarke, Natasha Sharygina, and Nishant Sinha. Program Com-
patibility Approaches. In Proceedings of the 4th International Sympo-
sium on Formal Methods for Components and Objects, volume 4111 of
LNCS, pages 243–258. Springer, 2006.

[61] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. All About Maude — A
High-Performance Logical Framework, volume 4350 of LNCS. Springer,
2007.

[62] Consultative Committee for Space Data Systems. Recommendation for
Space Data System Practices — Reference Architecture for Space Data
Systems, September 2008. CCSDS 311.0-M-1.

[63] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Non-
Functional Modeling and Validation in Model-Driven Architecture. In
Proceedings of the 6th Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA 2007), pages 25–28. IEEE Computer Society, 2007.

[64] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
Ponder: A Language for Specifying Security and Management Policies
for Distributed Systems. The Language Specification — Version 2.3. Im-
perial College, October 2000. Research Report DoC 2000/1.

[65] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat
McCarthy. The Java Developer’s Guide to Eclipse. Addison-Wesley,
2005.

[66] The Department of Defense Architecture Framework, 2009. http://

cio-nii.defense.gov/sites/dodaf20/.

[67] Roger Duke, Gordon Rose, and Graeme Smith. Object-Z: A Specifica-
tion Language Advocated for the Description of Standards. Computer
Standards & Interfaces, 17:511–533, September 1995.

[68] Hector A. Duran-Limon and Gordon S. Blair. QoS Management specifi-
cation support for multimedia middleware. J. System Software, 72(1):1–
23, June 2004.

244 Building Enterprise Systems with ODP

[69] Huascar Espinoza, Daniela Cancila, Bran Selic, and Sébastien Gérard.
Challenges in combining SysML and MARTE for model-based design
of embedded systems. In Proceedings of the European Model Driven
Architecture Workshop: Foundations and Applications (MDA-FA 2009),
volume 5562 of LNCS, pages 98–113. Springer, 2009.

[70] Federal Enterprise Architecture (FEA), 2005. http://www.

whitehouse.gov/omb/e-gov/fea/.

[71] D. Garlan and D.E. Perry. Introduction to the Special Issue on Software
Architecture. IEEE Trans. Software Engineering, 21(4):269–274, 1995.

[72] A.J. Herbert. An ANSA Overview. IEEE Network, 8(1):18–23, 1994.

[73] HL7 International. The Service-Aware Interoperability Framework
(SAIF), 2010. The SAIF report is currently under development, but the
latest version can be found via the HL7 website, http://www.hl7.org/.

[74] G.E. Hughes and M.J. Cresswell. A Companion to Modal Logic.
Methuen, 1984.

[75] IEEE Computer Society. IEEE Standard 1471-2000: IEEE Recom-
mended Practice for Architectural Description of Software-Intensive Sys-
tems, October 2000.

[76] Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. ACM
Trans. Software Engineering and Methodology, 11(2):256–290, April
2002.

[77] Andrew J.I. Jones and Marek J. Sergot. A Formal Characterisation of
Institutionalised Power. J. IGPL, 4(3):427–443, 1996.

[78] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:
A Model Transformation Tool. Sci. Computer Programming, 72(3):31–
39, 2008.

[79] Paul Klint. The ToolBus: A service-Oriented Architecture for Language
Processing Tools. ERCIM News, 70, July 2007.

[80] Carsten Köllmann, Lea Kutvonen, Peter F. Linington, and Arnor Sol-
berg. An Aspect-oriented Approach to Manage QoS Dependability Di-
mensions in Model Driven Development. In Proceedings of the 3rd In-
ternational Workshop on Model-Driven Enterprise Information Systems
(MDEIS 2007), pages 85–94, June 2007.

[81] Philippe Kruchten. Architectural Blueprints — The “4+1” View Model
of Software Architecture. IEEE Software, 12(6):42–50, 1995.

[82] Philippe Kruchten, Henk Obbink, and Judith Stafford. The Past,
Present, and Future for Software Architecture. IEEE Software, 23(2):22–
30, 2006.

Bibliography 245

[83] Susumu Kuno and Anthony G. Oettinger. Syntactic Structure and Am-
biguity of English. In Proceedings of the Fall Joint Computer Confer-
ence, AFIPS, pages 397–418, Las Vegas, Nevada, 1963. ACM.

[84] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management
Group, January 2003. Document ab/2003-06-01.

[85] MOD Architecture Framework (MoDAF), version 1.2, 2008.
http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/

InformationManagement/MODAF/.

[86] R.M. Needham and A.J. Herbert. The Cambridge Distributed System.
Addison-Wesley, 1982.

[87] S. Olbrich and C. Simon. Process Modelling towards e-Government
— Visualisation and Semantic Modelling of Legal Regulations as Exe-
cutable Process Sets. Electronic J. e-Government, 6(1):43–54, 2008.

[88] Janis R. Putman. Architecting with RM-ODP. Prentice Hall, 2000.

[89] Daniel Rönnedal. An Introduction to Deontic Logic. CreateSpace, 2010.

[90] John Searle. Speech Acts. Cambridge University Press, 1969.

[91] M.J. Sergot, F. Sadri, R.A. Kowalski, F. Kriwaczek, P. Hammond, and
H.T. Cory. The British Nationality Act as a Logic Program. CACM,
29(5):370–386, May 1986.

[92] R.M. Soley, D.S. Frankel, J. Mukerji, and E.H. Castain. Model Driven
Architecture — The Architecture of Choice for a Changing World. Ob-
ject Management Group, 2001. OMG White Paper, http://www.omg.
org/mda/.

[93] J.F. Sowa. Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, 1984.

[94] J.F. Sowa and J.A. Zachman. Extending and formalizing the framework
for information systems architecture. IBM Systems Journal, 31(3):590–
616, 1992.

[95] J.M. Spivey. The Z Notation. A Reference Manual. . Prentice Hall, 2nd
edition, 1992.

[96] John Strassner. Directory Enabled Networks. MacMillan Technical Pub-
lishing, 1999.

[97] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean
Bézivin. On the Use of Higher-Order Model Transformations. In Pro-
ceedings of the European Model Driven Architecture Workshop: Foun-
dations and Applications (MDA-FA 2009), volume 5562 of LNCS, pages
18–33. Springer, 2009.

246 Building Enterprise Systems with ODP

[98] The Open Group Architecture Framework, version 9.0, 2009. http:

//www.opengroup.org/togaf/.

[99] G.H. von Wright. Deontic Logic. Mind, 60:1–15, 1951.

[100] W3C. Web Services Description Language (WSDL) Version 2.0, Part
0: Primer, June 2007.

Although the Reference Model of Open Distributed Processing (RM-ODP) has been a
standard for more than ten years, many practitioners are still unaware of it. Building
Enterprise Systems with ODP: An Introduction to Open Distributed Processing
offers a gentle pathway to the essential ideas that constitute ODP and shows how these
ideas can be applied when designing and building challenging systems. It provides an
accessible introduction to the design principles for software engineers and enterprise
architects. The book also explains the benefits of using viewpoints to produce simpler
and more flexible designs and how ODP can be applied to service engineering, open
enterprise, and cloud computing.

The authors include guidelines for using the Unified Modeling Language™ (UML) notation
and for structuring and writing system specifications. They elucidate how this fits into the
model-driven engineering tool chain via approaches such as Model-Driven Architecture®
(MDA). They also demonstrate the power of RM-ODP for the design and organization of
complex distributed IT systems in e-government, e-health, and energy and transportation
industries.

Features
• Offers a concise, focused presentation of the essentials of RM-ODP and where it fits

within today’s software processes
• Explains all the major concepts and mechanisms of the ODP framework
• Explores the latest developments in the ISO ODP standards
• Uses the widely adopted UML notation for modeling large open distributed systems

using the ODP concepts
• Describes interoperability frameworks applicable to both government and industry

sectors

All concepts and ideas in this book are illustrated through a single running example that
describes the IT support needed by a medium-sized company as it grows and develops.
Complete UML models and more are available on a supporting website.

K12956

Computer Science/Computer Engineering/Computing
CHAPMAN & HALL/CRC INNOVATIONS IN

SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Building
 Enterprise System

s w
ith O

D
P

Lining
ton, M

ilosevic,
Tanaka, and Vallecillo

K12956_Cover.indd 1 8/2/11 2:11 PM

	Front Cover
	Contents
	List of Figures
	About the Authors
	Foreword
	Preface
	I .The Framework
	1. What Is ODP About?

	II .The Viewpoints
	2. Enterprise Viewpoint
	3. Information Viewpoint
	4. Computational Viewpoint
	5. Engineering Viewpoint
	6. Technology Viewpoint
	7. Correspondences — Joining It All Up

	III. Using ODP
	8. Conformance — Does It Do the Right Thing?
	9. Transparencies — Hiding Common Problems��
	10. Policies — Tracking Changing Requirements���
	11. Federation — Talking to Strangers���
	12. Using Existing Products
	13. System Evolution — Moving the Goalposts���

	IV. Moving On
	14. Modelling Styles
	15. Sharp Tools
	16. A Broader View

	Appendices
	A. The PhoneMob Speciflcations
	B. Selected Exercises

	Bibliography

