
Building Digital
Experience
Platforms

A Guide to Developing Next-Generation
Enterprise Applications
—
Shailesh Kumar Shivakumar
Sourabhh Sethii

Building Digital
Experience Platforms

A Guide to Developing
Next-Generation Enterprise

Applications

Shailesh Kumar Shivakumar
Sourabhh Sethii

Building Digital Experience Platforms: A Guide to Developing Next-Generation
Enterprise Applications

ISBN-13 (pbk): 978-1-4842-4302-2		   ISBN-13 (electronic): 978-1-4842-4303-9
https://doi.org/10.1007/978-1-4842-4303-9

Library of Congress Control Number: 2019931830

Copyright © 2019 by Shailesh Kumar Shivakumar, Sourabhh Sethii

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243022. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Shailesh Kumar Shivakumar
Bangalore, Karnataka, India

Sourabhh Sethii
Jammu, Jammu and Kashmir, India

https://doi.org/10.1007/978-1-4842-4303-9

I dedicate this book to . . .

My parents, Shivakumara Setty V and Anasuya T M who blessed me
with their love and strength, My wife, Chaitra Prabhudeva and
my son Shishir who shared their time and support, My in-laws,

Prabhudeva T M and Krishnaveni B who provided help and courage,
and to all my school teachers to bestow lots of love and knowledge.

—Shailesh Kumar Shivakumar

To lovers of books . . .
I hope this book aids you to get your work out to a wider audience.

I would love nothing more than to see the book in the hands of people
everywhere—students in the classroom, researchers, browsers in the

bookstore, and professionals.
That’s a great challenge, but it is certainly worth an attempt.

—Sourabhh Sethii

v

Table of Contents

Part I: �Requirements and Design��� 1

Chapter 1: Introduction to Digital Experience Platforms��� 3

Boundaryless Banking Enabled by Digital Technologies�� 4

Overview of DXP��� 4

Key Tenets of a DXP�� 5

DXP Reference Architecture��� 5

Evolution and Drivers for DXP��� 11

Overview of Banking Experience Platform��� 16

Key Tenets of Banking Experience Platform��� 16

High-Level Requirements of Banking Experience Platform�� 17

Three Ps of BXP�� 21

Sample Technical Capabilities of Banking Experience Platform��� 21

Sample Key Performance Indicators of Banking Experience Platform����������������������������������� 24

Digital Imperatives for Modern Banks��� 25

Summary��� 26

Chapter 2: Gathering Requirements�� 27

Functional Requirements��� 32

Experience Requirements�� 36

Seamless Experience on All Supported devices��� 37

Seamless Experience on All Supported Browsers�� 38

About the Authors���xvii

About the Technical Reviewers���xix

Acknowledgments���xxi

Introduction���xxiii

vi

Multilingual Requirements��� 38

Navigation Elements, Menus, and Search�� 39

Mobility Requirements��� 41

Nonfunctional Requirements��� 43

Scalability Requirements��� 44

Performance–Response Time, Throughput, Utilization, Static Volumetric������������������������������������ 46

Performance Requirements�� 46

Page Hits Analysis�� 48

Maintenance Requirements��� 50

Versioning�� 52

Rollout�� 52

Security Requirements��� 53

Disaster Recovery Requirements��� 57

Accessibility Consideration�� 58

Chapter Summary�� 59

Chapter 3: Design�� 61

Building an Experience Platform�� 61

Digital Platform Strategy�� 65

Platform Design Phases��� 69

Design of Various Layers�� 70

Presentation Layer��� 72

Scripting Framework�� 74

UI Management�� 75

UI Deployment�� 76

Integration Layer�� 77

Loosely Coupled Integration and Highly Coupled Integration��� 78

Business Layer��� 84

Data Layer�� 86

Middleware Layer�� 87

Social and Collaboration Design�� 89

Table of Contents

vii

IoT Integration Design�� 93

IoT Case Study�� 95

Blockchain Design��� 96

What is Blockchain?��� 96

What Is a Distributed Ledger?�� 97

Smart Contract��� 97

Blockchain Platforms��� 98

DXP and Blockchain Network��� 98

Blockchain Components��� 99

Blockchain Case Study��� 100

Big Data and NoSQL Design��� 102

Big Data and NoSQL Integration��� 102

Big Data and NoSQL Case Study�� 105

AI Automation Design��� 106

Determine Automation Goals�� 106

Steps to Build AI Automation Model��� 106

Chatbot Case Study�� 107

Enterprise Search Engine��� 109

Augmented – Virtual Reality Integration�� 111

Presentation Layer�� 111

Integration Service Layer��� 112

Recent Trends in DevOps��� 113

Containerization��� 113

DevOps – Continuous Integration (CI), Continuous Deployment (CD)����������������������������������� 114

Chapter Summary�� 115

Part II: �Development of the Banking Experience Platform�������������������������� 117

Chapter 4: User Interface Design��� 119

Key Features�� 119

Simplified Approach��� 119

Intuitive Architecture�� 120

Table of Contents

viii

Dashboard�� 120

Responsive Interface�� 120

Personalization��� 121

Internationalization and Localization�� 122

Preferences�� 122

Integrated Analytics�� 122

Search Engine Optimization��� 123

User Interface Components��� 123

Pages�� 123

Layouts��� 123

Navigational Router or Navigation Menu�� 124

Presentation Component�� 125

Design Goals��� 125

Communication Between Presentation Components��� 126

Hooks�� 127

Development Process�� 127

Development Life Cycle��� 129

Architecture��� 130

DXP UI Technology Stack��� 132

Angular Technology Stack�� 133

Angular Core�� 134

Angular Support Library��� 135

React Technology Stack��� 137

React�� 137

React Support Library��� 137

Evaluating UI frameworks�� 139

Data Flow��� 139

Language�� 139

Performance��� 139

Best Practice�� 140

BXP – Case Study��� 141

Table of Contents

ix

Consistency Across Locations�� 141

Consistency Across Application�� 141

Unified and Collaborative Approach��� 142

BXP UI Layouts/Containers��� 142

BXP Dashboard��� 142

Chapter Summary�� 147

Chapter 5: Designing the Integration Layer��� 149

Integration Consideration��� 150

Data Formats��� 153

Integration Services��� 155

Integration Styles, Protocols, Systems, and Patterns�� 157

Integration Styles��� 157

Integration Protocols�� 158

Integration Systems��� 161

Integration Patterns�� 162

Data Standards�� 164

Flexible Integration Middleware��� 165

EAI vs. SOA vs. ESB vs. Microservices��� 165

Mutual Memorandum of Understanding (MOU)�� 167

Service Protocol and Data Format�� 167

API Management�� 167

Why Do We Need Data Transformation Capabilities in DXP?�� 167

Integration Technology Stack and Architecture�� 168

Monolithic��� 168

Microservices��� 170

ESB and API Gateway��� 170

Integration Security�� 171

Authentication and Authorization��� 171

Protocols��� 171

Frameworks��� 171

Table of Contents

x

Integration Best Practices�� 173

BXP Case Study�� 176

Case Study Conclusion��� 179

Chapter Summary�� 179

Part III: �Securing the Banking Experience Platform������������������������������������ 181

Chapter 6: DXP Security�� 183

DXP Security Framework��� 183

DXP Layer-Wise Security�� 184

Common Security Scenarios of DXP�� 187

Password Standards��� 187

Session Management��� 188

Information Management��� 188

Data Validation�� 189

Service Security Management��� 189

Security Vulnerabilities and Best Practices of DXP�� 190

Security Testing Framework for DXP��� 192

Secure Code Scanning��� 193

General Web Security testing��� 194

Application-Specific Security Analysis��� 195

Threat Profiling of Transaction Management in Banking DXP�� 195

Threat profiling of Fund Management in Banking DXP��� 196

DXP Security Checklists��� 196

DXP Architecture and Design Phases Security Checklist��� 196

DXP Information Management Security Checklist�� 197

DXP Authentication and Session Management Checklist��� 197

DXP Network Communication Management Security Checklist��� 198

DXP Input Validation Security Checklist�� 198

DXP Security Auditing and Logging Security Checklist�� 199

Chapter Summary�� 199

Table of Contents

xi

Chapter 7: DXP Information Security��� 201

Information Security in DXP Solutions��� 201

Implementing Defense in Depth��� 202

Firewalls and Proxies��� 202

Server Hardware Level Protection�� 202

Monitoring Infrastructure��� 202

Backup Jobs and Synch Jobs��� 203

Disaster Recovery and Business Continuity Plan��� 203

Implementing Information Security Policies�� 203

Information Access Policies��� 203

Protecting Private Data��� 207

Information Security Best Practices�� 208

Privacy Best Practices�� 208

Authentication and Authorization��� 208

Auditing and Logging�� 209

File Management�� 209

Error Handling�� 209

Secure Software Development Life Cycle�� 209

Secure Incident Management�� 210

Database Level Security��� 210

Sharing the Data with External Systems�� 210

Security Awareness and Training��� 210

Security Testing�� 211

Cloud Testing�� 211

Chapter Summary�� 212

Part IV: �Infrastructure and NFR for the Banking Experience Platform�������� 213

Chapter 8: Quality Attributes and Sizing of the DXP�� 215

Key Quality Attributes of DXP��� 215

Quality Attributes Deep Dive�� 217

Usability Requirements�� 217

Security Requirements��� 218

Table of Contents

xii

Reliability Requirements�� 219

Scalability Requirements�� 219

Availability Requirements��� 220

Archival and Retention Requirements�� 221

Logging and Auditing Requirements�� 221

Performance Requirements�� 222

Infrastructure Sizing of DXP��� 222

Cloud Hosting of DXP Solution��� 224

Tiered Architecture��� 224

Cloud Deployment Considerations�� 225

Cloud Deployment Model�� 226

Disaster Recovery and Business Continuity for DXP Applications��� 228

DR Planning�� 229

DR Implementation��� 230

DR Maintenance��� 231

DR Strategy Document��� 232

Chapter Summary�� 233

Chapter 9: DXP Performance Optimization�� 235

DXP Performance Optimization of Presentation Layer��� 235

User Experience��� 235

Performance Testing for DXP��� 238

Performance Testing Activities��� 238

Key Performance Metrics��� 243

Performance Testing Framework��� 244

Identify Critical Transactions�� 245

Document Workload Model��� 245

Qualitative Assessment�� 245

Quantitative Assessment�� 246

Predict�� 247

Performance Debugging Framework��� 247

Identify the Root Cause�� 247

Table of Contents

xiii

Optimize the Component/System/Layer��� 251

Common Performance Problem Pattern��� 252

Performance Case study�� 254

Application Context and Background��� 254

Performance Analysis��� 254

Recommendations and Improvements��� 256

Chapter Summary�� 258

Chapter 10: Transforming Legacy Banking Applications to Banking Experience
Platforms��� 261

Key Tenets of a Banking Experience Platform��� 262

Attributes of a Next-Generation Digital Bank��� 263

DXP Features for Next-Generation Digital Bank��� 265

Main Trends in Digital Banking�� 268

Technology-Related Trends�� 268

Business Process-Related Trends�� 269

Digital Transformation of Traditional Banks to Digital Banks��� 269

Reference Technology Architecture for a Digital Bank��� 269

Reference Functional View of Digital Bank��� 273

Main Digital Transformation Methods��� 278

Digital Transformation Road Map��� 288

Reimagining the Digital Banking Experience��� 288

Chapter Summary�� 294

Part V: �End to End Case Study��� 297

Chapter 11: End to End DXP Case Study�� 299

Drivers and Key Requirements of the Dealer Platform Case Study��� 299

Architecting the Next-Generation Dealer platform��� 300

Pain Point Analysis in Current Systems and Processes�� 300

Solution Tenets of Next-Generation Dealer Platform�� 302

Solution Design Principles�� 304

Persona-Based Information Architecture��� 307

Table of Contents

xiv

Persona-Based Design and Information Architecture�� 308

Functional View of the Next-Generation Dealer Platform��� 310

Seamless and Optimized Business Process��� 312

Open-Source-Based Next-Generation Deal Digital Platform�� 313

Innovations and Next-Generation Technologies in Dealer Platform��� 318

Chapter Summary�� 320

Appendix A: Open-Source Tools and Frameworks��� 321

HTTP Accelerator�� 321

Web Server�� 321

CSS Framework��� 322

Scripting Framework��� 322

User Interface Management�� 323

Integration�� 324

Application Server�� 324

Server-Level Cache�� 325

Content Management Systems�� 325

CMIS��� 326

SQL Database��� 326

NoSQL Database�� 326

IoT Framework��� 327

Distributed Data Streaming�� 327

Analytics Engine��� 327

Distributed Processing��� 328

Machine Learning Library and Framework�� 328

Blockchain Frameworks�� 329

Augmented and Virtual Reality��� 329

Enterprise Search Engine��� 330

Containerization��� 330

Containerization Orchestration�� 331

Table of Contents

xv

Source Code Management��� 331

Continuous Integration and Continuous Delivery��� 331

Appendix B: Sample Code�� 333

User Interface�� 334

Integration�� 335

Data Mocking��� 336

Implementation and Logic��� 336

Deployment�� 337

Development�� 337

Production�� 338

Prerequisite�� 338

API Specification and API Mocking�� 339

Swagger-UI�� 339

Swagger-Editor�� 340

Swagger-Server��� 342

UI Screen Mocking on Node-RED��� 342

Apache Camel�� 346

Build Automation System��� 347

Run the Integration Application�� 354

Angular��� 355

Microservices Architecture�� 357

Microservices Components�� 358

Docker�� 363

Components��� 363

Summary��� 364

Appendix C: Further Reading��� 365

�Index�� 367

Table of Contents

xvii

About the Authors

Shailesh Kumar Shivakumar is an author, inventor and

working as Practice Lead & Senior Technology Architect at

Digital Practice of Infosys Limited. He is an award-winning

digital technology practitioner with skills in technology

and practice management and has experience in a wide

spectrum of digital technologies, including enterprise

portals, content systems, enterprise search, and other

digital technologies. He has more than 17 years of industry

experience and was the chief architect in building a digital

platform that won the “Best Web Support Site 2013”

global award. His areas of expertise include digital technologies, software engineering,

performance engineering, and digital program management. He is a Guinness world

record holder of participation for successfully developing a mobile application in a

coding marathon.

Shailesh is deeply focused on enterprise architecture, building alliance partnerships

with product vendors, and has a proven track record of executing complex, large-scale

digital programs. He successfully architected and led many engagements for Fortune

500 clients of Infosys and built globally deployed enterprise applications. He also

headed a center-of-excellence for digital practice and developed several digital solutions

and intellectual property to accelerate digital solution development. He led multiple

thought-leadership and productivity improvement initiatives and was part of special

interest groups related to emerging web technologies at his organization.

Shailesh was awarded the prestigious “Albert Nelson Marquis Lifetime Achievement

Award 2018” for excellence in technology and has received numerous honors and awards.

He has won multiple awards including the prestigious Infosys Awards for Excellence 2013-

14 “Multi-talented thought leader” under the “Innovation – Thought leadership” category,

“Brand ambassador award” for MFG unit, “Best employee award”, delivery excellency

award and multiple spot awards, and received honors from executive vice chairman of his

organization. He is featured as an “Infy star” in the Infosys Hall of fame and recently led a

delivery team that won the “best project team” award at his organization.

xviii

Shailesh holds a Bachelor in Engineering in Computer Science and Engineering and

is currently pursuing a doctoral degree in Computer Science. Shailesh has completed

an executive management program from the Indian Institute of Management, Calcutta.

Shailesh holds numerous professional certifications such as TOGAF 9 certification,

Oracle Certified Master (OCM) in Java EE5 Enterprise Architect certification, IBM

Certified SOA Solution Designer, and IBM Certified Solution Architect Cloud Computing

Infrastructure. He is the sole author of four technical books on digital technologies,

which were published by reputed publishers, and has published twelve technical white

papers related to digital technologies. Shailesh is the sole inventor of two granted US

patents (US9613341 and US10108601) and holds two more patent applications, and is a

frequent speaker at events such as IEEE conferences and Oracle JavaOne. Shailesh has

also published more than 10 research papers in various international journals.

Sourabhh Sethii is a Technology Analyst at Infosys

Technologies Limited. His areas of expertise include

Blockchain, Internet of things (IoT), machine learning (ML),

Java enterprise technology, front-end frameworks, and

integration technology. He has hands-on experiences with

many technologies like database integration, continuous

integration, and security, along with performance analysis

and web frameworks like Angular and Node. Sourabhh has

worked on multiple domains such as banking, finance, and

manufacturing. He has achieved multiple honors like “Most

Valuable Player,” “Insta Awards,” and “Best Employee Award”

from the heads of his unit in Infosys. He has published many technical white papers.

Sourabhh holds Master degree in Software Systems specialized in Data Analytics

from Bits Pilani, Rajasthan, India.  

About the Authors

xix

About the Technical Reviewers

George Koelsch is a retired system engineer who resides in

West Virginia, after 33 years in the DC metro area. He started

system engineering 42 years ago while in the US Army,

and had continued that work for an additional 33 years as

a contractor for the Federal Government. With a five-year

stint as an Industrial Engineer at Michelin Tire Corporation,

he learned to become an efficiency expert, which he then

applied to system engineering and project management

to tailor the lifecycle development process before his

contemporaries in the DC area were doing it. In his spare

time, he authored ten nonfiction articles on computers, coin collecting, stamp collecting,

and high-energy physics. Apress published his book titled Requirements Writing for

System Engineering in October 2016. He now focusses on writing, all his hobbies, and

other projects he has time to work on now. 

Venkata Kakarlapudi is a Senior Technology Architect at

Infosys Limited, with over 15 years of industry experience.

His areas of expertise include Java, enterprise portals, and

Web content management systems. He has experience of

implementing multiple large-scale enterprise applications

for Fortune 500 companies across geographies. He

previously headed a center of excellence for enterprise

portals at the digital experience practice in his organization

and is part of the core architecture team. He holds an

engineering degree in Mechanical Engineering and has completed an executive

management program for IT executives from the Indian Institute of Management,

Bangalore.  

xxi

Acknowledgments

Shailesh would like to acknowledge and thank Verma V.S.S.R.K for their valuable inputs

and review comments. Shailesh would also like to recognize and thank Dr. P. V. Suresh

for his constant encouragement and immense support.

Sourabhh would like to thank his parents (Ritu Sethi and Sat Dev Sethi) and brother

(Shrey Sethi), who were the guiding light behind him.

The authors also like to immensely thank Mr. George Koelsch for his technical

review; his feedback has added great value to the book.

The authors want to sincerely acknowledge and thank profusely the Infosys team

that includes the managers Jitin Singla, Saumitra Bhatnagar, Vivek Rastogi, Sarweshwar

Panda, Sumit Arora, Aditya Kumar Soni, our colleagues and our friends who have

facilitated us in accomplishing this task. Special thanks to Rahul Krishan for precious

guidance and support. The authors would also like to convey sincere thanks to our

mentor and friend Jasleen Khokhar, who read the manuscript at different stages as it

evolved from shoot to bud, from flower to fruit. The authors would like to extend thanks

to Anchit Madaan (Blockchain Core Team), Deepak Garg, Himanshu Arora, Jaskirat

Singh, Babu Krishna Murthy, Kiran Korke, Nishant Satija (Digital Experience Team), and

Arpit Kulshrestha.

Our special thanks to Shivangi Ramachandran, Rita Fernando, and the editors,

technical team, designers, and publishing team at Apress for providing all necessary and

timely support in terms of review, guidance, and regular follow-ups.

xxiii

Introduction

As enterprises embark on their digital transformation journey, they define the vision,

road map, and objectives of the digital transformation programs. Digital transformation

involves legacy modernization, reimagining digital experiences, implementing cloud-

first and mobile-first models. Such digital transformation involves various challenges

and risk factors including but not limited to niche technology stack, unavailability of

skilled resources, long time to market, and such. Enterprises need to carefully evaluate

technology trends and future outlook, and invest in the technology stack that caters to

their current digital transformation goals as well as their long-term digital vision.

Digital experience platforms (DXPs) are an integrated set of technologies and

tools that provide best-of-breed modern digital technologies for enterprises. A DXP

has a preintegrated set of technology stacks that addresses the risk related to a niche/

unproven technology stack and risky integrations. DXPs are designed on the platform

philosophy so that they can be easily extended and scaled to meet future demands of

scalability and onboard new innovations. A DXP is one of the most popular approaches

for building an enterprise grade digital platform. A DXP provides a set of capabilities

to quickly develop a personalized, secure, and scalable enterprise platform. DXPs are

designed in such a way that they can incorporate modern digital technology to build

next-generation enterprise applications.

You can develop your own digital experience platform. The book looks at various

open-source tools, technology, and frameworks that can be used for building DXPs.

This book covers core concepts to build enterprise grade DXPs. Readers get a holistic

view to build DXPs and will be able to transform existing applications to a DXP that is

capable of incorporating emerging technologies in near future.

DXPs are not just limited to a few commercial products. Enterprises can build their

own experience platforms to meet their needs. This book discusses the methods and

technology frameworks across various layers to design a DXP.

We divided this book into five parts: requirements and design, development,

security, infrastructure/NFR, and a case study to cover end-to-end DXP lifecycle

scenarios. We discuss proven best practices, design methods, and technology

frameworks along with contextual real-world case studies for each of the chapters.

xxiv

In the requirements and design part, we introduce various concepts of DXPs and

elaborate on requirements elaboration methods. We also provide an in-depth discussion

of various design elements of DXPs such as UI design, integration design, and such. The

chapters in this part cover the requirement gathering phases, functional requirements,

and sample use case to develop your own DXP application; user experience

requirements to develop your own user interface and mobility requirements to develop

your own mobile experience; nonfunctional, social and collaboration, security,

infrastructure, disaster recovery, and rollout requirements to develop your own digital

experiences platform. This is the first step to develop and analyze the requirements

to build an enterprise DXP. The design chapter covers the patterns and architectural

strategy along with various layers of the DXP. This chapter also briefly discusses the

integration of various emerging technologies such as IoT integration design, Blockchain

design, big data, and NoSQL design, and AI automation design along with chatbot case

studies, enterprise search engine capabilities, and introduction of augmented reality

with DXP applications, along with recent trends in CICD (continuous integration and

continuous deployment) using application containerization technique.

The development part mainly discusses the detailed design and development of

DXP layers such as the user interface layer and integration layer. The chapters in this

part cover each and every aspect of developing the user interface using open-source web

frameworks, modular UI components and key features, integration of UI components

using open source ESB and integration frameworks, UI development lifecycle and best

practices, along with a BXP (Banking experience platform) case study.

In the security part, we provide an elaborate discussion of information security and

overall security of DXPs. The chapters in this part cover the concepts and best practices

while developing an application’s security, along with information security policy and

principles.

The infrastructure/NFR part discusses various quality and nonfunctional attributes

such as performance, infrastructure sizing, and such. The chapters in this part cover

the NFR(nonfunctional requirements), that is, scalability, availability, performance,

modularity, extensibility, and security of the DXP’s application along with quality

attributes such as usability, configurability, stability, interoperability, efficiency,

flexibility, and maintainability of the platform.

Finally, we wrap up with an elaborate digital transformation case study of a legacy

system in the last chapter. The case study chapter provides insights into the digital

transformation of a legacy application to a Digital experience platform. It covers concepts

Introduction

xxv

like gamification, predictive analysis, dashboards, and chatbots; and technologies like

artificial intelligence, Blockchain, and augmented reality are discussed in brief.

The book can be used as a reference while using any existing DXP tools or for

developing a new DXP from the ground up. Digital practitioners, web developers, and

digital architects can leverage the best practices, methods, and technology frameworks

discussed in this book.

Introduction

PART I

Requirements and Design

3
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_1

CHAPTER 1

Introduction to Digital
Experience Platforms
The digital strategy of all organizations primarily focuses on providing rich and engaging

user experience. Customer experience-focused strategy leads to increased customer

engagement, which in turn increases key success metrics such as site traffic, repeated

visits, conversion rate, and such.

Digital experience platforms (DXPs) provide an integrated set of technologies

built on platform philosophy to engage users throughout their journey. DXPs provide

seamless user experience across all user touch points. A DXP is a convergence of all

customer-centric technologies such as content management systems, portals, analytics,

campaigns, targeting, search, mobile apps, and such.

Industries dependent on digital technologies are undergoing rapid disruption

mainly fuelled by changing tech-savvy customer expectations, disruption in digital

technologies, and due to widespread popularity of mobile devices. Incumbent

organizations are undertaking digital transformation exercises to meet the customer

expectations and to stay competitive.

Organizations can increase their online revenue through user engagement. User

engagement also increases cross-sell and upsell opportunities, and increases user

retention and lifetime value of a customer.

4

�Boundaryless Banking Enabled by Digital
Technologies
Tech-savvy banking customers expect the banking experience to match or surpass the

best experience of social media platforms, hence it is imperative for banks to understand

the trends and enhance the banking experience. Digital banks enable a boundaryless

and physical branchless experience supporting these features:

•	 Mobile-first strategy enabled through mobile apps or mobile web

platforms

•	 Omnichannel experience (a seamless user experience on all

supported devices and browsers) to provide optimal user experience

on all access devices

•	 Seamless and simplified processes across all touch points throughout

the user journey

•	 Relationship oriented by rewarding loyalty and sustaining long-term

partnership with customers

•	 Responsive to market disruptions, changing customer demands, and

other requests

•	 Digitized business models to foster the innovation

•	 Rapid innovation in adding digital capabilities

In the subsequent section we will briefly discuss DXPs.

�Overview of DXP
DXPs are primarily user-centric engagement platforms that provide a unified view, with

rich user interface for enhanced end-user experience. DXPs provide a platform-based

approach to enable all the needed digital capabilities. In this book we explore various

aspects of a digital experience platform such as user experience design, integration,

security, and such. In this regard we will explore the concepts of DXP in understanding

the background for using a DXP to build a banking experience platform.

In this section we will provide details of the DXP.

Chapter 1 Introduction to Digital Experience Platforms

5

�Key Tenets of a DXP
The key tenets of DXPs are defined as follows:

•	 Platform orientation with an integrated set of technologies that

provides capabilities for presentation, content management,

commerce, marketing search, analytics, campaigns, and such.

The platform model should also support future extensibility.

•	 Lean and agile platforms with lightweight integration components.

A lean model includes lightweight user experience integrated with

lightweight service components.

•	 An integrated and personalized view to provide a holistic view of

all customer activities across all touch points. This can be achieved

by information aggregation from multiple information sources and

delivering personalized experiences.

•	 Provide software as a service (SaaS) and cloud deployment option to

provide the digital experience as a service.

•	 Provide an integrated experience catering to various business

channels such as marketing, sales, and services.

•	 Self-service for end users and for business stakeholders to improve

user experience and productivity.

•	 Agility in developing new features and implementing changes for

responding to changing market demands.

�DXP Reference Architecture
The reference architecture provides the core services and components that are used in

a typical digital experience platform. The services and components enable the needed

business capability for the application using the DXP; we will elaborate each of these

components in detail shortly.

DXP reference architecture is shown in Figure 1-1.

Chapter 1 Introduction to Digital Experience Platforms

6

Fi
gu

re
 1

-1
. 

D
X

P
 r

ef
er

en
ce

 a
rc

hi
te

ct
u

re

Chapter 1 Introduction to Digital Experience Platforms

7

The core components of a typical DXP platform are as follows. We have identified the

core components in each of the layers:

•	 User touch points: This layer consists of various digital touch points

the end user uses during the journey. The end user could use

smartphones, desktops, tablets, third party services, or wearable

and such devices to access the DXP services. Users expect device-

optimized, seamless and personalized information access across all

digital channels. All user access channels and devices come in this

layer.

•	 Presentation services: The DXP provides various presentation services

to cater to a wide variety of digital touch points. This includes mobile

apps for smartphones, UI frameworks, and responsive design for

mobile web applications, web services for third party consumer, and

A/B testing for presentation testing. Presentation services are mainly

responsible for defining the user interface and user experience. We

elaborate presentation services and user touch points in Chapter 4.

•	 Lean portal services: In this category, the portal provides various

complementary presentation capabilities such as personalized

experience (user experience based on end user preferences and

past history), consistent branding, unified view, forms (for user

registration, queries, and such), search engine optimization

(SEO) (to make web pages more visible), multilingual presentation,

and such.

•	 Lean portal services provide business-friendly controls to

manage pages (page creation, layout, web analytics, navigation)

and brands.

•	 Lean portal services provide a single-stop-shop view of

personalized content by aggregating information from various

sources.

•	 Web analytics provide vital real-time customer insights, and help

in understanding customer activities and interests. These insights

can be used for customer segmentation, trend analysis, and

targeted content delivery/contextual recommendations.

Chapter 1 Introduction to Digital Experience Platforms

8

•	 Content services: In this category, the DXP provides various content

management services such as content authoring, content tagging,

content publishing, content translation, and such. As the DXP provides

an integrated set of features, support for various content types,

content administration, content templates, content metadata, and

other content related services will also be provided by the DXP. Other

complimentary functionality such as document management services,

digital asset management (DAM) services, content workflows, and

metadata management are also included in this category.

•	 Content services provide content lifecycle management features

(content creation, content updates, content publishing, content

translation) and support a wide variety of content.

•	 Content services provide other features such as rich text editor,

content workflows, and such.

•	 Campaign and marketing services: One of the core features of a DXP

is to enable digital marketing campaigns. To provide this, the DXP

includes features such as campaign management (defining, launching,

and monitoring campaigns), audience targeting (sending targeted

information to the relevant audience), social media marketing, user

segmentation (grouping users based on their interests, access patterns,

and such), and customer data management (unified management of

customer data across all customer touch points).

	 A DXP provides campaign management features (campaign creation,

campaign targeting) and user segmentation (categorizing end

users based on demographics, interests and such) in this category.

Customer data management (profile data, preferences data,

transaction data, and navigation data) is used for understanding

customers and provides targeted content. Customer data is used

to provide a single view of customer data (activities, preferences,

transactions, feed, etc.) in the dashboard. Other marketing

functionality such as social media marketing is included as well.

•	 Campaign and marketing services mainly deliver targeted

content based on user attributes, preferences, analytics,

and such.

Chapter 1 Introduction to Digital Experience Platforms

9

•	 Analytics services: This includes web analytics-based tracking using

predefined metrics, trend analysis, and predictive analytics.

•	 Integration services: Enterprise integration is the most significant

component of a DXP. In order to aggregate information from various

information sources to provide a unified view, a DXP should support

a variety of integration formats and should provide flexible and

extensible integration features. Hence a DXP offers standards-based

integration methods such as API support, modular services, services

support, and plugin support. Most of the DXPs offer built-in support

for microservices, REST (Representational State Transfer) and JSON

(JavaScript Object Notation)-based services and adaptors for most

popular enterprise interfaces (such as databases, enterprise resource

planning [ERP], etc.)

•	 The in-built adaptors and integrators improve the productivity

of end users and optimize the return on investment (ROI) of

the DXP.

•	 DXPs provide standards-based integration options (such as

REST-based integration, web services, and such), which can be

leveraged for integrating with new products and technologies.

•	 Social and collaboration services: In this category, a DXP provides

various collaboration features such as forums, blog, wiki, chat,

knowledge base, messengers, communities, calendars, email, and

such. These features enable end users to share the information and

facilitate a self-service model. The social capabilities enable users to

collaborate, harness collective intelligence, socialize, and improve

productivity.

•	 Social and collaboration enable users to collaborate and engage

customers at social touch points.

•	 Workflow and orchestration: DXPs enable designing and

implementing agile, automated, and dynamic business processes

through workflow modeling, a configurable rules engine, and

workflow governance.

Chapter 1 Introduction to Digital Experience Platforms

10

•	 Search services: Information discovery is mainly enabled through

search features such as site search, content search, and federated

search. DXPs also support advanced search features such as result

filtering or faceted searching.

•	 Search services improve the user productivity through efficient

information discovery.

•	 Commerce services (Optional): Based on the usage domain, DXPs also

provide various commerce services such as catalog management,

order management, product information management (PIM),

inventory management, etc.

•	 Cognitive services (Optional): In this category we have services

that leverage artificial intelligence (AI) and machine learning and

natural language processing methods to provide personalization

recommendations based on insights gathered.

•	 Data services (Optional): This includes services related to data

processing such as Big Data services, data migration-related services,

and data transformation-related services.

•	 Infrastructure services: In this category, a DXP offers various features

such as support for on-premise deployment, cloud deployment,

container deployment (deploy code base to run independently

for increased robustness and failover), and multitenancy (a single

codebase used for multiple-user groups). A DXP also supports other

high availability features such as clustering, monitoring, etc.

•	 Workflow and orchestration services: These services are mainly

used for orchestration of business processes. This category includes

components such as rules engine, workflow governance, and

business process modeling tools.

•	 Personalization services: Personalized delivery is an essential feature

of any DXP. This module includes preference management, UI

customization (ability for user to customize widgets, page layout),

Chapter 1 Introduction to Digital Experience Platforms

11

notification management (alerting and notifying users), subscription

management (enabling and disabling of subscriptions for the user),

collaborative filtering (recommending products based on their

attributes, behavior of similar customers, and such), and AI-based

personalization (personalized based on matching learning of users’

interests and activities).

•	 Security: In this category, a DXP offers various authentication

and authorization features such as support for an access control

list, public–private key infrastructure, web SSO (single sign-on);

pluggable adapters, Lightweight Directory Access Protocol (LDAP)

integration, Security Assertion Markup Language (SAML) integration,

and NT LAN Manager (NTLM) integration. We discuss elaborate

security features in Chapters 6 and 7.

•	 DevOps: DXP methodology also supports and uses various

open-source DevOps features such as Agile Delivery (such as Agile

Management with Slack or Jira); continuous integration or CI

(such as Jenkins); iterative testing; container deployment (Docker or

Kubernetes); etc.

•	 Other Services: It can also support third-party integration of open-

source features available in the market, such as Rules Engine, Journey

Analytics (Google web Analytics, Open Web Analytics, similar

web, etc.), Appstore support/integration (Google Playstore/Apple

appstore), IoT services (Iotivity), wearable services, and reporting

services.

�Evolution and Drivers for DXP
In this section we discuss the various stages of evolution of digital platforms and the key

drivers of DXPs.

�Evolution of Digital Platforms

Various stages of evolution of digital platforms are shown in Figure 1-2.

Chapter 1 Introduction to Digital Experience Platforms

12

The evolution of the digital eco system is depicted in Figure 1-2. During initial stages,

web sites were mainly used for information delivery. Web sites needed to be integrated

with multiple backend systems and services needed for the business. The next stage of the

digital ecosystem was technology platforms such as enterprise portals, CMS, search engines,

analytics engines, and such. These technology platforms addressed specific concerns of

the enterprise applications. For instance, enterprise portals mainly addressed concerns

related to presentation, information aggregation, and personalization; CMS managed the

end-to-end lifecycle of content and search engines handled the indexing and searching

related concerns. In this scenario we needed multiple enterprise products to build a

digital solution. The next step in the evolution was domain-specific digital platforms.

For instance, CMS-specific digital platforms provided basic presentation, basic search and

ready-to-use integrators/plugins for search engines, and campaign management systems.

Similarly, e-commerce platforms provided storefront portals and basic content management

capabilities. These prebuilt/out-of-the-box capabilities built around the core capabilities

reduced the number of products and technologies that need to be integrated.

Figure 1-2.  Digital platform evolution

Chapter 1 Introduction to Digital Experience Platforms

13

Digital experience platforms are the next step in the evolution journey. DXPs provide

a preintegrated stack to use and extend for any enterprise digital solution.

Some of the challenges addressed by DXPs are shown in Table 1-1.

Table 1-1.  DXP Challenges and Solutions

Challenge Description How DXP Addresses It

Technology

complexity for

building enterprise

application

• �T oo many products and technologies

adding to the overall technology

complexity.

• �T oo many integrations involved

products.

• �DXP s provide preintegrated stack and

provide all necessary capabilities for

building enterprise digital solutions.

Performance

and availability

challenges

• �T raditional web platforms tend

to be “heavy” for installation and

maintenance, and pose performance

challenges.

• �T oo much integration is also causing

performance, scalability and

availability issues.

• �DXP s are built on a lean model

offering Lean UI frameworks/products

for rich user experience needs.

• � Cloud-native DXPs are well equipped

to handle the availability and on-

demand scalability challenges.

Productivity

challenges

• �T he inherent complexity of the

traditional platforms is resulting in

greater time for implementation.

• �M issing common, reusable

component and frameworks.

• �DXP s can be configured and extended

to build needed capabilities.

• �P reintegrated technology stack

and development tools improve

productivity.

Not aligned with

overall digital

strategy

• �T raditional digital technologies

and products pose challenges

in fully implementing digital

strategy elements such as mobility

enablement, analytics, and cloud

• �DXP s can be used to implement digital

strategy, as it provides all the necessary

building blocks of digital technologies

with extensible architecture.

• �DXP s support and provide modern digital

technologies such as collaboration tools,

AI tools, and mobile apps.

High maintenance

and infrastructure

cost

• �H igh software licensing and support

costs.

• �H igh development, testing, and skill

costs involved.

• �A DXP is a single, modern product

offering combined functionalities in an

overall digital space.

Chapter 1 Introduction to Digital Experience Platforms

14

�Business Drivers for DXP

Listed in Table 1-2 are the key business drivers across various industry verticals. We will

elaborate on these in the contextual case studies in coming chapters.

Table 1-2.  DXP Drivers and Business Scenarios

Vertical/Industry Domain Drivers and Key Business Scenarios

Retail and digital commerce • �L ightweight and agile platforms with hyperpersonalization,

catering to customer intent to drive conversions

• �U ser journey optimization and user engagement across all

digital touch points and access channels

• � Integration of online (chat, call center, web, mobile, and offline

channels (brick-and-mortar stores)

• �A I (artificial intelligence) and machine learning-based predictive

analytics, recommendations, and personalization

• �U nified view of customer actions and information

• �O ther features are conversational commerce, virtual assistants,

augmented reality, marketplace integration, API-based

backend integration (also known as “headless” mode), and

multitenancy model.

Marketing and sales • � Campaign management

• �P ersonalized/targeted content delivery

• � Customer segmentation

• � Configurable and extensible product

• �S ocial marketing

• � Brand management

• �M icro site management

• � Campaign management

(continued)

Chapter 1 Introduction to Digital Experience Platforms

15

Table 1-2.  (continued)

Vertical/Industry Domain Drivers and Key Business Scenarios

Insurance • �P roduct comparison tools

• �M obile apps that provide services related to quotes, claims,

service requests, policy management

• � Customer self-service related to policy management, service

requests, payment and profile management

• �A dvanced analytics for fraud detection

• � Campaign management, lead management

Manufacturing • � Convergence of B2C (business to consumer) and B2B (business

to business) channels

• � Information delivery

• � Collaboration

• �U nified dashboard view

Customer Service • �S elf-service

• � Knowledge management

• �S earch and information discovery

• � Collaboration tools and collective intelligence harnessing tools

such as wikis, blogs, forums, communities

• �A I-based virtual personal assistants (VPAs), chatbots

• �M achine-learning based contextual recommendations

• �S ocial media integration

Common business drivers

across all verticals

• �L ower operational cost and continuous improvement

• �D ata-driven decision making

• �S elf-service

• �F aster time to market through agile delivery and maximal reuse

of out-of-the-box platform components

• �A gile delivery

• �F rictionless and automated processes and improved productivity

Chapter 1 Introduction to Digital Experience Platforms

16

We have detailed various digital transformation case studies and scenarios for a

DXP. In subsequent sections we will look at the details of banking experience platform

as an example implementation of a DXP. DXP principles can be applied to design other

experience platforms as well.

�Overview of Banking Experience Platform
We will look at the core features of the banking experience platform.

Note T he banking experience platform referred to in this book mainly refers to
the retail/consumer banking solution used by banking customers.

�Key Tenets of Banking Experience Platform
The primary motivation of a banking experience platform is to provide a holistic and

engaging user experience for the online customers of the bank. This book elaborates

on building a banking experience platform to fulfill this vision. The primary tenets of

a banking experience platform are as shown in Table 1-3. We will elaborate on these

platform tenets in Chapters 3, 4, and 5.

Table 1-3.  Key Tenets of a banking Experience Platform

Key Tenets of banking
experience platform

Attributes

Integrated view Single-stop-shop experience, aggregation of data from all

interfaces

Personalized experience Relevant and contextual information delivery, role-based access

Intuitive user experience Interactive and response user interface, omnichannel access

Self-service Enhanced information discovery, smart search, comparison tools,

calculators, decision-aiding tools

Secured transactions Easy to use, and simplified and secured transactions

Chapter 1 Introduction to Digital Experience Platforms

17

The main features of a future-state banking XP is depicted in Figure 1-3.

As depicted in the diagram, a future state banking XP needs a responsive and

omnichannel-enabled use experience, engaging content. Collaboration features such

as chat, blogs, and forums enable active participation of end users. The banking XP

should ease the integration with security systems and provide service-based interfaces

for consumers. The platform should provide timely alerts and intuitive visualizations

(charts, reports, dashboards) to help the customer in decision making. Search is the

key information discovery tool for the banking XP. Analytics enablement helps in

personalization of the user experience.

�High-Level Requirements of Banking Experience Platform
Table 1-4 shows the high-level requirements of a banking XP categorized into main

categories. We discuss these requirements in Chapter 2.

Figure 1-3.  Key features of a modern banking experience platform

Chapter 1 Introduction to Digital Experience Platforms

18

Table 1-4.  High-Level Requirements of a Banking Experience Platform

Requirement Category for
Banking XP

High-Level Requirements

User experience Customer-centric design, lightweight/lean UI, responsive UI

elements, mobile apps, dashboard UI, simple and easy-to-use

interfaces, high usability, intuitive information architecture,

personalization

Security Authentication, authorization, SSO, flexible login methods,

multifactor authentication, adaptive authentication, auditing

Enterprise integration Integration with needed enterprise interfaces such as core

banking systems, commerce platforms, ERP systems, enterprise

services and interfaces, light-weight services

User engagement features Personalization, profile management, gamification (using gaming

concepts such as points, scores, and badges to enhance and

encourage user participation), contextual content delivery, social

media integration, self-service tools, analytics, collaboration

(chat, blog, wiki, forums, document sharing, etc.), dashboard

views, profile management, review and rating, alerts/notification,

localization and such

Self-service tools Reports, search, calculator (related to loans, policies, etc.), tools

(such as risk profiling tool, budget planning tool, need analysis

tool), incident management

Optimized processes Quicker registration, account opening process, bill payment

process, funds transfer process

Analytics Customer behavior insights, navigation patterns, metrics-based

tracking, user segmentation,

Anytime anywhere availability Cloud enabled, platform accessible on all devices and browsers,

disaster recovery capabilities

Content management Campaigns, web content, promotion content, publishing, content

workflows

Chapter 1 Introduction to Digital Experience Platforms

19

The sample objectives for a banking XP are shown in Figure 1-4.

Sample reference architecture of a banking XP is given in Figure 1-5.

Figure 1-4.  Key objectives of a banking experience platform

Chapter 1 Introduction to Digital Experience Platforms

20

Fi
gu

re
 1

-5
. 

R
ef

er
en

ce
 a

rc
hi

te
ct

u
re

 o
f a

 b
an

ki
n

g
ex

pe
ri

en
ce

 p
la

tf
or

m

Chapter 1 Introduction to Digital Experience Platforms

21

The banking XP is typically a layered system providing a loosely coupled platform.

The platform will be used by customers, admin, and bank staff.

The core platform consists of three layers: presentation layer, business layer, and

integration layer.

The presentation layer provides user interface components such as widgets, pages,

web analytics, localization, personalization, and visualization components. These

components define and impact the end-user experience.

The business layer consists of core business components to implement the business

logic, transactions, and workflows and provide collaboration features.

The integration layer provides integrators and plugins to interact with enterprise

interfaces through lightweight services. Enterprise interfaces include customer

relationship management, wealth management systems, content management system,

document management system, search engine, enterprise services, enterprise resource

planning, core banking system, enterprise service bus, etc.

The platform also provides various utilities and accelerators such as loggers, caching

components, and taxonomy and exception handlers.

�Three Ps of BXP
The three Ps of BXP are as follows:

•	 Purpose: Customer satisfaction, customer retention, growth of digital

services, integration with other partners, reduce time to market.

•	 Process: Banking organization assessment of each major value stream

to make sure each step is valuable, capable, available, adequate,

flexible, and that all the steps are linked by flow, pull, and leveling.

•	 People: Bank customers, admin, and bank staff.

�Sample Technical Capabilities of Banking
Experience Platform
Table 1-5 is a sample list of technical capabilities for a banking XP:

Chapter 1 Introduction to Digital Experience Platforms

22

Table 1-5.  Technical Capabilities of a Banking Experience Platform

Capability Group Capabilities

Presentation • �M obile-first components

• �R esponsive and interactive user interaction elements

• �U ser experience management

• � Consistent user experience across channels

• � Intuitive dashboard providing unified view of transactions across all

channels

• � Intuitive visualizations (charts, graphs, reports)

• �O mnichannel access

• � Web analytics

• �A /B testing

• � Web analytics

Personalization • �U ser profiling

• �S egmentation

• �A nalytics-driven personalization

• �T argeted marketing

Security • � Identity management

• �S ingle sign-on (SSO)

• �E ncryption

• �A daptive security

• �M ultifactor authentication

• �F raud detection

• �F lexible authentication methods

• �D ata security

(continued)

Chapter 1 Introduction to Digital Experience Platforms

23

Capability Group Capabilities

Web content

management

• � Common content types, templates, and workflows

• �T axonomy and metadata management

• � Content preview

• � Content Versioning and life cycle management

• �F ederation and syndication

• �D igital marketing

Intelligent information

access

• � Indexing

• �S earch

• � Information access administration

• �F ederated search

• �S tandard connectors

• � Content query

Integration • �M anaged service consumption

• � Information aggregation from all relevant data sources (transactions,

risk score, etc.)

• �D ata consumption

• � Information aggregation across all channels and touch points

• �T ransactions

Transaction

management

• �S ecured transaction manager

• �P ayment manager

• �F unds transfer

Table 1-5.  (continued)

(continued)

Chapter 1 Introduction to Digital Experience Platforms

24

Capability Group Capabilities

Enterprise Integration • �L ight weight services layer (microservices)

• �S ervices-based integration.

• �P artner integration (third-party API)

Social and collaboration • �S ocial listening

• �F orums, chats, communities

• �E xternal social media collaboration

• �T raining and self-learning content

Other features • �T ransaction reporting

• �S earch

• �T ools (forecasting tools, comparison tools, reporting tools,

self-service tools)

• �E nhanced analytics (what-if scenarios analysis tools, smart

recommendations, cross-sell insights)

• � Well defined governance and processes

• �D efining single source of truth

• � Incident management

• �G amification

• � Cloud enablement

• �U se of AI features such as chatbot (rule-based chatbot or

predictive-based chatbot), recommendation, data analytics, and such

Table 1-5.  (continued)

�Sample Key Performance Indicators of Banking
Experience Platform
In order to measure the success of the banking XP, we use following key performance

indicators (KPIs):

•	 Increased business transactions: The enhanced banking XP should

make it easier for online banking customers to carry out transactions.

Chapter 1 Introduction to Digital Experience Platforms

25

•	 Improved user satisfaction: The banking XP should improve the

usability thereby improving the overall user experience.

•	 Faster time to market: The banking XP should provide optimized

processes and reusable technical building blocks that reduce launch

time of new releases.

•	 Reliability, availability, and performance: The banking XP should

provide a reliable and highly available platform to provide an

enhanced user experience.

�Digital Imperatives for Modern Banks
Disruptions in digital technologies are impacting modern banks. Banks are heavily

adopting digital technologies to remain competitive. Given below are the key digital

imperatives for modern banks:

•	 A mobile device is the primary access channel for accessing web

applications. So banks should provide mobile friendly web or apps

for mobile platforms.

•	 Digital banks are one of the emerging trends, wherein the banks

provide branchless digital banks that solely rely on digital channels.

•	 Increasing use of gamification concepts by rewarding banking

customers for their online transactions and activities.

•	 Increasing use of AI tools such as chat bots, personalized

recommendations, etc.

•	 Money management tools (such as spend analyzers, budget planner,

debt analyzer) and self-service tools are increasingly used in digital banks

to aid customer decision making and to minimize information clutter.

•	 Digital payments and digital wallets are some of the features gaining

momentum in digital banking channels.

•	 Social banking that actively leverages social and collaboration

features is one of the most popular features in the digital bank.

•	 Optimized and simplified processes (such as 1-step registration, or a

simplified customer acquisition process)

Chapter 1 Introduction to Digital Experience Platforms

26

�Summary
•	 Digital experience platforms (DXPs) manage the business processes

and decrease time required from development to production.

•	 DXPs provide cost effective digital services to customers.

•	 Multiple technologies, lean structure, and digital touch points

collaboratively enhance the overall digital experience. A DXP is a

highly flexible way to develop as well as interact with digital services.

•	 The main idea or methodology behind the DXP is it has lean

structure, which delivers maximum to the end customer with

minimum cost on the resources.

•	 DXPs make the complete production and digital service delivery

process efficient. Different technologies optimize and speed up the

process.

•	 A DXP can manage employees and customers of organizations on a

single platform.

•	 A DXP can be single point for organizations to digitize business

process.

•	 A DXP provides holistic user experience to all the stakeholders of

organization.

Chapter 1 Introduction to Digital Experience Platforms

http://platform.it/

27
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_2

CHAPTER 2

Gathering Requirements
Requirement gathering is one of the critical functions to ensure the success of a system

and platform. Digital Experience Platform (DXP) certifies the successful delivery of

the project that covers omnichannel as well as crossed-channel requirements. A DXP

focuses on developing and delivering a platform where an application is developed

once and deployed everywhere. A DXP provides omnichannel capabilities by providing

reusability of user interface (UI) components (also called widgets or portlets) and

manageable content. A DXP supports native applications. Besides functionality typically

delivered by these web-based UI components, content is made reusable between

channels, that is, Web, mobile device, tablet, interactive voice response (IVR), and

automatic teller machines (ATMs), etc. and platforms, that is, Web, Android, iOS, etc. as

shown in Figure 2-1.

ATM

DXP Mobile

IOS

Android

Desktop

IVR

Figure 2-1.  Omnichannel

28

The requirement elicitation and elaboration process enhances DXP application

requirement gathering and analysis. Requirement elicitation and elaboration is the

process of gathering and analyzing requirements. In this process, the developer

along with the system engineer interact with the systems, stakeholders, documents,

and case study of existing applications along with proof of concepts done by teams.

These requirement elicitation and elaboration methods are best suited for gathering

digital platform requirements, but there are other methods also that can be used for

requirement elicitation and elaboration.

•	 Requirement workshops: Workshops are beneficial on the grounds

that business analysts want to take stakeholders’ opinions and

consensus. Workshops could be combined with brainstorms for

discovering requirements, where ground rules are predetermined at

the outset of the workshop.

•	 Workshops help business analysts to build mock-ups or

prototypes for refining and validating requirements.

•	 Workshops could also include a walk-through for reviewing

requirements.

•	 Stakeholder interviews: Stakeholder interviews can lead toward

success of the application, although stakeholders come in all shapes

and sizes. The motive of the interview is to talk with those people

who will spend most of the time using the things you plan to design,

though it would help to first determine what that thing actually is.

•	 Documentation study: It helps to understand the existing systems

and challenges, so that they are incorporated in the new system. For

example, understanding existing systems and their configurations

helps us to integrate the existing system’s components with the

Chapter 2 Gathering Requirements

29

DXP application. It further assists in maintaining the integrity of the

system, as well as aiding understanding of the requirements.

•	 AS-IS system study: You should go through other existing applications

in the organization; it will further assist you to incorporate the

existing service with the DXP applications. You should model

the user journey and do pain point analysis, which help you to

understand the pain points faced by customers in the existing system.

Process study that is studying and analyzing the domain and process

involved in the domain. Study activities include management, and

the technical and professional people who are familiar with the

processes involved in the systems. The gathered information is used

to identify existing gaps, which helps you to optimize the business

process.

•	 PoCs (proof of concepts): Proof of concept is also known as proof of

principle. A PoC is a small exercise to test the design or idea. PoCs

help the team to understand functionality and estimate complexity,

which will further aid in developing the DXP application.

•	 Benchmarking competitor sites: The purpose of benchmarking is to

interpret and gain a level of insight that allows you to evolve a digital

strategy based on competitor insight. It helps you to understand the

potential customer and further aids in estimating performance and

capacity-related requirements.

•	 Questionnaires: An effective questionnaire helps you to decide the

actual user requirements. The answers can be used to analyze the

results. When the number of stake holders is greater, or the resources

and funds are less, then a questionnaire is the best method to analyze

the requirements. The questionnaire should be well defined and

effective. All the questions should be relevant to the requirements.

Chapter 2 Gathering Requirements

30

Figure 2-3 will help you to understand the elaboration phases and associated

requirements. For example, functional requirements can be gathered through

requirement workshops, system study, and stakeholder interviews.

Figure 2-2.  Requirement elaboration

Chapter 2 Gathering Requirements

31

You will look into banking experience platform (BXP) use cases throughout this

chapter. Now we would look into use case as well as user stories, describes the system

interaction with the environment and actors; it contains a detailed description of the

following objectives, which provide detailed descriptions about how a user interacts with

the system and how the system will respond to the user’s action.

•	 Actors

•	 Preconditions

•	 Postconditions

•	 Alternative paths

•	 Main scenario

A use case captures all the possible ways the user and system interact and a detailed

description about goals and results. We prefer use case over user stories (also called

scenarios). User stories are simplified descriptions of the user’s requirements, and are

based on the 3Cs: card, conversation, and conformation.

•	 Card: User story written as cards, and each user story has a short

description about the story.

Requirement
Workshops

Functional Requirements
Gathering

• Requirement workshops
• Stakeholder interviews
• AS-IS system study

Mobility Requirements

• Requirement workshops
• Stakeholder interviews
• PoCs (Proof of Concepts)

Experience
Requirements Gathering

• Requirement workshops
• Stakeholder interviews
• Bench marking competitor
 sites

Security
Requirements Gathering

• Stakeholder interviews
• Documentation study
• PoCs (Proof of Concepts)

Non-Functional
Requirements Gathering

• Stakeholder interviews
• AS-IS system study
• PoCs (Proof of Concepts)

Accessibility and Social and
collaboration Gathering

• Requirement workshops
• Stakeholder interviews
• Information and integration
 system study
• Documentation study

Stakeholder
Interviews

Documentation
Study

AS-IS
System Study

POCs
(Proof

of Concepts)

Bench marking
Competitor Sites

Figure 2-3.  Requirement gathering

Chapter 2 Gathering Requirements

32

•	 Conversation: Requirements are gathered and refined through the

continuous conversation between the users and development teams.

Ideas and implementation design are acknowledged during the

meeting with stakeholders.

•	 Conformation: Acceptance criteria of the user story are

acknowledged during discussion about requirements with

stakeholders. The user of the system confirms the conditions in

which working software would be accepted or rejected.

User stories are easy to read, but a platform approach needs a more granular

approach and detailed description about how the system will act. While doing use

case analysis, we are designing a functional flow that meets the user’s need. The digital

platform-based approach is different than agile-based projects in terms of number

of technology, framework, and systems involved in it; hence, behavior of the system

should be analyzed in detail so that you are able to integrate and implement multiple

technology, framework, and system efficiently and effectively.

In this chapter, you will examine the prospects of a DXP’s requirements.

•	 Functional requirements

•	 Experience requirements

•	 Mobility requirements

•	 Security requirements

•	 Nonfunctional requirements

•	 Accessibility requirements

•	 Social and collaboration requirements

Let’s begin with the functional requirements for a BXP.

�Functional Requirements
The purpose of the functional requirements or functional specification document (FSD)

is to understand the business requirement, develop a digital experience platform for an

organization, and serve the needs of the client by workflow optimization and innovation

of the business process.

Chapter 2 Gathering Requirements

33

An insight into the BXP use case of account and transaction in an ABC online

banking portal is shown in Tables 2-1 and 2-2.

Table 2-1.  Account Use Case Details

Use Case ID: 1

Use Case Name: Accounts

Date Created: XX-XX-XXXX Last Revision Date: XX-XX-XXXX

User goals: To be able to view the account details

Primary actors: 1. � Logged-in customer of the ABC bank

Secondary actors: 1. �M aster data management MDM) system

2. � Core banking system (CBS)

Description: Customer can view account details on dashboard on landing page, along

with user profile data.

Trigger: Customer wants account summary to be displayed on the screen. Customer

should also be able to view details of account statement along with

aggregated balance of all the accounts held.

Preconditions: 1. � Customer should be an existing registered customer.

2. � Customer will be logged in to ABC online banking application.

Postconditions: 1. �A ll accounts of the customer are displayed on the screen.

Functional flow: Following are the points to be considered for displaying account summary.

Account Summary

1. � Customer logs in with user ID and password.

2. � Customer clicks on Accounts UI component on left-hand side of the

landing page.

3. �A ll accounts list will be displayed with the balance, along with aggregated

available balance of saving/current accounts and outstanding balance of

account and transaction details.

 • � For example, savings account will show consolidated balance of all

saving accounts along with individual savings account number, and

current account will show consolidated balance of all current accounts

along with individual current account number.

(continued)

Chapter 2 Gathering Requirements

34

Table 2-1.  (continued)

Use Case ID: 1

Use Case Name: Accounts

Date Created: XX-XX-XXXX Last Revision Date: XX-XX-XXXX

Exceptional flow: Backend system is not responding.

1. � When back-end systems are not working, the UI component will show a

human understandable error message to customer.

2. �T he error message that will be displayed is “Sorry our systems are not
working; please log in after some time.”

Assumptions: NA

Validations: 1. �A ccount status validation: One holds many accounts in a bank; the

system will display those accounts that have view permission, as per

following table.

Value (Sent in web-service
response)

Validation

OPEN View

DORM View

UNCL Not applicable

INOP View

CLOS Not applicable

PRECREATED Not applicable

Track changes: NA

Out of scope: NA

Chapter 2 Gathering Requirements

35

Table 2-2.  Transaction Use Case Details

Use Case ID: 2

Use Case Name: Transactions

Date Created: XX-XX-XXXX Last Revision Date: XX-XX-XXXX

User goals: To be able to view the transaction history

Primary actors: 1. � Logged-in customer of the ABC bank

Secondary actors: 1. � Core banking system (CBS)

2. �S imple mail transport protocol (SMTP)

Description: Customer can view the ministatement. Customer can download or E-mail

statement.

Trigger: By default, customer wants ministatement displayed on the screen.

Customer should be able to download statement on their machine.

Preconditions: 1. � Customer should be an existing registered customer.

2. � Customer will be logged in to the ABC online banking site.

3. � Customer has selected the account to view statement and account

details.

Postconditions: 1. �M ini or detailed statement is displayed on the screen.

2. � Detailed statement is downloaded in PDF format.

Functional flow: Following are the points to be considered for transaction details:

Account Statement

1. �A fter login, customer will be landed on dashboard.

2. � Dashboard will contain the transaction UI component (widget), which will

display ministatement.

3. �M inistatement will have details of last ten transactions.

4. �M inistatement will be displayed on the screen with following details: date,

expense type, description, credit or debited amount, and balance.

5. � Customer can filter the transactions by selecting From date and To date to

display detailed statement.

(continued)

Chapter 2 Gathering Requirements

36

Use Case ID: 2

Use Case Name: Transactions

Date Created: XX-XX-XXXX Last Revision Date: XX-XX-XXXX

Alternative Flow: 1. � Customer can choose to send the statement via e-mail or download it in

Excel or PDF format; respective buttons will be provided.

Exceptional Flow: 1. �I f there is no transaction in the account, appropriate message will be

displayed: “Transaction details are not available for this account.”
2. � Backend system and web-service calls are not responding.

3. �E rror message will be displayed: “Sorry our systems are not working;
please log in after some time.”

Assumptions: NA

Validations: 1. � From date cannot be prior to account opening date and To date cannot be

greater than today’s date.

2. � From date and To date period is six months.

Business rules: 1. �M aximum period to display or download or mail a statement is six months

at a time.

Track changes: NA

Out of scope: NA

Table 2-2.  (continued)

The use case shown in Tables 2-1 and 2-2 should help you understand how the BXP

application interacts with multiple systems and platforms to provide an omnichannel

experience to the bank’s customers. The BXP interacts with the MDM system, core

banking system, and SMTP mail server and provides cross-channel capabilities where

the user can log in to the BXP from a mobile device or desktop and get the same

experiences across all platforms.

�Experience Requirements
Let’s look at experience requirement for a BXP. The purpose of the experience

requirements is to understand workflow across all channels, to provide a seamless

and smooth user experience to the customer. Experience requirement help you to

Chapter 2 Gathering Requirements

37

choose a technology stack for the DXP. The user story is the best option while gathering

experience requirements, because the experience specifications of the application are

explained from a business point of view. Business and management will explain the

specific features and channels that they want to provide to their users.

The DXP is designed for the entire user journey. The DXP provides a better user

experience with your organization through multiple channels. You should understand

when and why users move across channels, which further helps you to design efficient

and smooth user experiences. The DXP should provide zero or minimal overhead while

transiting from one channel to another.

�Seamless Experience on All Supported devices
The user interacts with the application from multiple channels, that is, Web, mobile

device, tablet, e-mail, chatbot, and IVR, etc. (as shown in Table 2-3). Experiencing failure

on any channel reflects a bad experience as a whole. You should consider the workflow

by considering all channels supported by your organization. You need to consider touch

points requirements across all channels. For example, consider a scenario where a user

makes a service request using a web application on a desktop, but is unable to complete

the process or is confined due to any personal reason. The user can still continue the

process on their mobile device. If they can pick up from where they left off, their user

experience will be seamless.

Table 2-3.  Device Support User Story

Name Device Support

Trigger Customer wishes to access a banking portal from different devices, that is, mobile,

tablet, or desktop.

Script A customer can access the banking portal application on a mobile device, tablet,

or desktop.

A person will be able to continue an action that is left off in a previous session,

irrespective of the device that person was working on.

Acceptance

criteria

The customer will be able to access the BXP application on a mobile device, tablet,

or desktop.

Chapter 2 Gathering Requirements

38

�Seamless Experience on All Supported Browsers
The user can interact with your application from multiple web browsers. Therefore, once

the application is developed, it is supported across all the latest browsers: that is, IE 10

and above, Chrome 2.0 and above, Firefox, etc. See Table 2-4.

Table 2-4.  Browsers Support User Story

Name Browsers Support

Trigger Customers can log in to the application from different browsers.

Script A customer can log in to the BXP application through the following browsers:

• IE 10 and above

•  Chrome

•  Firefox

Acceptance criteria The customer will be able to access the banking portal on IE, Chrome, or Firefox.

�Multilingual Requirements
You need to consider language criteria on the basis of business requirement while

developing a DXP application. A DXP provides the capability to store language

preference in user preference. On the basis of language preference, content will be

shown to the user. See Table 2-5.

Table 2-5.  Language Support User Story

Name Language Support

Trigger The customer can select the language of the content.

Script A customer can select the preferred language while registering into the BXP portal.

One can select from the following languages:

• E nglish

• H indi

•  German

•  French

After login to the BXP portal, one would get the content according to one’s

preferred language.

Acceptance criteria The customer is able to get content on the basis of preferred language.

Chapter 2 Gathering Requirements

39

�Navigation Elements, Menus, and Search
An experience is either a website or a mobile application. Each of these experiences

consists of pages. A page consists of containers and UI components. The visible

elements of an experience are the pages, the containers, and the UI component. Pages

have containers and UI component as children. Containers can have other containers

or UI component as children. A page has an associated URL, stored in a link. The UI

component displays the content or functionality. Containers group UI components

together in a visual layout. We will go through these components in detail in Chapter 4.

Navigational routers and elements help to navigate from one location to another,

to enhance the user experience. Navigation routers are able to provide menus in an

efficient and interesting way, and search capability enhances the accessibility features.

DXP search capability helps you to find the intent of the user, to provide the most

precise result. These components help to provide information in an appealing as well

as an organized way. An example is a banking dashboard, where the user is able to get

frequently visited UI components, that is, user details, accounts, and transactions related

to a specific account on one single page.

You should consider the user experience journey before developing UI components.

Every user story is bifurcated into individual functionality, and these individual

functionalities are considered to be one UI component. For example, in the case

of the dashboard user story in Table 2-6, Account is considered one functionality

and Transaction is considered another functionality; that means creating two UI

components: one for accounts and another for transactions.

Table 2-6.  Dashboard User Story

Name ABC Bank’s Dashboard

Trigger As a customer, one wishes to view Account Summary and Transaction Statement

on one’s dashboard after login to the banking portal.

Script As a customer, after login to the portal one can see a navigational plane on the

left hand-side and component plane on the right-hand side.

As a customer, one can navigate to another page through the navigational router plane.

Account and Transaction are presented in the component plane on the right-hand side.

Acceptance criteria The customer is able to get frequently visited UI components, that is, user details,

accounts, and transactions related to a specific account on one single page.

Chapter 2 Gathering Requirements

40

The navigational router will be the dashboard, whereas user details, account,

and transaction will be different UI components in multiple containers, as you see in

Figures 2-4 and 2-5. Searching and filtering transactions enhance accessibility.

Layout

Container

Presentation
Component A

Presentation
Component B

Presentation
Component C

Presentation
Component D

DXP
Page

Figure 2-4.  User interface components

Figure 2-5.  BXP dashboard

We will go through the BXP dashboard in detail in Chapter 4.

Chapter 2 Gathering Requirements

41

�Mobility Requirements
Nowadays you should be future ready. BXPs support native applications, that is, a

smartphone application developed specifically for a mobile operating system as well

as hybrid applications (i.e., a hybrid application at its core is websites packed into a

native wrapper). You have to consider mobility requirements while developing the DXP

application.

Table 2-7.  Mobility User Story

Name Mobility

Trigger The customer should be able to access the BXP application on Android and iOS

platforms along with web support.

Script As a customer, one will be able to download a BXP mobile application from iOS

App-Store and Android Play Store.

Acceptance

criteria

The customer will be able to download the BXP application to a mobile device and

be able to access all functionality provided on a web application through the mobile

application.

The DXP supports responsive, native as well as hybrid applications approach. While

designing a responsive application, you need to consider the mobile-first approach.

From a general point of view, mobile designing is the hardest as compared with other

devices, in view of the small screen to which you can provide essential features. In an

opposite approach, if you design the all-inclusive right from the start, the core and

supplementary elements merge and it will become difficult to distinguish and separate.

Mobile first is equivalent to content first, due to limited screen size and bandwidth;

therefore you should prioritize content. A responsive web approach would have a

lack of interaction with mobile features like sensors, camera, etc. Native applications

and hybrid applications provide additional features to interact with device hardware,

for example, fingerprint readers, camera, etc. Consider a scenario where you want to

give a notification feature to your user: a native application or hybrid application is

configured with push notifications features, so whenever a user does a transaction, these

applications push notification to the user’s mobile device. A hybrid application has

the advantage of a single code base, which makes it compatible with all browsers and

Chapter 2 Gathering Requirements

42

devices, whereas a native application has the advantage of providing a highly interactive

and rich experience, and exploiting the entire native device features such as sensors and

camera, etc., and provides high performance over responsive and hybrid applications.

Responsive Web
Application

• Advantages

1. Capability to view in
 mobile browsers

• Disadvantages

1. Push notification
2. Interaction with
 device hardware

• Advantages

1. One code base
2. Save time and
 money

• Disadvantages

1. Performance

• Advantages

1. More than one code
 base
2. Cost more and
 Increase build effort

• Disadvantages

1. Push notification
2. Interaction with
 device hardware

Native
Application

Hybrid
Application

Most
Valuable
Player

Figure 2-6.  Responsive vs. native vs. hybrid

You need to go through the usage of the application because a hybrid application is a

web application (shown in Figure 2-7), built using HTML 5 and JavaScript’s wrapped-in

native container, which loads most of the information on the page as the user navigates

through the application, whereas native applications instead download most of the

content when the user first installs the application.

Chapter 2 Gathering Requirements

43

The native application has the best performance and highest security. The

performance of the application as well as the user experience vary significantly, based

on the development framework chosen, along with the native application approach, the

overall performance, and security improves.

�Nonfunctional Requirements
Nonfunctional requirements (NFRs)—also known as quality attributes—decide the

robustness and long-term success of the DXP. The quality attributes such as scalability,

usability, reliability, availability, maintainability, and performance are the key NFRs

that help us to define, track, and measure the success metrics of the digital platform.

Figure 2-7.  BXP mobile dashboard (Left: dashboard view; Right: navigation
view)

Chapter 2 Gathering Requirements

44

There are other NFRs also, like serviceability, security, regulatory, environmental,

data integrity, usability, interoperability, etc., but RAM (reliability, availability, and

maintainability) is most pertinent to a DXP. These requirements help to understand the

operations of the system rather than specific behavior.

Consider a scenario where you have created a web application to have an eye-

catching and adaptive UI design. But what if it is not able to handle appropriate traffic?

A digital experience platform ensures that balance between utility of the service

(functionality) delivered and warranty, that is, whether it is fit for use. The perfect

balance between functionality and its use creates maximum value to customer.

�Scalability Requirements
Scalability requirements ensure maximum operating capacity of an application and

determine whether the current infrastructure is sufficient to run the application. This

provides a holistic view of the number of concurrent users that an application can

support, and ensures scalability so that application can support and allow more users to

access than its current operating capacity.

It is necessary to look into the scalability requirements, as mentioned in the

scalability user story in Table 2-8.

Table 2-8.  Scalability User Story

Name Scalability

Trigger The DXP application should be scalable and load should be distributed across

geographical locations.

Script As a product owner, the DXP application will support 10,000 concurrent users per

hour and 1,000,000 transactions per hour.

The application should be robust so that it will be able to handle a heavy request

load.

Geographical load should be distributed across locations so that the application

will be available across all geographical locations.

Acceptance

criteria

The DXP application is able to support 10,000 concurrent users with 1,000,000

transactions per hour across all geographical locations.

Chapter 2 Gathering Requirements

45

When you need to determine the number of real simultaneous users that the

application can support, you first need to calculate the maximum throughput.

Maximum throughput is calculated by running a few emulated users with zero think

time. That means each user sends a request, receives a response, and immediately loops

back to send the next request.

•	 Maximum users the application has to support: Once you have the

maximum throughput, you can use Little’s Law to estimate the

number of maximum concurrent users that the application can

support.

N = X / λ

N is the number of concurrent users.

λ is the average arrival rate.

X is the throughput.

•	 Maximum concurrent users: If the application has ab average

interarrival time of 5 seconds, using Little’s Law we can now compute

N (number of users) as:

N = X /λ = 2015 * 5 = 10075 users.

Your application running on the same infrastructure can support

more than 10,000 concurrent users with an interarrival time of

5 seconds.

•	 Maximum concurrent volume: You need to calculate maximum

concurrent users per hour that need to be supported by the

application.

•	 After estimating the concurrent user and load supported by the DXP

application on the particular infrastructure, you can decide to scale

your infrastructure accordingly.

•	 User growth rate: You need to estimate percentage increase in user

traffic per year so that you are able to scale up your infrastructure in

the future.

Chapter 2 Gathering Requirements

46

•	 Content growth rate: You need to estimate percentage increase in

content volume per year; that will help you to analyze your load

capacity per year.

•	 Average session time: It is the average amount of session time for

a user, and helps you to analyze and estimate in-memory support

required in the near future.

•	 Geographic (Geo)-specific load: Globally available applications

should distribute load across geographical locations. Performance,

availability, and scalability should be specified for each geographical

location.

•	 Peak volume or traffic time: The maximum amount of users that

should be supported by the application at peak business hours.

•	 Data volume: As data volume keeps changing and it depends upon

load and usage of the application, you should estimate the average

amount of data that should be handled by the DXP application,

which will let you estimate the disk space requirement in the near

future.

�Performance–Response Time, Throughput,
Utilization, Static Volumetric
It is essential to check your industry standards for measuring application performance.

Results should be collected from real browsers, which will assist you in checking the

page load time on different browsers and operating systems.

Gain insight into the performance requirements and testing approaches. Before

beginning with load testing, you need to determine page response time applicable to the

business process and whether response time is justifiable and achievable.

�Performance Requirements
You need to consider and build workload profiles for the user stories as mentioned in

Table 2-9, and associated workload profile related to use case mentioned in Table 2-10.

Chapter 2 Gathering Requirements

47

Once all loads have been considered, then infrequent or inappropriate workloads

can be eliminated.

�Page Response Time at Normal and Peak Loads

In supporting 10,000 users, the DXP should certify that performance should not fall

below the mentioned level.

•	 80% of all pages for customers respond in 3 seconds or less.

•	 Transaction and Account pages should respond in 3 seconds or less.

In Figure 2-8 and Table 2-11, consider the following:

•	 Peak load: When the maximum number of users engages with your

application, as shown in Figure 2-8: Peak Load

•	 Normal load: When frequent users engage with your application, as

shown in Figure 2-8: Normal Load

Table 2-9.  Performance User Story

Name Performance

Trigger The DXP application should be able to respond within 3 seconds.

Script As a product owner, the DXP application will respond to each and every customer

request made through the customer’s browser within 3 seconds.

Acceptance

criteria

The DXP application is be able to respond within 3 seconds.

Table 2-10.  Workload Profile

FSD’s Use Case Daily Total Pages Time

Account 20,000 Login, Dashboard (navigational router and

account component).

3 Sec.

Transactions 15,000 Login, Dashboard (navigational router and

transaction component)

3 Sec.

Chapter 2 Gathering Requirements

48

9

3

1

3

6

10

2.6

12

4.5

15

2.6

18

4

Time of Day.

Daily Work Load.

20

2.6

22

2

3

1.5

Normal Load.

Peak Load.

Figure 2-8.  Normal load and peak load

Table 2-11.  Peak Load and Normal Load Analysis

Page/Response time. Peak Load (Seconds) Normal Load (Seconds)

Transaction 3 2.3

Account 3 2

Dashboard 6 4

When defining the workload for a new application and no existing workload data

exists while the system is being developed, the temptation is to specify a high peak

workload.

�Page Hits Analysis
You need to consider page response time at normal and peak load for various

geographical locations, where you are providing business to your users. This will help

you to understand and divide the loads according to the available infrastructure on the

basis of workload profile.

•	 Page response time at normal and peak loads for (Hypertext Transfer

Protocol) HTTP or (Hypertext Transfer Protocol Secure) HTTPs pages

Chapter 2 Gathering Requirements

49

	 Pages load = resource download + service calls

•	 Where resource download is average time taken to download

resources like Cascading Style Sheets (CSS), Hypertext Markup

Language (HTML), scripts, and images, etc.; and service call is

average time required by the web services to return data from the

server.

•	 You need to build a service call workload profile for all the

services calls impacting the particular page.

•	 Transaction time: The average time taken for key transactions, for

example, average time taken by account and transaction services to

fetch the data as well as other resources (e.g., CSS, HTML, scripts,

and images).

•	 Search completion time: The average time taken by the search

module to provide the top ten results. Performance Testing: The DXP

application must fit performance levels and delivery times on the

agreed SLA (service level agreement) for stress testing to be planned

and performed.

•	 Load testing and stress testing will be performed on the BXP

portal pages to certify that the critical performance requirements

are met.

•	 The pages will be performance tuned to guarantee that the

response time is within 2 to 4 seconds for all the pages under

average production load.

•	 The target CPU utilization will be under 25%.

•	 The LoadRunner application will be used to perform load testing.

Chapter 2 Gathering Requirements

50

�Maintenance Requirements
You should be bringing its rich experience in successful execution of large-scale

portal engagements in continuous application or system SLA monitoring and

maintenance.

You should be building robust monitoring applications to confirm that the

application maintains the SLA related to performance, availability, and scalability:

•	 Real-time application SLA monitoring components check the live

production BXP web pages. The frequency of page URLs can be

configured.

•	 Automatic alerts and notification through e-mail or page when the

page or system performance falls below a preconfigured threshold

value.

•	 System health-check or heartbeat monitoring to ping the availability

of the portal system and all interfacing systems, to ensure that they

are responding within good response time. Automatic notification

gets trigged if any system is down.

•	 Web analytics will be configured to monitor the business-critical

process or activities in real time. This includes activities such

as page load time, search processing time, etc. Additionally,

reports will be designed to display the monitoring data, based on

requirements.

Chapter 2 Gathering Requirements

51

Table 2-12.  Monitoring User Story

Name Monitoring

Trigger The DXP application should be monitored.

Script As a product owner, I want real time monitoring of the application so that if the

system fails, automatic alerts and notification will be sent through e-mail, which

ensures 24/7 availability of the application.

Business critical process should be monitored 24/7.

Acceptance

criteria

The DXP application is monitored.

Table 2-13.  Serviceability User Story

Name Serviceability

Trigger The DXP application should be serviced.

Script As a Product owner, I want to service the DXP application for system cleanup.

Maintenance activity should be scheduled so that back jobs perform system

cleanup and take backup.

Acceptance

criteria

The DXP application will be serviced and regular backup maintained.

Table 2-14.  Maintenance User Story

Name Maintenance

Trigger The DXP application should be maintained through versioning.

Script As a Product owner, I want to maintain the DXP application through a version

control system so that incremental changes are released to the production

environment.

Bug fixes should be published thought a rollout and change request mechanism

to ensure smooth and effective rollout of the bug fix release to the production

environment.

Acceptance

criteria

The DXP application is maintained through versioning.

Chapter 2 Gathering Requirements

52

�Versioning
For Source Code Management (SCM), we can use versioning tools such as CVS, MS

Source Safe, Git, and SVN for versioning control of the application.

�Rollout
Once the system is developed and moved to the production environment, rollout of new

functionality goes through rollout protocols and procedures. These aid in analyzing the

changes involved in moving to production, and help ensure smooth and effective rollout

of new functionality.

•	 Rollout of any new functionality and bug fixes goes through the

change management process after assessing the impact to cost and

schedule.

•	 Rollout includes rollout release name, rollout details, device support,

release history, and defect reports.

•	 Release name: Name to identify release, such as an internal code

name or build version

•	 Rollout details: A timestamp indicating the last rollout event for

each release

•	 Device support: A summary of the application device

compatibility, including supported devices

•	 Release history: A list of all previous releases with version code

details, rollout history, and release notes, which contains all of

the aforementioned details along with defect or testing reports.

Chapter 2 Gathering Requirements

53

•	 Defect management and reports: You should follow a proven defect

management process for a BXP. It has the ability to tailor the process

to align with the current process or objectives. The key elements of

the defect management process involve the following areas:

•	 Set up and customize defect tool

•	 Define defect lifecycle flow

•	 Define and publish defect classification

•	 Identify key stakeholders and their responsibilities

•	 Go through defect triage process

•	 Manage defect resolution

•	 Report and escalate procedures

•	 Conduct root cause analysis of defects

•	 Defect classification and turnaround time will be decided during

the test strategy phase.

�Security Requirements
Security is a main concern while developing an application. You ought to consider all

the aspects revolving around security. DXP security enhances the user experience and

ensure data integrity, authenticity, and authorization.

A banking experience platform is always vulnerable to attacks. You need to go

through the requirements while designing a banking portal.

Chapter 2 Gathering Requirements

54

Table 2-15.  Session Management Use Case

Use Case ID: 3

Use Case Name: Session Management

Date Created: XX-XX-XXXX Last Revision Date: XX-XX-XXXX

User Goals: 1. �T o log in to online banking portal of ABC Bank

2. �T o log out from online banking portal of ABC Bank

Primary Actors: 1. �E xisting customer of the bank

2. �E -banking application – BXP

Trigger: 1. � Logout from online banking portal after clicking on logout button or

automatic session timeout after defined time limit

Preconditions: 1. � Customer of ABC Bank is registered with Internet banking portal.

2. � Customer logs into Internet banking portal of ABC Bank.

Postconditions: 1. �S ystem will be logged out from the online banking portal of ABC Bank.

Functional Flow: 1. � Customer logs into ABC online banking portal.

2. � Customer will be landed to the Dashboard.

3. �I n case customer wants to log out from online banking portal, customer

should click on logout option on landing page at any point in time.

4. � Customer will be logged out from the present page, and home page will be

displayed on the screen.

5. �A fter 5 minutes of idle time, portal will invalidate a session and login page

will be displayed on screen.

Exceptional Flow: 1. � When backend systems are not working, UI component will show human

understandable error message to customer: “Sorry our systems are not

working; please log in after some time.”

Assumptions: NA

Validations: Session timeout

After 5 minutes of idle time, portal will invalidate a session, and session

timeout is configurable.

Track Changes: NA

Out of Scope: NA

Chapter 2 Gathering Requirements

55

•	 Session Management Considerations:

	 a.	 It depends upon the business requirements of the user

whether you want in-memory token session management

or database token session management (also called Java

Database Connectivity [JDBC] token management). JDBC

token management is helpful in case of clustering the BXP

application; in in-memory token session management,

you need to replicate the session token across all clustered

environment using JGroups or other open-source cache

replicating techniques.

	 b.	 You need to decide the idle time of a session on the basis

of business requirements. Idle time of a session will

automatically log out the user from the server after a specified

time.

It also requires checking authenticity, authorization, and

integrity of data while designing the UI layer as well as backend

integrations.

Look into the BXP authenticity and authorization user story in the

ABC online banking portal (Table 2-16).

Table 2-16.  Authenticity and Authorization User Story

Name Authenticity and Authorization

Trigger Customer should be authenticated and authorized.

Script As a customer, one would be logged in using two-factor authentication, so that

authorized data for that customer should be accessible.

The following items should be masked:

• M obile device number

• SSN

• A ccount number

Acceptance

criteria

An authorized and authenticated customer is able to access the BXP application.

Chapter 2 Gathering Requirements

56

•	 Authentication Consideration:

	 a.	 You should always opt for two-factor authentication. There

are multiple two-factor authentications.

•	 Username / Password + one-time password (OTP).

•	 Username / Password + RSA public key cryptography

algorithm-based questions and answers.

•	 Both: In this case, if the system finds an irregularity or

unusual pattern during login, the system can trigger OTP and

RSA questions after login; this eliminates vulnerability and

provides high security.

	 b.	 Number and password masking: You should mask the

password and numbers, for example, mobile device number

and account number.

	 c.	 Cross-site request forgery (CSRF): is an attack that forces an

end user to execute unwanted actions on a web application

in which they are currently authenticated. You need to

implement Open Web Application Security Project (OWASP)

CSRFGuard; that would protect the application from CSRF

attack.

Table 2-17.  Integrity User Story

Name Integrity

Trigger DXP application should provide data integrity while retaining data interoperability

between client and server.

Script As a product owner, I want to maintain the integrity of data while retaining data

interoperability between client and server, so that the communication channel will

be secured.

Tokens should be used and passed with data for transmitting information between

client and server.

Acceptance

Criteria

DXP application provides data integrity while retaining data interoperability between

client and server.

Chapter 2 Gathering Requirements

57

•	 Service calls—data interoperability:

	 a.	 JSON Web Tokens (JWTs) are used for transmitting

information between parties as JSON objects. This

information can be secured by using a secret key using a

hash-based message authentication code (HMAC algorithms

or a public or private key pair using RSA algorithms). JWTs

ensure the integrity of data transferred as well.

	 b.	 Cross-site scripting (XSS) filters: You use the validation library

to verify web service application programming interface

(API) requests in line with (Java Specification Requests)

JSR standards. XSS filters match suspicious content in data

requests and reject them if there are matches.

�Disaster Recovery Requirements
Disaster can be any situation that makes an organization’s operations prone to risk; it

can be of any type, for example, natural disaster, equipment failure, or cyberattacks.

Disaster recovery (DR) requirements help to continue business operations as normally as

possible. You need to find the recovery point objective (RPO) and recovery time objective

(RTO) for their DXP application. The RPO is the maximum duration of an application

(age of Files, Database, User Sessions and Caches) that an organization must recover from

backup for normal operation to resume after a disaster: for example, a DXP application

has an RPO of 2 hours, and then the system must back up at least every 2 hours. The

RTO is the maximum duration of time for an organization to recover an application from

backup storage: for example, if the organization has an RTO of 1 hour, it will not be down

for longer than that. Table 2-18 contains the disaster recovery requirements.

Table 2-18.  Disaster Recovery User Story

Name Disaster Recovery

Trigger The DXP application should be able to recover in case of any disaster.

Script As a Product owner, I want the DXP application to have an RPO of 2 hours, so

that the application will back up every 2 hours and will reinstate the application

to the backup point.

Acceptance Criteria The DXP application is recovered in 1 hour.

Chapter 2 Gathering Requirements

58

RTO and RPO help you make disaster recovery strategies.

•	 Identify the threats related to your application.

•	 Identify relevant infrastructure documents, for example, utility

diagrams, HVAC diagrams, network diagrams, and equipment

configurations.

�Accessibility Consideration
You can boost the DXP capabilities by including accessibility best practice that removes

barriers that prevent interaction with a web application. You need to consider the

different aspects of accessibility requirements. Following is a list of factors that help

your business use case to ensure web accessibility. Including these requirements while

preparing a use case will improve search engine optimization (SEO), interoperability and

quality, and reduce web application development, maintenance time, effort, and server

load, etc.

•	 Provide equivalent alternatives to auditory and visual content.

•	 Provide clear navigation mechanisms.

•	 Create tables that transform gracefully.

•	 All functionality will be available from the keyboard.

•	 Text content will be readable and understandable.

•	 Provide enough time for the user to read.

•	 Content must be robust enough, as it will be accessed and interpreted

by a wide variety of devices and technology.

You must check and consider the aforementioned points before developing an

application, or else it will be difficult for one or more than one group to access the web

content.

Chapter 2 Gathering Requirements

59

�Chapter Summary
•	 This chapter covered almost every aspect of DXP applications

requirements: functional, experience, mobility, security,

nonfunctional, and accessibility requirements.

•	 Experience requirements cover the following user stories along with

their considerations.

•	 Device support user story

•	 Language support user story

•	 Dashboard user story

•	 Security requirements cover the following use case and user stories

along with their considerations.

•	 Session management use case

•	 Authenticity and authorization user story

•	 Integrity user story

•	 Maintenances requirements cover the following user stories along

with their considerations.

•	 Monitoring user story

•	 Serviceability user story

•	 Maintenance user story

•	 Banking experience platform requirements have been covered,

which in turn should aid you to go through your own requirements

before developing a DXP application.

Chapter 2 Gathering Requirements

61
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_3

CHAPTER 3

Design
After going through the DXP requirements in Chapter 2, we will now look into designing

and building a Digital Experience Platform in detail. As the world moves toward a

modern digital economy, the use of DXP is meant to provide an ecosystem for product

and service innovations, in addition to providing a space for the organization’s activities.

�Building an Experience Platform
We will look at the design of the following layers in detail throughout this chapter.

•	 Presentation layer

•	 Business layer

•	 Integration layer

•	 Data layer

•	 Middleware layer

We will also look into integration of the following cutting-edge digital technology.

•	 Social and collaboration design

•	 IoT integration design

•	 Blockchain design

•	 AI automation design

•	 Big data and NoSQL design

•	 Enterprise search engine design

•	 Augmented reality design

•	 Recent trends in DevOps

62

DXP design principle works on creating brand value, using visual design, interaction

design, along with information architecture, as shown in Figure 3-1.

Four principles for designing a digital experience platform are as follows:

•	 Brand Value: Social platforms help your organization to promote

and position your brand to social media channels like Facebook,

Instagram, LinkedIn, etc. Social platforms have fast gained adoption,

considering there is a strong social incentive to use them. When

people are utilizing an application to reach out to you, then you

should build social networks. For that, you need to choose a solution

that incorporates microblogging, social networking, dynamic profiles,

and automated activity feeds. You need to decide on many factors on

which social software solutions will be integrated with DXP. You can

integrate wiki for information sharing, Facebook authentication, and

social feed APIs to integrate user social interaction with DXP that will

further enhance the user experience so that one can interact with

your brand across every digital touch point.

•	 Interaction Design: Interaction design is design where one defines

the structure and behavior of interactive systems. DXP user interface

(UI) design helps you to create an interface design in such a way that

makes the state of the underlying system easy to use and understand.

User behavior is carefully examined, which ensures smooth

navigational and application usability design along with seamless

workflow across all channels and touch points.

•	 Visual Design: DXP’s focus on visual helps you to build an elegant

and jazzy UI using the latest Material CSS Design approach. This

principle ensures the proper usage of imagery, color, typography, and

form to enhance usability and improve the user experience.

•	 Information architecture: DXP enables you to use information

architecture (IA) to get insight from every customer interaction

on every touch point such as desktop applications, Internet of

things (IoT) devices, interactive voice response (IVR), and mobile

applications into a single customer view. The IA principle is to

ensure that data analytics and continuous learning and improvement

approaches will help you understand the data generated through

Chapter 3 Design

63

these touch points. Data acquired from these touch points are used

to do prediction followed by classification, detection, automation and

recommendation systems, using AI/ML concepts and algorithms.

Touchpoints User Behavioral Design

Interaction Design

Information
Architecture

DXP

Brand Value

Visual Design

Application and Navigation
DesignSocial Platforms

User Interface Design

Graphic Design Data

Continuous Learning and
Improvement

Figure 3-1.  DXP customer-centric design principle

DXP has a six-layered approach, as shown in Figure 3-2, to achieve the four

principles shown in Figure 3-1. That is to achieve a seamless experience across all digital

touch points using the platform approach (touch points, UI, integration, continuous

learning and improvement, data analytics and data delivery, and infrastructure).

•	 Touch points: Touch points are also called interaction channels. Each

organization needs to understand their own digital strategy, as this

will help to understand their touch point needs and create brand

value.

•	 User interface: Interactive and intuitive UI help your organization

enhance the usability of your products and services.

•	 Continuous learning and improvement: Continuous learning helps

you to improve their business process and optimize business

workflow, for example, chatbot or AI automation using machine

learning (ML) algorithms and neural networks help you to automate

and optimize their business process. DXP is designed to understand

the context through transaction and learning engines where you can

use different ML algorithms to solve problems related to prediction,

Chapter 3 Design

64

time-series analysis, recommendation, etc. You can design the

experience platform by continuous learning of user experience and

understanding the intent of your customer, through which you can

innovate their services and products.

•	 API ecosystem (integration): The API ecosystem is playing a critical

role in creating digital business and a huge digital economy. API

helps you to turn a business and organization into a platform. API

is game changing while integrating and connecting systems, data,

IoT, and algorithms. In the present world, where the economy runs

by API ecosystems, for example, Uber used Google API to build a

new business platform; while buying a movie ticket online, one uses

API to verify a customer’s debit or credit card information. The API

ecosystem is playing a vital role in enabling emerging technologies

like AI, blockchain, and IoT to connect with each other and build

smart applications and devices.

•	 Intuitive data: Data helps you to get insight and recognize patterns,

and display reports on the basis of latest trends that are used for

predictive analysis, user behavior analytics, and advanced data

analytics that extract value from a particular size of data sets. For

example, you can use an open-source NoSQL database that gives

better performance in storing a huge amount of data and provides

analysis and reporting features as well. A DXP is also designed with

the consideration of customer experience management (CXM) and

customer relationship management (CRM). DXPs get insight about

what a customer thinks about a brand, and help an organization to

know about their customers. We will get insight about interaction

through touch points, further tracking of pages, and UI components,

so that the organization is able to track user experience to provide a

better experience to the customer.

•	 Fast delivery (infrastructure): Infrastructure depends upon many

factors, whether one wants a hassle free and application-focused

platform, such as cloud infrastructure or wants their own data centers

and virtualized server. Cloud infrastructure provide faster delivery

capabilities. The application should be cloud ready, as cloud-based

technology will help to grow the infrastructure quickly.

Chapter 3 Design

65

DXP key focus areas are platform principles that enhance the following key areas:

•	 Reusability of components

•	 Extensibility of components

•	 Robustness and scalability of platform

•	 Quality focus on performance, security, and availability

�Digital Platform Strategy
Digital platform strategy is to design an ecosystem that gains insight, delivers service

faster, and provides consistent experience across all channels. A DXP-based organization

has an innate innovation capability. The platform approach helps to provide limitless

digital capabilities along with providing a more innovative approach to solving issues

related to additional debt and cost such as inventory, staff, billing, and management.

Table 3-1 will help you to establish the relationship between DXP design principle and

its strategy and platform approach to achieve it.

Experience

Touchpoints

User
Interface

Integration

Continuous
Learning And Improvement

Data

Infrastructure

Digital

Platform

Figure 3-2.  DXP

Chapter 3 Design

66

Digital platform strategy, as provided in Table 3-1 helps one to build their own DXP

for their organization. Let’s look into mapping of these principles to DXP strategy and

design as shown in Figure 3-3.

Table 3-1.  Digital Platform principle and Strategy

Digital Experience Platform Design Principle Digital Platform Strategy

1. �T ouch points, for example,

desktop, mobile, tablets, smart

devices like Amazon fire stick,

Alexa, etc.

 • � User Interface

• � Brand value

• � Visual design

• �I nteraction design

• �S election of touch points.

• � Workflow across touch points so that

user gets a seamless experience

across all devices.

2. � Continuous learning and

Improvement

 • �S election of ML algorithms

 • �S election of neural networks

like RNN, ANN, etc.

 • �S election of artificial

intelligence (AI) API like

tensorflow, pytorch, etc.

• �I nformation

Architecture

• � Continuous Improvement, which

includes usage and implementation

of a chatbot, prediction analysis, time

series analysis, etc.

3. � Data.

 • � Database Design

 • � Database selection

• �I nformation

Architecture

• �I ntuitive data includes pattern

analysis, data storage strategy,

that is, choosing NoSQL and SQL

databases, and designing data

scalability approach.

4. Integration

 • �API gateway

 • �ES B approach

 • � Microservices or monolithic

approach

• �I nteraction design • �API ecosystem includes strategy

to choose microservices approach

or monolithic services approach,

choosing ESB and gateways for API

integration.

 • �I nfrastructure • �I nformation

Architecture

• � Fast delivery infrastructure, which

includes platform security scalability

and deployment approach.

Chapter 3 Design

67

•	 Touch point selection and design: You select the touch point that

helps you to provide interactive services through channels such as

IoT devices, Web, and mobile, as shown in Figure 3-3. Augmented

reality (AR), virtual reality (VR), and IVR are by-products built on

top of these touch points to make your application intelligent and

interactive.

•	 Integration (API ecosystem) design: Integration of data from the

different services (such as web API), databases (transactional

and nontransactional), devices (data collected from IoT devices

and smart devices through data pipeline), and systems (such as a

blockchain ecosystem) help to build an integration ecosystem using

an enterprise service bus (ESB) and API gateways so that multiple

systems, devices, and applications connect and transfer information

irrespective of technology, protocols, and frameworks used.

•	 Continuous learning and improvement design: Continuous learning

and improvement helps you to include AI and ML capability in your

organization, as shown in Figure 3-3. Natural language processing

(NLP) provides capabilities so that you can build efficient search

engines for the organization; chatbot to deal with repetitive problems

faced by user in interactive way; and if-else analysis to predict, train,

and test ML and AI models built for the organization to solve day-to-

day problems. Across industries, one can turn their application to AI/

ML-driven smart applications that help to drive automation using

devices such as IoT devices, mobile phones, etc. We will look into the

libraries and frameworks used to develop it in AI automation design

and Big data and NoSQL design in this chapter.

•	 Data design: Data pipelines, and database design and approaches

help you to provide big data analysis capability to your business.

AI-ML is so powerful in terms of what it can do but it needs tons of

data to learn, hence to manage the data in real-time you should use a

distributed data approach, hence data pipelines are introduced.

•	 Infrastructure design: Digital strategies need to engage users with

a high-performing experience regardless of the location where it

is deployed. You can use cloud infrastructure or standalone server

Chapter 3 Design

68

infrastructure, according to the application design and development

approach you take while building the DXP. The cloud and container

architectures power the DXP’s application; we will look at

containerization in brief in the Containerization section.

•	 DevOps: DevOps (development operations) such as continuous

development, integration, deployment and delivery help you to

develop and deliver faster on a DXP. As shown in Figure 3-3, an

application incorporating continuous learning strategy, intuitive data

strategy, and API integration strategy is built and deployed using an

agile approach using DevOps.

Figure 3-3.  Digital platform strategy

Chapter 3 Design

69

�Platform Design Phases
Designing a platform involves software development life cycle (SDLC) phases. It

ensures quality, reduces cost, and saves time. SDLC phases are essential for the success

of organizational DXP management strategy. Five phases are: explore and elaborate,

design, prototype, validation, and delivery, as shown in Figure 3-4. You explore

requirements and elaborate those requirements, build your design and on the bases of

your design build your prototype, validate the prototype, and reiterate the process until

the business requirements are fulfilled, and then deliver the application after ensuring

quality and testing.

•	 Explore and elaborate requirements: Investment and DXP strategy

cannot be estimated accurately until the requirements are clear. You

need to understand the intention and problem statement, as we

observed in Chapter 2 in detail.

•	 Design: On the basis of digital requirements, you will work on

strategic designs. We will look into strategic design for application

development in detail in this chapter. Keep all stakeholders engaged

in the design process.

•	 Prototype: Model the requirement. After creating strategic designs,

you build prototypes, which helps your organization to make new

innovations in products and services with optimized processes.

•	 Validation: Always conduct acceptance testing. Once a prototype is

built, it is validated on the basis of design: whether the prototype is

appropriate according to requirements or not.

•	 Delivery: Once the prototype is validated according to functional

requirements as well as nonfunctional requirements (NFRs), test

scenarios are tested.

After passing unit testing, integration testing, user acceptance testing, and

preproduction tests, it will be moved to production.

Chapter 3 Design

70

�Design of Various Layers
A DXP is a flexible platform that has the capabilities of rapid development and

innovations. A DXP has a web application with a content management system (CMS)

and provides features such as marketing, targeting, personalization, commerce, etc. You

can build web applications, mobile applications, chatbots, AR, VR, AI, and enterprise

search engine components for devices such as tablets, mobile, desktop, and IoT, as

shown in the presentation layer in Figure 3-5. These applications on different devices

are connected through the integration layer; you can choose architecture type such

as microservices or monolithic application, and services built are exposed using an

ESB and API gateway. Business logic is implemented while accessing data from the

data access layer and exposed using the integration layer, as shown in the figure. The

middleware layer is responsible for implementing NFRs such as reliability, security,

accessibility, and scalability, etc.

Explore and
Elaborate

Requirements

Design

Prototype Validation

Delivery

Figure 3-4.  Platform design phases

Chapter 3 Design

71
Figure 3-5.  Design of various layers

Chapter 3 Design

72

Each layer is important while designing a DXP’s application. The presentation layer

helps you to decide user experience on user interaction points (touch points). The service

layer is responsible for data interoperability. The business layer helps yours organization

to separate business logic from other logics and validations. The data access layer

manages and stores the data into databases, files, warehouse (which is central repositories

of integrated data from one or more data sources), and data lakes (which are storage

repositories that have huge amounts of raw data). DXP design helps enterprises to design

end-to-end holistic solutions that help business to maximize scalable and operational

capabilities. We will look at these layers in detail in the next sections.

�Presentation Layer
The presentation layer comprises user experience as well as UI. This layer helps you

to understand the basic requirements as well as complexity of the application. User

experience can make or break a brand’s value. You need to consider the channels or

touch points while designing the user experience journey, as shown in Figure 3-6.

Figure 3-6.  Touch points

DXPs incorporate the design thinking approach to decide the touch points and user

experience journey. This process consists of five stages: understand, define, design,

prototype, and test.

•	 Understand: In this stage you gather the information to understand

the problem you are solving using these touch points. Your

assumptions become clear about the solution and you are able to get

insight of the user’s need regarding touch points and channels.

Chapter 3 Design

73

•	 Define: During this stage you put all the information gathered from

the last stage in one place. You will analyze the observation and be

able to define the problem clearly. You will have all the minute details

required to design optimized workflow for the organization using the

mentioned touch points and applications in Figure 3-6.

•	 Design: Having collecting all the information from the last two stages,

you can start thinking about and identifying new solutions to the

problem statement created during the design stage. In this stage you

will be able to understand the technology stack and touch points

needed to solve the problem, along with mockup user experience

screens and UI components for touch points selected to provide a

solution to the problem.

•	 Prototype: In the prototype stage, you create the inexpensive, scaled-

down version with minimal features so that you can investigate

the problem and its solution. You can consider this as a proof-of-

concepts phase.

•	 Test: In this stage, you test the prototyped version of the solution. It is

an iterative process; the result generated in this phase can redefine

the problem and help redesign the solution.

Chapter 4 covers designing of the UI layer for mobile, tablet, and desktop in detail.

Chatbot, VR, AR, Alexa, and voice assistance, as shown in Figure 3-6, enhance the user

experience journey; these are the by-products (application) that are indirectly connected

to the DXP’s web application build for mobile, tablet, and desktop devices. IoT devices

are considered smart devices that sense the user’s input through sensors and pass the

input to IoT boards; on the basis of input, further application would take action on the

input and provide the appropriate output. We look into designing chatbot, VR, AR, Alexa,

voice assistance, and IoT in detail in subsequent parts of this chapter.

While designing the presentation layer for a web application, you need to consider

the different approaches. You look into the approaches like mobile first or desktop first.

The DXP’s design will follow the mobile first approach, as thinking mobile first will help

you to design the content, which is really important for the application.

Chapter 3 Design

74

�Scripting Framework
Degree of modularity and maintainability should be considered while deciding the

scripting frameworks to be used by your web application, for example, Angular or

React Figure 3-7). Both are technology stack-adapted, component-based, modular

programming approaches but both have advantages as well as limitations. For example,

React has the advantage of virtual DOM (Document Object Model), which handles

memory management efficiently, whereas Angular has the advantage of two-way

binding.

React Native or Native Scripts are used for developing a hybrid application for

mobile and tablet. A React or Angular technology stack along with CSS frameworks like

Bootstrap, Foundation, etc. provide responsive UI that works on a mobile as well as a

tablet’s browsers. We look into these CSS and scripting technology stacks in Chapter 4 in

details.

CSS framework

Bootstrap
Foundation
Bulma
Material
Semantic UI

• Angular
• React

Desktop

Mobile

• React Native
• Native Scripts
• Ionic

Scripting framework

Figure 3-7.  CSS and scripting

Chapter 3 Design

75

�UI Management
UI management provides the capability to organize and handle your UI scripts. It will

help you to manage UI components and dependencies, and you can chose appropriate

package manager, module bundler, task runner, and testing frameworks from Figure 3-8.

•	 Package manager: A JS package manager will help you to manage a

package dependency that is installing, configuring, and removing

dependency modules from a UI project.

•	 Module bundler: Using a bundler is the process of combining a group

of modules (dependency) into a single unit in a specific order. You

can use Webpack, Rollup, or Browserify as a module.

•	 Task runner: A task runner will help you to maintain their UI code

by running different tasks like watching the files, minifying the files,

lining JavaScript files, etc. You can use one of the task runners such as

Grunt or Gulp, as shown in Figure 3-8.

•	 Testing: A JS testing framework will allow you to perform cross-

browser testing; some frameworks provide both test environment and

testing structure to your UI application. You can use the frameworks

to generate, display, and monitor test results. The testing framework

can be used in both environments: test-driven development (TDD),

a process for when you write and run your tests, and behavior-driven

development (BDD,) which lets you define application behavior in

plain English text.

Steps to decide the UI design are as follows:

	 1.	 Select compatible CSS and scripting framework and technology

stack (see Figure 3-7), appropriate package manager such as Yarn,

NPM, or Bower, etc. (see Figure 3-8.

	 2.	 Select appropriate module bundler.

	 3.	 Select task runner, if needed.

	 4.	 Select testing framework such as Mocha, Jest, Jasmine, Cucumber,

or Karma (see Figure 3-8) according to your chosen scripting

technology stack such as Angular technology stack (ATS) or React

technology stack (RTS).

Chapter 3 Design

76

�UI Deployment
After building the DXP’s UI application, you can deploy static content to the web server.

The web server takes care of load balancing, proxy serving, web serving, security

controls, and monitoring services.

Web and Http caches store the static items like HTML pages, images, etc. so that the

application is able to deliver static content faster. You can use many options to deploy

your static content, as stated in Figure 3-9.

NPM

Yarn

Bower

Package Manager

Webpack

Browserify

Rollup

Module Bundler

Grunt

Gulp

Mocha

Jest

Jasmine

Testing

Cucumber

Karma

Task Runner

Figure 3-8.  User Interface (UI) Management

Chapter 3 Design

77

Varnish cache along with the web server is a unique combination that will deliver

content faster. You can choose any web server such as Microsoft IIS, Nginx, or Apache

web server according to your needs and requirements. As shown in Figure 3-9, the client

requests to Varnish and Varnish replies static content to the client or passes the request

to the web server if the requested content is not cached in the Varnish cache. Varnish

along with the web server is able to provide load balancing, proxy server, web serving,

security controls, and monitoring services features.

�Integration Layer
The DXP’s integration design integrates data, applications, and people together through

a common business process, for example, information portals, common business

functions, service-oriented architecture (SOA), or distributed business processes. There

are two types of integration: loosely coupled and highly coupled.

Figure 3-9.  HTTP accelerator, web cache, and web server

Chapter 3 Design

78

�Loosely Coupled Integration and Highly Coupled
Integration
The loosely coupled principle reduces speculation between components and

applications regarding their exchange of information in the form of messages

(Figure 3-11). Messages are sent in a particular format such as JSON or XML. It is

asynchronized, whereas tightly coupled solutions are synchronized in nature and create

interruptions when changes are required (Figure 3-10). Before an exchange of data

message, the system establishes connection using Connect and Ack (acknowledge)

messages. Integration approaches have evolved significantly from RPC (remote

procedure call) and RMI (c), supported with many platforms and frameworks like

CORBA, Java RMI, RPC-Web services, SOAP services, monolithic REST services, and

microservices.

Figure 3-11.  Loosely coupled

Figure 3-10.  Highly coupled

Integration helps you to integrate multiple platform using integration patterns and

solutions. Key integration patterns are as follows:

•	 Channel patterns: These patterns provide the way to transport the

message across a channel. Patterns such as point-to-point channels,

publish-subscribe channels, message bus, etc. are shown as message

channel in Figure 3-12.

Chapter 3 Design

79

•	 Routing patterns: These patterns provide the way to route a message

from sender to receiver, shown as Message Routing in Figure 3-12.

These patterns consume the message from one channel and send

it to another channel without modification on the basis of a set of

conditions.

•	 Transformation patterns: These patterns change the content of a

message, for example, XML to JSON conversion (also known as

message translation).

•	 Endpoint patterns: It is a messaging system so that a client can

consume or produced messages. It defines endpoints, which are

consumed by other applications. It has Message Endpoints, Message

Gateways, and Message Dispatcher, as shown in Figure 3-12.

•	 Management Patterns: These patterns help to deal with errors,

performance analysis, and logging in the application.

•	 Message construct: It has the message encapsulated with data, along

with message events. It is responsible for construction of the message

and holding the return address.

Figure 3-12.  Integration Components and Patterns

Chapter 3 Design

80

The patterns mentioned will help to build services and solve integration problems

from End-point A (application A) to End-point B (application B). These patterns

encapsulate the design knowledge; hence, irrespective of any integration technology, it

will help to solve the integration problem.

We look at the following message patterns and message components in detail in

Chapter 5.

•	 Message

•	 Message channel

•	 Pipes and filters

•	 Message router

•	 Message translator

•	 Message endpoint

Following are different integration architectures: for example, information

portals, common business functions, and distributed business processes

architectures, which help you to solve common problems of integrations such as

aggregator pattern architectures, B2B (business to business) architectures, and

service bus architectures (SOA).

•	 Aggregator pattern architectures: There are many business processes

where you should to access more than one system to answer a

question to perform a single business function in an organization.

Hence, information portals aggregate the information from multiple

sources to display a holistic view. For example, you need to get

data from business process 1, business process 2, and business

process 3, aggregate the data from all processes, and display it on the

dashboard, as shown in Figure 3-13.

Chapter 3 Design

81

•	 Business to business (B2B) architectures: There can be a scenario

where you need to integrate business functions or processes available

from third-party suppliers or business partners; for example, a

bank provides billing and recharge functionality, hence the bank

needs to integrate utility services from third-party suppliers. In this

architecture we are integrating two system or business processes

outside the organization. These systems are directly communicating

with each other.

•	 Service bus architectures (SOA): Shared business processes and

functions also referred to as services. Once an organization collects

a set of services, service bus architectures provide tools that make

calling an external service almost as simple as using conventional

methods. In this architecture all the services are communicating with

the DXP’s application using a common bus, as shown in Figure 3-14.

Services from external system 1, external system 2, and external

system 3 communicate with the bus, and these services are exposed

to the DXP application via common bus.

Figure 3-13.  Aggregator pattern

Chapter 3 Design

82

Chapter 5 covers designing of the integration layer in detail. Integration deals with

data interoperability between different applications within or outside an organization,

using different protocols and data formats. We delve into micro services, REST services,

ESB, and API gateways in Chapter 5.

Figure 3-14.  Service bus architectures (SOA)

Figure 3-15.  Integration

The DXP’s architecture supports microservices and monolithic services architecture

because it makes integration structure more flexible, as it structures the application into

multiple modular services. ESB and API gateway help you to scale your services build

Chapter 3 Design

83

using microservices and monolithic architecture as shown in Figure 3-15. Microservices

are lightweight services running as a separate process; each service inculcates a separate

business capability in it. The advantages of microservices over monolithic applications

are as follows:

•	 Services communicate using REST.

•	 Services are loosely coupled.

•	 Scaling is easier.

•	 You can achieve isolation of services: if one service fails, another

would continue.

You can build these microservices using containerization and orchestrate using

Kubernetes. The advantages of microservices build using Kubernetes and containers are

as follows:

•	 Number of services can be deployed and delivered quickly.

•	 Services built on Kubernetes can be deployed across different

environments.

Test environments like SIT, UAT, or preproduction can be cheaply and quickly

created with a Kubernetes cluster.

Steps to design the integration layer are as follows:

	 1.	 Select the appropriate architecture type such as microservices or

monolithic services architecture.

	 2.	 Select the appropriate messaging pattern for the business process

to be integrated.

	 3.	 Select the appropriate framework that satisfies the business

needs; for example:

•	 Apache camel can be used as mini-ESB for large scale

applications.

•	 Apache CXF can be used as service framework for medium scale

applications.

•	 Spring Boot along with Apache camel can be used for

microservices.

Chapter 3 Design

84

	 4.	 Get mutual consensus on authentication details, data formats,

services endpoints, and services protocols from all systems

participating in integration; for example:

•	 Get the data formats details, like services integrated will have

XML or JSON.

•	 Get the service endpoints and details like service URLs, and port

number and its invocation type (verb) or method; for example,

POST, GET, PUT, DELETE.

•	 Get the service protocols details such as RESTful or RESTless.

•	 Get the authentication details and encryption-decryption

algorithm used to secure data while communicating with two

systems; for example, authentication token passed along with

these services.

�Business Layer
A DXP provides a separate layer for business logic so that integration and application

logic won’t be able to hamper business logic. As shown in Figure 3-1, the business layer

has a business controller, business validation, and data transfer object (DTO)

Figure 3-16.  Business layer

The business controller is responsible for receiving and replying to requests. It is

responsible for the following:

•	 Redirection: You can redirect the control of an application to business

services.

Chapter 3 Design

85

•	 Business logging: You can log the request and response in the

business controller of the application.

•	 Authorization: You can integrate authorization logic, which will

check the user’s authorization to access the data from a particular

business controller.

Business validation or services are responsible for filtering and processing a DTO

received from the data access layer on the bases of business rules and logic. After

processing, objects are sent back to a particular business controller, which has initiated

the request for business services. Business services are responsible for the following:

•	 Model binding: Data received from Data access layer will be mapped

to business services.

•	 Business rules validation: Business rules and checks like null pointer

exception and blank check, etc. are validated in business services.

The data transfer object interacts with the data layer (database). Records stored in a

database are mapped to entity objects, and entity objects are requested to appropriate

tables in the data repository. Entity objects are then sent back to business services

where objects are processed, then these processed objects are sent back to the business

controller, as shown in Figure 3-17. The business controller redirect to appropriate

business services, and business services access the data received from the DTO and data

access object (DAO) of the data access layer.

Chapter 3 Design

86

�Data Layer
The data access layer is responsible for simplified access to data stored in databases, as

shown in Figure 3-17.

This layer contains a DTO, which is a mapping to the table; every column in the

table is a member of the DTO. The DAO (data access object) helps you to create, delete,

modify, or search for an entity using a simple object.

The DAO design pattern is used to implement the data persistence layer. It is based

on abstraction and encapsulation design, as it protects other parts of the application

from any change in the data layer, for example, change of database from MySQL

Figure 3-17.  Business layer to data access layer

Chapter 3 Design

87

to PostgreSql or from database to file system. As an example, a DXP’s application

authenticates a user by utilizing the database but it is later decided to go for SSO (single

sign-on) using LDAP and SAML. It would be safe if the user were using DAO to access

data from the database, as the user only needs to make changes on the data access layer.

Java-based projects use JPA and hibernate framework to access data from the databases.

You can access data from files, data lakes, NoSQL databases, SQL databases, etc., as

shown in Figure 3-18.

Figure 3-18.  Data

Figure 3-19.  Middleware components

�Middleware Layer
Middleware is an infrastructure that helps to deploy and manage complex business

applications. Components of a DXP’s applications may be developed using various

programming languages, protocols, and frameworks. Middleware provides the services

and helps in implementing NFRs (Figure 3-19) such as transaction concurrency

transaction monitoring, security authentication and authorization, transaction logging,

transaction auditing, and distributed processing.

Chapter 3 Design

88

Middleware represents a collection of interconnected components that are

distributed across different locations and provides features like reliability, scalability,

and maintainability. Therefore, middleware makes application access easier. It provides

load balancing servers, web servers, and application servers. CMS facilitates middleware

infrastructure and supports application development and delivery.

You should look into the various components of the middleware layer carefully

while developing and deploying your DXP’s application, such as application monitoring,

server monitoring, application logging, server logging, and auditing. As shown in

Figure 3-20, the UI (front-end) applications will be deployed on a web server and the

backend applications will be deployed on the application server. Backend applications

have different layers and components, such as authentication and authorization,

logging, and auditing.

•	 Application monitoring ensures that application processes perform

in an appropriate manner.

•	 Server monitoring ensures health and availability of the server and

OS; that includes bandwidth, CPU utilization, memory utilization,

and disk utilization.

Figure 3-20.  Middleware layer

Chapter 3 Design

89

•	 Application logging ensures that logging errors, information events,

and warning are appended into log files. Logging helps to check the

issues reported by any users.

•	 Server logging retains the logging errors and information events and

warnings generated by the server. The server monitors its own list of

activities.

•	 Auditing ensures that all the activities done by a user on an

application are logged in the auditing file or database.

•	 Transaction processing initiates and interacts with the integration

layer and business layer. It ensures the reliability and consistency

of any kind of transaction that takes place in the system; in case of

failure, it will roll back the failed transaction.

�Social and Collaboration Design
You can integrate collaboration tools like Gerrit, Jira, Rocket Chat, Slack, and Yammer

with the DXP application. These tools have RESTful APIs available, which can be

integrated easily with the DXP application.

You can integrate with social platforms, for example, Twitter and Facebook. These

tools have authentication API available, so that you can authenticate the application

using these APIs. You can use Facebook and Twitter APIs to integrate tweets and posts in

your own application, as shown in Figure 3-21. The DXP UI layer gets the authenticating

details from the user, and these authentication details are passed to a third-party social

platform such as Facebook or Twitter. These platforms provide an access token to further

interact with these platforms and get the users data to your DXP application.

Chapter 3 Design

90

Collaboration is all about conversations between people to get to a goal. It is about

cross-questioning, collecting answers, and getting feedbacks. It is all about social

interaction, one of the ways that work gets done. The traditional way of business

collaboration was e-mail with attachments, but collaboration was slow, difficult, and

inefficient. Therefore, to solve the collaboration problem, social software solutions,

based on microblogging, social networking, and wikis were integrated with DXP.

Figure 3-21.  Social integration

Chapter 3 Design

91

Social software applications like Instagram, Facebook, and Twitter have fast gained

adoption, considering there is a strong social incentive to use them. When people are

utilizing an application to reach out to you, then you should build social networks for

that; you need to choose a solution that incorporates microblogging, social networking,

dynamic profiles, and automated activity feeds. You need to decide on many factors

on which social software solutions will be integrated with a DXP. You can integrate

wiki for information sharing, Facebook authentication, and feed APIs to integrate user

social interaction with the DXP; that will further enhance the user experience. You can

implement a rule-based chatbot for automating frequently asked queries by the user.

•	 Live chat: Live chat is one of the customer servicing tools. It provides

chatting capabilities in real time via a chat window placed in the

website or mobile application.

Figure 3-22.  Social and collaboration requirements

Chapter 3 Design

92

•	 Chatbot: You can integrate a chat engine with a DXP application.

Chatbot engines are of two types: rule-based engine and ML prediction-

based engine. It depends upon your requirements and workflow which

engine you want to integrate with DXP, as shown in Table 3-2.

Table 3-2.  ChatBot

Engine Usage

Facebook Bot Facebook messenger interaction

Slack Bot Automate developer team interaction

Chat fuel Bot for marketing, sales, and support

Dialog flow AI based bot

•	 Wiki: You can integrate an open-source enterprise wiki—for example,

TWiki—with a DXP application, which will enhance collaboration of

teamwork together seamlessly and productively.

•	 Blog: You can integrate a blogs framework, for example, WordPress

with a DXP application where people can share knowledge between

teams.

•	 Calendar: You can integrate a Google calendar API with a DXP, so

that you can plan your work and interact with the Google calendar.

•	 Forums: A forum is a type of message board, divided into topic

folders, where you can publish posts and reply to posts from other

team members, for example, vanilla forums.

•	 KM portal: Knowledge management portals are considered to be

virtual workplaces that promote knowledge sharing among different

categories of end users and provide access to stored structured

data and organize unstructured data, for example, Plumtree and

Woolmani. You can integrate this portal with a DXP to manage an

organization’s knowledge.

•	 External integration with FB, LinkedIn, and Twitter feeds: You can

integrate social media API to a DXP application where you can

integrate feeds and SSO authentication.

Chapter 3 Design

93

�IoT Integration Design
IoT is another fast-growing technology, which can assist you to build and implement a

data gathering network to improve systems and establish a new channel for interaction.

DXP is a platform that is capable of quickly adapting emerging technology to address

major challenges. DXP is leading organizations toward innovation, which helps

businesses with intelligence and advice.

IoT systems use sensors to provide operational insights from the data. Intelligence

is added by integrating the analytics and ML into IoT devices. The IoT is effectively

connecting the digital world to the physical world. It helps to communicate and integrate

information systems and the fields’ data, and it is possible to use this data in real time.

The IoT is mainly divided into three layers as shown in Figure 3-23: physical sensing

layer, IoT Integration layer (also called as middle layer), and IoT application layer.

•	 Physical sensing layer: Physical sensing includes sensors, for example,

temperature, proximity, pressure, etc.; and development boards also

called prototyping boards to acquire data from the environment,

like Arduino, Raspberry, Edison etc. Along with mobile phones and

their sensors like microphone to get voice commands, proximity,

accelerometer, and other sensors can be grouped as passive or active

(passive sensors don’t require external power sources, whereas active

sensors require external power to sense the external environment).

Analog sensors produce a continues signal, whereas digital sensors

produce a discrete signal.

•	 IoT integration layer: The IoT integration layer integrates the data

collected from a device to a NoSQL database along with a distributed

computing platform like Apache Spark and Hadoop. Data acquired

from sensors can be stored in the cloud and can be used later

to create dashboards. The IoT integration layer is also called the

middleware layer. This layer ensures security, quality of service

(QOS), and provides IoT gateways as well. You can implement this

layer in your DXP application by integrating IoT frameworks such as

Iotivity, AllJoyn, Eclipse-Kura, etc.

Chapter 3 Design

94

•	 IoT application layer: The IoT application layer collates the data and

applies ML capability to the data taken from the devices. Insights,

predictions along with appropriate data, and web services are

exposed to the UI dashboards and analytics application. Frameworks

like Apache Spark and Apache Kafka help to manage IoT data in real

time; they provide data pipelines and steaming mode to get insights

Figure 3-23.  IoT integration

Chapter 3 Design

95

from an IoT application for the organization. In the layer, you can use

TensorFlow, Apache OpenNLP, Apache Tika, and other ML and NLP

libraries for sentiment analysis, image analysis, document analysis,

time-services analysis, and other processing. IoT data can help

recognize trends common in a machine that help us to understand

the breakdown of applications.

At each layer in the design, you can run various ML libraries as needed. In Figure 3-23,

IoT Integration has four open-source software components designed to collect the

data from external environment (i.e., sensors and boards); data stores (i.e., NoSQL

databases); management (i.e., integration of IoT framework and platform), which

provides the communication to collect data from a group of sensors from multiple

locations, visualization (UI applications), and manipulation (ML) of time series IoT data

in an easy and scalable manner. IoT frameworks like ARIoT, AllJoyn, Iotivity, etc. have

implemented SOA, which is beneficial in IoT integration. These frameworks provide data

interoperable capabilities, the API layer. Physically sensed activities generate the events,

and these events are sent via the communication protocol such as MQTT to the service

(middleware) layer. These events are pushed via the event bus to a REST API and then the

update is reflected on web portals and mobiles devices.

�IoT Case Study
Integration of technology such as AI/ML and big data along with blockchain will prove

to be extremely useful for IoT use cases in the near future. The following use cases will

help you to understand the IoT applications and implementation so you are able to

implement IoT-based applications in your organization.

•	 Asset tracking: Logistics organization already has tracking assets

using IoT. Organizations can have real-time access to the appropriate

location of the assets. You can attach tagging sensors with the assets

that will improve efficiency, as it will resolve the problem of locating

the assets. IoT-enabled things assist people to improve productivity.

•	 Smart cities and real-time streaming data: Smart cities are based

on connected technology that makes cities more progressive and

have data to get insight that can help in improving safety, economy,

and quality of life. Real-time data streaming through streaming

Chapter 3 Design

96

engines, data pipelines, and IoT will lead us toward smart cities. A

citywide information network could be linked to sensors and a digital

experience platform that enables the city to provide automated street

lighting, waste management, digital bus routes, and smart parking.

•	 Digital wallets: The IoT can extend the capabilities to automate

payments through devices such as digital wallets, which can be

attached to each device. For example, digital wallets attached to cars

can pay for fuel charges, road taxes, etc.

•	 IoT smart payment contract: Smart contracts are computer programs

that verify and enforce the negotiation of a contract. Data captured

from IoT devices can execute the smart contract and the system

would deduct the payment by coordinating with the bank.

•	 Banking through wearable: The ecosystem of IoT is growing day

by day. Many banks have started providing services through

wearables like the Apple watch, etc. Applications could be built for

already existing wearable devices for contactless digital payments.

Integration of IoT devices with a digital experience platform

enhances usability.

�Blockchain Design
Blockchain could be used to record transactions or events, which would be replicated

exactly across all the nodes in a network. Every node would have a copy of records that

cannot be edited or deleted. We will look into Blockchain concepts, smart contracts,

the Blockchain platform and its design components, along with a use case study in this

section. Let’s look into Blockchain concepts using a book and library analogy.

�What is Blockchain?
Here is an attempt to understand blockchain with the analogy of book and library. It

is a known fact that an accounting book is called a ledger, every page in the ledger is

connected to other pages in sequential order, and these pages contain transactions.

Pages can be considered as blocks and the book can be considered as a blockchain.

Chapter 3 Design

97

�What Is a Distributed Ledger?
A replicated and consistent version of a ledger is distributed across libraries. Libraries

can check and validate the authenticity and consistency of a book by observing,

comparing, and taking consensus from other libraries. If a ledger is distributed across

libraries, this can be considered a prefect analogy of a distributed ledger. A distributed

ledger wouldn’t have central trust authority.

Libraries are considered as nodes. Each node has a consistent version of a ledger.

Transactions are added in blocks and blocks are added in the ledger, with the consensus

of nodes participating in blockchain network (Figure 3-24).

Figure 3-24.  Blockchain

�Smart Contract
Smart contracts are self-executing computer programs with an agreement between the

participants on assets, and this contract exists across a distributed and decentralized

blockchain network. For example, in a banking use-case, an account can be considered

as an asset, whereas banks and account holders are the participants. Participants are the

users of the blockchain network. Participants can write a smart contract with predefined

agreements on assets. On the basis of transactions done by participants in the network,

Chapter 3 Design

98

the smart contract is executed; all the events along with the transaction are recorded

in the network and stored in a blockchain. These transactions are appended in the

blockchain, hence immutable in nature.

�Blockchain Platforms
A DXP provides the capabilities to deploy and integrate the different components of the

DXP application with the blockchain platforms, that is, Hyperledger, Etherum, Multichain,

Hydrachain, Corda, Openchain, Quorum, and IOTA, as shown in Figure 3-24.

�DXP and Blockchain Network
Three kinds of networks are involved while integrating blockchain with a DXP, as shown

in the following design.

•	 Enterprise network: Existing applications reside in your enterprise

network, which contains the organization’s data that may be

deployed on stand-alone infrastructure or cloud infrastructure, as

shown in Figure 3-25.

•	 Public network: An organization’s data is exposed using REST APIs

to the public network, where users (analyst, administrator, auditor,

operator, business user) of the application can utilize the authorized

data after authentication in the form of an analytic chart, monitoring

services, API management, and Blockchain explorer (see Figure 3-25.

•	 Blockchain network: The blockchain network consists of blockchain

components, that is, smart contract, ledger and transaction,

e-certificate, membership services, public–private key infrastructure,

and interoperation, that contain events and communication

protocols (see Figure 3-25).

Blockchain is of two types, that is, public blockchain and private blockchain. In case

of a public blockchain, anyone can be allowed to participate in the network, can execute

the network, and maintain the ledger; in a private blockchain, identity services maintain

the roles and responsibilities, so that only members of the blockchain can execute the

network and maintain the ledger. In addition, a DXP supports integration of an open-

source private business blockchain network.

Chapter 3 Design

99

�Blockchain Components
A blockchain platform has multiple components to establish and manage a blockchain

network and deploy smart contracts on it. We will look into these components as follows,

such as consensus layer, smart contact layer, network communication layer, data store

layer, crypto layer, and services such as identify management and API management, as

shown in Figure 3-25.

•	 The Consensus layer is responsible for collecting valid transactions in

a block and appending a new block in the blockchain network after

taking consensus from the node participating in the network. You can

use different kinds of consensus algorithms (POW, POS, DPOS, POA,

PBFT, BFT) according to the chosen blockchain platform.

•	 The Smart contract layer is responsible for processing transaction

requests and determining if transactions are valid or invalid by

executing business logic. The smart contract is developed and

deployed by the blockchain developer in the blockchain network.

•	 The Communication layer is responsible for peer-to-peer message

transport between the nodes that are participating in the network. It

supports the interoperation among different blockchain instances.

•	 The Data store layer allows different data stores to be used by other

components in modules.

•	 The Crypto layer contains different crypto algorithms to be swapped

out without affecting other modules and layers.

•	 The Identify services contains E-certificates and public key

infrastructure (PKI), which establishes the trust during setup

of blockchain instances. It interacts with member services for

enrollment and registration of identities or system entities during

network operation. It also provides authentication and authorization

to access the events and transactions in the blockchain network.

•	 Data services and API managements enable clients and other DXP

applications to interact with the blockchain application and network.

Chapter 3 Design

100

�Blockchain Case Study
There are many use cases that can be solved using blockchain or distributed ledger

technology, which can ensure immutability and transparency of records in the ledger

and provide a common platform for users across industries and organizations. Use cases

such as KYC, EHR, digital identity, POE (proof of existence), claim management, etc. are

explained in brief in following section.

•	 Know your customer (KYC): The blockchain-based KYC process

using digital identity helps banks to know their customers. A digital

signature is created and stored in a blockchain-based system; data is

linked with the customer’s digital signature, which is decrypted with

the customer’s private key.

•	 Electronic healthcare records (EHR): Blockchain is used to provide

patients an ecosystem to control and store their health records in

a blockchain network. Patients could give or revoke permission to

share their medical record with a medical institution and doctors,

although every medical institution would be appending medical

records and tests in the user’s blockchain in a distributed ledger.

Figure 3-25.  Blockchain architecture

Chapter 3 Design

101

•	 Digital identity: A blockchain-based data encryption digital identity

management platform could defend against identity theft. One could

choose which data to share with whom across different channels.

•	 Letter of credit: You can use blockchain and deploy a letter of credit

as a smart contract between the bankers or investors and the

supplier to guarantee payment. If the products and services are

delivered according to the buyer with all specified conditions in the

smart contract, the contract gets executed based on the documents

submitted by the various parties verifying that the letter of credit

conditions meet specified shipment deadlines and conditions. This

can be automated through program logic in the smart contract to

indicate and check compliance or noncompliance.

•	 Proof of existence: PoE is also called an authenticity of a file or record

on a blockchain. The publisher or creator of the document uploads

the file along with its hash to the blockchain network; the verifier can

check its authenticity by uploading the document. The blockchain

application calculates the hash of the document uploaded by

the verifier and matches the hash calculated with the hash of the

document available in the blockchain network.

•	 Claim management: You can easily audit and maintain transparency

while making claims. A smart contract can be modeled according to

claim process and deployed on the blockchain network. Claim smart

contracts automatically and securely complete all the steps involved

from automating coverage verification to claims validation.

•	 Loyalty and rewards: A blockchain-based loyalty and rewards

platform provides and maintains transparency among stake holders.

Multiple reward programs and cards are merged in one platform and

then rewards can be used anywhere without any restrictions.

Chapter 3 Design

102

�Big Data and NoSQL Design
Big data analytics can provide and uncover the patterns hidden in your organization

data. You can integrate actionable insights with DXP and create efficient data streams

that can learn, predict, and take action by connecting DXP with multiple data sources,

and then apply ML algorithms for better understanding of their own customer.

�Big Data and NoSQL Integration
Big data solutions are built using open-source projects like Apache Spark, Hadoop, and

Kafka, to name a few, which help you to collect data from multiple data sources and provide

distributed processing, and usage of ML algorithms and data visualization methods help

you to analyze big data that helps management as well, as shown in Figure 3-26. We will look

into big data components such as ETL, ML models for efficient steaming of predictive data

models, search and query web services, and usage of NoSQL databases in this section.

•	 Extract, transform, and load (ETL):

•	 You can load data from multiple data source using open-source

big data streaming engines such as Apache Spark. It can access

multiple data sources including the Hadoop Distributed File

System (HDFS), NoSQL database, and SQL-databases.

•	 Collection of elements of your dataset that will be stored in

memory or disk across a cluster of machines

•	 A data frame is created to help process large data sets easily.

Spark’s dataset and data frame provide an API that allows

developers to easily express transformations on domain objects.

•	 Train and test predictive data model:

•	 You can use different kinds of ML algorithms (supervised

learning, unsupervised learning, or reinforcement learning)

depending upon the nature of problem.

Chapter 3 Design

103

•	 You can use Spark’s ML.lib or other ML libraries such as

Tensorflow, PyTorch, etc. that allows data scientists to focus

on their data problems and models instead of solving the

complexities of distributed data, such as infrastructure and

configurations, etc.

•	 Machine learning algorithms involve a sequence of tasks,

including preprocessing, feature extraction, and model fitting, in

identifying outliers. In the case of Apache Spark, ML Pipeline is a

high-level API for ML provided by Spark that provides a sequence

of stages handled with distributed processing capabilities.

•	 Data streams and processing:

•	 Data stream processing helps data engineers and data scientist

to process real-time data from sources including stream engines

such as Apache Kafka, Rabbit MQ, Redis Simple Message Queue

(RSMQ) and Flume.

•	 Search and query web services:

•	 Processed data can be pushed out to file systems, databases, and

live dashboards using web services.

•	 Web services are exposed to the UI dashboard, as shown in

Figure 3-26. You can trigger a query using a Web API. These WEB

APIs further interact with an ML-based trained model; the model

loads and processes the real-time data and returns prediction

results back to databases and UI dashboards.

Chapter 3 Design

104

•	 NoSQL database:

•	 A NoSQL database is recommended with an analytics

application, which receives huge amount of data in real time and

needs to update the dashboard with the latest data. Searching

and querying a NoSQL database is more efficient than an SQL

database. Table 3-3 lists the advantages of using NoSQL in big

data solutions.

Figure 3-26.  Big data and NoSQL

Chapter 3 Design

105

•	 Containerization:

•	 The application is built using a variety of frameworks,

libraries, tools, and technology, which is encapsulated in a

single container along with its environment. The application

container is deployed on multiple virtual machines (VMs), cloud

infrastructure, or on a standalone machine.

�Big Data and NoSQL Case Study
Let’s look into big data use cases that can be achieved by the aforementioned design.

•	 IoT model-based algorithm: An organization can use an IoT model

along with ML algorithms to learn from historic events and make

smart decisions. This helps financial institutions to make smarter

investments. You can make innovative use of big data and IoT. For

example, a bank can use behavior analysis to analyze customers’

visits and money transactions from different bank branches;

integrating these analyses into the business model helps to create

customer-centric deals, personalized offers, etc.

Table 3-3.  SQL vs. NoSQL

SQL NoSQL

Relational database No relational database

Fixed schema Dynamic schema

It is a table-based database. It can be a collection of key-value pairs, documents, and

graph databases.

MySQL, SQL Server; etc. Mongo db, Couch db; etc.

It has defined SQL language to define

and manipulate the data.

It has unstructured query language used to query the data

from collection of documents.

Vertically scalable Horizontally scalable

It is used with transaction-based

systems and solutions.

It is used with mobile applications, real-time analytics,

and content management systems, etc.

Chapter 3 Design

106

•	 Employee engagement: You can apply big data analysis to track

performance of employees. Analytics could ensure and understand

employee productivity.

�AI Automation Design
AI automation is comprised of traditional automation and robotics process automation

(RPA); RPA is an emerging technology. Traditional automation is the automation of any

type of repetitive task. It is usually found in a workflow-based application, whereas RPA

allows organizations to automate tasks like the way human beings interact across the

system and application. The main goal of RPA is to replace repetitive tasks performed

by humans with a virtual workforce. AI has been categorized and grouped, such as RPA,

speech reorganization, NLP, deep learning, ML, and chatbot (virtual bot). You need to

determine the automation goals, followed by building the AI model.

�Determine Automation Goals
You need to decide an automation strategy that clearly sets out how and where you apply

automation. After determining the automation strategy, you can map it with predefined

automation systems, which will further help to decide the framework and algorithms

to be integrated with DXP, for example, NLP-based solutions or data prediction-based

solutions.

�Steps to Build AI Automation Model
The approach to build an AI model is as follows, where you create training and test data sets

and apply ML algorithms or neural network algorithms to build an AI model. You have five

steps: data preprocessing, build the model, train the model, test the model, and improve or

tune the model on the basis of expected results from the model, as shown in Figure 3-27.

•	 Data preprocessing: Data preprocessing is the initial step toward

building an AI-based model. Datasets are loaded, cleaned, and

processed according to the problem statement.

•	 Build the model: The model is built using ML, deep learning

algorithms, and neural networks concepts, which further use ML

libraries, for example, tensorflow, pytorch, etc.

Chapter 3 Design

107

•	 Train the model: The training data set is identified and used to

prepare a model.

•	 Test the model: This is a new dataset, different than the training set;

you gather predictions from the trained model with the inputs from

the test dataset and compare them with the withheld output values of

the test set.

•	 Improve and tune the model: You can adjust various parameters and

tune the weights to improve the model built.

Figure 3-27.  AI automation model

�Chatbot Case Study
Most common AI solutions are built using Tensorflow, Python, and Spark. AI strategy

helps to solve defined business problems, with a defined data set to solve the problems.

Chatbots are programs built with NLP, which is supposed to solve domain-specific

problems and query request by simulating human conversation. There are three

components: presentation layer; bot layer, which has the bot framework or engine; and

transaction and data processing system, which interact with the DXP to integrate the

existing system with the chatbot engine, as shown in Figure 3-28.

•	 Presentation layer: The chat interface can be a custom UI (e.g.,

Angular, React) and native mobile application. You can interact with

this layer using text, voice, and visual. Inputs are sent to the backend

layer using web socket communication and REST APIs.

•	 Bot engine: This is an open-source bot framework used to create the

bot model for specific use cases and domains to understand the intent

of the user. The bot framework has capabilities to process, understand,

and generate language that is NLP, NLU, and NLG as follows.

•	 NLP (natural language processing): This component understands

the text or voice and understands the intent of the user.

Chapter 3 Design

108

•	 NLU (natural language understanding): This component helps

your application to understand the intent and take action on it.

After understating the intent, you can call APIs to interact with

the external system and get or put information in other systems.

•	 NLG (natural language generation): After understating intent and

getting external information from other systems and databases, you

need to generate the resultant message and send it back to the client.

•	 You can use open-source bot frameworks such as botpress, WIT.ai,

etc. or use chatbot platform services like chatfuel, dialogflow, etc. to

build a chatbot, or you can your create a custom framework using ML

and NLP libraries with the help of a recurrent neural network and

bag-of-words model.

•	 Integration with legacy system: If you are building a chatbot for a

business, then most likely you are working with CRM, ERP (enterprise

resource planning), and core banking, etc. You need to integrate the

chatbot with an external system using REST APIs (external).

Figure 3-28.  Chatbot Integration with DXP

Chapter 3 Design

109

�Enterprise Search Engine
An enterprise search engine is used to search content from multiple sources (databases,

files, and intranet) within the organization. Components of a search engine are as

follows:

•	 Processing: Diversified data loaded from different sources will

have different formats. This component processes the incoming

documents to plain text and normalizes to improve precision and

recall value, which includes stemming, that is, reducing words to

their stem such as “texting” becomes “text”; lemmatization, which is

the process to reduce the word into its base dictionary word such as

“studies” becomes “study”; part of speech tagging, etc. An analyzer is

used to analyze data and give back meaningful terms or words.

•	 Indexing: Processed text is stored in an index, which is used for quick

lookup and will be handled by indexer. The dictionary contains an

index of all unique words as well as information about their ranking.

•	 Query processing: A user from the web application executes the

query. The query is broken into terms and operators using a query

parser and analyzer.

•	 Matching: The processed query is compared with the stored indexes

in the dictionary.

Now, we look at an enterprise search engine in detail, based on Apache Lucene and

its technology stacks: Elastic Stack and Solr Stack. Apache Lucene is able to achieve fast

search responses because it searches indexes instead of searching whole text.

•	 Elastic Stack: The Elastic technology stack has multiple components

available to build solutions on top of it, such as Beats, Logstash,

Elasticsearch, and Kibana, as shown in Figure 3-29, are as follows:

•	 Beats collects the data and parses it and pushes it to Elasticsearch

for log analysis. Log analysis can be achieved using Logstash and

Kibana.

•	 Logstash can connect to a variety of sources such as Web API,

social services, IoT sensors, and databases and data streams like

Kafka or Redis, which collect the data and pipeline to Elasticsearch.

Chapter 3 Design

110

•	 Elasticsearch is a search server based on Apache Lucene. It

provides distributed full-text search engine capabilities with

RESTful web services. It stores and indexes the data.

•	 Kibana visually explores the data by querying Elasticsearch, or

you can use their custom UI to fulfill the search requirements

on the basis of their domain and fields. It is an analytics and

visualization platform, which provides dashboards and charts for

visualizing the data as per the search query.

Elastic stack can be deployed on Elastic Cloud or can be deployed

as a standalone cluster. It can be used in e-commerce applications

for filtering the data by end user, such as filtering by brand

name and other features of the product. It can also be used for

application performance monitoring (APM); log data from the

application server can be loaded to Elasticsearch using Beats, and

key performance indicators (KPIs) analysis will be displayed on

the dashboard using Kibana.

•	 SolrStack: The Solr technology stack has multiple components

available to build solutions on top of it, such as Logstash, Apache

Solr, and Banana as shown in Figure 3-30:

•	 Apache Solr collects the data from different data sources through

the connectors; the data source can be data streams, files,

application databases and documents, etc. Solr provides the

parameters required (data) for visualization to Banana.

Figure 3-29.  Elastic Stack

Chapter 3 Design

111

•	 Banana is a fork project of Kibana, which works with Apache Solr

and provides visualization and exploration capability. It provides

rich and flexible UI, which enables the user to develop an end-to-

end search application. It also has a tabular display to drill down

to the documents in a result set.

Figure 3-30.  Solr Stack

You can create custom UI components according to their domain needs. Solr Stack

can be deployed as standalone or in cluster mode.

�Augmented – Virtual Reality Integration
Augmented reality comprises two layers: presentation layer and integration service layer,

as shown in Figure 3-31.

�Presentation Layer
You can integrate AVR frameworks such as ARcore, ARkit, etc. with the DXP core

presentation layer, which provides augmentative and virtual reality integration with

mobile, web, and desktop applications. AR works on two core applications: marker-

based AR application and position-based AR application (also called markerless AR).

Chapter 3 Design

112

•	 In a marker-based AR application, the image you want to recognize is

provided and you know exactly about the thing to be searched using

the camera’s data (frame). It is like detecting the hard-coded things in

your application.

•	 In a position-based AR application, the image is not available

beforehand; you have to recognize and identify features like

color, pattern, edge, etc., which exist in the camera frame. In this

application, different sensors are required to recognize position and

orientation.

�Integration Service Layer
After recognizing features and patterns, you need to integrate them with AI-based

algorithms along with integration frameworks such as cloud-based integration or ESB-

based integration as per your existing application, so that you will be capable of getting

data from the existing DXP’s application, as shown in Figure 3-31. Once the features and

pattern have been extracted by frame, appropriate programming action can be taken to

get the objects on the screen using its camera.

Figure 3-31.  Augmented reality integration

Chapter 3 Design

113

�Recent Trends in DevOps
Let’s look into the recent trends in DevOps, where applications are built using the

containerization approach and deployed on a cluster of nodes using Kubernetes, as

shown in Figure 3-32.

�Containerization
An end-to-end application can be developed and encapsulated in a single container

along with its components such as files, environment variables, libraries, and OS

necessary to run the application. The complete set of components in a single container

is called an image. The container engine is responsible for deploying these images

on hosts. Containers can run inside VMs, physical machines, or public and private

cloud. This implies that a host machine can have multiple OS supporting containers

that share same physical resources. Docker is the most common and leading

containerization system. This approach helps you to scale and increase your storage

when it demands.

Features of the container are as follows:

•	 The required configuration files along with libraries are available in

the container.

•	 Containers are more lightweight than a VM. This makes your

application portable, hence it is easily built and deployed.

Chapter 3 Design

114

�DevOps – Continuous Integration (CI), Continuous
Deployment (CD)
DevOps consists of the tasks that manages orchestration and cluster management. It also

provides features like scalability and load balancing for containerized application.

You develop the application and push the source code in an SCM repository such as

SVN or Git, and use CI and CD methodologies to automate the deployment process. You

can use Jenkins to build the container images; these images are deployed on multiple

Docker clusters using Kubernetes or Docker Swarm.

•	 Kubernetes: Kubernetes is an open-source system for automating

deployment, scaling, and management of containerized application.

It also distributes the load among containers.

•	 Swarm: Swarm is used for managing a cluster of Docker engines.

Figure 3-32.  Containerization and DevOps

Chapter 3 Design

115

�Chapter Summary
•	 We went through different DXP layers and designing of those layers

in brief to develop an end-to-end enterprise solution.

•	 We also went through integration of cutting-edge digital technology

like Blockchain, IoT, AI, big data, and AR.

•	 We went through a variety of open-source frameworks to develop a

digital experience platform.

•	 We looked into the latest trending concept of containerization to

develop a solution that can be hosted on any machine, irrespective

of OS.

Chapter 3 Design

PART II

Development of the
Banking Experience
Platform

119
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_4

CHAPTER 4

User Interface Design
As we are heading toward an open-source digital experience platform, DXP’s provide

collaborative user interface. This chapter provides DXP user interface (UI) concepts and

shows how to develop intuitive and interactive UI designs. In this chapter we look at:

•	 The key features of DXP UI

•	 Architecture and frameworks used in developing DXP UI

•	 Designing pages and layouts, UI components (such as a widget or

port-let), and hooks to integrate with backend services, etc.

•	 Technology stack to develop a DXP UI

•	 Case study - Banking experience platform

Let’s begin by looking at the key features of a DXP UI.

�Key Features
DXP user interfaces are built upon the modern web development approach, using the

latest web frameworks and library. Let’s delve into the digital experience features and

then look into the approach to design and develop the UI.

�Simplified Approach
A DXP provides a reusable and intuitive UI. It provides techniques to help create a fancy,

and at the same time elegant, UI and enhance the user experience (UX). The object-

oriented programming approach makes the components reusable and is developer

friendly.

120

�Intuitive Architecture
A DXP’s information architecture provides content in an organized and intuitive way.

Navigating through the application enhances the UX journey. It makes the application

simpler and more intuitive to use and the longer visitors stay, the more likely they

are going to engage with the content and maximize the chance of buying services or

products.

�Dashboard
A dashboard is an organized way to provide and present information in an intuitive

manner. The dashboard helps in visualizing, tracking, and analyzing data and displays

key performance indicators (KPIs), metrics, and key data points to monitor accounts,

business processes, department reports, etc. For example, in a banking experience

platform, you can analyze account statements and track income expenditures from

account statements. Behind the scenes, DXP architecture integrates multiple data

sources, for example, files, attachments, services, systems, etc., and provides a single

source of data as REST APIs, which integrate with the dashboard and display all data in

the form of tables, line charts, bar charts and gauges, etc. A data dashboard is the most

efficient way to track multiple data sources because it provides a central location for

businesses or users to monitor and analyze data.

�Responsive Interface
Grid system layout of a DXP handles the responsiveness of the application, on desktop,

mobile, as well as tablets. DXPs work on a mobile-first approach to implement responsive

features. The mobile-first approach is the best strategy in the market to make adaptive

designs. In the mobile-first approach, content or information is prioritized and sorted

into primary, secondary, and tertiary content, for example, the home page should have a

company logo and links to products or services. As everything wouldn’t fit into a smart phone

screen, the DXP provides the ability to prioritize the content as per business requirements.

In Figure 4-1, the desktop screen has six UI components: components 1 and 2 are primary

content, component 3 is secondary content, and components 4, 5 and 6 are tertiary content.

As the resolution of the screen changes, these components start getting wrapped as per the

priority of the content, as shown in Figure 4-2. Components 4, 5 and 6 where horizontally

aligned, but the mobile view is wrapped up and these components are vertically aligned.

Chapter 4 User Interface Design

121

�Personalization
Business stakeholders or administrators can provide customizing ability to the user;

thereafter the user can also customize the look and feel of the page from predefined

templates. A user of the system can decide the content and layout of the application.

Business owners or stakeholders can make use of predictive content personalization

based on Artificial intelligence (AI)-based predictive algorithms in which similar

content, product, and services are displayed on the basis of their previous interaction

4 5 6

3

1 2

Figure 4-1.  Desktop screen

4 5 6

4

3
3

5

1 1 2 2

6

Figure 4-2.  Left: tablet and Right: mobile

Chapter 4 User Interface Design

122

with application location-based personalization on the basis of location of the business

unit. For example, if you log in from one part of the country, the content, services, and

products displayed will be different than if you log in from another part of the country.

Also, time-based personalization (i.e., theme and advertisement) will change as per time

of the day; for example, if you log in at morning time, theme and advertisement will be

different than if you log in at evening time.

�Internationalization and Localization
We can choose our own language from the list of provided locales, as most UI

frameworks support internationalization (i.e. i18n). i18n is the process of developing

you application in a way that can accommodated multiple languages and localization

(i.e. i10n). i10n is the process of adapting i18n to enable usability in a culture. The

process of developing UIs should be done in such a way that they can be localized

for language and culture easily. The user can select a language among different

languages by selecting the appropriate locale (language), and content is displayed as

per selected locale.

�Preferences
The DXP presentation component (such as a widget or portlet) provides editable

features to make UI integration flexible. For example, REST service call endpoints

can be editable from the UI itself. A preference is a key value pair. Preference is

stored as metadata, which helps the DXP to make the UI customizable, for example,

title, description, etc. are customizable as per business requirement changes. All UI

components have names, which can be programmatically determined; this makes

presentational component robust in nature.

�Integrated Analytics
When you are designing a portal, you need to pay attention to analytics to understand

user behavior and patterns. There could be a scenario where you want to track click

events and user behavior. Analytics helps you understand the potential customer. Google

Analytics makes it easy to record click events. The DXP provides the ways to integrate the

analytics framework (e.g., Google analytics, Adobe analytics, etc.).

Chapter 4 User Interface Design

123

�Search Engine Optimization
Search engine optimization (SEO) is the way to drive traffic. The UI and UX make or

break the first experience. If you don’t have SEO, it is hard to find your applications on

search engines. On the other hand, if you don’t have a rich user interface, you don’t get

interaction and leads. The DXP uses best practice while developing UI to make it SEO

friendly. The DXP provides keyword tagging features (i.e., title tagging, metatagging).

�User Interface Components
A DXP page typically includes a header with a logo, a navigation menu, presentation

component, container area, and footer.

�Pages
A web application contains a set of pages that are used to display the application. A page

contains different layouts as per the experience requirement, for example, one-column

layout, two-column layout, three-column layout, etc.

�Layouts
A DXP provides a responsive layout that is used while designing the UX on pages.

It is a predefined structured template on which the UI designer can drag and drop

presentation components.

•	 Navigation layout: It usually contains three areas: Top (containing

logo area and user area), navigation side as shown as container in

Figure 4-3, and as Presentation component, as shown in Figure 4-3.

The layout is designed based on Bootstrap. There are no restrictions

on what layouts or UI (presentation) components are included in

any area.

•	 Light box layout: It overlays the page and can be shown and hidden

based on click events. It is provided to the user in a sub flow without

leaving the current page, enhancing the UX.

Chapter 4 User Interface Design

124

•	 Carousel layout: It provides the facility for transition between the

areas (slides) of a layout, only showing one area at a time. It can

be configured for auto play so it loops through the slides once it is

loaded.

•	 Columns layout: It provides the basic grid functionality. The layout is

built on Bootstrap columns and Cascading Style Sheets (CSS) classes.

You can configure the column widths by using CSS classes.

�Navigational Router or Navigation Menu
A consistent navigational router is one of the components that provides users with a

sense of orientation and guides them through the application.

Layout

Container

Presentation
Component A

Presentation
Component B

Presentation
Component C

Presentation
Component D

DXP
Page

Figure 4-3.  User interface components

Chapter 4 User Interface Design

125

�Presentation Component
Presentation component (such as a widget or portlet) are independent mini user

interface applications usually separated as per use cases or user story. For example, an

account summary component to view account details and a bill pay component to pay

bill payment of registered payees are two separate presentation components. These

components (portlet or widget) have self-sufficient functionality and work independent

of each other.

�Design Goals
While deigning the presentation component, model-view-controller (MVC) and model-

view-viewmodel (MVVM) patterns are used because these architectural patterns

provide control over business logic implemented on UI and also provide control over the

workflow of the UI application.

The MVC pattern has three components: model, view and controller:

•	 Model will bond with view as well as controller, as shown in Figure 4-4.

•	 View is the user interface that binds the model with the Document

Object Model (DOM) and display data to the user, and also enables

the user to modify the model.

•	 Controllers are responsible for controlling the flow of the application;

if you make a web services request, the controller is responsible for

providing a response back to the application.

MVC and MVVM patterns provide the following features to your application and

help to achieve goals like upgradable, extendable, lean, and testable:

•	 Upgradable and extendable presentation components. This can be

achieved through API and object-oriented features of the framework.

As shown in Figure 4-4, the UI component can extend to the base

component; hence, if upgrading the framework, your functionality

will not be impacted in the UI component. You can implement

common functionality in the base components and other UI

components can use it simply by extending the base components.

Chapter 4 User Interface Design

126

•	 Portlets should be independent of each other, as per digital

experience platform business requirement. Angular framework

or React library along with Flux library makes a lean-structured

presentation layer. Presentation components should be of high

quality and should be well tested. Quality is achieved thoroughly and

efficiently by testing presentation components using a test-driven

approach. Therefore, framework and libraries like Karma, Jasmine,

Mocha, Chai, etc., help to achieve high quality.

�Communication Between Presentation Components
Sometimes it is vital that one presentation component responds to an action made in

another presentation component. For example, after a user has selected a different

account from the account list component, the transaction list is updated to show

transactions related to that particular selected account in the transaction list component,

as shown in Figure 4-5. If presentation components are on the same page, this can be

Figure 4-4.  MVC architecture

Chapter 4 User Interface Design

127

achieved using a broadcast observable design pattern to ensure smooth communication

between different components. A broadcast enables you to capture and handle events

triggered in one component and actions performed in another component.

�Hooks
Hooks are created so that flexibility of work can be maintained between front-end and

back-end developers. Hooks are defined services from which back-end integration takes

place using REST service calls. A hook itself does no processing—it just calls the hook’s

implementation, passes the data, and accepts data back from the implementation. This

allows exchange of data between back-end and front-end applications. A hook has been

defined in the service files to handle data coming from the back-end, and vice-a-versa.

When the developer implements a REST service, then the hook data points will be

replaced by actual REST service endpoints.

�Development Process
A DXP provides a simplified and structured UI development approach. Figure 4-6

outlines the UI development processes.

Figure 4-5.  Communication between presentation components

Chapter 4 User Interface Design

128

DXP UI design constitutes of research and strategy of the following process:

	 1.	 Structure: Build basic UX structure.

The structure is designed in such a way that it can incorporate the

digital strategy of the brand. Contents are classified according to

the digital strategy of the organization so that they can provide

products and services to users of the application. Templates and

models are built to understand the needs of digitization.

	 2.	 Layout: Select layout on the basis of the UX structure.

Once a model and templates are selected or built, you need to

check and research the business needs to build wireframes for the

application. These wireframes can be built using a predefined layout,

and these layouts are reusable basic structures built by considering

usability by the user.

	 3.	 Interaction: Classify the content on the basis of the digital strategy

of the organization.

After building the wireframe layout, content is structured in the layout

so that it enhances the relevancies of the content. Content is classified

in these layouts, which increases the utility of the application.

Figure 4-6.  User Interface (Visual) development process

Chapter 4 User Interface Design

129

	 4.	 Visual design: Selection of color coding and arrangement of Visual aids.

After building layout and classifying content, you need to consider

the themes, color coding, color palettes, and mood boards, which

are an arrangement of images, materials, and pieces of text that

enhance the UX design.

�Development Life Cycle
The development life cycle is as follows:

	 1.	 Designing:

Prototype: As shown in Figure 4-7, While designing the User

Interface(UI), UI Prototyping and UI Wireframe are essential

step towards the success of User Interface Development. While

prototyping the UI, you should take care of structuring and layout

of the content. Best strategy and processes should be considered

(e.g., interactive screen mock-ups as per the mobile-first approach

strategy that focuses on the interface and content priority as per

mobile screen and then desktop) so that the content should be

presented in a meaningful sequence.

User Interface
Development

Designing

Implementing

Release

UI Wireframe
Or

Prototyping UI
Screens

UI

Scripting

Build

Unit Testing Test

Figure 4-7.  User Interface Development life cycle

Chapter 4 User Interface Design

130

	 2.	 Implementing:

Construct UI: You construct the UI and presentation components

using layout, containers, pages, and UI elements with reference

to the wireframe built in the designing phase. These layout,

container, and presentation components consist of HTML and

JavaScript’s (also called ECMAScript).

Presentation components should be structured and encapsulated

in containers and layout from the list of predefined layouts as

shown in Figure 4-3.

Implement Business logic: UI components (view) built are mapped

to JavaScript’s controllers (controllers) using a model, which helps

to control the application and implement bossiness logic on the

basic of any change that happens to the model.

	 3.	 Testing:

Unit testing: The developer can test the presentation components

with different scenarios or test cases using different testing

frameworks (e.g., Karma, Jasmine, Mocha, Chai, etc.).

	 4.	 Release:

While releasing code, you have to manage the dependent libraries

and third-party API used to develop the application. Hence build is

a process to assemble packages and manage the code efficiently.

Build: Build your application with a module bundler (e.g., Webpack)

and package manager like Node Package Manager (NPM). You can

use other package mangers like Yarn or Bower, but NPM has been

widely accepted by the front-end developer community. These

bundlers and package mangers help in packaging a complex and

large scale application’s code as a single unit.

�Architecture
A DXP is a platform for building a client application in HTML and Java Script (also

called ECMAscript). It implements the core functionality as a set of Java Script libraries

that you import into your application. It helps in organizing your code into distinct

Chapter 4 User Interface Design

131

functional modules referred to as presentation components (widget or portlet), which

help in managing development of a complex application. This technique lets you take

advantage of lazy loading, that is, loading modules on demand in order to minimize the

amount of code that needs to be loaded at startup.

UI architecture is built on the MVC or MVVM architectural pattern.

MVVM is recognized as a web architectural-based pattern.

•	 The model represents the data and binds with the view.

•	 The view is where you represent UI elements, for example, textboxes,

buttons, input, etc.

•	 ViewModel represents the UI-related logic where you can do

conditional checks or update certain parts of the web application.

As shown in Figure 4-8, the model will bind with View (HTML template) and

ViewModel (components’ scripts). Events fired in the view can be recognized in a

components’ scripts and any change in a components’ script will be reflected in the view

or vice versa. This will help you to maintain the state of the application; in this case you

have control over your business logic on UI.

Figure 4-8.  Component architecture

Chapter 4 User Interface Design

132

Reusable data or logics can be separate reusable components, which can be shared

by injecting into presentation components; this can be achieved using dependency

injection. Angular uses a module loader to load all components, modules, and services,

rather than explicitly putting script tags into the UI (presentation) component’s

template HTML. The presentation component only needs to know about its immediate

dependent libraries. Dependency of imported libraries are loaded automatically.

The presentation component consists of HTML (templates) and controller

components. Data binding between controller and HTML enables you to synchronize

application state (model) and the view. In the case of unidirectional data binding, any

change in the state of the application updates the view; and in the case of two-way data

binding, it binds properties and events together as a single entity so that any change in

the model updates the view and vice versa. As shown in Figure 4-8, event binding makes

your application respond to user input by updating the application model and data

associated with the model. Property binding interpolates values that are computed from

the application model into the view (HTML)

�DXP UI Technology Stack
DXP technology stacks are a combination of different frameworks and programming

languages used to create a flexible, responsive UI that is mobile and desktop compatible.

Multiple technology stacks are available to implement the DXP’s presentation layer. Each

layer of the application builds on the features of the one below it. Figure 4-9 shows the

major building blocks of a DXP’s UI technology stack, and you can add other custom

packages using a package manager, for example, NPM, Bower, etc.

Chapter 4 User Interface Design

133

Presentation components are built on well-known, proven standards and technology

stacks. Let’s begin by looking at the Angular technology stack to implement the DXP’s

presentation layer.

�Angular Technology Stack
The Angular technology stack (ATS) consists of multiple frameworks and libraries

(Angular Core, Angular Material UI, Bootstrap, Swagger, Jasmine, Webpack, etc.).

Angular Technology Stack React Technology Stack

Web Mobile (Android/IOS) Web Mobile (Android/IOS)

Angular Material

Angular

Webpack

Karma-Mocha-Chai
Jasmine

NativeScript UI Elements

NativeScript
Application

Platform

Script

Test

Build

Technology Stack

UI Semantic UI

React
Mobx-Redux-Flux

Jest

Webpack

React Native UI
Elements

React Native
Application

Figure 4-9.  Technology stack

Chapter 4 User Interface Design

134

�Angular Core
The Angular framework is leveraged to provide many features to speed up UI

development:

•	 Cross platform: Angular provides the ability to reuse your code to

build an application for any development target. It is a progressive

web application approach that loads like a normal web application

but also provides features and functionality like push notification and

device hardware access traditionally available only to native mobile

applications. It has the capability of a hybrid web application, which

works on desktops and mobile devices across multiple browsers.

•	 Development friendly: Angular serves the first view of your

application on the Node.js server, instantly rendering HTML while

developing the application.

•	 Code splitting: Angular loads scripts quickly with the router

component, which delivers automatic code splitting so users only

load code required to render the view the user has requested.

•	 Productivity: The Angular command-line interface (CLI) tool quickly

creates UI views with simple and powerful templates.

•	 Test-driven approach: With a library like Karma and a framework like

Jasmine, you can know if you’ve broken anything every time you save

the code while developing the application.

•	 Server-side rendering: Angular provides server-side rendering by

using Angular Universal, a technology that runs applications on

the server. Angular Universal generates static application pages on

the server through a process called server-side rendering (SSR). It

enables the web crawler to index your application and optimize your

application so it will be easily searchable, linkable, and navigable for

web crawlers.

•	 Angular APIs: Angular has an extensive set of APIs that are flexible

and customizable. When we say API, it does not mean REST APIs.

API refers to any programming interface. For example,

https://angular.io/api

Chapter 4 User Interface Design

https://angular.io/api

135

�Angular Support Library
The Angular support library includes the following:

�Material UI

Angular Material is Bootstrap components written in Angular by using Google’s Material

Design specification. All the UI (presentation) components such as accordion, table,

gauge, charts, etc. have been split into separate importable modules, which are reusable

across applications. As shown in Figure 4-9, Angular Material provides UI capability to

the ATS.

�Bootstrap

Twitter Bootstrap is used while developing the UI (presentation) component of a DXP to

speed up development. However, a DXP is lean and flexible, hence the entire template

HTML is customizable. It is possible to use another CSS framework as per business

requirement. It works on the mobile-first approach to implement responsive features.

�SASS (Syntactically Awesome Style Sheets) – CSS Preprocessor

SASS provides a simpler, more elegant, syntax for CSS and implements various features

that are useful for creating and managing CSS, such as nested rules, variables, mixins,

selector inheritance, and many more. It also helps to keep everything organized and

allows you to create style sheets faster.

�Swagger

Swagger helps you to mock the web services. The UI (presentation) component has

service data hooks that communicate with a server through a REST API. All the REST

APIs are defined in Swagger. Code generated by Swagger provides a simple and well-

defined interface to the REST APIs. This enables fast development, as the developer can

see from the data module documentation exactly which methods are available, what

parameters are accepted, and the JSON in which the data is returned.

Chapter 4 User Interface Design

136

�NativeScript

NativeScript creates the native application iOS and Android Apps with Angular. It

provides the abstractions needed to access the underlying native platforms; for example,

it provides a JavaScript API that translates application JavaScript code into native (iOS

or Android) gestures API calls. It provides modules to access native device and platform

capabilities. As shown in Figure 4-9, it provides Native Mobile application building

capability to the angular Technology stack.

�Karma-Mocha-Chai

Testing a web application is not as simple as testing a back-end application because

you have to test front-end code on multiple browsers and their versions. Karm, Mocha,

and Chai help you to test your code on multiple browsers. Karma runs the test, whereas

Mocha and Chai are used to write the test.

Karma allows you to test your code on browsers and devices; it starts the browser

and runs the test on it. Chai and Mocha provide an assertion library that can be

integrated with any JavaScript testing framework. They provide testing capability to

the ATS.

�Jasmine

Jasmine is a behavior-driven development framework for testing Java Script code. It is

used to test behavior of the functionality written in JavaScript. It has simple syntax so

that you can easily write test cases.

�Webpack

Webpack is a static module bundler. When Webpack processes your application, it

internally builds a dependency graph that maps every module yours project needs and

generates one or more bundles. It provides application-building capability to both the

Angular technology stack (ATS) and React technology stack (RTS).

�Gulp

Gulp is used as a default build tool for UI (presentation) and themes development. It

helps in automating build tasks like building CSS, HTML, and ECMAScript along with

other tasks like minification, watching changes in source code, linting for errors, etc.

Chapter 4 User Interface Design

137

�NPM

DXP UI (presentation) component development relies on NPM (Node Package Manager)

so that you can incorporate other NPM packages into your development process. It

provides package management capabilities to both the ATS and RTS.

�React Technology Stack
The RTS consists of multiple libraries such as React, Semantic UI, React Native, Redux,

MobX, and Flux. You can make your own framework using these libraries.

�React
React is a component-based JavaScript library for building a UI that deals with the view

in the MVC. The React library is leveraged to provide many features to build a dynamic

user interface:

•	 Server-side rendering: Next.js is the framework for the server-side

rendering of a React-based application. It provides a flexible way to

completely or partially render your application and optimize it so it

will be easily searchable, linkable, and navigable for web crawlers.

•	 Performance: Virtual DOM in React makes the UX better and it works

faster.

•	 Reusable component: This component has its own logic and controls

its own rendering, and can be reused wherever you need. Code re-se

helps to make your apps easier to develop and easier to maintain.

�React Support Library
The React support library includes the following:

�Elemental UI or Semantic UI

Semantic UI is React’s official integration CSS framework that helps create beautiful,

responsive layouts using HTML. It uses simple phrases called behaviors that trigger

functionality. As shown in Figure 4-9, Semantic UI provides UI capability to the RTS, but

you can use other CSS frameworks (e.g., Elemental UI, which is the UI toolkit for a React-

based application).

Chapter 4 User Interface Design

138

�React Native

React Native is a platform for creating a native mobile application using React. It

provides a set of React components that bind to their native mobile counterpart;

it also provides features to create your own components and bind them to native

mobile code. As shown in Figure 4-9, it provides native mobile application-building

capability to the RTS.

�Redux-MobX

Redux is a simple state management engine for JavaScript. Redux helps you to write

applications that behave consistently, and run in different environments (client, server,

and native). MobX is a simple, scalable state management solution. MobX is just a

library to solve state management problems, not an architecture or even state container

in itself.

MobX is used for small-scale project, whereas Redux is mainly used for complex

and large-scale projects. MobX has more than one store for data storage, whereas Redux

has only one large store for data storage. Redux and MobX both are the libraries that are

used to manage the application state in one way or the other. These libraries are mainly

combined with front-end libraries like React to develop the UIs more interactively and to

show changing data over time.

�Flux

Flux is the application architecture that Facebook uses for building client-side web

applications; it’s a pattern rather than a formal framework. It is a kind of architecture

that complements React and the concept of unidirectional data flow. It is the data layer

in JavaScript applications and building client-side web applications. React takes care of

V or the view part in MVC, whereas Flux is a programming pattern that takes care of the

M in MVC.

�Jest

Jest is used by Facebook to test all JavaScript code including React applications. As

shown in Figure 4-9, it provides testing capability to the RTS.

Chapter 4 User Interface Design

139

�Evaluating UI frameworks
To evaluate UI frameworks, you should consider the following:

�Data Flow
The main difference between Angular and React is the way of handling data and

managing the state of application. Angular is a fully featured MVC framework. React is

just more of a ‘V’ in the MVC. Angular allows two-way data binding, while React allows

one-way data binding. Unidirectional data flow, also called one-way data binding,

means any changes you make to the model affect the view, but not the other way around.

This way, the data only flows in one direction, whereas with two-way or bidirectional

data binding any changes you make to the model affect the view, and vice versa; hence

with React, state management is provided and managed by a third-party library (Flux,

Redux, MobX). Angular is capable of managing state itself, but React needs to integrate

with other third-party libraries. Angular has more features out of the box than React.

�Language
Angular is a JS framework build using typescripts, whereas React is a JavaScript library

but recommends using JSX(XML syntax to JavaScript). Instead of writing the traditional

way—a classical approach of separating markup (HTML) and logic (JS)—React

combines them in the components using an XML-like language that allows you to write

markup directly in your JavaScript code.

�Performance
DOM is the Data Object Model of the DXP application. Angular uses the browser’s DOM,

while React uses a virtual DOM. A virtual DOM is a simplified version; therefore, by

using a virtual DOM you can change any element very quickly without rendering the

whole DOM. Therefore, React has better performance over Angular.

Both technology stacks are flexible and powerful. Their usage depends upon the

business application. Both accomplish the same thing but React needs the support of an

additional library that provides framework capabilities to the RTS; otherwise it is ideal

for a logicless application.

Chapter 4 User Interface Design

140

�Best Practice
A UI should be perceivable, operable, understandable, and robust. You should keep the

main menu structure simple and consistent across layouts, and make sure it’s intuitive

and easy to use. While keeping the layout simple, also make sure different elements

are easily identifiable as primary buttons, secondary buttons, action items, or menu.

You should group menu navigation based on user needs and mental model. Organize

content into relevant groups and categories to increase its relevance:

Perceivable:

•	 You should review all color and contrast settings.

•	 You should check alternative text applied to all nontext content.

•	 You should provide a media alternative and description to each and

every component.

•	 Your content should be presented in a meaningful sequence.

•	 Color is not the only visual means for conveying information; you

should also check the shape, size, and content, and include animation.

Operable:

•	 Ensure navigation is consistent across pages and layouts, making

users’ navigation easy. Match the navigation flow with the user

mental model.

•	 Content should be operable through a keyboard interface.

•	 Check for missing headings and blank labels.

•	 The purpose of each link should be determined from the link text

alone.

•	 Ensure focusable components receive focus in a meaningful order

and a focus indicator is visible.

Understandable:

•	 Consistent navigation should be within a set of web pages.

•	 Changing the setting of a UI component should not automatically

cause a change of context.

Chapter 4 User Interface Design

141

•	 Input errors should be identified, and suggestions should be clearly

described and provided to the user in text.

•	 Rewritten site content to a lower reading level.

•	 Provide customized content, based on the user’s product and web

application usage patterns.

•	 Ensure the error messages are easy to understand, and display the

solution to the problem.

Robust:

•	 All UI components should have names, which can be

programmatically determined.

�BXP – Case Study
A banking experience platform is the technology-driven platform that links multiple

technologies into one. A BXP solution is more about optimizing, rebuilding, and

connecting multiple platforms.

�Consistency Across Locations
BXP features like localization (i.e., l10n) and internationalization (i.e., i18n) provide one

front end that is applicable to all the countries, thereby providing consistency across

different regions and countries. The current banking application has multiple screens to

support functionality for bill payments and managing payees where there are separate

and multiple interactions (screen) for money movement workflow. The BXP provides a

solution where there is a single logical user flow for any kind of money movements.

�Consistency Across Application
One of the key aspects of the UX design process is to ensure consistency from a usability

and design perspective throughout the application. In the existing application, setting

or editing addresses, e-mails, and phone numbers followed different patterns and hence

wasn’t intuitive to users. The BXP provides a consistent design approach for all the

scenarios.

Chapter 4 User Interface Design

142

�Unified and Collaborative Approach
The BXP provides a single platform for retail banking customers as well as business

banking customers. Hence, it reduces the bank’s operational cost to maintain different

applications for different types of users. The BXP enables customers to define smart

actions that help them easily automate manual tasks.

�BXP UI Layouts/Containers
Layouts or containers are used to create structure for presentation components:

•	 Navigation layout: It usually contains three areas: top (containing

logo area and user area), side, and content, as shown in Figure 4-10.

The layout is designed based on Bootstrap. There are no restrictions

on what layouts or UI (presentation) components are included in

any area.

•	 Columns layout: It provides the basic grid functionality. The layout

is built on Bootstrap columns CSS classes. You can configure the

column widths by using CSS classes.

�BXP Dashboard
The BXP dashboard is a user interface that organizes and presents information in an

intuitive and interactive manner. The dashboard visually tracks, analyzes, and displays

all linked accounts and transactions to monitor accounts and manage wealth. For

example, in a BXP application you can analyze account statements and transactions by

filtering transactions on the dashboard. Behind the scenes, a dashboard connects to

multiple data sources and APIs, but on the surface displays all this data in the form of

tables, line charts, bar charts, and gauges. A data dashboard is the most efficient way to

track multiple accounts and transactions, because it provides a central location for retail

as well as business banking users to monitor and analyze their wealth.

Problem: XYZ bank wants a responsive design to display accounts and transactions

in the user’s dashboard.

Chapter 4 User Interface Design

143

Solution: The BXP provides an extensive set of layout to model presentation

components. As shown in Figures 4-10 and 4-11, we have used navigation layout along

with two columns structures that contain the account summary presentation component

and transaction presentation component.

The Account Summary UI component displays various accounts one holds with XYZ

bank along with summarized details.

The transaction UI component displays transactions associated with the account.

Figure 4-10.  BXP dashboard

Chapter 4 User Interface Design

144

The side panel displays other UI views associated with the BXP application.

The BXP provides the user with role-based featured UI (Presentation) components,

as mentioned in Table 4-1. For example, retail banking users can only access those

components with access to the retail banking group. Business banking users can access

the business banking group’s components.

Figure 4-11.  BXP mobile dashboard (Left: dashboard view; Right: navigation
view)

Chapter 4 User Interface Design

145

BXP UI (presentation) retail banking components, which enhance user experiences,

are mentioned in Table 4-2.

Table 4-1.  Role-Based Components

User or Role UI Components

Retail banking UI

components

Login component, profile component, account summary component, payments

component, transactions component, manage payee component

Business banking

UI components

Login component, profile component, account summary component, payments

component, transactions component, authorizations, batch upload component,

manage payment orders component, draft payment orders component, manage

payee component

Wealth

management UI

components

Portfolio details component, portfolio summary component, portfolio

transactions, portfolio performance valuation component

Bill payment UI

components

Third-party integration UI component, mobile recharge UI component, manage

biller UI component

E commerce UI

components

Add biller’s component, manage biller’s component

Chapter 4 User Interface Design

146

Table 4-2.  BXP UI Components

UI Components Functionality Features

Login User to be authenticated

with username and

password.

User is authenticated using username and password.

User is taken to specific page after logging in.

Profile Display read-only

information about the

logged-in user.

It displays personal information about the end user.

Account

summary

Display summary of

user’s account, credit

card, debit cards.

It displays aggregated balances of all accounts, debit

cards, credit cards.

Transactions Display overview of

user’s selected account

transactions.

User is able to see most recent transaction for

particular selected account.

User is able to load transactions incrementally.

User is able to filter credit or debit transactions.

User is able to search transactions.

If the number of applicable transactions is greater

than the value defined for display in the components’

preferences, then by using lazy loading functionality

more transactions will be fetched from back end and

be displayed under the list.

Manage payee User is able to add new

payee and edit existing

payees.

It provides ability for the user to create, search, edit

manual payee.

Manage payment

orders

User is able to view

the payments orders

applicable to the current

user’s entity.

It provides ability to load payment orders

incrementally and access all payment orders

through indexed pages. User is able to view and edit

scheduled payment order, etc.

Chapter 4 User Interface Design

147

The BXP provides digital banking capability to move toward a DXP. It provides

capability for building and managing a banking application using open-source

technology. You can create a personalized dashboard based on the modular and flexible

structure of a DXP. This will help to create a personalized UX. It helps banks to optimize

and revolutionize their business processes, for instance, it provides easy registration

process ability by integrating with KYC (know-your-customer) services, which enhances

the registration process.

�Chapter Summary
•	 The testing framework helps to analyze the code as per functional

requirement and enhance usability. Therefore a DXP is intended

to highlight the strategy that is currently being used for creating

enriched and intuitive UI design.

•	 The DXP technology stack plays a vital role while designing the

user interface. It provides information architecture and it helps

in prototyping and keeping the main menu structure simple and

consistent across layouts, making sure it’s intuitive and easy to use.

Layout ensures consistent layout with proper same or similar content

categorization for finding or searching. While keeping the layout

simple, also make sure different elements are easily identifiable.

•	 Mobility ensures a website, when used across devices and platforms,

gives similar or same experiences including mobile apps and where

possible makes it easy for customers to continue with their actions

across platforms. Content provides customized content, based on

users’ product and website usage patterns; it ensure the error messages

are easy to understand and display a solution to the problem.

•	 A DXP also ensures context-based, relevant information is displayed

at the appropriate places. Navigation is consistent across pages and

layouts, making user navigation easy. As shown in Figures 4-10 and

Figure 4-11, the Transaction component has fewer fields in mobile

view compared with desktop view. In mobile view, less important

information would wrap up.

•	 DXP concepts provide the comprehensive view to develop next-

generation digital applications that are pertinent across all domains.

Chapter 4 User Interface Design

149
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_5

CHAPTER 5

Designing the Integration
Layer
After going through extensive UI concepts, now we look into the integration layer, which

helps us to integrate with the DXP UI and further enhance DXP capabilities with a lean

and flexible integration platform. Existing systems are integrated with the maintainable

and scalable integration layer.

The key features of the DXP integration layer are the following:

•	 Various types of integration platform.

•	 Architecture and frameworks used in integration layers.

•	 Technology stack to develop integration layer.

•	 Case study – banking experience platform.

At the outset, we take into the picture the introduction and features of the DXP

integration layer.

DXP integration concepts help you make effective decisions on Web API

(application program interface) management tools to integrate services with the

DXP UI. According to the business requirement, the API management tool can be

used and integrated with the DXP. Business requirements can help you to focus

on understanding the basic requirements of the integration, for example, some

requirements focus on portal and some on analytics services, so decisions should be

made as per the requirement.

150

DXP integration concepts will address frequently asked questions in Integration

Style, Integration System and services Sections of this Chapter on integration platform,

such as the following:

•	 Will the business requirement focus on management of existing

services using API gateways?

•	 Will the business requirement focus on REST (Representational State

Transfer) services or will the requirement need to use other service

protocols such as Simple Object Access Protocol (SOAP) or Java

Message Service (JMS)?

•	 Will the business requirement need flexible configuration, routing

options, and user management (authorization) using different

authentication and security standards (for example, Open

Authorization (Oauth), Lightweight Directory Access Protocol

(LDAP), Security Assertion Markup Language (SAML), Kerberos, etc.?

•	 Will the business requirement need a caching mechanism?

•	 Will the business requirement need event-driven architecture or

synchronous HTTP calls?

•	 Will the business requirement need an API management solution on

premise or on the cloud platform?

�Integration Consideration
A DXP takes into account the current environmental factors, which are systems

already available in the environment of the organization such as customer relationship

management (CRM), enterprise resource planning (ERP), other services, databases,

content management system (CMS), rules engine, and solution gaps; and coexistence

expectation, which tries to address the collaborated solution for the organization in the

most cost-effective way. Hence while designing the digital platform, the approach is to

design an integration layer that covers below mentioned points:

•	 Minimize the risk of transition: The integration layer should be

loosely coupled so that if any kind of transition or migration happens

in any application in the DXP, it would not impact other services or

applications.

Chapter 5 Designing the Integration Layer

151

•	 Maximize business value: Microservices over monolithic service

architecture will provide maximum business value by breaking down

functionality to the most basic level and then abstracting the related

services.

•	 Lower the total cost of ownership and management: Microservices

architecture will increase the decoupling and separation of concern,

hence the code base would be easier to manage as each service in

the application would be independent of other services and thus it

would be easier to add new feature or functionality to the platform.

Conversely, in monolithic architecture, adding a new functionality

will require smoke testing of the whole application.

•	 Interface details: Go through the interface details, for example, API’s

operations, inputs, outputs, and underlying types such as XML or

JSON, which helps you to integrate the existing or third-party APIs

with the DXP application.

•	 Data requirements: A DXP consumes data in any format such as

XML or JSON using any service protocol such as RESTLESS-SOAP

or JMS, but interacts in RESTFUL-JSON within an application.

RESTFUL-JSON interaction makes the application’s integration

layer flexible and lightweight. REST services are architectural style.

REST uses HTTP protocol and HTTP methods like GET, POST, PUT,

and DELETE to communicate between client (Angular application)

and server (integration) application; whereas, as SOAP is a

message exchange style between client and server, SOAP services

are Remote Procedural Call (RPC) architecture style, which would

have service metadata (i.e., contracts) to communicate between

client and server.

•	 Restless: These services work with resources as well as its

operations such as PUT, POST, DELETE etc. You need to identify

the services and operations attached to REST Service, for

example, operations such as SaveTransation(), GetTransaction(),

DeleteTransaction(), UpdateTransaction() on transaction

services. A service contract has to be shared with the client; the

client will use these details to call the services.

Chapter 5 Designing the Integration Layer

152

•	 Restful: These services work with resources instead of operations.

Communication between client and server happens using a

Unified Resource Identifier (URI) over HTTP protocol using

HTTP methods such as GET whenever someone needs to get the

representation of an existing resource. PUT is used to add a new

resource into the system. POST is to modify the existing resource,

and DELETE is to remove the resource from the system.

•	 While calling SOAP services from the client, the dispatcher in the

web services would first deserialize the SOAP message, and then

identify the operation from the message to be performed. Actions

are mapped with the service methods, but while calling Restful

services you have to identify the resources like a transaction, then

the HTTP method (GET, PUT, POST, and DELETE) will identify

the method to be called. Each method in web services is mapped

with the HTTP method.

•	 Integrating methods: Integration methods are decided on the basis of

available interface and requirements of the integration patterns. We

further explore integration methods in detail in this chapter.

•	 Security: API layer security would raise the accessibility of the

service calls. You need to ensure that only authenticated users

of the application can access the API. It will differ on the basic of

architectural pattern.

•	 Monolithic architecture: In this architecture, the entire application

is a process; the security module is implemented to provide

authentication and authorization to the user. When a user logs

in to the application, the security module of the application

authenticates the user. After verifying the user details, a session is

created for the user and a unique session ID is provided with the

session. The session stores login user information such as name,

permissions, and roles. The server is responsible for managing

the session, and sends the session ID to the client and back to the

server in subsequent requests. This session ID would be used to

verify the user details.

Chapter 5 Designing the Integration Layer

153

•	 Microservices architecture: In this architecture, the application is

split into multiple microservice processes, and each process holds

the business logic of that particular module. Each microservice

needs to be authenticated and authorized; hence, the logic of

authentication and authorization wouldn’t be implemented in

every microservice. To overcome this issue, a client application

such as an Angular application can access the services through

an API gateway where each of the services are registered and

controlled. Authentication and authorization modules would be

implemented in the API gateway, and all the microservices are

registered with the API gateway. The API gateway is exposed to

the client application and is responsible for routing requests to

the appropriate microservices after verifying the user details.

•	 Legacy modernization: You need to check whether the system has to

interact with the legacy system, because the integration method and

interface will differ and should be considered while designing the

application.

�Data Formats
Data formats the integration layer. There are mainly three types of data format, flat,

relational, and hierarchal, but it is recommended to use the hierarchal data format

because of its efficient structure.

•	 Flat: It has one record per row, but there is a chance of duplicate

entry in these things. The flat data format is not recommended in

an integration system, but it is used in file systems and databases

because it contains additional payload. In the following example,

Account ID and Name are redundant in every row for a particular

account ID, hence increasing the payload while transporting data in

the network and therefore increasing the bandwidth.

Account ID Account Name Transaction Type Transaction Amount Currency

ABCBANK1234 SourabhhSethii NEFT 1250 INR

ABCBANK1234 SourabhhSethii RTGS 850 USD

Chapter 5 Designing the Integration Layer

154

•	 Relational: This data format is used in Soap protocol to pass payloads

that contain relational data in the SOAP envelop in XML format,

such as account number and transactions. In the following example,

account tags hold transactions in it.

<Account>

 <Id>ABCBANK1234</Id>

 <Name>Sourabhh Sethii</Name>

 <Transaction>

 <Type>NEFT</Type>

 <Amount>1250</Amount>

 <Currency>INR</ Currency >

 </ Transaction >

 <Transaction >

 <Type>RTGS</Type>

 <Amount >850</Amount>

 <Currency>USD</ Currency >

 </Transaction >

</Account>

•	 Hierarchal: Hierarchal structure provides a lightweight and

efficient structure to API providers to communicate between

different systems, of which Restful-JSON data hooks are the best

example, which helps us to quickly create and solve complex data

transformation issues.

{

 "account": "ABCBANK1234",

"transaction": [{

 "Type": "NEFT",

 "Amount": "1250",

 "Currency": "INR"

 },

Chapter 5 Designing the Integration Layer

155

 {

 "Type": "RTGS",

 "Amount": "850",

 "Currency": "USD"

 }

]

}

�Integration Services
In today’s technological world, there is a need to integrate multiple systems with the

DXP. There are multiple platforms and design patterns to support in-built capability

and pluggable features, to support DXPs and digital solutions where you integrate these

services with the UI layer without changing the existing systems. This further enhances

the capability and flexibility of the DXP.

A DXP enhances the digital capability by supporting various integration services

and styles that cover requirements from small-scale business to large-scale business, as

shown in Figure 5-1.

Integration Services

Marketplace
Integration

Micro
Services

Social
Integration

Services-
Based

Integration
API Gateway

In-Built
Connectors

Enterprise
Service Bus

(ESB)

Pluggable
Adaptors

Figure 5-1.  Integration services

Integration services supported by DXP and its capabilities are mentioned in Table 5-1.

Chapter 5 Designing the Integration Layer

156

Table 5-1.  Integration Services and Capabilities

Integration Services Capabilities

Services-based Integration Restful and Restless (SOAP) service integration provides digital

integration capabilities. It has small-scale to large-scale

application data delivery and integration capabilities.

API gateway integration An API gateway is an API delivery-based application system used

to interact with multiple applications. DXP integration with an API

gateway system enhances secure and flexible data delivery, and

integration with existing applications.

Social integration The DXP integrates with social collaboration platforms such as,

Facebook, Twitter, Instagram, and many more. It consumes their

API and integrates the data in the DXP’s application.

Microservices integration Microservices are designed in such a way that every individual

service is independently deployable, small and modular services

in which services run as a unique process and communicate and

deliver data efficiently between the multiple systems to serve a

business goal.

Marketplace integration Marketplace integration helps business users to integrate with

multiple channels: to buy or sell their services and products on

different channels while consuming a single service.

ESB (enterprise service bus) ESB is used in medium-scale to large-scale business

requirements where multiple systems inter with each other, for

example, a banking domain.

In-built Connectors An in-built connector has capabilities to connect a DXP’s

application to multiple components, such as a JDBC connector

used to access a database or GRPC connectors used to do

remote procedure calls, etc.

Pluggable adapters Integration frameworks have various pluggable adaptors such as

JMS adapter, data stream adaptors, etc. These adapters are used

to access and convert data from one form to another form. You

can access data streams using these adaptors.

Chapter 5 Designing the Integration Layer

157

�Integration Styles, Protocols, Systems, and Patterns
A DXP supports multiple design patterns and integration platforms as mentioned

previously. Integration patterns supported and their implementation models are

described in the consecutive segments of this chapter.

�Integration Styles
There are different types of styles to consume data, for example, RPCs (remote procedure

calls) and messaging file transfer, database, RMI (remote method invocation), that help to

integrate multiple applications so that they can exchange data or information with each other.

Remote procedure calls

•	 gRPC (remote procedure calls): gRPC is a modern open-source high-

performance RPC framework that can run in any environment. It can

efficiently connect services in and across data centers, with pluggable

support for load balancing, tracing, health checking, and authentication.

It is also capable of browsers to back-end services connecting devices

and mobile applications. Hyperledger fabric blockchain project uses

gRPC to communicate to the blockchain network.

Messaging File Transfer

•	 JMS: It is used to send messages between applications; it is

asynchronous in nature, which means the client is not required to

send a request, and the message will arrive automatically to the

client. It is of two types. One is the point-to-point messaging domain,

where one message is delivered to one receiver only and a queue is

used to achieve that. The other is the publisher-subscriber messaging

domain, which is like broadcasting in that one message is delivered

to all the subscribers; to achieve that, a destination called a topic is

used to hold and deliver messages.

•	 MQTT (Message Queuing Telemetry Transport): MQTT is a

publisher-subscriber based messaging protocol that works on top

of the (Transmission Control Protocol/Internet Protocol) TCP/IP

protocol. It is designed for constrained devices with low bandwidth.

It is best suited for IoT-based applications, as it allows you to send

commands to controls, and to read and publish from IoT sensors.

Chapter 5 Designing the Integration Layer

158

Database

•	 The application stores data in a database; you can integrate databases

and consumes the shared data. You can integrate your application to

SQL as well as NoSQL databases as per use case requirement.

File Transfer

•	 You can consume data from the files. Applications produce files of

shared data for other applications to consume, and consume files

that others have produced.

�Integration Protocols
Integration protocols (also called web services protocols) define the structure and

definition of message transfer between two applications.

�SOAP

It is a messaging protocol exchanging information while implementing web services. It

uses the XML message format and works with HTTP protocol for message transmission.

The message format mainly contains three elements: envelop, header, and body. An

example of a typical SOAP envelope would be the following:

POST /Transaction HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 200

SOAPAction: "http://www.w3.org/2003/05/soap-envelope"

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"

xmlns:m="http://www.example.org">

<soap:Header>

</soap:Header>

<soap:Body>

<m:Balance>

<m:Amount>2000 </m:Amount>

</m:Balance>

Chapter 5 Designing the Integration Layer

159

</soap:Body>

</soap:Envelope>

�XML_RPC

XML_RPC is an RPC protocol that uses the XML format to encapsulate the message and

send it over HTTP protocol. An example of a typical XML-RPC request is:

<?xml version="1.0"?>

<methodCall>

<methodName>account.getBalance</methodName>

<params>

<param>

<value><i4>Sourabh_Sethi</i4></value>

</param>

</params>

</methodCall>

An example of a typical XML-RPC response is:

<?xml version="1.0"?>

<methodResponse>

<params>

<param>

<value><string>2000 USD</string></value>

</param>

</params>

</methodResponse>

�JSON-RPC

It is an RPC encoded in JSON format, as shown in the following example. It is a simple

and lightweight protocol, and the DXP can consume data in any format but expose and

interact in this protocol with other applications.

An example of a typical JSON-RPC request would be:

{

 "account": "ABCBANK1234",

}

Chapter 5 Designing the Integration Layer

160

An example of a typical JSON-RPC response is:

{

 "account": "ABCBANK1234",

 "transaction": [{

 "Type": "NEFT",

 "Amount": "1250",

 "Currency": "INR"

 },

 {

 "Type": "RTGS",

 "Amount": "850",

 "Currency": "USD"

 }

]

}

�JSON-WSP

It is same as the JSON-RPC protocol but has a service description specification with

documentation method, name, and description provided along with requested details,

as shown in the following example.

An example of a typical JSON-WSP request is:

{

 "type": "jsonwsp/request",

 "version": "1.0",

 "methodname": "getTransactions",

 "args": {

 "account": "Sourabh_Sethi

 }

}

Chapter 5 Designing the Integration Layer

161

An example of a typical JSON-WSP response is:

{

 "type": "jsonwsp/response",

 "version": "1.0",

 "servicename": "Transaction",

 "methodname": "getTransaction",

 "result": [{

 "username": "Sourabh_sethi",

 "transaction_id": 123456,

 "amount": "200",

 "type": "credit"

 }, {

 "username": "Sourabh_sethi",

 "transaction_id": 123457,

 "amount": "1200",

 "type": "debit"

 }]

}

�Integration Systems
Integration systems consist of messages and their transformation from one form to

another. We look into messaging systems, their construction, and transformation in this

section.

�Messaging Systems

A messaging system defines the message format and its transformation capabilities,

where messaging channels are defined as per the service that contains the exchange in a

piece of information.

Pipe, filter, and routers perform the complex processing on a message or exchange

(also called a piece of information), whereas filtered and processed data is passed to

other messaging system with the help of routers.

Messaging endpoints are the connections to a messaging channel to send and

receive messages.

Chapter 5 Designing the Integration Layer

162

�Message Routing

Message routing is used to handle the scenarios where a single logical service is

interacting with multiple existing systems using the list of dynamically specified

recipients.

Message routing is used along with a splitter, where one processes the exchange if

it contains multiple recipients, each of which may have to be processed in a different

way; after processing, one combines the results of individual related exchanges using an

aggregator.

�Message Construction and Transformation

Event messaging is used to transfer events from one application to another application,

which is identified by a correlation identifier that contains a return address and is

handled by a request reply message.

Messages are wrapped in an envelope so that the existing system participating in a

messaging system can establish a secure message header encryption method.

Content filter and claim check patterns deal with the volumes of data, where large

messages are handled but one is interested only in few data items from the entire

message.

�Integration Patterns
Integration patterns are the solution to commonly occurring integration problems,

which are mainly divided as channel pattern (how messages are transported across

channels), routing pattern (how messages routed between sender and receiver),

transformation pattern (transformation of messages as per sender and receiver), and

endpoints (how messages are consumed and exposed).

�Pattern – Simple (Internal) Integration

The publisher–subscriber design pattern ensures that multiple applications consume the

message at a time. Information standardization is based on source and synchronization

of target systems with data required for its processing. The main focus is to synchronize

information based on business events, thus removing any processing delays and

overcoming the pain of managing a batch window.

Chapter 5 Designing the Integration Layer

163

The proxy design pattern provides a single point of entry to the target application;

in addition, it supports policy implementation and ensures compliance monitoring. It

reduces time of solution, price of integration, and testing efforts.

Point to point ensures that one application would consume the message at a time.

For example, it is used in RPC to transfer data.

�Pattern – Rich Integration Interaction Model

Service and semantics standardization is mainly focused on abstracting the complexities

by targeting flexible and loosely coupled connections.

Composite service is focused on building flexibility into the services themselves

in each of the dimensions of policy, process, and structure by hiding the multiple

fine-grained services exposed by legacy systems and creating business-aligned

coarse-grained services.

Process Service is similar to composite service but with larger scope. Its focus is on

hosting end-to-end business processes involving systems and people, which represents

an end-to-end business capability delivered by business.

�Pattern – Multichannel Application Interaction Model

Multichannel services provide faster response to business change requiring the support

of new channels; consistency of capability and information is delivered to all channels.

Multichannel and differentiated services provide faster response to business change

requiring the support of new channels; consistency of capability and information

is delivered to all channels. In addition, they provide added value to the privileged

consumer while minimizing the price. The focus is on consistency across divergent

interaction methods and technologies, building a generally related body of services and

addressing specific issues of security and versioning.

�Pattern – External Partner Integration Interaction Model

The focus is predominantly on security, closely followed by protocol translation, QoS,

and semantic adaptation. Third-party applications are integrated with the DXP’s

application.

Chapter 5 Designing the Integration Layer

164

�Pattern – Event-Driven Adaptive Enterprise

Handling opportunity, disruption, and threat: The focus is to capture events from

multiple, loosely coupled systems and analyze them based on the situational, temporal

context such as time-series analysis of system threats, system logs, etc. and respond

based on the predefined rules.

End-to-end process visibility with KPI monitoring: The focus is to capture events

from multiple loosely coupled systems and analyze it based on the situational, temporal

context such as time-series analysis of their key business metric and create visibility into

key business processes.

�Data Standards
Data standardization would help you to develop and agree on the most appropriate

standards for the business requirement from various protocols and architecture, which

further constitutes different payload types and data structures or formats. You can use

a serialization mechanism to handle inconsistency of data structures and their varying

payloads, which would translate data from one data structure to another and deserialize

it, that is, extracting the data structure from data itself. Serialization is the process of

converting an object into a stream of bytes to store the object or transmit it to memory,

a database, or a file. It saves the state of an object so that it will be able to recreate it. The

reverse process is called deserialization.

The most commonly used protocol and architectural pattern are SOAP and REST,

respectively. SOAP is a protocol, which has a WSDL file and contains information

about web services and the location of the server. It uses service interface to expose

its functionality and it requires more bandwidth. To make data communication and

transformation more flexible and light, REST was introduced, which contains features

like stateless, cacheable, layered, uniform interface. REST is lightweight and mostly

contains JSON messages, therefore the size of the message is much smaller than

with SOAP. The DXP integration layer consumes the data in any format but provides

RESTFUL-JSON services to the DXP UI layer, which ensures lightweight and flexible data

interoperability.

Chapter 5 Designing the Integration Layer

165

�Flexible Integration Middleware
The DXP concept is to support different middleware integration frameworks, which

makes the DXP integration layer flexible so that the data and message are exchanged

with multiple systems, irrespective of the technology and framework used in

existing systems.

Delving into the methodological world of services and integration of services along

with to fulfill the integration requirement of EAI (enterprise application integration),

ESB was introduced. It was considered as a central hub for integrating services but it is

a single point of failure. So, to eliminate this issue, SOA (service oriented architecture)

was introduced that, further enhanced with an ESB, has the flexible and distributed

capabilities to solve the integration problems by implementing EIP (Enterprise

Integration Patterns).

Nowadays we are moving toward the microservices that build on lean structure,

where services are developed, deployed, scaled, and maintained independently, which

further enhances the business requirement, and time to production or market is reduced

significantly.

�EAI vs. SOA vs. ESB vs. Microservices
ESB and microservices are models based on SOA. The service-oriented model is an

implementation to achieve enterprise application integration.

•	 EAI is a framework that connects and integrates the different

application and data source in an organization to simplify the

business process.

•	 The EAI framework provides cross-platform and cross-language

integration to simplify the business service by exchanging

information between the different applications.

•	 SOA is an integration paradigm that is based on design principle of

architectural interoperable services, which deals with data sources,

software, and message processing.

•	 ESB is a software architecture that provides integration of enterprise

applications and services for complex architectures.

Chapter 5 Designing the Integration Layer

166

•	 ESB focuses on interaction and communication between

components, to handle data transfer or message exchange between

services. ESB is capable of transforming message data into a format

that the application understands.

In Figure 5-2, multiple applications are communicating and exchanging data in

different formats using broker message communication.

Figure 5-2.  ESB

Key requirements to fulfill the integration layer objectives are as follows:

Chapter 5 Designing the Integration Layer

167

�Mutual Memorandum of Understanding (MOU)
Service contracts or an MOU are useful before developing integration services, so as to

ensure QoS, security, and scalability of services. Initially, the MOU was defined with a

SOAP interface. Several frameworks and tools supported SOAP, but nowadays after the

increasing popularity of Restful services, Swagger is becoming the most vital standard

for defining, implementing, discovering, and testing REST services. Swagger-enabled

API provides interactive documentation and software developer’s kit (SDK) generation

capabilities.

�Service Protocol and Data Format
While developing services, you should check the service communication endpoints, for

example, HTTP endpoints for HTTP protocol-based applications; JMS endpoints for JMS

applications; machine-to-machine (M2M) data transfer protocol (MQTT) endpoints for

MQTT-based applications; and data format, for example, XML and JSON requirements.

�API Management
API gateways are used to manage API. You have to consider the requirement, whether

services are developed to use within the application or would be used by multiple

applications across an organization.

�Why Do We Need Data Transformation Capabilities
in DXP?
In a business organization there are multiple applications interacting with each other,

therefore the data will be organized and structured in different forms. For example,

old systems are built on SOAP architecture but a DXP consumes REST services; hence,

to make an old system compatible with a new modernized system, we need data

transformation capabilities, whereas the DXP integration layer is capable of integrating

with other systems irrespective of technology and framework. The DXP integration layer

is capable of consuming data in any format and converts the data as per the DXP UI

Chapter 5 Designing the Integration Layer

168

requirements, that is, data can be in any format. For example, SOAP, XML, JSON, REST,

comma-separated values, MS-Excels, databases, etc. would be transformed as per the

DXP UI requirement, for example, Restful-JSON. However, without changing existing

systems we can consume the services from the existing system and transform the data as

per the DXP UI requirement, which makes the DXP integration lean and flexible.

�Integration Technology Stack and Architecture
The integration technology stack depends upon integration architectural patterns, which

are monolithic and microservices architecture. You would choose for your application

while developing the DXP’s integration layer.

�Monolithic
A monolithic architectural integration technology stack contains one of the integration

frameworks according to your integration requirements, such as Apache Camel or other

integration framework, as listed in Figure 5-3. These integration frameworks consume

the data API from other third-party applications, transform the data according to the

client application, and expose the API to the client application. Services such as mobile

services, portal services, OTP services, ERP services, master data management (MDM)

services, etc. are part of one single application.

Figure 5-3.  Monolithic integration

Chapter 5 Designing the Integration Layer

169

The API gateway exposes the services to the client application; the authentication

and authorization module is part of the integration platform.

The integration layer consists of API providers and API consumers. The API

consumer consumes data and messages from other applications and implements

authentication and authorization using respective modules, along with the

integration logic and business logic related to particular services as per the API

provider, which is consumed by the DXP UI layer (mobile and desktop client

applications), other applications and platforms such as a blockchain network, IoT

platforms, and AI platforms.

Multiple integration services like social media services, analytics services, OTP

services, and third-party services are consumed by the API consumer, whereas the

API provider provides transformed API to the DXP client application. As shown in

Figure 5-4, API consumers are responsible for consuming the data and consumed data

is transformed by the integration layer, and API providers are responsible for exposing

services to the UI layer.

Figure 5-4.  DXP monolithic integration

Chapter 5 Designing the Integration Layer

170

�Microservices
The microservices architectural integration technology stack contains a suite of

small services, each running its own process and communicating with lightweight

mechanisms on an individual port number. One service would contain one business

capability, as shown in Figure 5-5. OTP services have OTP capabilities; similarly, other

services have their own process and lifecycle. These services are separately deployable,

hence a faster release cycle. You can use different microservices frameworks such as

SpringBoot, Lagom, etc., as shown in Figure 5-5.

�ESB and API Gateway
An ESB would be used for integration, orchestration of multiple services into one

service, routing of services, and event handling and monitoring. An ESB is based on

service-oriented architecture, which is an efficient service delivery platform. On top of

an ESB, you could use a service gateway for security, policy enforcement, and exposing

services as an open API to external consumers (public). A service gateway manages your

integration services built with an ESB.

Figure 5-5.  Microservices

Chapter 5 Designing the Integration Layer

171

It is recommended that web services need to be pushed via an API gateway. The

API gateway ensures security, as it uses open standard authentication frameworks and

protocols such as SAML, Kerberos, Oauth, etc.

�Integration Security
Security is the main concern when exposing an API to a client application over web.

There are multiple frameworks and protocols that provide different aspects of security

such as authentication, authorization, and integrity.

�Authentication and Authorization
You can use different frameworks and protocols to authenticate and authorize the user

on the basis of tokens and session to access the application, as per the requirements. We

will become familiar with these frameworks and protocols in the following subsections.

�Protocols
Authentication protocols are a type of cryptography protocols designed for transfer

of authentication data between two entities in a secure way. Single-sign-on (SSO)

can be achieved using these frameworks, where the user presents information (user

ID and password) once and gets an access token that is valid to access all connected

applications in the environment for a particular session. For example, Kerberos, NTLM,

OpenID, and SAML are the most common protocols, which provide features like SSO

by providing an access token that is valid for all the applications integrated with these

protocol. This access token contains the authentication and authorization information of

the user for a particular session.

�Frameworks
You can use authentication and authorization frameworks like Oauth, Spring Security,

etc. These frameworks provide a mechanism to integrate existing protocols and

provide security implementation to your application. You can also use two-factor

authentication (2FA) frameworks such as Google Authenticator, one-time password

(OTP) authentication on mobile, Duo, Authy 2FA, etc. with other security frameworks to

provide an additional level of security to the user.

Chapter 5 Designing the Integration Layer

172

�Session Management

Session management is a way to manage the state of the application. A DXP uses HTTP

protocol to provide data and persistence services to applications because HTTP is a

stateless protocol; stateless means that the server can send client requests to any node

in the clusters while load balancing the application. Each time, a user’s request is

independent because there is no state; a user request can be distributed to any server,

so the way to maintain the state of the application between client and server is to use

the session on the server side to save the user state because the server is stateful. There

are different mechanisms to maintain the state of the application, such as session

stickiness, session replication, and shared or centralized session. We can use sticky

session to ensure that all requests from the specific user are sent to the particular server

through a load balancer. But in case that particular server goes down, and the load

balancer is forced suddenly to shift the user to a different server, all of the user’s session

data would be lost. To overcome this problem, a session replication mechanism can be

used;: that means each instance saves all the session data and synchronizes through

the network using a library such as Jgroups, Hazelcast, Redis, etc. but synchronizing

session data causes network bandwidth overhead. To overcome this problem, you can

use a centralized session storage mechanism; that means whenever a user accesses any

services, user data can be obtained from shared session storage. In some use cases this

scheme works excellently and can be achieved using the JDBC (database) session storage

mechanism so that all servers can access the same session object stored in the database.

�Token Management

It is recommended to use session management at the server because the servers’

applications are stateful, and tokens management at the client to store user login status.

Tokens are held by the users themselves and are stored in the browser cache or in

the form of cookies. Each time a request is sent to the server, the server can check the

identity of the user and determine whether it has access to the requested resource. As

the token is used to determine identity, the content of the token needs to be encrypted

to avoid security attacks; this can be achieved using standards like Java Web Token

(JWT) which is open-standard (RFC 7519) and defines the token format and contents.

It can encrypt content using various asymmetric and symmetric encryptions as per

requirement. This ensures the integrity of data transferred between two parties, that is,

client application and server application.

Chapter 5 Designing the Integration Layer

173

�Integration Best Practices
You should follow best practices while developing the integration layer as mentioned

in Table 5-2.

Table 5-2.  Best Practices

Area Best practice

1 Service design • �S ervices must be designed to behave as stateless services, since

there is no grid technology at this point.

• �S ervices must not persist any session-related information or transient

state of the request in memory, that is, use of shared variables or local

cache must be avoided completely.

• �S ervices must be designed to handle duplicates. If for some reason

the same request message is transmitted twice, the service must

enforce the messaging semantics in order to identify the duplicates

and reject them.

• �I t is possible that there could be multiple instances of the service

operation running concurrently. Service must share resources (file

handles, socket connections, etc.) in a thread-safe manner, avoiding

deadlocks.

• �I f an exception occurs in a subprocess, then the typical practice is

to propagate that exception to the parent process either through

a “Generate Error” activity or “rethrow” exception. But, if the sub

process is nested deep below from the main process, this could

cause a problem since every subprocess must rethrow the error.

It is a known fact that rethrow of exceptions is costly, since the

entire copy of the stack must be embedded with each throw.

Hence, it is recommended that we report these exceptions by

setting flags like “Exception=true” and exiting the process with

proper error handling. This should be propagated to the parent

process in an optimal manner.

(continued)

Chapter 5 Designing the Integration Layer

174

Area Best practice

2 Process and

activity design

• �A void extensive “call process” hopping, or a long chain of process

calls for a single end-to-end integration.

• �P refer process starters over wait-for activities and allow for parallel

processing. Process starter fits better for BusinessWorks (BW’s) threading

model because flow control is not available for wait-for activities.

• �R educe the number of activities, if possible.

• �E ach task requires overhead and reduces performance.

• � For example: If data could be mapped in a SOAP request activity, do

not use a mapper activity only to map data for the SOAP request.

• � Database operation

• � Database operation in a nontransaction group

• �S et maximum db connections = engine thread count value and

set in Admin.

• � Database operations in a transaction group

• �S et maximum db connections = total number of expected

concurrent transaction groups.

• �T hese parameters should be controlled through the flow control

properties.

• � Use Batching instead of Statement when possible to improve latency.

• Indexing is a must.

3 Global variables • �G lobal variables (GVs) are kept in the memory in an XML structure and

user does not need to worry about these getting stale.

• R emove unused GVs periodically.

• �G Vs are read-only, hence could be accessed concurrently. No

synchronized access required.

• �A ccessing the last element takes longer than the first element. So,

remove unused GVs and arrange the rest from most frequently used

(MFU) to least frequently used (LFU).

4 Transport options • �HTTP is better performing than JMS on BW; SOAP protocol adds

significant overhead, whether the transport is HTTP or JMS.

• SOAP over HTTP has better throughput than SOAP over JMS.

Table 5-2.  (continued)

(continued)

Chapter 5 Designing the Integration Layer

175

Area Best practice

5 Version control of

BW process

As a best practice, use the version controller of the BW processes

during the software development life cycle (SDLC); version control

systems should be configured. Designer project should be checked-in to

enterprise version of the configuration management system.

6 Template-based

development

ESB designer supports template-based development of the BW

processes. Hence, a common template should be defined for services

and processes, which are similar in nature.

This template should be the baseline and all the processes should be

developed using this process. Usage of the template not only reduces

development time but enforces common standards of development.

7 BusinessWorks

naming standards

The structure is:

<BusinessDomain><BusinessSub-domain><ServiceName>

•  Business domain of the service in the enterprise

•  Business subdomain of the service in the enterprise

• T he name of the service

8 Component

naming standards

Process naming standard

• P rocess Starters - Receive<object><event>

• S ervice - <ServiceName>

• P rocess - Operation Name - <ServiceName><OperationName>

• S ubprocesses - <action><object>

•  Database persisting: Persist<object>

•  Converting XML to a string: Render<object>

• S ending to BC: Send<object>

• T ransform: Xfrm<object>To<object>

•  Validation processes - Validate: Validate<object>

9 Enterprise archive

naming standards

•  <ProjectName>_<DeploymentClassifier>.ear

An enterprise archive (EAR) file would be created for each business

process engine to be deployed.

•  <ProjectName>_<DeploymentClassifier>.war

A Web application ARchive (WAR) file would be created for each

business process engine to be deployed as a web application.

Table 5-2.  (continued)

Chapter 5 Designing the Integration Layer

176

�BXP Case Study
BXP integration concepts enable the organization to integrate the data from a third-

party application, so that different users logged in to a single portal could access their

details, transactions, and accounts. The banking domain contains different third-party

applications (master data management, core banking application, OTP and SMS

gateway, third-party authorization application through LDAP server, etc.) to run the

whole banking organization, as shown in Figure 5-6.

Figure 5-6.  BXP overview

Integration services of a BXP integration layer have brokers, which communicate

between BXP UI components and third-party services and systems. A BXP implements

the well-known EIP and therefore offers a domain-specific language, standardized

to integrate applications. As shown in Figure 5-7, account and transaction services

are getting transformed. Account is the service exposed by the MDM system in

JSON format over HTTP, whereas Transaction is the services exposed by the core

banking system in XML format over HTTP. But the DXP UI application needs data

Chapter 5 Designing the Integration Layer

177

in JSON format over HTTP protocol, hence the integration layer is introduced to

handle data transformation and expose the new API as getAccountDeatils and

getTransactionDetails to the UI application.

•	 API consumers: API consumers consume data from different

applications that consists of different data formats and payloads

in the form of message exchange. The integration framework and

its capabilities help to transform the data according to business

requirement using EIP.

•	 API provider: The API provider provides newly transformed services

exposed with new endpoint for DXP UI components. The API

provider exposes the REST endpoint in JSON format as per the DXP

UI requirement.

Figure 5-7.  Data transformation

Chapter 5 Designing the Integration Layer

178

We will look into this integration problem in brief. A banking organization has two

services, that is, account details and transaction details, available from two different

systems in different formats. But the BXP needs integration so that data would be

populated on BXP UI components as per BXP requirements. To transform these services,

let’s look into the BXP UI requirement.

•	 BXP UI requirement. A list of BXP-UI requirements follows:

	 a.	 Data should be in JSON format.

	 b.	 UI components need limited data points: customer name,

account number, current balance, and last ten transactions.

•	 Existing services. A list of services exposed by the existing system

follows:

	 a.	 Core banking application (transaction services)

•	 Data available in JSON format

•	 These services contain a huge number of data points:

account number, last one month’s transactions, FD (fixed

deposit) details, etc. But the DXP UI component requires

account number, current balance, and last ten transactions

for a particular user.

	 b.	 Master data management (MDM) application

•	 Data is available in XML format.

•	 Huge number of data points: customer name, customer

number, service number, address, etc. But the DXP UI

component requires customer name and account number

held by that customer.

The integration layer consumes required fields from aforementioned

existing services, transforms the data format using EIP patterns, and exposes

getTransactionDetails and getAccountDetails as new REST services with required and

limited data points.

Chapter 5 Designing the Integration Layer

179

Sample code on developing integration layer is available in Appendix B of the book.

We have chosen Apache Camel framework as the DXP Integration Layer because it

supports a large variety of EIP patterns to transform the data; it is open source, scalable,

and flexible to support DXP concepts.

�Case Study Conclusion
You should be able to understand the different integration services and integration of

these services to a DXP using EIP. Underscoring the various protocols, architectural

pattern, and data structure should help you to design an integration system using DXP

concepts and principles. The BXP case study should help you to understand the design

principles of the DXP integration layer where one has modeled two services and exposed

these web services as REST API to BXP UI components.

�Chapter Summary
•	 The DXP integration layer is the most important part of a

DXP. Integration is the backbone of the enterprise application, which

provides an efficient and flexible integration layer to provide efficient

data interpretability.

•	 You understand the DXP integration principles and core concepts.

•	 You will be able to analyze business requirements to develop an

integration layer as per DXP core concepts.

Chapter 5 Designing the Integration Layer

PART III

Securing the Banking
Experience Platform

183
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_6

CHAPTER 6

DXP Security
Digital experience platforms (DXPs) consist of various technologies such as web

technologies, content technologies, and database technologies. Security is one of the

fundamental attributes for the success of a DXP program. Lack of adequate security

measures impacts the users’ trust and drastically impacts the application. Defining and

maintaining DXP security is a continuous process.

In this chapter we discuss the core security concerns of DXP.

�DXP Security Framework
The DXP security framework defines the key tenets of security concerns that need to be

addressed in a DXP application (Figure 6-1). We need to address all categories belonging

to each of the security tenets.

DXP Security

Authentication

Authorization

Data Integrity

Confidentiality

Non
Repudiation

Privacy

Figure 6-1.  DXP security framework

184

The key elements of the DXP security framework are as follows:

•	 Authentication validates the user’s identity. This includes the

authentication mechanism, single-sign-on (SSO), and management

of user credentials.

•	 Privacy management ensures that the user’s personal information is

protected. Privacy concerns should be addressed while storing the

information, during transit, and sharing the information with third-

party services.

•	 Authorization validates the user’s permission and fine-grained access

privileges to functionality and resources. Authorization enforces the

privilege/role-based access to secure resources.

•	 Confidentiality ensures that information exchange between intended

parties is done securely on a need to know basis.

•	 Data integrity ensures that information is not modified during

transmission. Encryption and secure transport are needed to

guarantee the data integrity.

•	 Nonrepudiation ensures that data and proof cannot be altered or

deleted, using robust tracing, authentication and authorization

processes, and auditing.

�DXP Layer-Wise Security
As a DXP is built with various layers, it is necessary to enforce security at each of the layers.

Layer-wise security vulnerabilities and security measures for the DXP are shown in

Figure 6-2.

Chapter 6 DXP Security

185

The following list details various security measures and best practices that can be

taken at each of the layers:

•	 Infrastructure layer security: The main security vulnerabilities at this

layer are denial of service attack, incorrect security configuration,

and elevation of privilege. In order to address the security

vulnerabilities, the appropriate security measures include firewalls,

robust monitoring, and usage of SSL (Secure Sockets Layer)/TLS

(Transport Layer Security), providing robust server configuration,

server hardening (disabling of all unnecessary ports, services, and

protocols at the server machines), and installing virus scanners and

intrusion detection systems.

•	 Web server layer security: The main vulnerabilities at this layer are

accidental information disclosure in the stacktraces and error messages,

and elevation of privilege. In order to address this, we need to use

custom messages that hide the system and framework details. Enforce a

least privilege policy for all resources to prevent accidental information

leakage, minimizing the risk of escalation of privileges.

Security assessment

Threat profiling

Robust Security
Planning

Black box and white
box testing

Security code scanning

Static and Runtime
Testing

Continuous Security
Testing

Vulnerability
penetration testing

Early and continuous,
iterative testing

Continuous security
monitoring

Infrastructure Layer

Denial of service

configuration

Web Layer

• Information
Disclosure

•

•
•

•
Elevation of
privilege and
Cross-site
scripting (XSS)

Application Layer

• Injection attacks
• Direct object

reference
• Insecure entropy

Database Layer

• Data integrity
• Weak password
• Elevated privilege

for database
users

Services Layer

• Information
disclosure

• Absence of
security
enforcement

Security Measures
at Infrastructure

Layer

Secure transport
layer
Network traffic
analysis
Robust
authentication
Robust server
configuration
Server hardening
Virus scanners
Intrusion detection

Security Measures
at Web Layer

• Least privilege
access

• Custom error
pages

Security Measures
at Application

Layer

• Input validation
• Auditing and

logging
• Fine grained

authorization
•
•
•

Data encryption

Security Measures
at Database Layer

• Data integrity
• Data backup and

recovery
procedures

• Data audits
• Data recovery

processes

Security Measures
at Services Layer

• Message level
security

• Secure
transmission layer

Security

Elevation of
privilege

•
•
•

•

•

•

•
•
•

Firewalls
Monitoring

Error handling
Escaping and
encoding special
characters

Figure 6-2.  DXP layer-wise security vulnerabilities and security measures

Chapter 6 DXP Security

186

•	 Application server layer security: The main security vulnerabilities

at this layer are injection attacks, and insecure encryption methods.

The security best practices to mitigate the security threats at this

layer are robust input validation; enforcing right access to resources;

proper error handling; robust encryption methods; and using robust

auditing, monitoring, and logging.

•	 Database server layer security: The main security vulnerabilities at

this layer are weak password and elevation of privilege. In order

to address this, we need to enforce least privilege access to the

application database user and establish robust data backup and

recovery processes.

•	 Services server layer security: At this layer the main security concerns

are information disclosure and absence of encryption measures.

In order to address this, we need to enforce message level security

such as encrypting messages, adding security tokens (encrypted

information consisting of details such as logged-in user role,

timestamp, and such) to the messages, and using a secure transport

layer for message communication.

In addition to these layer-wise security measures, we should also include the

following in security best practices:

•	 Robust security planning: We need to do a detailed security

requirement assessment of the DXP application and do the threat

profiling. Threat profiling will help us to identify the security

scenarios and we can develop test cases based on that.

•	 Static and runtime security testing: Static security testing includes

automated security testing and secure code review; runtime security

testing includes penetration testing.

•	 Continuous security testing: Security testing should be carried out

throughout the project lifecycle on an iterative basis. A real-time

security monitoring infrastructure should be set up to continuously

monitor security incidents.

Chapter 6 DXP Security

187

�Common Security Scenarios of DXP
A DXP is mainly built on web technologies. Hence all the threat scenarios applicable for

the Web are also relevant for DXP.

We have listed the common security best practices that can be used in DXP

implementations as follows:

�Password Standards
The password policies of the DXP should enforce stricter password rules during account

setup, password change, and all account verification scenarios. Insufficient or weak

password policies lead to increased vulnerability. The key best practices for password

policies are given below:

•	 Enforcing minimum password length. Normally a minimum

password length of 8 is suggested.

•	 Enforcing the mix of numeric values, special characters, and

uppercase letters in password text

•	 Forcing password change regularly (for instance forcing user to

change password after 90 days)

•	 Avoiding common passwords or dictionary terms or common

phrases as passwords

•	 Maintaining a history of previous passwords to ensure that new

password does not repeat from the history

•	 E-mail password reset link instead of mailing the updated password

in plain text.

•	 Password should be stored as one-way hash (the ones that cannot

be decrypted) while storing in a database or properties file. Use

strong encryption algorithms such as AES 128 or SHA1 256 bit

encryption mode.

•	 Audit password retries and restrict the maximum number of

password retries.

Chapter 6 DXP Security

188

•	 Use CAPTCHA for functions such as user registration and password

reset, to prevent automated attacks and bot-based attacks.

•	 Lock the account after a specified number of successive failed

password attempts.

�Session Management
A session is established once the user successfully logs in. A valid user session consists of

user information, application data, and such. The main best practices in managing user

session are given as follows:

•	 Enforce automatic idle session timeout that invalidates the session

after a specific duration of inactivity. This prevents accidental

misuse of a session. Usually a 30-minute window is suitable for idle

session timeout.

•	 Prevent multiple sessions/user logins at the same period to prevent

session hacking.

•	 Use CSRF (cross-site request forgery) tokens (a unique ID) along with

each request to prevent CSRF attacks.

•	 Do not store any sensitive information in session cookies.

•	 Use a secure transport protocol (such as HTTPS, FTPS) while

transmitting sensitive information.

•	 Don’t send the session IDs as URL parameters.

�Information Management
The information related to a DXP system and the application data should be carefully

guarded to prevent sophisticated hacking attempts. The following are the key best

practices related to information management:

•	 Prevent accidental disclosure of the information in log files,

exception messages, and error logs. This includes information related

to web server name/version, programming language used, host

name, IP address, and such sensitive information.

Chapter 6 DXP Security

189

•	 Develop a data classification policy based on the sensitive nature of

the data. For instance, we can classify the data into three categories:

“public,” “private,” and “confidential.” We can then apply various

security policies based on the category.

•	 All sensitive data such as passwords and server names should be

encrypted before storing or during transmission.

•	 Update all server configuration to hide the server-specific

information and create a custom error page.

�Data Validation
DXP-based applications receive data from the end user in many scenarios, such as

registration data, review comments, and such. All such end user data should be properly

validated to prevent various attacks. The following are some of the best practices of input

data validation:

•	 Validate all user input data, using white list and black list values.

A whitelist provides a list of all allowed characters and a blacklist

provides a list of all disallowed characters. Encode or escape reserved

and special characters (such as HTML tags or JavaScript code).

•	 Validate end user values while using them for executing database

queries. This prevents SQL injection attacks.

•	 Perform strict validation on input data received from end users and

nontrusted sources. This includes length validation, special character

validation, blacklist validation, type valuation, format validation,

range validation, and others.

�Service Security Management
Services are widely used in DXPs. The core integration layer in a DXP is built around

services. Services-based architecture provides loosely coupled layers that can be easily

extended. The main best practices in services security are given as follows:

•	 Use a secure transport layer such as HTTPS to provide transport level

security. Secure transport layers use certificates that ensure data

integrity and prevent any data interception attacks.

Chapter 6 DXP Security

190

•	 The message level encryption includes encrypting the message

or signing the message with a digital signature to ensure message

confidentiality.

•	 Add security headers to the message envelope and/or add security

tokens to the message.

•	 Use open security standards such as ws-security or SAML (Security

Assertion Markup Language) to enforce services security.

�Security Vulnerabilities and Best Practices of DXP
Table 6-1 provides the key vulnerabilities and the main best practices to address the

vulnerabilities.

Table 6-1.  DXP Security Vulnerabilities

Category Main Vulnerabilities Best Practices

Session

management

• �P redictable session IDs

• �A bsence of session

timeout

• � Man in middle attack

• � Cross-site request

forgery (CSRF)

• � Denial of service (DoS)

and distributed denial

of service (DDoS)

• �P revent multiple simultaneous logins.

• �E nsure session ID randomness through strong

random number generators.

• �P rovide auto session timeout.

• �U se secure transport layer (SSL/TLS) for confidential

information.

• � Don’t store sensitive information in cookies.

• �U se secure attribute of cookies.

• � Don’t use HTTP GET requests for sensitive data.

• � Don’t provide administrative interfaces to Internet

users without strong authorization controls.

• � Only enable the needed HTTP methods. Methods

such as TRACE, PUT, and HEAD can be disabled if

not used by the application.

• �E nable WebDAV methods only for the authorized

content authors.

(continued)

Chapter 6 DXP Security

191

Table 6-1.  (continued)

Category Main Vulnerabilities Best Practices

Data validation • �I njection attacks

(related to SQL, LDAP,

OS, XPath, HTTP

header)

• � Cross-site scripting

(XSS)

• �E xecutable file uploads

• �P erform client-side and server-side validation

• �E ncode and sanitize end user data.

• � Validate against blacklist and reject/remove all

special characters.

• �U se parameterized queries or prepared statements

or ORM frameworks for database query execution.

• � Block any scripts calling OS commands and prevent

upload of any executables.

• �U se XSS filters to allow only safe commands and

sanitize inputs.

Authentication • � Brute force attack

• � Weak password policy

• � CSRF

• �U sage of CAPTCHA

• �E nforcing strict password policies

• �U se CSRF tokens with web requests. You could use

referrer validation or custom HTTP header (such as

X-requested-by) to avoid CSRF attacks.

• �U se multifactor authentication (MFA) for secure

operations.

• � Disable autocomplete for form fields storing

sensitive information (such as user names,

passwords, email IDs, etc.)

Authorization • �A bsence of sufficient

authorization and

permission model

• �I nsecure user

impersonation

• � Define role-based access and permission model.

• � Validate user details before sensitive operations

such as password update.

• �U se “deny by default” and “least privilege” policy.

• �I mplement fine-grained access control to resources

such as pages and functionality.

(continued)

Chapter 6 DXP Security

192

�Security Testing Framework for DXP
Security test planning for DXP should be done iteratively in all phases. For

comprehensive security we should continuously monitor the application security events

in real time and take corrective actions during security incidents.

The key steps of a DXP security testing framework are given in Figure 6-3.

Table 6-1.  (continued)

Category Main Vulnerabilities Best Practices

Information

management

• �A ccidental information

disclosure

• �R emove all server-specific information from log

files.

• � Display only minimal error information during

security incidents.

• � Only collect required personally identifiable

information (PII) and secure PII at rest and

during transit.

• � Don’t cache sensitive data.

• �U se defense in depth principle performing access

and data validation at all layers.

Infrastructure

security

• � DoS

• � DDoS

• �E levation of privilege

• �H arden the servers and only allow traffic on

preconfigured ports.

• �R un the application process with only necessary

and nonadmin privilege.

• �P rovide least privilege for service login accounts

that run application processes.

• �U se web application firewall (WAF) to prevent web-

based attacks.

• � Disable all unnecessary services and install an

antivirus scanner on server machines.

• �U se load balancer and/or cloud security to handle

the surge in traffic.

• � Filter packets at the firewall to prevent DoS/DDoS

attacks.

Chapter 6 DXP Security

193

The main stages of DXP security testing are as follows:

�Secure Code Scanning
In this stage the development team uses secure coding guidelines and standards to

develop the DXP application. Security guidelines and coding standards and white box

security tools are used in this stage. Automated security code scanners and manual code

reviews can be used to check for any known security issues.

The common security issues that can be uncovered through security code review are

listed as follows:

•	 Usage of password in plain text format in code or in configuration file

or in database

•	 Use of the user inputs directly for SQL queries or LDAP queries,

leading to injection attacks

•	 Absence of user input validation, cookie values, URL parameters, and

form field values

Application Specific Security Analysis
Requirement

Analysis Threat Analysis Security Test Case
Preparation

General Web Security Testing

Vulnerability Testing Penetration Testing

Secure Code Scanning

Secure Coding Guidelines Automated/Manual Code
Review

Figure 6-3.  DXP security testing framework

Chapter 6 DXP Security

194

•	 Use of weak unique key generation algorithms to create IDs

•	 Stack traces and exception handling modules providing details of

server and other internal details that can be exploited by others

•	 Absence of auditing and monitoring security events such as account

lockout, login, logout, password failed attempts, password change

events, and such.

�General Web Security testing
In this stage, we do the black box security testing for common and known vulnerabilities.

We carry out testing of vulnerability scenarios and penetration scenarios. This includes

testing the application for OWASP (Open Web Application Security Project) top 10

vulnerabilities, CWS/SANS (SysAdmin, Audit, Network, Security) top 25 errors, and

common injection attacks. Many tools such as Burp Suite, Zed attack proxy, Fiddler,

and WebScarab can be used for vulnerability testing and penetration testing. The main

testing scenarios in this category are as follows:

•	 XSS testing

•	 Testing of directory browsing of resources

•	 Testing of absence of access controls on protected resources.

•	 Testing of access to URLs and resources

•	 Checking for accidental information disclosure in cookies and HTTP

headers

•	 Checking for information leakage in server error pages and error

handling

•	 Checking of CSRF tokens

•	 Checking for misconfigured security settings such as misconfigured

HTTP headers or misconfigured error pages

•	 Testing for buffer overflow

•	 Testing the injection attacks (SQL injection, LDAP injection, XPath

injection)

•	 Testing for denial of service

Chapter 6 DXP Security

195

�Application-Specific Security Analysis
In this stage we analyze the requirements of the DXP application and understand the

security-related requirements. We perform the threat modeling by understanding the

details of the following:

•	 Identifying the main security objectives of the organization and the

application

•	 Types of users and their security needs

•	 Data security needs

•	 Details of sensitive operations

•	 Details of client-side and server-side validations

•	 Details of authentication and authorization

Based on this, we will create security test cases. Let’s look at the threat profile of two

key operations in a banking domain. We have considered “transaction management”

and “funds transfer” scenarios for threat profiling here.

�Threat Profiling of Transaction Management
in Banking DXP
The main vulnerabilities in transaction management are as follows. We can create

security test cases for testing these scenarios:

•	 Using SQL injection attacks to tamper the transaction details

(account number, account holder name, timestamp) and attempt to

view/update/delete the transaction details of other users

•	 Adding dummy or duplicate or incomplete or inaccurate transactions

•	 Attempting to steal transaction details of other users through man-

in-middle or CSRF attacks

Chapter 6 DXP Security

196

�Threat profiling of Fund Management in Banking DXP
The main vulnerabilities in fund management are as follows. We can create security test

cases for testing these scenarios:

•	 Altering the funds balance in the account through SQL injection

attacks

•	 Attempting to transfer funds from other users account

•	 Changing profile details of other users

•	 Viewing account details of other users

�DXP Security Checklists
In this section we have defined the checklist for various categories. The checklist can be

used during security code review and during security testing.

�DXP Architecture and Design Phases Security Checklist
•	 Ensure that security validations are done at client-side, server-side,

and all integration layers.

•	 While using the third-party party libraries, check for any known

security vulnerabilities.

•	 Identify all the sensitive data and categorize the data based on their

sensitiveness. Clearly define the security policies for each of the

categories.

•	 Enforce continuous and iterative security testing at all SDLC lifecycle

stages.

•	 Define a robust cryptography process and encryption process. Prefer

strong encryption algorithms such as SHA 256 bit for encryption and

use one-way hash algorithms for encrypting sensitive data.

•	 Establish a secure transport layer for all sensitive transactions.

•	 Perform detailed thread profiling for the DXP application and define

the security test cases for the same.

Chapter 6 DXP Security

197

�DXP Information Management Security Checklist
•	 Define the security categories for the DXP application. For

instance, we could define three categories such as public, private,

and confidential. Define security policies for each of the security

categories: all data marked as public is visible to guest users and

public users; all data marked as private is accessible only to logged-

in users; and all data categorized as “confidential” should be visible

for users with admin role. Also, all data categorized as “private” or

“confidential” should be encrypted during rest and during transit.

•	 Ensure that no sensitive data (such as SSN number, user passwords,

credit cards, etc.) is stored application logs in plain text.

•	 Ensure that no sensitive data is cached or stored in browser cookies.

Disable browser autocomplete for sensitive form fields.

•	 Ensure that no sensitive data is shared with external or third-party

party services without consent from respective owners.

•	 Don’t use sensitive data in hidden form fields, meta tags, or custom

HTTP headers that are accessible to the end user.

�DXP Authentication and Session Management Checklist
•	 Ensure that there is a centralized authentication management system

that uses enterprise-wide LDAP or Active Directory.

•	 Ensure that the centralized authentication system enforces robust

password policies. Password policies include restriction on password

strength, password change frequency, notification on password

change events, account lockout policy, and such.

•	 Define multi factor authentication (MFA) for sensitive functions such

as admin functionality, password update functionality, and such.

•	 Define strict session management policies including idle session

timeout, avoiding multiple simultaneous sessions, creating random

session IDs, and such.

•	 The DXP application processes must run with minimum privilege.

Chapter 6 DXP Security

198

•	 Invalidate the session upon logout. For SSO scenarios, invalidate all

sessions across logged-in enterprise applications.

•	 Use secure cookie attributes such as HTTPOnly and secure and

strict-transport-security header, to ensure secure data transmission.

•	 Use the principle of least privilege for accessing secured resources.

•	 Use CAPTCHA to minimize automated form submissions, bot based

attacks, and password resets.

�DXP Network Communication Management Security
Checklist

•	 Establish end-to-end TLS and use SSL communication for all

sensitive data communications.

•	 Leverage firewalls and configure rules to block the packets and traffic

that lead to denial of service attacks.

•	 Establish a network monitoring infrastructure to identify any security

incidents in real time.

•	 Don’t allow unsecured protocols (such as HTTP) to sensitive

resources such as sensitive web pages, URLs, data, and functions.

•	 Use only valid SSL certificates signed from an authorized certification

authority (CA).

�DXP Input Validation Security Checklist
•	 Sanitize the user input data and remove and encode all special

characters that lead to injection attacks and XSS attacks. This

includes submitted form data, user-generated content (UGC) such as

blog posts, review comments and such, and URL parameters.

•	 Encode the HTML response especially for the UGC.

•	 Use unique CSRF token with each request to prevent a CSRF attack.

•	 Prevent upload of executable files and validate all the uploaded files.

Chapter 6 DXP Security

199

�DXP Security Auditing and Logging Security Checklist
•	 Ensure that the application logs all security events such as password

changes, login failures, administrative activities, role/permission

changes, and such.

•	 Don’t allow the default framework error messages and stack traces

(log messages) to appear in the error pages. Display generic error

messages that don’t reveal details about the application framework

and technologies.

•	 Do not log the sensitive data in the application log files.

•	 Secure the logs files and restrict the access to the log file location.

�Chapter Summary
•	 The DXP security framework defines the key tenets of security

concerns that need to be addressed in a DXP application.

•	 The key elements of the DXP security framework are authentication,

authorization, privacy, integrity, nonrepudiation, and confidentiality.

•	 Authentication validates the user’s identity.

•	 Privacy ensures that the user’s personal information is protected.

•	 Authorization provides role-based access to functionality and

resources.

•	 Confidentiality ensures access is granted only to privileged users.

•	 Integrity ensures that information is not modified during

transmission.

•	 Nonrepudiation ensures that that evidence cannot be altered or

deleted.

•	 Layer-wise DXP security includes enforcing security best practices

at the infrastructure layer, web server layer, application server layer,

database layer, and services layer.

Chapter 6 DXP Security

200

•	 Common security scenarios of a DXP include password standards,

session management, information management, data validation, and

service security management.

•	 The key steps of the DXP security testing framework include secure

code scanning, general web security testing, and application-specific

security analysis.

Chapter 6 DXP Security

201
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_7

CHAPTER 7

DXP Information Security
Information security is crucial for digital platforms that are used for financial domains

such as banking. In this chapter we discuss various aspects of information security. The

best practices given in this chapter can be used for defining and implementing a robust

information security framework for DXPs.

�Information Security in DXP Solutions
Information security defines policies for protecting data at rest and data during transit.

The basic principles of information security are defined as follows:

•	 Information security policies: Organizations should define security

policies and procedures and processes to protect information from

unauthorized access and appropriate use.

•	 Data access policy definition: Access policies should be defined for

data, based on the sensitive nature of the data.

•	 Defense in depth: Provide layer-wise access policies at each of the

application tiers.

•	 Compartmentalization: Group the information and provide

access to grouped information (called “compartments”) only on

a need-to-know basis. Compartmentalization reduces the attack

surface and can be implemented using layer-wise security and

the least privilege principle.

•	 Least privilege by default: Provide only the minimal needed privileges

for entities and processes.

•	 Centralized access: All security policies such as authentication and

authorization should be centrally controlled.

202

�Implementing Defense in Depth
Defense in depth provides security checks at each of the layers. We will explore defense

in depth at all layers.

�Firewalls and Proxies
For untrusted zones and external facing systems, we need to use a firewall that provides

protections against attacks, as listed in the following:

•	 Denial of service (DoS) and distributed denial of service (DDoS)

•	 Protection against spam and malware

•	 Load balancing of traffic

•	 Forward proxy and reverse proxy to filter malicious data

�Server Hardware Level Protection
The following security measures can be taken at the server hardware level:

•	 Harden all the production servers to block all unnecessary ports,

services, protocols, and software. Remove all unnecessary modules, file

shares, filters, and services from the web server and application server.

•	 Harden the operating system on production servers and remove all

unnecessary software and services.

•	 Install antivirus, vulnerability scanners, and antimalware software on

production servers.

•	 Enable hard disk encryption for the server hardware.

•	 All production servers should be regularly updated with security

patches and security fixes.

�Monitoring Infrastructure
Install intrusion detection systems and network monitoring systems. The monitoring

infrastructure should continuously monitor the application for security incidents and

should report those incidents in real time.

Chapter 7 DXP Information Security

203

�Backup Jobs and Synch Jobs
The system administrators should define backup and synchronization jobs to regularly

back up critical data. The files and code should also be regularly backed up.

�Disaster Recovery and Business Continuity Plan
In order to fully protect the data, the organization should set up a disaster recovery (DR)

environment where data is backed up on a regular basis. During unexpected disasters,

the organization can use the DR environment to resume the business within a short span

of time.

�Implementing Information Security Policies
Defining and implementing robust information security policies are essential to

providing robust information security for a DXP. This section discusses various aspects

related to information security policies.

�Information Access Policies
We need to define security policies and processes to protect information, so that

information is appropriately used, distributed, modified, recorded, and destroyed.

•	 Define policies for sharing sensitive information on social media

platforms.

•	 Conduct security audits regularly to ensure compliance of

defined security policies (such as International Organization

for Standardization [ISO] and the International Electrotechnical

Commission [IEC] 27002). Wherever needed, the organization

should also engage an external auditor or certification body to assess

security compliance.

•	 Log, monitor, and track all access change events and admin activities

in a secure audit log. The access logs should be retained and archived

as per the regulations.

The process of creating an information security policy is detailed in Figure 7-1.

Chapter 7 DXP Information Security

204

�Information Ownership Identification

The first step is to create an inventory of the enterprise applications and prioritize them

from a security stand point. For each of the identified applications, identify or create

the ownership for information owners. Information owners have the full responsibility

of creating or identifying the information assets (such as content, documents, images,

videos) and categorizing them based on the sensitive nature of the information.

During this stage we also define various security categories. For instance, we could

define three security categories such as public, private, and confidential. The security

categories are identified based on their impact. Loss or leakage of public data only

causes minor impact, whereas leakage or loss of confidential data leads to huge financial

loss and damages reputation. All personal data such as credit scores, date of birth,

education status, and such should be categorized into the “private” category.

�Information Classification

Once all information assets are identified, they should be categorized into predefined

security categories. Each of the information assets are added to one of these security

categories. The information owner is responsible for identifying the most appropriate

security category for the information asset. The security SLAs for each of the security

categories are defined.

•Web application
prioritization

• Information assets
identification

•Security category
definition

Information
Ownership

Identification

•Categorization
•SLA definition

Information
Classification •Access control policies

•Security processes

Information Security
Policy Definition

Figure 7-1.  Information security policy process

Chapter 7 DXP Information Security

205

The access control list (ACL) should be defined for all resources. By default, the users

should be given least privileges to use any resource.

�Information Security Policy Definition

For each of the security categories, various attributes such as access levels, distribution

and storage policy, and such are defined. Table 7-1 is a sample table that defines a

security policy.

Table 7-1.  A sample list of security policies

Security
Concern

Public Private Confidential

Access

controls

• � Given to all

• � Visitor and

guest user

access

• �R estricted (login- and

permission- based)

• �M aintain technical, physical,

and administrative safeguards

for the data.

• � Should not be used apart from

the agreed upon purposes.

• �A utocomplete form fields

should be disabled for

private data.

• � Strictly on need-to

know-basis

• �M ultilevel authentication &

two-factor authentication that

provides additional layer of

authentication

• � Compartmentalized

information

• �N eed to sign nondisclosure

agreement (NDA)

• � Confidential information

should be masked while

displaying.

• � Confidentiality notice should

be displayed on all web pages,

reports, screens wherever the

data is used.

(continued)

Chapter 7 DXP Information Security

206

Table 7-1.  (continued)

Security
Concern

Public Private Confidential

Storage • � Stored in

normal

storage

• �A ccess-restricted storage

• �E nsure continuous availability

• � Data cannot be cached.

• � Data cannot be transmitted as

URL parameter or with HTTP

GET request or as hidden

fields.

• � Stored in encrypted way

• �M ust be stored in

nonreversible one-way hash

method.

• � Stored within a specific

location and geography

• �E nsure continuous availability

• � Data cannot be cached.

Sharing • � Can be

shared

as-is

• �N eed permission from

information owner for the

storage.

• �T ransport level security

• �E ncrypted during sharing

• � Bulk sharing not allowed

• �N ot shared

Destruction • � Should be safely destroyed • � Should be safely destroyed

Auditing and

logging

• �N ot needed • �A ll access events should be

logged.

• �A ll access events should be

logged

• �T hird-party audits should be

conducted on a regular basis.

Archival and

retention

• �M ust

comply

with legal

regulations

• �N eed permission from

information owner and must

comply with legal regulations

• �N eed permission from

information owner and must

comply with legal regulations

Availability • � Should have high availability • � Should have high availability

(continued)

Chapter 7 DXP Information Security

207

Table 7-1.  (continued)

Security
Concern

Public Private Confidential

Integrity

(to prevent

information

modification)

• �M inimal or

absence

of integrity

checks

• � Integrity checks should

be conducted during data

transmission.

• � During transport and

authentication, use certificates

created by reputed certificate

authorities (CA).

• � Checksums should be

enforced for data.

• � Integrity checks should

be conducted during data

transmission.

• � During transport and

authentication, use certificates

created by reputed certificate

authorities (CA).

• � Checksums should be

enforced for data.

Confidentiality

(to prevent

data loss and

data theft)

• �N ot needed • � Should be strictly protected.

• � Should comply with all

security and privacy laws and

regulations

• �E ncryption should be enforced

by default.

• � Should be strictly protected.

• � Should comply with all

security and privacy laws and

regulations.

• �E ncryption should be enforced

by default.

Incident

response

• � Inform the impacted users

upon data loss or data

leakage.

• �A ll security incidents should

be fixed within 24 hours’ time.

• � Inform the impacted users

upon data loss or data

leakage.

• �A ll security incidents should

be fixed within 2 hours’ time.

�Protecting Private Data
In order to fully protect the users’ private data:

•	 Identify all the private data of users. This includes PII (personally

identifiable information), user preferences, and such.

•	 Define policies for storing, distributing, access monitoring, and

destroying private data.

•	 Get approval from users when sharing private data with external or

third-party party services.

Chapter 7 DXP Information Security

208

•	 Define the process for responding to incidents related to breach

or theft of private data. The process should identify the roles and

responsibilities during a data breach incident.

•	 Encrypt private data when it is stored or when it is being transferred.

•	 If the private information is stored in physical records, they should

be secured in locked cabinets and should be destroyed at the

earliest time.

�Information Security Best Practices
This section discusses security-related best practices.

�Privacy Best Practices
Privacy information includes PII such as email ID, phone numbers, and such. Privacy

information should be transferred only over a secure transport layer (such as HTTPS)

and the information should be masked during display. Private information should not

be cached and should not be shared with external services. Do not store any private

information in session cookies.

�Authentication and Authorization
Authentication and authorization should be centrally controlled within an organization.

For integration with external third parties, we should use federated security such as

SAML. A separate service account should be created for authentication and integration

across application layers. A robust password policy should be defined that covers

various aspects such as password complexity, password expiration, password storage,

account lockout, and such. Simultaneous logins for the same user ID should not be

allowed. Use security plugins and filters provided by the platform. Implement the

“separation of duties” principle wherein the resource actions are carried out by a

separate set of entities. For instance, an application user cannot be an administrator of

the same application.

Post authentication, all resources should be provided access based on their roles and

permissions.

Chapter 7 DXP Information Security

209

�Auditing and Logging
The information lifecycle events such as creation, updates, and deletes should be

logged. All sensitive security transactions such as authentication failures, admin role

updates, and password updates should be logged. The audit log entry should include

the timestamp, user name, and event details. Private or confidential information should

not be included in the log file. Ensure that log files are accessed only by authorized

personnel and the log file content cannot be altered.

Engage external security experts to audit the applications.

�File Management
The application should only allow whitelist file extensions. Executable files extensions

such as .exe, .sh should not be allowed. User-uploaded files should never be allowed to

autoexecute and the file permissions should be strictly controlled. Uploaded files should

be validated for the file type and size, and scanned for malware or other vulnerabilities.

�Error Handling
All security-related errors should be handled. The end user should not see the technical

details of the error. For all API invocations and service calls, set a timeout value.

�Secure Software Development Life Cycle
A security review should be conducted in every phase of the software development life

cycle (SDLC). During the architecture phase and design phases, security requirements

should be considered; security reviews and security testing should be carried out during

the build phase. Security standards such as SysAdmin, Audit, Network, Security (SANS).

Payment card industry (PCI) standards should be followed based on the application and

domain needs. Use the latest version of secure open-source components and avoid using

open-source frameworks with known vulnerabilities. Check the public disclosures for

each of the open-source components used.

Chapter 7 DXP Information Security

210

�Secure Incident Management
Define standard operating procedures (SOPs) to respond to security incidents. The

security monitoring infrastructure should be able to immediately recognize security

incidents, and the security incident management process should report and address

the security breaches. The security monitoring infrastructure should report suspicious

transactions. Establish processes and responsibilities to address the security incidents

based on its severity.

�Database Level Security
Create specific nonadmin database users for the application. Restrict the access to

nonapplication schemas and other database packages for the application user. Instead of

storing the database user details in plain text, encrypt them or define application server

level data sources. Only the DBA user should be allowed to perform operations such as

database object creation and modification. Application users should be restricted to do

create, read, update and delete (CRUD) operations.

�Sharing the Data with External Systems
When the application shares data with external systems and services, it should be

strictly based on agreed contracts and should comply with legal regulations. Sharing

of private data needs consent from the information owners. The mode of transmission

and information loss responsibility should be agreed upon by all parties during the

information exchange. The confidentiality, integrity, and availability of the data should

be maintained during information exchange.

�Security Awareness and Training
All the stakeholders of the organization should be aware of the security processes and

policies. In order to achieve that, the organization should conduct mandatory security

awareness training for all the employees and they should be made aware of security

best practices. In addition to training programs, employees who are handling secure

information should undergo mandatory security certification.

Chapter 7 DXP Information Security

211

�Security Testing
As part of application validation, the security testing team should validate all security

scenarios for critical business processes and transactions. At a minimum, a security

testing process should ensure the following:

•	 Testing the common security scenarios such as session management,

input validation, permission issues, authentication, information

disclosure, password policies, header validation, cookie validation,

and such

•	 Validation of OWASP top ten vulnerabilities

•	 Testing the end-to-end business transactions to exploit any

vulnerabilities

•	 Validation of the security configuration (such as directory browsing)

for all servers

•	 Testing security error handling scenarios

•	 Conducting automated security testing for testing brute force attacks

•	 Compiling and reporting out the vulnerabilities to all stakeholders

along with recommended remediation actions

•	 Manual security testing should look for security issues in the logic

and do white box testing.

�Cloud Testing
Most of the modern digital platforms are available on the cloud or they are cloud enabled.

Hence organizations should carefully review the security standards and security controls

(such as cloud security alliance and cloud control matrix) provided by the cloud provider.

All the controls such as network access controls, resource permission controls, monitoring

controls, encryption and key management controls, and such should be reviewed by

the security team to ensure that they satisfy the security requirements. The following is a

sample list of controls that we can check for while choosing a cloud provider:

•	 Encryption controls and standards

•	 Network security support

Chapter 7 DXP Information Security

212

•	 Anti-malware support

•	 Support for role-based access on resources

•	 Log and remote monitoring

•	 Security admin controls

�Chapter Summary
•	 Information security defines policies for protecting data at rest and

data during transit.

•	 The key principles of information security are information

security policies, data access policy definition, defense in

depth, compartmentalization, least privilege by default, and

centralized access.

•	 Defense in depth can be implemented by using infrastructure-level

security (firewalls and proxies, server hardware level protection,

monitoring infrastructure, backing up jobs and synching jobs,

disaster recovery, and a business continuity plan).

•	 The process of creating information security policy includes

information ownership identification, information classification,

and information security policy definition.

Chapter 7 DXP Information Security

PART IV

Infrastructure and NFR for
the Banking Experience
Platform

215
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_8

CHAPTER 8

Quality Attributes
and Sizing of the DXP
Nonfunctional requirements, also known as quality attributes, decide the robustness

and long-term success of the DXP. The quality attributes such as usability, reliability,

scalability, availability, and performance help us to define, track, and measure the

success metrics of the digital platform. Conforming to the service level agreements

(SLAs) for these quality attributes ensures the long-term success of the program due to

higher user satisfaction. This chapter explores various quality attributes needed for a

digital solution.

Infrastructure sizing is needed to handle user traffic and transactions for the digital

application. We also explore various factors involved in infrastructure sizing and disaster

recovery (DR) strategy of a DXP. As the cloud has become the de facto standard for the

digital application, we will explore cloud deployment of digital applications.

�Key Quality Attributes of DXP
The key quality attributes of DXP are explained in the following list. Each of these quality

attributes has its own set of metrics and SLA to quantitatively measure the quality

attribute.

•	 Scalability: The ability of the DXP to scale to increased user traffic,

data, and transaction volume without compromising the overall

performance

•	 Availability: The overall percentage of the time DXP is available and

functioning normally over a specific time period (usually 1 year)

216

•	 Performance: Performance covers various response-related metrics

such as response time, system performance, system throughput,

and such.

•	 Modularity: The ability of the DXP to provide and support

independent and reusable, plug-and-play type components

•	 Extensibility: The ability of the DXP to support extensions to provide

additional future capabilities

•	 Security: The ability of the DXP to protect, manage, and secure

sensitive information and data

Other quality attributes relevant for a DXP are as follows:

•	 Usability: Ease with which end user can use the DXP or learn the

DXP-based application

•	 Accessibility: The support provided by the DXP to access web

applications for people with disabilities

•	 Configurability: The ability of the DXP to allow configuration-driven

changes

•	 Stability: The degree to which the DXP can function normally during

peak load

•	 Interoperability: Ability of DXP to operate with other systems and

services.

•	 Efficiency: The ability of the DXP to perform functions with least

resources (CPU, memory etc.)

•	 Flexibility: The ability of the DXP to be reused across various

scenarios with minimum modification.

•	 Maintainability: The ease with which the DXP can be enhanced,

maintained, fixed, and improved.

In the coming sections, let us look at each of the quality attributes in detail.

Chapter 8 Quality Attributes and Sizing of the DXP

217

�Quality Attributes Deep Dive
We will describe various nonfunctional requirements that are typically used for a digital

experience platform.

�Usability Requirements
Usability defines the “ease of use” for the end user to use the web application and access

the required information. The following are the core usability requirements:

•	 The user interface should support various languages used by users.

End users should be able switch the language and to provide the

language preference.

•	 Key functionality should provide contextual help to guide the user on

how to use the functionality.

•	 The system should implement accessibility standards such as Web

Content Accessibility Guidelines (WCAG) 2.0 level AA to make the

system usable by a wider audience.

•	 During failures, the system should provide descriptive error messages

that are friendly and indicate clear next steps to correct the error.

•	 Messages should be categorized into categories such as informative

messages, error messages, warning messages, and confirmation

messages.

•	 The website should provide consistent user navigation (menus,

breadcrumb) and provide uniform and consistent page layouts.

•	 The system should provide robust online help providing contextual

help and in-context hints.

•	 The website should provide how-to guides, usage guides, FAQs,

product documentation, and tutorials and manuals.

Chapter 8 Quality Attributes and Sizing of the DXP

218

�Security Requirements
Security details are detailed in Chapters 6 and 7. The following is a look at prominent

security requirements:

•	 Ensure that all private web resources are properly protected.

•	 The system should provide strong password policies: that includes

strong passwords, password change frequency, account lockout

policies, and such.

•	 Account-related operations such as profile updates, password

changes, and registration should provide strong authentication

mechanisms (such as reauthentication, multifactor authentication,

step-up authentication, adaptive authentication, etc.).

•	 Default admin passwords should not be used at any layer.

•	 Forgot password functionality should send a time-sensitive password

reset link instead of sending the password in plain text.

•	 The session should be invalidated after explicit logout or after

a specified inactivity period. Session IDs should be sufficiently

random, and the application should not permit multiple

simultaneous sessions.

•	 Authenticated sessions should use HttpOnly cookies (cookies that

are cannot be accessed by client side scripts) and they should use a

“secure” attribute and a strict transport security response header that

instructs the browsers to access the resources only over HTTPS.

•	 All direct object references that provide the direct handle to internal

objects or data blocks should be protected. Authenticated users

should only access authorized data and objects.

•	 The filenames or folder names obtained from untrusted sources

should be canonicalized (converted into proper file name or folder

path) before using them.

Chapter 8 Quality Attributes and Sizing of the DXP

219

�Reliability Requirements
Reliability ensures that the system consistently performs the specified functionality and

recovers from failure. Given below are key reliability requirements:

•	 The system should consistently provide expected behavior.

•	 If any of the back-end systems or service fails, the digital application

will not fail. The application should be able to gracefully recover from

the failure.

•	 The system will handle the re-initiation of operations that lead

to an inconsistent state. For instance, the system will prevent

double clicking of the “checkout” function before the first checkout

operation is completed.

•	 The system handles unexpected and error scenarios such as long-

running transactions, failed transactions, network errors, outage of

back-end systems, and such. The system logs the issues and gracefully

rollbacks and shows friendly error messages in such scenarios.

•	 The infrastructure should be designed to be fault tolerant.

�Scalability Requirements
Scalability ensures that the application scales well for the larger workload, with

acceptable performance. The following are the main scalability requirements:

•	 For on-premise deployments, the application should be deployed as

a multinode cluster.

•	 The system should be able to handle increased user load and data

load, and should be able to handle future data growth.

•	 Horizontal and vertical scaling should be supported by the system.

•	 If any of the cluster nodes goes down (web server node, application

server node, or database server node), the system should be able to

load balance and seamlessly switch all the traffic to other nodes to

provide the expected response.

•	 The system should provide response within an acceptable time

period, even during peak traffic.

Chapter 8 Quality Attributes and Sizing of the DXP

220

�Availability Requirements
Availability provides the uptime availability of the system. Maximum availability is

necessary to ensure high-quality service for the end users.

•	 The system should provide maximum and continuous availability. In

order to provide preferred 99.999% availability, the system downtime

should be a maximum of 5.26 minutes per year.

•	 Even during peak traffic, the system’s availability should not be

impacted.

•	 The availability of the system should be ensured even when one of

the back-end systems or services is down.

•	 The data, code, and content should be synched up on a regular

basis to a disaster recovery (DR) site to handle unexpected disasters

and ensure business continuity.

•	 In case of unexpected disasters, the DR site should be up and running

within the recovery time objective.

•	 The recovery time objective (RTO) (the maximum time period within

which the DR site should be made active during disasters) should

be designed based on availability SLAs. In order to provide 99.999%

availability, we should have an active DR site that can take over

immediately after the primary site is down.

•	 The recovery point object (RPO) (maximum period for which data

loss is tolerated) should be designed based on availability SLAs. In

order to provide 99.999% availability, we should have an active DR

site to which we do a real-time data sync.

•	 The system should be available during upgrades and patching

process.

Chapter 8 Quality Attributes and Sizing of the DXP

221

�Archival and Retention Requirements
Due to legal obligations or business needs, content and data need to be archived and

retained for a specified time period. The main archival and retention requirements are

as follows:

•	 The system should archive and retain all data and content to comply

with legal regulations.

•	 The system should store the data in separate storage.

•	 The system should be capable of archiving data for a specified time

duration.

•	 The archival system should provide data redundancy to prevent data

loss and to provide high availability.

�Logging and Auditing Requirements
Logging is necessary to understand and debug the system actions. Auditing is necessary

to log security events such as login, login failures, login attempts, password change, etc.

The main logging and auditing requirements are as follows:

•	 The system should log the application events (with appropriate

categories such as info, debug, or error) and security events.

•	 The log entry should consist of timestamp, event source, error

details (if any), source IP address, and user ID so that it helps the

administrators to use the information.

•	 Security events such as login failures, login attempts, elevation of

privileges, account registration, workflow approvals, etc. should be

logged with corresponding user IDs.

•	 Sensitive information such as private information and session ID

should not be logged.

Chapter 8 Quality Attributes and Sizing of the DXP

222

•	 Appropriate authorization and access controls should be defined for

the log files.

•	 All sensitive operations such as creating a user, deleting an account,

or updating an account should be persisted in the audit table. The

audit table should store the transaction ID, user ID, timestamp, old

value, new value, and the operation type (create, update, delete).

�Performance Requirements
A system’s performance is measured by metrics such as response times, page load time,

etc. Following are the main performance requirements. We discuss DXP performance in

detail in Chapter 9.

•	 The response time of web pages should be within 2 seconds across all

geographies and all access channels during average load. In order to

fulfill strict SLAs across all geographies, we may need to use content

delivery network (CDN) and geo-centric applications.

•	 If the system takes more than 5 seconds for any transaction, the

system should display an informative message or graphical icon to

the end user.

•	 The system should respond within accepted SLAs even during peak

traffic and during maximum concurrent transactions.

•	 The throughput for the web server and application server should be

able to support maximum transactions and page views.

�Infrastructure Sizing of DXP
A properly sized infrastructure is the most essential element for achieving optimum

scalability and availability for the platform. This section looks at the key factors that can

be considered for infrastructure sizing of a DXP.

Note T he following sizing calculation is for on-premise deployment.

Chapter 8 Quality Attributes and Sizing of the DXP

223

Table 8-1 provides the key factors that are used in DXP sizing:

Given as follows are sample high-level calculations.

The sample calculations to calculate the right sizes for RAM and CPU cores for a

server is shown as follows.

•	 Maximum RAM memory needed by the application (in KB) =

(maximum number of concurrent user sessions × Average

session size) / 1024.

Table 8-1.  Sizing Metrics for DXP

Category Metrics needed for sizing

Load numbers • �T otal number of application users

• � Maximum number of anonymous/guest users.

• � Maximum concurrent users

• � Maximum transactions per hour

• �L oad number growth rate per year

Session numbers • �A verage session time per each user

• � Maximum objects per user session

• �A verage size of each session object

Content numbers • � Maximum web content volume

• �N eed for separate authoring and publishing instances

• � Content number growth rate per year

Availability number • �A pplication uptime requirement

• �D isaster recovery requirement

• �A vailability SLAs

Performance numbers • �A verage page response time

• �P erformance SLAs

Throughput numbers • �A verage number of page views per person

• �A verage page size

• � Maximum number of visitors per day

Chapter 8 Quality Attributes and Sizing of the DXP

224

•	 Maximum number of CPU cores needed = (maximum number of

web page requests per second) / (average number of pages served

by a single core in 1 second) + (maximum number of resources

requested by users per second) / (average number of resources

served by a single core in 1 second).

•	 Minimum bandwidth needed per day = (average number of page

views per person per day × average page size in MB × maximum

number of visitors per day).

�Cloud Hosting of DXP Solution
Modern digital platforms are available as cloud native applications or they provide a

cloud deployment option. Cloud native applications and cloud-enabled applications

help organizations to optimize cost, enhance business agility, reduce deployment times,

and provide highly available and secure services. The cloud enables rapid prototyping

and faster innovation. In this section we will discuss the main factors needed for cloud

deployment of a DXP solution.

�Tiered Architecture
We need to identify all the components for implementing the tiered architecture. At a

minimum we should configure the following components:

•	 Firewall: This component is needed to filter the traffic and prevent

any network-related security threats.

•	 Load balancer: Load balancers are used to evenly distribute requests

to all available systems.

•	 Security providers: We need to configure the security components to

provide authentication services.

•	 Web server: The web server caches and serves the static content such

as images, videos and other binary content.

•	 Application server: The enterprise application is hosted on the

application server.

Chapter 8 Quality Attributes and Sizing of the DXP

225

•	 File storage server: The server is used to store the file and content.

•	 Database server: The application data will be persisted in the

database server.

Depending on application needs, we also need to configure the e-mail server,

content management server, authentication server, and document management system.

We need to use the load requirements and traffic requirements to arrive at the

appropriate infrastructure sizing numbers for each of the tiers. For high availability,

we need to use multinode cluster topology.

Following are other factors that we need to consider for cloud deployment:

•	 Availability: Most cloud providers offer high-availability deployment

models. This includes multiregion availability, fault tolerance, and

disaster recovery options.

•	 Scalability: Auto scaling is one of the core strengths of the cloud

model. We need to check the cloud provider’s scalability needed for

the application and plan the cloud deployment.

�Cloud Deployment Considerations
If we are planning to deploy on-premise applications to the cloud, we need to evaluate

the suitability and feasibility of the cloud deployment. Following is a list of evaluation

parameters that we can consider for cloud deployment.

�Platform Coexistence

Normally, enterprise applications have integrations with internal/legacy enterprise

applications. When we move the enterprise application to the cloud, we need to evaluate

the options for these integrations. Following are some of the factors we need to evaluate:

•	 Move the enterprise application along with all dependencies to the

cloud. If there are strict data and security requirements, evaluate the

option of connecting from cloud to on-premise secure systems or

using a private cloud.

Chapter 8 Quality Attributes and Sizing of the DXP

226

•	 Use a virtual private cloud (VPC) to integrate with in-house/on

premise applications.

•	 Leverage adaptors provided by the cloud provider to integrate the

enterprise application to the on-premise applications.

�Security

Security involves various categories, as discussed in Chapters 6 and 7. From a cloud

deployment standpoint, infrastructure security and data privacy are key concerns.

We need to carefully evaluate the infrastructure-level security provided by the cloud

provider; that includes firewall, layered security, and security measures against denial of

service (DoS) or distributed denial of service (DDoS).

We should also check for regulatory requirements and compliance requirements for

the data storage location and options provided by the cloud provider for the same.

�Integration design

Most of the modern digital applications use service-oriented design for integrations.

The digital platform should be designed to use REST-based services for all its

integrations. This would provide an easier and extensible way to integrate with all

external and third-party applications. When we deploy the CMS or other systems in

headless mode, the RESTful integration model can easily consume (and is flexible to

adapt to) this headless integration model.

�Cloud Deployment Model
A typical cloud deployment model for a DXP application on the Amazon Cloud is shown

in Figure 8-1.

Chapter 8 Quality Attributes and Sizing of the DXP

227

Key highlights of the cloud deployment model of the DXP application as depicted in

Figure 8-1 are as follows:

•	 The environments will be hosted in the specific region of Amazon

Web Services (AWS).

•	 There are three environments Prod, SIT, and Dev; these will be hosted

in two separate VPCs, designated as Prod and Non-Prod VPCs.

•	 A separate management VPC will serve both the Prod and Non-

Prod VPCs. In Figure 8-1 we have “Production VPC” for running the

production instance of DXP and “Non-Production VPC” for running

the Dev and SIT instances of DXP.

Figure 8-1.  Sample DXP Cloud Deployment Model

Chapter 8 Quality Attributes and Sizing of the DXP

228

•	 Each VPC has been segregated into tiers by creating separate subnets

for each tier.

•	 Connectivity to the back-end services like LDAP and IAM that are

hosted on-premise will be secured via an IP Sec VPN. There will be

two VPN’s set up: one for Prod and the other for the Non-Prod VPC.

•	 Customers and end users will access the DXP application over Secure

Sockets Layer (SSL).

•	 A multiavailability zone configuration is recommended for

production, as this provides zone level failure and automated failover

within seconds.

•	 All nonproduction workloads will be deployed as standalone, and

production workloads will be deployed with high availability.

Note  We have taken Amazon Cloud as an example to depict the cloud
deployment model. However, we could use any cloud provider based on the
requirements.

�Disaster Recovery and Business Continuity for DXP
Applications
Disaster recovery (DR) ensures high availability during unexpected events such as a

natural disaster. A robust DR strategy is needed in ensuring business continuity. This

section elaborates the DR process for DXP applications.

The high-level steps in a DR strategy are given in Figure 8-2.

Chapter 8 Quality Attributes and Sizing of the DXP

229

A DR strategy includes three main steps, as depicted in Figure 8-2: DR planning, DR

implementation, and DR maintenance.

�DR Planning
Disaster recovery planning involves identifying all DR data and DR processes to

implement a robust DR strategy. We start by studying the as-is system through

stakeholder interviews and questionnaires to understand the code, content, and data

that needs to be synchronized on a frequent basis. During system study, we identify

the system dependencies, understand system and network architecture, and study

Figure 8-2.  Sample DR strategy

Chapter 8 Quality Attributes and Sizing of the DXP

230

the historical outage incidents. We should carry out a business impact analysis for

critical business processes; the impact analysis exercise will help us to map each

of the business-critical processes to the component and DR process. The business

impact analysis also helps us to define the RTO for the corresponding DR process. We

should also examine existing contingency policies and data backup processes. During

this phase we will also finalize the metrics such as RPO and RTO for the site. We will

define the DR activities and processes to achieve the RPO and RTO. A sample list of DR

activities is given in Table 8-2.

The infrastructure architect defines the governance model and details all the

required infrastructure-related processes. Most of the synchronization processes will

be configured as scheduled batch jobs. The infrastructure architect reviews the metrics,

activities, and processes with all stakeholders and gets their signoff. The infrastructure

architect also defines the communication process for internal and external stakeholders

as part of DR process definition. Once the DR processes and activities are finalized, the

infrastructure architect defines the schedule for implementing the planned DR activities.

�DR Implementation
During the implementation phase, we assign the resources for each of the planned

activities based on the schedule and priority.

Table 8-2.  Sample DR Activities

DR Activity Process Comments

DR site setup Site setup

process

Create a DR site as a mirror replica of the primary site as a

one-time setup process.

Code backup Code backup

process

Code is synchronized on a daily basis. The synchronization

frequency is adjusted based on the RPO.

Data backup Data backup

process

Data is synchronized on a daily basis. The synchronization

frequency is adjusted based on the RPO.

Content backup Web content

backup process

Content is synchronized on a daily basis. The synchronization

frequency is adjusted based on the RPO.

DR Site switching Site switching

processes

The emergency response process details the steps to switch

from primary site to DR site.

Chapter 8 Quality Attributes and Sizing of the DXP

231

The primary activity is to set up the DR site in a remotely located data center and set

up all the synchronization jobs. The infrastructure configuration at the DR site should be

an exact mirror replica of the primary site. The DR process owners set up and configure

all the backup and synchronization jobs as part of setup activity.

We will prepare a detailed DR test strategy to test all the DR processes and

synchronization jobs. We will execute the pilot run of DR processes and measure the

RTO and RPO to ensure that DR processes and their frequency are well designed.

There are mainly three types of DR options available, as listed in Table 8-3.

The DR options can be chosen based on RPO and RTO needs. The hot backup option

is used for very high availability requirements and mission-critical applications that

have strict RPO and RTO. The cold backup option can be used for applications that can

tolerate data loss or low availability.

�DR Maintenance
The DR processes are continuously monitored and their success/failure reports are

notified to all stakeholders. Based on the changes in business objectives, the DR

processes are fine tuned. The DR processes and plans are reviewed and updated at

regular intervals. All DR teams are trained on the emergency operating procedures.

Table 8-3.  Key DR options

DR Option Setup and Synchronization Details Typical RPO and RTO

Cold backup

option

The DR site is prepared and set up but the data and content

are not actively synched. The data and content will be

restored from backup in the event of disaster.

RPO = 24 hours

RTO = 72 hours

Warm

backup

option

The DR site is synced with data from the primary site in

regular intervals. In the event of disaster, the warm backup

takes over.

RPO = 4 hours (with

4-hour sync jobs)

RTO = 1 hour

Hot backup

option

The DR site is synced with data from the primary site in near

real-time. In the event of disaster, the hot backup takes over.

RPO = 1 hour (with

hourly sync jobs)

RTO = 30 mins

Chapter 8 Quality Attributes and Sizing of the DXP

232

�DR Strategy Document
What follows is the structure of a DR strategy document covering all concerns and topics

related to the DR process.

�Scope and Objectives

This section mainly defines the DR requirements and covers these elements:

•	 Scope of DR planning

•	 DR objectives

•	 Assumptions

�As-Is System Analysis

In this section we will understand the existing data, processes, and system architecture

to come up with the DR process and architecture.

•	 System architecture study

•	 Metrics definition: RPO and RTO

•	 Business process study and prioritization

•	 Key disaster scenarios

�DR Planning

The main activities in DR planning are given as follows:

•	 DR roles and responsibilities

•	 DR processes

•	 Synchronization process

•	 Communication process

•	 Incident response process

•	 Site switching process

•	 Recovery process for each disaster scenario

Chapter 8 Quality Attributes and Sizing of the DXP

233

•	 Monitoring activities

•	 Primary site monitoring

•	 DR site monitoring

•	 Metrics monitoring and notification

�Chapter Summary
•	 The key quality attributes of a digital application are scalability,

availability, performance, modularity, extensibility, and security.

•	 Other quality attributes are usability, configurability, stability,

interoperability, efficiency, flexibility, and maintainability.

•	 Usability involves supports for various languages, contextual help,

accessibility, friendly error messages, FAQs.

•	 Security covers various aspects related to authentication,

authorization, password policies, and such.

•	 Reliability requires consistent performance of the application.

•	 Scalability requirements are met if the application scales for

increased user load and transaction load.

•	 Availability requires continuous uptime and availability of the

application.

•	 Performance requirements cover application response time, process

time, transaction completion time, and such.

•	 Infrastructure sizing includes various factors such as load numbers,

session numbers, content numbers, availability numbers,

performance numbers, and throughput numbers.

•	 A robust DR strategy includes DR planning, DR implementation, and

DR maintenance.

Chapter 8 Quality Attributes and Sizing of the DXP

234

•	 DR planning includes system study, business impact analysis,

metrics definition, DR process definition, and DR communication

planning.

•	 DR implementation includes DR site setup, DR process

implementation, and DR testing.

•	 DR maintenance includes DR site monitoring, metrics monitoring,

and fine tuning the DR process.

Chapter 8 Quality Attributes and Sizing of the DXP

235
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_9

CHAPTER 9

DXP Performance
Optimization
Performance is the primary driver for end-user satisfaction. User-centric DXP

platforms aim to provide optimal performance at all touch points. Performance also

directly impacts user traffic, user retention, online revenue, and conversion rate. Page

performance is also used by some web search engines for ranking the web page in

further improving the site traffic.

This chapter discusses various dimensions of DXP performance optimization and

various methods that are used to achieve the same.

�DXP Performance Optimization of
Presentation Layer
In many scenarios, performance is taken up during the end phases of the project when

the team notices performance delays during performance testing. Troubleshooting and

fixing performance issues during the end stages of the project is not only costly but also

impacts the project timelines. Performance optimization should be done iteratively to

identify and address performance issues during early phases of the project.

�User Experience
End-user experience is of paramount importance for a DXP. As web pages become more

interactive, the page size and associated performance overhead are also increased.

Enhancing the user experience involves optimizing the performance at all user touch

points.

236

�Web Page Performance Optimization Scenarios

Most of the user journeys are initiated through web pages, hence it is necessary for the

web pages to have optimal performance. Table 9-1 lists rules of thumb and performance

best practices for web page optimization.

Table 9-1.  Performance Optimization Thumb Rules for Web Page

Performance
Optimization Rule
of Thumb

Objective Techniques

Reduce HTTP

requests

• � The browser spends time in

establishing connection and

downloading the components.

Reduced HTTP requests minimize

connection and download time.

• � Merge JS/CSS files into a combined

master file.

• � Use CSS Sprite.

• � Remove any duplicate HTTP

requests.

Image optimizations • � Rendering images takes most of

the page load time.

• �� Delivery of optimal version of

image greatly reduces the page

load time and reduces overall

page size.

• � Compress the image to reduce

its size.

• � Use optimal image formats such as

PNG or WebP

• � Progressively load images on

demand.

• � Specify exact image dimensions.

Optimal resource

loading

• � Load the resources asynchronously.

• � Use responsive images that renders

on all devices and browsers.

• � Defer JavaScript loading.

Caching • � Caching frequently used data

improves the performance

• � Set cache control headers for static

assets such as images, Javascripts,

and CSS files.

• � Cache AJAX responses for faster

rendering.

(continued)

Chapter 9 DXP Performance Optimization

237

Table 9-1.  (continued)

Performance
Optimization Rule
of Thumb

Objective Techniques

Delivery from edge

locations (nearest

geographical

location)

• �F or static content, leverage globally

distributed edge locations (nearest

geographical location) to serve the

content with minimal latency.

• � Deliver content from the most

optimal geographic location.

• � Use content delivery networks

(CDNs) like Akamai.

• � Use cloud-based delivery for static

content.

Compress and

reduce size of

the presentation

components.

• � Compression reduces the overall

request size and the overall

page size.

• � The size of text-based components

such as JavaScript files and CSS

files reduces after compression.

• �E nable gzip compression at

the web server layer and set

appropriate HTTP headers for

browser to decompress.

• � Minify the JavaScripts by removing

unnecessary and redundant data

and stylesheets and plugins.

Optimal positioning

of the JavaScripts

and stylesheets

• � Appropriate placement of

stylesheets and JavaScripts

improves the perceived page load

times and prevents browsers

getting blocked.

• � Place CSS at top and JavaScripts at

bottom.

• � Deliver JavaScripts from CDN and

cloud locations.

Other performance

optimization rules

of thumb

• � Avoid server redirects.

• � Use custom build of JS frameworks

to include only the needed

modules/components.

• � Remove duplicate HTTP calls.

• �F ix all 404 errors and avoid 301

redirects.

• � Use HTTP/2, which is the latest

version of HTTP.

• � Use multiple domains to host and

deliver static content.

(continued)

Chapter 9 DXP Performance Optimization

238

�Performance Testing for DXP
We need to periodically test the performance of web pages. Performance testing tools

identify the performance-related issues and provide the recommended action plan.

�Performance Testing Activities
Key performance testing values for a regular sprint-based delivery are depicted in

Figure 9-1.

Table 9-1.  (continued)

Performance
Optimization Rule
of Thumb

Objective Techniques

Mobile web

performance

• � The mobile web application could

save the JS/CSS in the device’s local

storage and use it for subsequent

requests. This optimizes latency. Use

the offline storage features of the

mobile platforms.

• �F or second time page loads, only

load the updated/modified scripts

not stored in local storage.

Chapter 9 DXP Performance Optimization

239

We have elaborated categories of performance testing as follows:

�Requirement Analysis

During requirement analysis, we identify the detailed requirements related to

performance testing. The requirements are obtained through stakeholder interviews and

requirements documents. Requirements analysis is done in sprint 0 so that the test plan

will be used in subsequent sprints. Chapter 2 covers requirement analysis in more detail.

The main objectives during this stage are:

•	 Identify performance test requirement/expectations.

•	 Identify all the performance service level agreements (SLAs) for page

response times, transaction completion time, and such.

•	 Identify and finalize load numbers such as maximum concurrent

users, average session time, maximum content size, and such.

•	 Define an approach for performance test execution.

Figure 9-1.  Various sprints for performance testing

Chapter 9 DXP Performance Optimization

240

The key activities in this stage are:

•	 Interview stakeholders and gather performance test requirement/

expectations. Other requirement gathering methods are as-is system

analysis, and study of requirements documents that can be used.

•	 Understand risks, constraints, and assumptions related to

performance.

•	 Understand the scope of performance testing for each sprint.

•	 Understand application usage patterns, traffic patterns, content

volume, and such.

•	 Prioritize test requirements based on business criticality.

•	 Understand data setup requirements and data quality requirements.

•	 Prepare a high-level performance test plan for the sprint.

•	 Prepare a test plan based on the requirement analysis and

stakeholder interviews.

•	 Conduct a review of the test plan to verify the performance SLAs and

performance expectations.

�Design

During this phase we design and develop the performance test scripts as per the test

plan prepared in sprint 0. The performance test scripts can be categorized as client-side

performance test scripts and server-side performance test scripts.

The main object of performance testing in this stage is to create the test scripts to

provide coverage, and execute the performance test scripts.

The key activities in this stage are as follows:

•	 Set up the test environment and set up test data.

•	 Create performance test scripts as per the test plan.

•	 Set up a continuous and iterative testing environment.

•	 Set up a test reporting and notification infrastructure.

•	 Set up parameters to be monitored at the infrastructure

resource level.

Chapter 9 DXP Performance Optimization

241

�Performance Testing Execution and Reporting

During this phase we execute the performance test scripts and report the findings. The

main objective of this phase is to verify all test scenarios to provide a stable build.

The key activities in this phase are as follows:

•	 Refine test scripts and test data as required.

•	 Perform identified types of performance tests like load, stress,

endurance, etc.

•	 Ensure required workload is being generated at various points.

•	 Execute performance tests to cover various scenarios:

•	 Isolated tests at different workloads for individual transaction.

This helps us to test the performance behavior of each of the

transactions.

•	 Mixed load test at different workloads. We can test this by adding

various loads for a combination of transactions.

•	 Ramp-up tests that incrementally add user load in incremental steps.

Work load and test duration is gradually increased, and the server

resources and response times are monitored. We can increment the

user load in steps of 10 users per test.

•	 For each transaction such as checkout function or shopping cart

function

•	 For mixed transactions such as a combination of checkout and

shopping cart

A sample table to record the ramp-up testing is shown in Table 9-2.

Chapter 9 DXP Performance Optimization

242

We can perform the ramp-up test as mentioned for each of the key transactions, to

understand the system behavior at each load. We could also perform the ramp-up test

on a transaction mix (including a combination of transactions).

•	 Monitor and capture performance statistics of server resources

(CPU, memory, network bandwidth) and infrastructure.

•	 Generic parameters:

•	 CPU utilization: total utilization, idle time

•	 Memory utilization: committed bytes, available bytes, etc.

•	 Page performance: page response time, perceived response

time, time to first byte

•	 Physical disk: read, write, and latency

•	 Throughput

•	 Instrument code with timers for method / code level timing

•	 Server side parameters: connection pool parameters, thread pool

parameters, etc.

•	 Network monitors

•	 Profiling, code coverage, and memory debuggers

Table 9-2.  Sample Ramp-Up Test Table

Work Load Time Duration CPU Utilization Memory
Utilization

Throughput Page Response
Time

10 10

20 20

30 30

40 40

50 50

Chapter 9 DXP Performance Optimization

243

•	 Collect and report test results:

•	 Response times vs. number of users

•	 Throughput vs. number of users

•	 Transactions per second

•	 Hits per second

•	 Users vs. time

•	 Errors

•	 CPU utilization vs. number of users/time

•	 Memory utilization vs. number of users/time

•	 Throughput achieved

We can document the response times at various workloads as shown in Table 9-3.

�Key Performance Metrics
The main performance metrics for web page components are given as follows:

•	 Time to first byte (TTFB): It is the time taken by the server to send

the first response to the browser. TTFB is the measure of server

responsiveness. A smaller TTFB is essential for optimal page

response time.

•	 Page size: It is the overall size of a web page including the HTML and

static assets (images, videos, scripts, stylesheets, fonts, etc.). A large

page size delays the page load time, hence it is recommended to

reduce the overall page size.

Table 9-3.  Ramp-Up Test for Transactions

Workload Transactions Response time
Minimum Time Average Time Maximum Time 90% Time

100 users User login

Chapter 9 DXP Performance Optimization

244

•	 Page response time (PRT) or page load time: This is the total time

taken for the web page to load on the user agent/browser. The general

user expectation is to load the page within 1 second (for HTTP pages)

to 5 seconds (for HTTPS pages).

•	 Above the fold time: It is the time taken to render the page

components within user view (above the fold).

•	 Perceived response time: It is the page load time perceived by the end

user. We should aim to keep a minimal perceived page load time for

improved user experience.

�Performance Testing Framework
Various elements of the performance testing framework are depicted in Figure 9-2.

Various elements of the performance testing framework are elaborated as follows.

Figure 9-2.  Key elements of performance testing framework

Chapter 9 DXP Performance Optimization

245

�Identify Critical Transactions
In this phase we identify the business-critical transactions. The following are the key

activities in this stage:

•	 Understand architecture and design.

•	 Review of existing systems and infrastructure elements.

•	 Understand nonfunctional requirements (NFRs) and SLAs.

•	 Understand performance pain points in the current system.

•	 Identify business-critical transactions for the application.

•	 Identify performance-critical transactions and collect data required

for the workload model.

•	 Select key use cases for design and performance-centric code review.

�Document Workload Model
In this stage we model the workload for the application. Based on continuous

monitoring and log file analysis we identify the user load (such as maximum users,

concurrent user, peak user traffic, average user think time, logged in vs. anonymous

users), content load (maximum content volume, content growth rate), page access

patterns (frequently visited pages, popular navigation path), session values (average

session time, session size), and such. We document all the key NFRs (such as

availability, performance, scalability) and the SLAs for the same.

The workload values will be used for performance test scripts and for load testing.

�Qualitative Assessment
During the qualitative assessment phase, the performance engineer analyzes the as-

is system (such as infrastructure, server configurations, code, etc.) and provide best

practices-based recommendations to address any identified performance issue. During

this phase, the performance engineer also reviews the performance test plan.

Chapter 9 DXP Performance Optimization

246

�Quantitative Assessment
During this phase the performance test scripts are executed, and the performance

engineering team monitors the system behavior and the following server infrastructure

components.

	 1.	 Resource level

	 a.	 Utilization (CPU, disk, memory, network)

	 b.	 Throughput

	 c.	 Response time

	 d.	 User load

	 2.	 Web server

	 a.	 Maximum threads

	 b.	 Keep alive connections

	 3.	 Application server

	 a.	 Execution threads

	 b.	 Object pooling

	 c.	 Execute queue length

	 d.	 Entity beans pool

	 e.	 JDBC connection pooling

	 f.	 Garbage collection

	 g.	 Response time of servlets

	 4.	 Database server

	 a.	 Buffer cache hit ratio

	 b.	 Redo logs, top 5 SQL statements

	 c.	 Indexes

	 d.	 Buffer waits

Performance testing results will be compared against the specified SLAs. All issues

identified in performance testing will be addressed.

Chapter 9 DXP Performance Optimization

247

�Predict
Performance testing will be conducted for various workloads; using the test results, the

performance in production environment will be predicted.

�Performance Debugging Framework
When we encounter performance issues in DXP applications, we troubleshoot the root

cause of the performance issue. Generally, troubleshooting performance issues is a

complex exercise because it involves all the layers and components in the web request

processing pipeline.

In this section we discuss a performance debugging framework that provides proven

methodical steps for troubleshooting performance issues.

The main steps of the performance debugging process are as follows:

•	 Step 1: Identify the root cause component/system.

•	 Step 2: Fix and Optimize the component causing the performance issue.

•	 Step 3: Perform load testing, peak testing, and stress testing to ensure

that a fix done in Step 2 works optimally in all scenarios.

Let’s discuss each of these steps in detail as follows.

�Identify the Root Cause
We need to check the performance at each layer to understand the component causing

the performance issue. This is often the most complex step in the process. We need

to devise test methods for each layer and for components involved in the web request

processing pipeline. In addition, we need to do runtime profiling of the application and

log analysis to get more insights into the problem-causing element.

Following are various methods to identify the performance root cause:

•	 Perform layer-wise performance testing. Identify the time taken at

each layer involved in the web request processing pipeline. Starting

from the presentation layer (Java server pages/active server pages) to

the database layer, get the average execution time (for more than ten

iterations). At a minimum, we need the execution time for following:

•	 Average load time taken by the overall web page

Chapter 9 DXP Performance Optimization

248

•	 Average time taken for each of the page components (JS, CSS,

images, header footer, widgets, video, etc.): Record the page load

time, perceived load time, asset load time, page size, and other

key performance metrics.

•	 Average time for server call on each web page: Identify the Time

to First Byte (TTFB) to understand the server response time.

•	 Record the performance metrics at various loads to get average

numbers.

•	 Average time for server side components:

•	 Once we get insights about the TTFB for all the web pages, we

understand the time-consuming server component.

•	 Once the server component is identified, we need to profile

the component to further troubleshoot the issue.

•	 We need to calculate the time needed for various calculations,

service calls, and database calls that are involved in the

execution of the component.

•	 Increase the load and retest the preceding scenario to get the

average execution times.

•	 Average time spent at database layer/services layer:

•	 Based on the profiling of the server-side component, if the

performance issue is traced to the database layer or services

layer, identify the problem-causing query or service call.

•	 Execute the time-consuming query and identify the

performance optimizations needed for the query (using an

explain plan and other database-related optimizations such

as indexes, query caching, etc.)

•	 Identify the performance optimizations for the service call

(such as using server-side caching, optimal sizing, fine tuning

server configurations, etc.).

•	 Increase the load and retest the scenario to get average times.

Chapter 9 DXP Performance Optimization

249

•	 Record the time for various steps in the business process and

transaction:

•	 For critical business process and time-consuming transactions,

record the time taken for each step in the process.

•	 Repeat this step by increasing the load.

•	 Profiling the components:

•	 Profiling presentation layer:

•	 In addition to layer-wise performance metrics, use developer

tools to profile the web pages.

•	 Web page profiling provides useful metrics such as

categorized asset size, categorized asset load time, and such.

•	 Profile the server-side components to understand the memory

consumed by server side components:

•	 Business components performance analysis

•	 API and call tracing analysis

•	 Database call performance analysis

•	 Enterprise integration performance analysis

•	 Profile the database by understanding the execution plan for the

queries:

•	 Review the data model to see if it is properly utilized.

•	 Explore the possibilities of using lookup tables and snapshot

tables to prepare/cache the data for frequently accessed

queries and for static values.

Chapter 9 DXP Performance Optimization

250

•	 Log analysis:

•	 Analyze the logs to see if there are any exceptions/errors/waits/

deadlock or any other obvious performance issues. Try to get the

execution timings (from logs/data from tables) to find out the

timings from the application tier (request received time, response

sent time, response size, etc.)

•	 The DBA can analyze the logs on the database end.

•	 Server configuration analysis:

•	 Server administration needs to check all configurations of server

to check if all the settings/configuration are optimized as per

recommended best practices. The settings include, but are not

limited to: connection pool settings, Java virtual machine settings,

thread settings, log configurations, cache settings, heap settings,

session settings, and any other application server-specific settings

recommended by the product vendor.

•	 The DBA can analyze the database server settings to ensure if all

parameters are properly configured.

•	 Infrastructure/capacity analysis:

•	 Infrastructure experts need to verify the existing infrastructure

sizing (CPU, memory, disk size, storage, network bandwidth,

cache server, CDN, etc.) to check if it is optimal to support the

required performance SLAs, content load, and traffic needs.

•	 Network experts need to analyze the network traffic to

understand its extent.

•	 Ramp-up testing:

•	 For all performance testing, steadily ramp up the user load

starting with 50 users for 30 minutes and then increase the

user load to 100 users, 150 users, and so on as per the traffic

requirements.

•	 This steady ramp test executed over longer duration reveals the

performance issues, memory leaks, and breakpoints.

Chapter 9 DXP Performance Optimization

251

�Optimize the Component/System/Layer
For the first step we will identify the root cause for the performance issue. Once the

problem-causing component is identified, the next step is to optimize it. Following are

the generic guidelines for performance optimizations.

•	 Fine tuning the database:

•	 Use materialized views to store the database query results for

popular queries.

•	 Use database hints.

•	 Optimize queries and avoid Cartesian join (a join of each row of

one table to each row of another table).

•	 Check if the indexes are created and used by the application

queries.

•	 Calculate the DBA statistics for the key tables.

•	 Check the explain plan for the cost of the query and fine tune the

query based on the explain plan.

•	 Wherever possible, aggregate functions or stored procedures can

be used to do the database heavy lifting operations.

•	 Check if there are any “full table scans” (a query resulting in a

scan of every table row) happening instead of an index scan (a

query result using the indexed columns).

•	 Fine tuning a server:

•	 Turn off logging.

•	 Carry out calculations in the database.

•	 Use connection pooling (reuse of existing connections through a

managed pool) wherever possible.

Chapter 9 DXP Performance Optimization

252

�Common Performance Problem Pattern
In this section we discuss the common performance issues observed in DXP

applications and their root causes.

Following are some of the commonly encountered performance issues that we have

seen in the past:

•	 Performance issue: Applications not scalable. Some symptoms, with

increase in load:

•	 Response time increases drastically.

•	 Some queuing is observed.

•	 Gradual performance degradation with increase in user load

•	 CPU utilization at some layer remains constant.

•	 Common reasons:

•	 Absence of caching framework that caches frequently used

objects

•	 Existence of single point of failures

•	 Absence of clustered setup for web server, application server,

and database server. A clustered setup involves multiple

nodes/machines to serve the response providing failover and

high availability.

•	 Inappropriate business object tuning. If the business objects

are not tuned for performance, it has ripple effect on the

overall application’s performance.

•	 Inappropriate infrastructure sizing such as CPU cores,

memory, network bandwidth, and such.

•	 Inappropriate connection pool settings such as maximum

connections, minimum connections, connection idle time

out, and such

Chapter 9 DXP Performance Optimization

253

•	 Recommendations:

•	 Minimize session size by storing only absolutely needed

objects in the session.

•	 Size the infrastructure to handle the maximum user load.

•	 Use multinode clustered topology for all servers to eliminate

single point of failures. A multinode topology involves using

multiple nodes in a setup to handle user requests.

•	 Use a caching framework or caching server (a dedicated

server to cache frequently used objects) to cache frequently

used data and lookup data.

•	 Configure the application server parameters to handle

maximum user load. The common parameters for Java-based

application servers are given below:

•	 Garbage collection metrics

•	 Tuning parameters

•	 Xms, Xmx

•	 NewSize, MaxNewSize

•	 PermGen, MaxPermGen

•	 Performance issue: Inappropriate deployment architecture leading to

single point of failure. Few common symptoms given below:

•	 Multiple applications were deployed on the same server in

production and pre-production environments. Performance

testing revealed that this setup was not scalable.

•	 CPU utilization graphs showed spikes during normal load testing.

This was attributed to problems with one of the applications,

which was not scalable.

•	 Applications, admin functionality, and search modules shared

the same server. This led to performance issues in search and

admin functionality.

Chapter 9 DXP Performance Optimization

254

•	 Common reasons:

•	 Because of the nonscalable behavior (performance

degradation with increase in user load) of the application,

other applications are not able to support the projected

volumes with this setup.

•	 Recommendations:

•	 Move the nonscalable application to a separate server. On

a separate server this application was able to support the

projected volumes. Alternatively transform the application

to use microservice architecture and independently scale the

microservices.

•	 Do profiling of the nonscalable application to identify the root

cause of the issue.

•	 Deploy application, admin modules, and search modules on

separate, individually scalable servers and containers.

�Performance Case study
This section reviews a performance optimization case study for a DXP-based application.

�Application Context and Background
The DXP application was built for a manufacturing organization. The DXP application

provided web interfaces for suppliers, administrators, and distributors. During the user

acceptance testing (UAT) testing, the team noticed performance issues on the landing

pages for suppliers and distributors. The landing pages provided functionality to view

the payments, processing, and transaction details for suppliers and distributors. The

landing pages heavily used database queries to get the matching results. The landing

pages were taking more than 120 seconds to load on various supported browsers.

�Performance Analysis
Performance engineers applied the performance debugging framework we discussed

earlier. Performance engineers analyzed the slow performing pages end to end to

analyze all the layers and components involved in the web request processing pipeline.

Chapter 9 DXP Performance Optimization

255

The main performance issues for the key business-critical pages are depicted in

Figure 9-3.

The key performance issues depicted in Figure 9-3 are elaborated as follows:

Initial login performance: The first-time login performance was very bad. This led to

bad user experience for the login scenario. Though the pages in the staging environment

had good performance, they performed badly in the production environment.

Server side performance issues: The business modules such as workbench module

and announcements module had bad performance due to complex LDAP queries

involved. Additionally, the object relational mapping (ORM) layer added performance

overheads for complex database queries.

Supplier portal and distributor portal: The supplier portal and distributor portal were

analyzed to understand the page response time, asset size, asset load time, and other

key performance metrics. The server-side components were profiled to understand the

performance of all the calls involved in the process.

Figure 9-3.  Sample performance analysis of business-critical pages

Chapter 9 DXP Performance Optimization

256

Following are the key findings from performance analysis and profiling of the

components:

•	 At the presentation layer, the page size or supplier landing page and

distributor landing page was more than 2 MB each, leading to higher

latency. Each of the landing pages loaded more than 20 JavaScripts

and 6 CSS files. There were five images used on the pages.

•	 Initial login process was very slow due to multiple LDAP and

database calls.

•	 On the server side, the ORM layer was performing complex table

joins that further degraded the overall performance.

Further to these, the following specific issues were noticed:

•	 The database-based modules were querying all records (select * call)

from the database. This is done for both “Pending requests” and

“Supplier Profiles” tabs.

•	 This will have the following impact on page performance:

•	 Even though we are displaying 20 records (10 each in two tabs),

we are querying all records (which would potentially run into

thousands).

•	 This will increase the data transferred between portal server and

database server.

•	 This will also increase the initial page load times of the page and

the HTML page size.

•	 As these queries were done via the ORM tool, it created Java

objects for each database record, which could potentially

increase the consumed memory.

�Recommendations and Improvements
Based on the findings from the performance analysis, the performance engineer

recommended and implemented the following suggestions. After applying all the

performance optimizations, the page load time was reduced from 120 seconds to 10

seconds.

Chapter 9 DXP Performance Optimization

257

�Presentation Layer Performance Optimizations

Table 9-4 shows the performance optimizations that were implemented at the

presentation layer.

�Server layer performance optimizations

The following performance optimizations were implemented for server side

performance optimization:

•	 The web modules implemented paginated query to only query 20

records, avoiding the full table data loads.

•	 The query results module implemented pagination that loaded the

results on demand using AJAX calls.

•	 Nested loops (wherein a database query was invoked within a loop

resulting in huge number of database calls) containing the database

transactions were replaced. A query batching feature was used to

avoid frequent database calls.

Table 9-4.  Presentation Layer Performance Optimizations

Performance Improvement Comments

Merging and minifying CSS and JS files • � Merge all page level CSS (3 in total)

and JS (18 in total) files.

• � JS files are taking the bulk in terms of

page size (80% of total page size).

Add all external JS files at the bottom of the page and

CSS at top of page

• � This will enable the browser to load

the Document Object model (DOM) and

it is not blocked by JS files.

• � This will also help to load the CSS fast.

Use CSS sprites and a CDN if feasible. CSS sprites

method uses a single combined image and styles to

render various image pieces.

• � CSS sprites will reduce the number of

image requests.

• � CDNs (like Akamai) will improve

the asset response times across

geographies.

Chapter 9 DXP Performance Optimization

258

•	 A caching framework was used to cache the master lookup values

(overall list of suppliers, list of countries, etc.).

•	 LDAP objects were cached to avoid multiple LDAP queries.

�Database Layer Performance Optimization

Following are the performance optimizations done at the database layer:

•	 Database indexes were created for the columns appearing in the

filter conditions of the queries. The table data was partitioned based

on the country, as suppliers and distributor data were mainly using

country-specific values.

•	 Denormalized tables (a method in which table structure is flattened

out with all needed columns to avoid real -time complex joins) were

created to hold the results of complex table joins. These snapshot

tables were refreshed every 5 hours. This avoided costly real-time

table joins, improving the query performance.

•	 All the database-specific configurations (such as checkpoint logs,

query cache size, sessions, log buffer, recomputation of statistics, etc.)

were optimized from a performance standpoint.

•	 Lookaside database tables and materialized views were created to

store the results of frequently used queries.

�Chapter Summary
•	 The main performance best practices for presentation layer

performance optimization are: reducing HTTP requests, image

optimizations, optimal resource loading, caching, delivery from edge

locations, compression, and optimal positioning.

•	 Key performance metrics are: TTFB, page size, page response time,

above the fold time, and perceived response time.

Chapter 9 DXP Performance Optimization

259

•	 The main steps in a performance testing framework are:

identification of critical transactions, workload analysis, qualitative

assessment, quantitative assessment, and prediction.

•	 The three steps in performance debugging framework are:

identification of root cause, performance optimization of the

identified component, and verification by testing.

Chapter 9 DXP Performance Optimization

261
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_10

CHAPTER 10

Transforming Legacy
Banking Applications
to Banking Experience
Platforms
Digital transformation is changing the way traditional banks function, and redefining

the way traditional banks engage with the customers. Banking organizations want to

leverage modern digital technologies to provide engaging customer experiences on all

channels—anytime, anywhere. Newer banks are digital native, providing a digital-first

banking experience, whereas existing banks are in the process or transforming and

digitizing their business processes.

This chapter discusses banking-related digital transformation. We will discuss the

key trends in digital banking and various aspects of digital transformation in the banking

sector. We propose the key tenets and architecture for a banking experience platform.

This chapter discusses various methods to migrate existing web platforms to DXPs.

Though we are discussing topics for banking domain digital transformation methods,

reference architecture is applicable for other scenarios as well.

262

�Key Tenets of a Banking Experience Platform
Following are the main tenets of a banking experience platform:

•	 User-centric experience redesign: The end user interface should be

designed to provide seamless experience across the user journey at

all the touch points. The user interface should be personalized based

on user preferences, needs, and wants. The user interface design

should provide a single-stop view of all activities such as transactions,

payments, and deposits.

•	 Customer insights gathering: The banking interfaces should be

integrated with analytics software to gather insights about customer

activities. Cross-channel analytics (analytics across various channels)

helps us to provide more personalized experience and provides

targeted content, promotions, and products/services.

•	 Optimized business models: A modern banking experience platform

redefines the business processes to provide an automated,

frictionless, and seamless user experience at all touch points.

•	 Leveraging modern digital technologies: Next-generation banking

experience platforms leverage artificial intelligence (AI) to provide

self-learning capabilities; comply with regulations; do form

processing, search, and credit scoring; and provide conversational

interfaces to provide superior user experience. AI technologies can

be leveraged for portfolio planning, wealth planning, chatbots, virtual

assistants, and such. Other digital technologies that are applicable

in the banking domain are Blockchain (a sophisticated distributed

ledger), IoT, big data, APIs, and the cloud.

•	 Digital open ecosystem: Modern digital banks leverage APIs to

aggregate all necessary services (such as payment, lending, social,

etc.) to create an extensible banking platform. Using microservices

and APIs, the next-generation banking platform should be able to

aggregate information and integrate with partner systems to provide

a frictionless experience.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

263

�Attributes of a Next-Generation Digital Bank
Figure 10-1 depicts the core attributes of a next-generation digital bank.

Core attributes of a digital bank are discussed in detail as follows:

•	 Support multiple sales channels: The next-generation banking

platform should support various channels such as retail banking,

investment banking, wealth management, insurance, and such.

Additionally, users should be able to view information and perform

transactions seamlessly on any device anytime.

•	 Self-learning and continuous improvement: The DXP should leverage

360-degree insights about customer actions across all channels

and use the information to personalize the user experience.

AI-driven tools should be used as financial advisors, budget planners,

comparators, personalized recommendations, and such that utilize

the users’ transaction data and other data (such as web analytics data,

customer survey data, social data, customer demographics data,

Figure 10-1.  Digital bank core attributes

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

264

CRM data) for providing relevant recommendations and advice

customers in decision making. As part of continuous improvement,

the next-generation banking platform should provide automated

processes and leverage digital technologies such as IoT, Blockchain,

cloud, and robotic process automation (RPA) to continuously improve

the user experience, analytics, and business processes. Some examples

of innovations using digital technologies are:

•	 Complete digitization and automation of account opening and

customer onboarding process

•	 Fully paperless forms with e-signature

•	 AI-powered chatbots, financial advisors, finance planners, and

virtual assistants for customer service

•	 Biometric authentication from a mobile app

•	 Virtual branch through real-time collaboration

•	 Branchless digital banking through a mobile app

•	 Enabling online person-to-person (P2P) payments, digital

payments, contactless payment, and e-wallet through a

mobile interface

•	 Enable new integrations: The next-generation banking platform

should be flexible, to enable new integrations to enable future growth

and innovations. The integration model of the platform should

be built around a lightweight microservices services model. The

lightweight services model plays a crucial role in creating an open

banking ecosystem and integrating with other platforms and services.

•	 Open platform: The banking platform should expose the services

for third-party applications and services to consume the necessary

services. The open platform can be leveraged by bank partners

such as payment partners, financial partners (who handle cards,

insurance, mutual funds, trading, mortgages, etc.), financial

technology (fintechs), merchants, digital partners, lending

partners, technology partners, telecommunications companies,

etc. The banking platform should provide a marketplace for

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

265

enabling collaborated development. The marketplace can host the

applications, software development kits (SDKs), solutions, widgets,

and integrations that can be used by a partner ecosystem.

•	 Mobility on the go: All the main banking functions such as account

dashboard, transfers, and such should be available on all devices.

•	 Next-gen communication: The next-generation platform should

leverage digital technologies such as chatbots, virtual assistants,

virtual reality, and predictive analytics to provide timely alerts,

notifications, and promotions, and collaborate with the user. A few

examples of innovations in this category are:

•	 Robo advisors to recommend in the areas of savings, investment,

and portfolios based on users’ behavioral data and transaction

history

•	 Forecasting and self-service tools for wealth management

Security is the key concern that should be enabled across all channels and

transactions. Enabling security includes authentication, role-based access, encrypting

data, multifactor authentication, secured communications, and compliance to security

standards such as Payment Card Industry (PCI).

�DXP Features for Next-Generation Digital Bank
Figure 10-2 provides the core attributes of a DXP platform that can be used for

next-generation digital banks.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

266

DXPs provide the following features that can be leveraged for building a next-

generation banking experience platform. The key DXP attributes as depicted in

Figure 10-2 are explained as follows:

•	 Enterprise integration: Support for services, lightweight micro

services integration model, and API driven integration can be used

by the banking experience platform to expose and consume services

for external systems. Robust integration is used for the open banking

ecosystem for enhanced collaboration and cocreation of products

and services.

•	 Robust platform: The modular design, componentized architecture,

and extensible design of a DXP is necessary to provide on-demand

scalability for the banking experience platform. Cloud native and

cloud support can be leveraged to implement a cloud-first strategy

for the banking experience platform.

•	 Low customization and high configuration: DXP packages necessary

platform features needed by the banks. Banks can leverage inbuilt

DXP features such as workflows, rules engine, content management,

personalization, and security to quickly build and deploy the banking

Figure 10-2.  DXP Attributes for banking platform

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

267

experience platform. This can be done mainly through platform

configuration with minimal customization.

•	 Applicability to bank landscape: The robustness and scalability of the

DXP can be leveraged to meet the quality SLAs of the bank. We could

also integrate with the bank’s ecosystem with the integration model

supported by the DXP. Additionally, the modular architecture of

DXP enables the bank to easily extend and add new innovations and

capabilities in the future.

•	 Functionality: A DXP provides many of the digital platform features

such as search, content management, analytics, collaboration, and

such. These can be leveraged to quickly implement the functionality

of the banking experience platform.

•	 User experience: DXPs provide forward-looking, responsive, and

engaging UIs. A DXP’s inbuilt features can be used to build a

personalized and omnichannel-enabled user experience.

•	 Content management: A DXP’s inbuilt content management features

such as content authoring, tagging, editing, archiving, and publishing

can be leveraged for creating product content and campaign content

for banking customers.

•	 Security: DXPs support multiple security methods such as

authentication, authorization, single sign-on (SSO), multifactor

authentication, and federated single SSO that can be leveraged to

build the banking experience platform.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

268

�Main Trends in Digital Banking
This section discusses the main technology and business trends in banking.

�Technology-Related Trends
The key technology related trends are as follows:

•	 Artificial intelligence: AI technologies can be used in variety of

tasks such as rules-based automation, providing personalized

recommendations, learning user preferences, providing virtual

assistance, customer service, and other functions. AI technologies

are preferred for user engagement, cost optimization, and to provide

business value differentiation. AI technologies combined with natural

language processing methods can provide powerful voice-enabled

virtual assistants.

•	 Blockchain: Blockchain manages the distributed ledger, storing

the sequence of transactions in a distributed network where data

cannot be changed. This enables easier management and tracking of

transactions. It can be used for use cases such as fund transfers, title

registration, contract registration, and bank to bank transactions for

faster execution of financial transactions.

•	 Cryptocurrency: Cryptocurrencies are digital money that is gaining

traction for a small percentage of financial transactions. Lack of

centralized control and legal restrictions pose challenges in the usage

of cryptocurrency.

•	 Biometric authentication: Future authentication mechanisms heavily

rely on biometric authentication comprised of fingerprint or face

recognition.

•	 APIs and microservices: Microservices-based architecture provides

needed scalability, high availability, and reliability for banking

platforms. APIs are an essential part of an integration ecosystem.

•	 Gamification: Gamification methods (such as reward points,

instant feedbacks, badges, levels, and such) are used to reward loyal

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

269

customers and establish a deep relationship with the customer.

Gamification methods also include incentives, loyalty rewards, and

targeted promotions.

•	 Virtual reality (VR) and augmented reality (AR): These technologies

offer immersive experience to end users. In the banking domain,

VR technologies can be used for training, process walk-through,

end-user demos, and home mortgage support.

•	 Internet of Things (IoT): Banks can use sensors and other devices at

branches and ATMs to obtain insights into customer behavior, and

fine tune the services accordingly.

�Business Process-Related Trends
The main business process-related trends in banking are as follows:

•	 Crowd-based P2P lending: The crowd platform that enables

person-to-person lending

•	 Digital-first bank: A bank that predominantly provides digital channels

for core banking functionality with fully digitized bank processes

•	 Payment banks: Digital banks that specialize in digital payments

•	 Digital wallets: Systems for managing e-money

•	 Social media banking: Banking through social media channels

(such as Facebook) and messaging channels (such as WhatsApp)

�Digital Transformation of Traditional Banks
to Digital Banks
This section looks at various options for the digital transformation of traditional banks to

modern DXPs.

�Reference Technology Architecture for a Digital Bank
A reference technology architecture of a digital bank is depicted in Figure 10-3.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

270

In
fra

st
ru

ct
ur

e
&

 M
ai

nt
en

an
ce

 S
er

vi
ce

s

O
n

pr
em

is
e

D
ig

ita
l t

ou
ch

 p
oi

nt
s

W
eb

M
ob

ile
Em

ai
l

C
ha

t /

SM
S

So
ci

al

M
ed

ia
IV

R
C

al
l

C
en

te
r

K
io

sk
Io

T
/ W

ea
ra

bl
es

Pr
es

en
ta

tio
n

se
rv

ic
es

R
W

D
A/

B

te
st

in
g

U
I

fr
am

ew
or

k
Vi

su
al

iz
at

io
n

Se
ar

ch
 s

er
vi

ce
s

Fe
de

ra
te

d
se

ar
ch

Fa
ce

te
d

br
ow

se

Re
co

m
m

en
da

tio
ns

Fi
lte

rin
g

se
ar

ch

C
om

m
er

ce
 s

er
vi

ce
s

PI
M

Pr
om

ot
io

n

O
rd

er
G

ift

re
gi

st
ry

M
er

ch
an

di
se

m

gm
t

Si
te

Se

ar
ch

In
ve

nt
or

y
m

gm
t

Se
cu

rit
y

se
rv

ic
es

Au
th

en
tic

at
io

n
/ A

ut
ho

riz
at

io
n

En
tit

le
m

en
ts

B
io

m
et

ric

Au
th

U
se

r
pr

ov
is

io
ni

ng

C
er

tif
ic

at
e

m
gm

t

Le
an

 p
or

ta
l s

er
vi

ce
s

M
ul

ti
lin

gu
al

Fo
rm

s/
e-

si
gn

at
ur

e
SE

O

La
yo

ut
s

M
ic

ro
si

te
s

Pa
ge

s
/

D
as

hb
oa

rd

C
on

te
nt

 s
er

vi
ce

s
Au

th
or

in
g/

Pu
bl

is
hi

ng
W

or
kf

lo
w

M
et

ad
at

a
Do

cu
m

en
t

/ D
AM

 /
Te

m
pl

at
es

Ve
rs

io
n

co
nt

ro
l /

sy

nd
ic

at
io

n

En
te

rp
ris

e
in

te
gr

at
io

n
AP

I
G

at
ew

ay
RE

ST

Se
rv

ic
es

Pl
ug

in
s

/
Ad

ap
to

rs
XM

L
/ S

O
N

in
te

gr
at

io
n

So
ci

al

m
ed

ia

in
te

gr
at

io
n

Ta
xo

no
m

y
M

ic
ro

se

rv
ic

es

Pe
rs

on
al

iz
at

io
n

se
rv

ic
es

Ro
le

ba

se

ac
ce

ss

Pr
ef

er
en

ce

m
gm

t
Re

co
m

m
en

de
d

se
ar

ch

Lo
ca

tio
n

ba
se

d
se

rv
ic

es

No
tif

ic
at

io
n

m
gm

t

AI

pe
rs

on
al

iz
at

io
n

So
ci

al
 &

 c
ol

la
bo

ra
tio

n
se

rv
ic

es
Bl

og
/W

ik
i/

Fo
ru

m

Pe
op

le

Fi
nd

er
/

Em
ai

l

Ta
g/

Ra
tin

g
/R

ev
ie

w

Fe
ed

ba
ck

/
Po

lls
/

Su
rv

ey
s

Kn
ow

le
dg

e
ba

se

W
or

kf
lo

w
 &

 o
rc

he
st

ra
tio

n
se

rv
ic

es
R

ul
e

en
gi

ne
W

or
kf

lo
w

m

od
el

in
g

B
PM

W
or

kf
lo

w
 a

ut
om

at
io

n

Ch
at

 /
M

es
se

ng
er

W
or

kf
lo

w

m
gm

t

An
al

yt
ic

 s
er

vi
ce

s
&

 in
si

gh
ts

C
am

pa
ig

n
/ m

ar
ke

tin
g

se
rv

ic
es

Pr
ed

ic
tiv

e
an

al
ys

is
Tr

en
d

an
al

ys
is

W
eb

an

al
yt

ic
s

R
is

k/
Fr

au
d

D
et

ec
tio

n
Ta

rg
et

ed

ca
m

pa
ig

n
Us

er

se
gm

en
ta

tio
n

G
am

ifi
ca

tio
n

So
ci

al
 m

ed
ia

m

ar
ke

tin
g

D
el

iv
er

y
su

pp
or

t

D
ev

el
op

m
en

t
m

et
ho

ds

D
ev

el
op

m
en

t
to

ol
s

C
on

fig
ur

at
io

n
m

gm
t

R
el

ea
se

m

gm
t

A
ut

om
at

ed

te
st

in
g

to
ol

s

C
ha

ng
e

m
gm

t

C
on

tin
uo

us

in
te

gr
at

io
n

D
ev

O
ps

C
lo

ud
O

n
de

m
an

d
Sc

al
ab

ili
ty

M
on

ito
rin

g
C

lu
st

er
in

g
H

ig
h

av
ai

la
bi

lit
y

Au
di

t /

lo
gg

in
g

SL
A

m
an

ag
em

en
t

G
ov

er
na

nc
e

Ph
ys

ic
al

Se

cu
rit

y

SS
O

M
ob

ile

Ap
ps

Po
rtl

et
s

w
id

ge
ts

Ap
ps

Se
lf

le
ar

ni
ng

 d
er

vi
ce

s
M

ac
hi

ne
 L

ea
rn

in
g

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

AI
-d

riv
en

R

ec
om

m
en

da
tio

ns
Im

ag
e

R
ec

og
ni

tio
n

Te
xt

An

al
yt

ic
s

St
an

da
rd

s
co

m
pl

ia
nc

e
(e

g.
 P

C
I)

C
on

tin
uo

us

Te
st

in
g

AT
M

PO
S

U
se

r E
xp

er
ie

nc
e

En
ha

nc
em

en
t S

er
vi

ce
s

D
at

a
m

an
ag

em
en

t s
er

vi
ce

s
A

ug
m

en
te

d
R

ea
lit

y
(A

R
)

Vi
rt

ua
l R

ea
lit

y

(V
R

)
C

ha
tb

ot
s

Pr
od

uc
t D

at
a

m
gm

t
U

se
r D

at
a

m
gm

t
B

ig
 D

at
a

H
an

dl
in

g

C
re

de
nt

ia
l

St
or

e

C
am

pa
ig

n
m

gm
t

Fi
gu

re
 1

0-
3.

 D
ig

it
al

 b
an

k
re

fe
re

n
ce

 a
rc

hi
te

ct
u

re

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

271

The next-generation digital banking platform provides modular and services-based

modules. As part of front office services we can include lean portal services, presentation

services, user experience enhancement services, personalization services, and analytic

services. Mid-office services typically include business service modules such as search

services, social and collaboration services, workflow and orchestration services,

campaigns, self-learning services, and marketing services. The back office includes data

management services and content services.

�Front Office Services

Presentation service components provide end-user interface and define the overall

user experience. This category includes modular UI components such as portlets and

widgets, model-view-controller (MVC) UI frameworks (such as Angular, ReactJS), mobile

apps, and responsive web design. Presentation service components provide a seamless

user experience across all channels and devices and across all user touch points.

Lean portal services play a crucial role in offering an engaging and interactive

experience to the end user. Lean portal services include UI components such as forms,

dashboards, single-page applications (SPAs) wherein the entire applications consists of a

single page, and microsites that provide an interactive experience to the end users.

Personalization services provide contextual and personalized content based on

user preferences, user behavior, and context (such as location). The platform should

gather user behavioral insights and offer personalized search recommendations based

on the insights.

The analytic services and insights module aggregates user actions at all touch

points and channels to provide integrated insights that can be used for personalization,

prediction, and recommendation. The main categories of analytics are descriptive (that

analyze historical data to draw insights), predictive (that look at trends and patterns to

predict behavior), and prescriptive (that uses predictive analytics to suggest next steps).

Fraud detection can be done based on insights and trends obtained from transaction

data. Other uses of analytics are automatic customer segmentation, fraud detection,

customer behavior analytics, campaign analytics, sentiment analysis, customer churn

prediction, and such.

User experience enhancement services include employing niche digital technologies

such as VR, AR, and chatbots for business functions such as training, education, support,

promotion, and such. Sensors and IoT devices are also used for real-time service

monitoring and prediction.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

272

�Mid-Office Services

Mid-office services mainly include enterprise integration services, search services, social

and collaboration services, commerce services, self-learning services, and workflow

and orchestration services. Integration services form the backbone of the platform

extensibility. Integration services provide support for a flexible integration model by

supporting various integration methods such as microservices-based integration, APIs,

and such. The integration module also supports a pluggable adaptor framework and

out-of-the-box integration plugins to social media platforms, ERP systems, and such.

Search services normally include enterprise search engines that index enterprise

data and provide relevant search results. Various capabilities in this category are

site search, content search, advanced search (faceted search, search filtering, and

personalized search). Cognitive search is an emerging technology in this category.

Machine learning and natural language processing methods are used in cognitive search

to understand natural language queries and provide contextual results by processing

structured and unstructured data.

Social and collaboration services provide tools to collaborate and share information.

This module includes blog, wiki, forums, communities, chat, messenger, people

finder, shared calendar, feedback, surveys/polls, review and rating widgets, and such.

Knowledge management systems should be centralized across the enterprise for

effective usage of knowledge. Search built on top of a centralized knowledge base can be

used for training, e-learning, troubleshooting, and for customer support.

Commerce services provide digital commerce-related functionality such as order

management, catalog management, product information management, merchandise

management, gift registry, and such. Most of the DXPs provide inbuilt commerce

services for quickly developing a digital commerce platform.

Self-learning services include employing AI and machine learning methods to train

the model to perform various tasks such as smart recommendations, image recognition,

financial advisors, text analytics, and such. AI methods are used to enable chatbots and

virtual assistants.

The workflow and orchestration module consists of business process modeling tools,

rules engine, and workflow automation tools to model and optimally design business

processes.

Campaign/marketing services are used by the sales and marketing team. This module

includes capabilities such as customer segmentation, campaign lifecycle management

(campaign generation, campaign configuration, campaign execution, and campaign

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

273

monitoring). Gamification is used for increasing the effectiveness of the campaigns.

Social media marketing and social listening are other emerging areas in this category.

�Back Office Services

As part of back office services we have data management services that centrally

manage customer data, campaign data, and product data in a system of record. With

the emergence of big data technologies, organizations need to handle big data to gain

insights into customer behavior.

Content services are a quintessential part of experience platforms. This module

includes content lifecycle management (content creation, content update, content

deletion, content tagging) through business-friendly interfaces. Content workflow

management, taxonomy, metadata management, and content version are other

capabilities in this category.

�Horizontal Services

There are other horizontal services that are included as part of DXPs: security services,

infrastructure, and maintenance services.

Security and identity services provide security capabilities such as authentication,

authorization, SSO, permission model/entitlements, biometric authentication, user

provisioning, certificate management, credential store, and such. Security services

ensure that the experience platform is securely accessed by appropriately individuals.

Delivery support involves methods for optimal program management of a digital

solution. Modern digital solutions use agile methods to quickly deliver the capabilities

to the market. Automation and continuous integration tools are used in release

management for agile delivery.

Infrastructure and maintenance services are used in deployment and maintenance

of the digital solution. Various capabilities in this module are cloud deployment support,

clustering, high-availability support, scalability support, SLA management methods,

monitoring infrastructure, and such.

�Reference Functional View of Digital Bank
A reference functional architecture of a digital bank is depicted in Figure 10-4. We can

use the technical components depicted in Figure 10-3 to realize the functionality.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

274

Ex
te

rn
al

 In
te

rfa
ce

s
C

or
e

B
an

ki
ng

Sy

st
em

s

D
ig

ita
l t

ou
ch

 p
oi

nt
s

W
eb

M
ob

ile

de
vi

ce
s

Em
ai

l
C

ha
t /

SM

S
So

ci
al

M

ed
ia

IV
R

C
al

l
C

en
te

r
K

io
sk

Io
T

/ W
ea

ra
bl

es

Vi
su

al
iz

at
io

n
 M

od
ul

e
Tx

n
R

ep
or

ts
C

ha
rts

W
id

ge
ts

M
ic

ro
si

t
es

So
ci

al
 &

 C
ol

la
bo

ra
tio

n
M

od
ul

e
C

om
m

u
ni

ty
Fo

ru
m

s

R
ec

om
m

en
da

tio
ns

Fe
ed

s
C

al
en

da
r

Ad
m

in
is

tra
tio

n
M

od
ul

e

U
se

r m
gm

t.
Pr

of
ile

m

gm
t.

Ad
m

in
 D

as
hb

oa
rd

Ac

ce
ss

m

gm
t.

C
ha

t
Se

cu
rit

y
Se

rv
ic

es

Au
th

en
tic

at
io

n/

Au
th

or
iz

at
io

n

En
tit

le
m

en
ts

B
io

m
et

ric

au
th

en
tic

at
io

n

U
se

r
pr

ov
is

io
ni

ng

C
er

tif
ic

at
e

m
gm

t.

Lo
an

 M
od

ul
e

Pe
er

 to
 P

ee
r

Le
nd

in
g

C
ro

w
d

Fu
nd

in
g

In
ve

st
m

en
t M

od
ul

e

In
ve

st
m

en
t A

dv
ic

e
W

or
kf

lo
w

Pa
ym

en
ts

 M
od

ul
e

D
ig

ita
l

W
al

le
ts

M
ob

ile

Pm
t.

Fu
nd

s
Tr

an
sf

er
El

ec
tro

ni
c

M
on

ey

Pr
oc

es
si

ng

Pa
ym

en
t

G
at

ew
ay

B
us

in
es

s
In

te
lli

ge
nc

e
&

 R
ep

or
tin

g
M

od
ul

e
Re

po
rt

s
(A

cc
ou

nt
 S

ta
te

m
en

t,
Lo

an
,

De
po

si
t,

Ca
sh

 fl
ow

, f
ac

ili
ty

, t
ra

ns
ac

tio
n,

pr

of
ita

bi
lit

y,
 a

ttr
iti

on
, l

oy
al

ty
)

Cu
st

om
er

re

po
rts

Co
m

pl
ia

nc
e

R
ep

or
ts

Pr
od

uc
t/

Da
ta

Re

po
rt

s

C
or

e
B

an
ki

ng
 S

er
vi

ce
s

M
od

ul
e

C
ar

ds
Ac

co
un

ts

C
us

to
m

er
 S

er
vi

ce
M

or
tg

ag
e

R
eg

is
tra

tio
n

Fe
ed

ba
ck

Ad
va

nc
es

B
ill

in
g

D
ep

os
it

An
al

yt
ic

s
M

od
ul

e
C

am
pa

ig
n

M
od

ul
e

Fi
na

nc
e

An
al

yt
ic

s
O

pe
ra

tio
ns

/
M

ar
ke

tin
g

An
al

yt
ic

s
Pe

rfo
rm

an
ce

In

si
gh

ts
Ca

m
pa

ig
n

In
si

gh
ts

C
am

pa
ig

n
D

ef
in

iti
on

C
am

pa
ig

n
Ex

ec
ut

io
n

C
am

pa
ig

n
C

on
fig

ur
at

io
n

O
pe

n
Pl

at
fo

rm

Fe
at

ur
es

AP
Is

M
ar

ke
tp

la
ce

Se
rv

ic
es

In
fo

rm
at

io
n

Sh
ar

in
g

C
om

m
er

ce

Sy
st

em
s

C
re

di
t S

co
re

Se

rv
ic

es
Pa

ym
en

t
G

at
ew

ay
s

C
R

M
EC

M
/C

M
S

R
ep

or
tin

g
Sy

st
em

s

Ph
ys

ic
al

Se

cu
rit

y

SS
O

 /
Fe

de
ra

tio
n

Al
er

ts

Po
rtl

et
s

Ap
ps

St
an

da
rd

s
co

m
pl

ia
nc

e
(e

g.
 P

C
I)

AT
M

PO
S

C
on

te
nt

 M
an

ag
em

en
t M

od
ul

e
D

at
a

M
an

ag
em

en
t M

od
ul

e
D

oc
um

en
ts

W
eb

C

on
te

nt
As

se
ts

/
M

ed
ia

Ac
co

un
t

D
at

a
Pr

od
uc

t D
at

a
C

us
to

m
er

D

at
a

C
re

de
nt

ia
l

St
or

e

So
ci

al
 M

ed
ia

C
us

to
m

er

Se
rv

ic
e

Pl
at

fo
rm

Pa
ym

en
ts

D

at
a

C
en

tra
liz

ed

R
ep

os
ito

ry

In
fo

 L
ife

cy
cl

e
M

an
ag

em
en

t
W

or
kf

lo
w

C

on
fig

Lo
ca

liz
at

io
n

/T
ra

ns
la

tio
n

Ta
gg

in
g

B
PM

B
lo

ck
ch

ai
n

ES
B

/A
PI

G

at
ew

ay
s

W
eb

Ap

pl
ic

at
io

ns
En

te
rp

ris
e

Se
rv

ic
es

C
at

al
og

Sy

st
em

s
SM

S
G

at
ew

ay
D

at
a

W
ar

eh
ou

se

Sy
st

em
s

Em
ai

l

Lo
an

 A
pp

lic
at

io
n

Lo
an

Fl

ow
s

Ap
pl

ic
at

io
n

Pr
oc

es
si

ng

Pl
ug

in
s/

Ad
ap

to
rs

M
et

ad
at

a

Ta
xo

no
m

y

Fi
gu

re
 1

0-
4.

 D
ig

it
al

 b
an

k
re

fe
re

n
ce

 fu
n

ct
io

n
al

 v
ie

w

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

275

Figure 10-4 covers the key functional modules of a digital banking experience

platform.

As depicted in Figure 10-3, digital touch points provide access channels such as

mobile, web, POS e-mail, and others to access underlying digital services.

The visualization module provides various charts, reports, widgets, and portlets for

end users and administrators. The visual modules are configurable so that users can

customize the presented data based on filter and configuration values.

The social and collaboration module provides various collaboration features such

as communities, chat, forums, feeds, and calendar needed for banking experience

platforms.

The administration module enables administrators to manage user accounts,

workflows, business rules, business processes, and user access. Normally, the

administration module consists of an admin dashboard to provide a unified view of all

admin functions.

The loan module provides features for lending, such as crowd funding, peer-to-peer

lending, application processing, workflow handling, and such.

The investment module includes investment application processing, investment

advice, and reports.

The payment module includes digital wallets, funds transfer, mobile payment, and

payment gateway integration.

The banking services module includes key banking services such as account

handling (current account, savings account), card handling (debit and credit card),

deposit handling (term deposit), user registration, feedback handling, mortgage, HR,

billing, and customer service.

The business intelligence (BI) and reports module handles various functions such

as reports processing (report creation, reports configuration, report generation, reports

delivery) for various banking functions, compliance, customer insights, and products/

transactions.

The analytics module has features to provide insights about customer behavior,

transactions, operations, campaigns, and performance.

As part of the campaign module, the administrators should be able to define/create

the campaign for specific channels, events, and products. Campaign administrators

should be able to define the triggering event and deliver the campaigns based on

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

276

customer insights (offering products that a customer is most likely to buy). Campaign

administrators should monitor campaign responses and effectiveness and use the

information to fine tune the campaign strategy.

The content management module provides various features to manage and deliver

content. These include features for authoring content, editing content, tagging content,

and such. Other content-related functions such as workflow management, taxonomy

management, metadata management, content translation, document management,

digital asset, and media management are part of this module.

The data management module provides centralized management of account data,

product data, transaction data, customer data, and payments data in a centralized

repository.

Normally, banking systems need to interface with various systems such as CMS,

search, credit score services, CRM, social media, reporting systems, BPM (for business

process management), Blockchain systems, enterprise web applications, e-mail, SMS

gateway, catalog systems, data warehouse systems, and such.

Security services include enterprise security-related functions such as physical

security (perimeter security), SSO, authentication and authorization, biometric

authentication, user provisioning, certificate management, standards compliance, and

credential store. We discussed this as part of Figure 10-3.

Open platform features include functionality that extends and evolves the digital

applications. This includes services that expose the core platform functionality, such as

APIs and a marketplace that hosts various libraries and applications and information

sharing modules.

�Technology Transformation

The technology transformation from traditional web technologies to integrated DXPs is

depicted in Figure 10-5.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

277

As depicted in Figure 10-5, traditional web technologies need to be integrated with

various systems such as CMS, search, commerce, workflow, and campaign to create

various needed capabilities. However, a DXP provides all the needed capabilities in an

integrated way to provide a seamless experience to the end user and provide 360-degree

insights to the business.

The impact of migration from traditional web technologies on user experience,

customer insights, and business agility is elaborated in Figure 10-6.

Figure 10-5.  Technology transformation

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

278

�Main Digital Transformation Methods
There are broadly two main methods for the digital transformation of traditional banks:

•	 Digitizing existing banking systems: We can adopt this option for

large traditional banks that have heavily invested in legacy platforms.

We will enable the key digital capabilities on top of existing banking

systems. This helps banks to leverage existing investments.

•	 Reimagining the banking experience: In this bottom-up option we

will completely revamp the existing access channels, user experience,

business processes, and services to create a digital native banking

experience platform. This is suitable for banks that want to start

fresh and the ones that have minimal investments in legacy

banking systems.

�Digitizing Existing Banking Systems

Let’s look at the main digital enablers for this option, which can be provided by

reengineering existing functions:

Figure 10-6.  Impact of migration to DXP

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

279

•	 Providing omnichannel capabilities: Banks can provide omnichannel

capabilities through mobile apps or mobile web so that banking

services can be accessed from all channels.

•	 Digitizing banking business models: Existing banking processes can

be digitized by using modern digital technologies. For instance,

business process flows can be digitized using BPM tools, providing

faster and more reliable execution of business processes. Other

business processes such as online registration, loan application,

information sharing, customer support, and incident management

can be digitized using modern digital technologies such as online

forms, workflow management, collaboration software, and incident

management systems. Systems of engagement should be fully

integrated with systems of record.

•	 Digital facelift for user experience: The end user experience (mainly

for retail banking) can be reimagined by redesigning the user

interface. We can adopt lean architecture providing dashboard

experience, personalization, search, and other intuitive information

discovery and navigation features.

•	 Service enablement: Banks can build microservices on top of existing

APIs or services that are invoked from the user interfaces. If there are

no prior services, we need to identify the logical grouping of legacy

functions that can be transformed into microservices.

•	 Automation: Identify repetitive jobs and redundant steps that can

be automated. Identify human-intensive processes and explore

opportunities for automating the steps. Leverage RPA to automate

rule-based tasks, data entry tasks, and repetitive tasks to reduce

process time and minimize manual errors.

•	 Two-speed digital enablement: This model provides an engaging user

experience for end users with rapid innovation. This involves providing

granular microservices needed for the fast changing UIs that interface

with stable, less frequently changing, back-end web services.

•	 Standardization and centralization: Standardize processes and

technologies across the banking ecosystem. Remove unnecessary

and redundant or duplicate process steps and consolidate processes.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

280

Create a centralized process management and centralized data

management through a system of record. Eliminate information and

process silos through centralization.

Various phases of digitization of the banking processes are depicted in Figure 10-7.

Various phases depicted in Figure 10-7 are discussed as follows:

Digital Opportunity Assessment Phase

In this phase, we need to do a thorough as-is analysis of existing systems and business

processes. During as-is analysis we will look at the following:

•	 Analysis of existing technical ecosystem, standards, and technologies

•	 Creating an inventory of existing functional modules

•	 Analysis of existing business processes

During the process we will identify the existing pain points and challenges. We need

to interview the key stakeholders and end users to understand the pain points. The

typical pain points and challenges are given as follows:

•	 User interfaces not compatible with mobile devices

•	 High page response times and performance issues for key banking

transactions

Figure 10-7.  Phases in reimagining banking processes

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

281

•	 Longer process times for core business processes such as user

registration, account activation, funds transfer, and such.

•	 Challenges in onboarding new functionality

•	 Lot of manual effort spent on repetitive tasks (such as checking for

credit scores, application form completeness, and such)

•	 Longer deployment times for new releases or incremental releases

As part of the digital maturity assessment, we assess the current systems, processes,

and culture. The digital maturity assessment can be used to define the digital road map

based on their current maturity levels. Listed in Table 10-1 are key points that will be

assessed during the digital maturity assessment. Organizations can leverage the points

given in Table 10-1 to achieve leading-level digital maturity.

Table 10-1.  Key points in Digital Maturity Assessment

Category Beginner-Level
Digital Maturity

Moderate-Level
Digital Maturity

Leading-Level Digital Maturity

Organization

culture

• � Lack or minimal

innovative culture.

• �M inimal usage

of collaborative

tools and social

channels.

• � Lack of incentive

for collaboration

• �R isk averse

and resistant to

change

• � Data managed

in silos

• �P rocesses and

software are not

customer-centric.

• �O rganization

provides

limited

support for

collaboration

and innovation.

• � Centralized

customer data

management

• � Customer-centric products and services,

and the organization continuously aims

to improve the customer engagement

based on feedback.

• �G amified applications and incentives for

collaboration for improved productivity

• �E mployees are encouraged to

experiment with tools and technologies

to improve customer engagement.

• � Cocreation of products and services

with involvement of partners, end

users, and business stakeholders. Data

management tools are leveraged to

manage quality of centralized data.

Organization continuously innovates to

meet customers’ expectations and needs.

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

282

Table 10-1.  (continued)

Category Beginner-Level
Digital Maturity

Moderate-Level
Digital Maturity

Leading-Level Digital Maturity

Business

process

• �E xisting processes

involve heavy

manual and

human intensive

tasks

• �S iloed processes

per each

department and

channel

• �P rocesses are not

user friendly.

• � Business

processes are not

assessed on a

continuous basis.

• �A bsence

of process

monitoring and

governance tools

• �A bsence of

straight-through

processing

• � Business

processes

are partially

automated.

• �N ew processes are digital native.

• �E xisting processes are revamped/

reengineered to become compatible

with modern digital systems.

• �A ll repetitive and mundane work is fully

automated using digital technologies.

• �I ntegrated business processes (such

as campaign management, customer

services, sales) across all channels and

departments

• � User-centric processes

• �A ll business processes are continuously

assessed and monitored, governed, and

the feedback is used to improve the

processes.

• �S traight-through processing

• � Lean and agile processes to improve

time to market

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

283

Table 10-1.  (continued)

Category Beginner-Level
Digital Maturity

Moderate-Level
Digital Maturity

Leading-Level Digital Maturity

Leadership • � Digital strategy

not defined

• � Leadership

has not fully

understood the

potential of digital

technologies

and digital value

proposition.

• �M inimal support

and sponsorship

for digital

programs

• �P artially

defined digital

strategy

applicable only

for specific

initiatives and

departments

• � Well-defined and fully supported digital

strategy with tracking metrics and

KPIs. Main KPIs are customer lifetime

value, repeat transaction rate, customer

satisfaction index, customer engagement

score, customer wallet share, employee

engagement score, and growth rate.

• � Digital value proposition is fully defined

and tied to digital technologies and

overall digital strategy.

• �H eavy usage of data-driven decision

making with the help of digital technologies

• � Clear strategy for build, buy, or collaborate

for developing needed capabilities

Governance • �A bsence or

minimal monitoring

and governing

processes

• �R oles and

responsibilities

to implement

digital strategy not

defined.

• �P rocesses

for change

management,

business continuity

not defined.

• � Business processes

not fully documented.

• �G overnance

processes

are defined

for specific

programs.

• � Limited

documentation

of governance

processes and

policies

• � Well-defined roles and responsibilities

for implementing digital strategy

• �F ully defined processes for change

management and business continuity

• �M onitoring infrastructure to assess the

effectiveness of digital strategy

• �A ll policies, processes are fully

documented in a centralized knowledge

base and used for self-learning and

training.

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

284

Table 10-1.  (continued)

Category Beginner-Level
Digital Maturity

Moderate-Level
Digital Maturity

Leading-Level Digital Maturity

User

engagement

• � Users’ needs and

wants not fully

understood.

• �A bsence or

minimal self-

service features

• �M oderate

support for

personalization

and user

preferences

management

• � Digital channels are fully focused

on users’ needs and wants through

persona-based experience.

• �T he organization proactively anticipates

customer requirements and leverages

emerging digital technologies to provide

a seamless user experience.

• �P roactive user engagement across all

channels including social media

• � Cross-channel frictionless processes

• � Digital channels provide self-service

and decision-making tools.

• � Cross-channel analytics is used to

understand customer behavior and use

it for personalization and prediction.

Collaboration

and Social

media

interaction

• �A bsence of social

marketing

• �M inimal or

absence of

collaboration

• �P artially

integrated

social

channels

• �P artial usage

of collaborative

tools such as

chat, forums,

groups,

communities

• �F ully integrated social analytics and

support for social marketing

• �F ully integrated cross-channel

collaboration across sales, marketing

channels

• � Collaboration with all internal

departments to align with digital vision

• �O pen banking ecosystem to provide a

platform for partners to collaborate and

integrate

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

285

Table 10-1.  (continued)

Category Beginner-Level
Digital Maturity

Moderate-Level
Digital Maturity

Leading-Level Digital Maturity

IT alignment • �IT team is not

fully aligned with

organization’s

vision.

• �IT team heavily

uses legacy

technologies for

new products and

services.

• �A bsence of efforts

to modernize or

service-enable

existing eco

system.

• �IT team

occasionally

does product

evaluation to

assess the

right fitment of

products.

• �IT team is fully aligned with digital

strategy.

• �M ost of the new services and products

are available as service on cloud.

• �IT team ensures that modern and

innovative digital technologies (such as

customer experience tools, AI, big data

tools, cognitive computing, advanced

analytics, IoT) are fully leveraged for

customer engagement.

• �IT strategy constantly looks to automate

existing business processes (such

as workflows, document processing,

compliance checks, and leverage

the power of AI for deeper customer

engagement.

• �IT team continuously evaluates

emerging technologies to implement

digital strategy.

Business

agility

• � Longer time to

market. Typical

release cycles last

from 6–8 months.

• � Business rarely

gets feedback

from end users

and does

• � Business

obtains end

user feedback

very rarely.

• � Well-defined and agile processes that

are responsive to business needs and

expectations

• � Continuous competitive benchmarking

and continuous improvement

• �F aster time to market

• � Quick to integrate and implement

innovative technologies

• �T ypical releases happen on a monthly

basis using continuous integration tools.

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

286

As part of the digital maturity assessment, we also identify the digital opportunities.

The digital opportunities are categorized and prioritized based on their business impact

and end user impact. Table 10-2 provides insights into available opportunities.

Table 10-1.  (continued)

Category Beginner-Level
Digital Maturity

Moderate-Level
Digital Maturity

Leading-Level Digital Maturity

Analytics • �A bsence of

analytic tools.

• �M anual reporting

of traffic reports

• �S upport for

analytics tools

for specific

channels

• � Basic analytics

reporting and

dashboards

• �F ully integrated cross-channel analytics

to provide 360-degree insight about

customer activities.

• �S upport for predictive analytics

• �I nsights-driven personalization, and

recommendation and financial advisory

Infrastructure • �O n-premise

deployment model

• �M ix of

on-premise

and cloud

deployment

model

• �F ully cloud enabled providing

on-demand scalability

Data

management

• � Data distributed

across multiple

systems

• �A bsence of data

management tools

• � Unstructured

data (text, e-mail,

phone, chat,

videos, blog post)

• � Duplicate and

redundant data

• � Data

consolidation

done partially

• �S ystem of

record exists

partially

• � Centralized data management through

system of record (SOR) for data

segments such as customer data,

transaction data, payment data, deposit

data, etc.

• � Data quality tools are used for data

management.

• �S tructured and unstructured data is

processed for advanced analytics

and used to get a single view of the

customer.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

287

At the end of the assessment phase, we create a digital transformation road map, as-is

system assessment report, competitive benchmark report, and digital maturity model.

Digital Transformation Design Phase

In this phase we mainly design the key digital transformation elements such as user

experience design, migration, integration, API design, services, database, and such.

We have extensively discussed the UI design as part of Chapter 4 and integration

design as part of Chapter 5.

At the end of this phase, we will have the various design and reference architecture

documents.

Table 10-2.  Categorized Digital Oppurtunities

Category Digital Opportunity Business
Impact

Customer
Impact

Overall
Priority

User

experience

Make the UI mobile enabled High High High

Provide customer and admin dashboard High High High

Provide prefilled minimal forms for faster registration High High High

Reduce the steps in approval workflows and

automate workflow steps wherever possible

High High High

Sales

channels

Enable other channels such as investment banking,

wealth management, commercial banking.

High Medium High

Provide self-service to enable sales personnel High High High

Customer

service

Provide niche capabilities such as chatbot, VR, AR Medium High High

Employ AI technologies to provide personalized

recommendations and financial advising capability

Medium Medium medium

Customer

engagement

Provide self-help decision-making tools such as

financial planners

High High High

Provide faster and frictionless processes: provide

1-click account opening, 1-click loan approval,

minimal field registration form with 1-click registration

High High High

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

288

Digital Transformation Execution Phase

During this phase, we do the actual activities designed in the previous phase. We

develop/redesign the user experience, redesign the integration model, and migrate

the necessary code and data. All the planned business processes will be digitized and

automated wherever possible. The capabilities are delivered in shorter and iterative

sprints for quicker time to market. Once all the necessary capabilities are set up, we can

set up the monitoring infrastructure to monitor the SLAs. We will track the KPIs such as

user satisfaction scores, process improvement scores, SLAs, and quality reports.

�Digital Transformation Road Map
A sample digital transformation road map is depicted in Figure 10-8. Organizations can

use this as a reference for defining a digital transformation road map.

�Reimagining the Digital Banking Experience
This section defines all the tools, methods, and processes needed for redefining the

banking experience.

Figure 10-8.  Digital transformation road map

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

289

�Digital Transformation Tools and Methods

Table 10-3 provides sample tools and methods that can be used for digital transformation.

Note T he products and tools mentioned in the table are just a sample list
and are provided only for education purposes. It is not an exhaustive list or a
recommendation. All product names, trademarks, logos, and brands are property of
their respective owners.

Table 10-3.  Sample Tools and Methods for Digital Transformation

Digital Experience
Capability

Key Features Key Tools for Migration Key Methods for Migration

User experience Mobile

enablement,

responsive

UI, dashboard

experience, lean

web-oriented

architecture,

mobile app,

forms, microsites,

multilingual,

layouts, easy and

fast information

discovery

• � Cordova for cross-

platform development

• �R obotium and Selenium

for test automation

• �R obolectric and Mockito

for mobile app unit

testing

• � Bootstrap, CSS3-based

responsive design

• � Cognitive search tools

• � Use MVC UI frameworks

(Angular, ReactJS) for

lightweight widgets and

personalized dashboard.

• � Develop existing dynamic

contents/pages with UI

JavaScript frameworks

and static contents/pages

with headless CMS.

• � Convert existing

static JSP/HTML into

responsive, using CSS3

Media queries.

• � Web-oriented architecture

• �I nformation architecture

redesign

• �S earch implementation

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

290

Table 10-3.  (continued)

Digital Experience
Capability

Key Features Key Tools for Migration Key Methods for Migration

Integration model Lightweight

REST services,

microservices, API

gateway usage,

two-speed digital

services

• �M uleSoft, IBM ESB, Micro

services, IBM BPM, Jboss

BPM, TIBCO, MQ, Apache

Kafka, Apache Camel,

ServiceMix, WSO2,

Spring Boot

• �S ervice enable existing

interfaces

• � Develop granular

microservices on top of

existing legacy services

to implement 2-speed

digital services.

• � Deploy microservices in

containers for individual

scalability.

Social and

collaboration

Forums, wiki,

messenger,

chatbot,

knowledge base,

calendar, survey,

polls, e-mail,

review, and rating

• � Liferay SocialOffice,

MS SharePoint, Skype,

Adobe Connect, IBM

Connections, Zoho

Connect, Google G-Suite,

Yammer, Jive, OpenText

FirstClass Collaboration

Suite, Slack, OneDrive,

• �I mplement centralized

knowledge base and

enable search on

knowledge base.

• �I mplement collaboration

capabilities using tools.

• �H arness collective

intelligence using forums

and communities.

• �I ntegrate external social

platforms for enhanced

user engagement.

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

291

Table 10-3.  (continued)

Digital Experience
Capability

Key Features Key Tools for Migration Key Methods for Migration

DevOps Source control,

automated release

management,

continuous

integration,

continuous

testing, automated

deployment,

automated code

quality, project

management,

continuous

improvement

• �K ey CI tools: Jenkins,

Ansible, Hudson, Puppet,

Chef, Bamboo

• � Build Tools: Maven, ANT,

Gradle

• �S ource control: Git,

Bitbucket

• � Code Quality: SonarQube,

CheckStyle, Appscan, PMD

• �T esting: SOAPUI, Junit,

Jmeter, Nunit, Corbertura,

Fortify, Selenium

• � Containers: Docker,

Kubernetes

• �P roject Management: Jira

• �I mplement continuous

integration using CI tools.

• �A utomate release

management pipeline

using automated tools.

• �S et up notification for

build and quality reports.

Web analytics Track user

behavior actions

to get insights,

cloud-based

reports,

performance

monitoring, traffic

reports, exit

reports.

• �G oogle analytics, open

web analytics, Piwik,

Adobe marketing cloud,

IBM Unica, LiveChat,

WebTrends

• �I nclude the necessary

JavaScripts to the page.

• �P opulate the JavaScript

variables with the

runtime values.

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

292

Table 10-3.  (continued)

Digital Experience
Capability

Key Features Key Tools for Migration Key Methods for Migration

Content

management

Content authoring,

content editing,

content publishing,

content tagging,

headless CMS,

taxonomy,

metadata

management

• � Drupal, Wordpress,

Joomla, Alfresco,

LiferayCMS, Kentico,

Adobe AEM

• �M igration of contents from

file system, DB to content

management systems

• � Create reusable content

layouts and structures.

• � Create metadata strategy

for content tagging

and easier information

discovery.

• �P rovide content

services to implement

headless CMS.

Other digital

experience

capabilities

Search,

personalization,

commerce,

digital marketing,

workflow and

orchestration

• �S earch: Elasticsearch,

Solr, Lucene, Splunk,

Jena

• � Digital Marketing:

OpenEMM,

CampaignChain, IBM

Unica, Oracle Eloqua

• �P ersonalization: Adobe

Target, Google Optimize

360, HubSpot, Marketo

• � Workflow: Activiti, Jboss

JBPM, Copper, Camuda

• �E nable site search,

enterprise search using

search tools.

• �I mplement role-based

access and targeted

content delivery using

personalization.

• �E nable commerce

features using commerce

plugin.

• �P romote campaigns

using digital marketing.

• �I mplement business

processes using workflow

and orchestration tools.

(continued)

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

293

Table 10-3.  (continued)

Digital Experience
Capability

Key Features Key Tools for Migration Key Methods for Migration

Security Authentication,

role-based access,

permission model,

entitlements,

federated SSO,

single sign-on

(SSO), security

testing

• �SSO : Okta, OpenSSO

• �A uthentication: CAS,

OpenAM

• �S ecurity testing: OWASP

Zed Attack Proxy (ZAP)

• �S tandards: Oauth,

OpenID, SAML

• �S ervice enable existing

interfaces.

• � Develop granular

microservices on top of

existing legacy services

to implement 2-speed

digital services.

• � Deploy microservices in

containers for individual

scalability.

Artificial

intelligence and

machine learning

Self-learning,

continuous

improvement, text

analytics, predictive

analytics, chatbots,

virtual assistants,

intelligent

recommendation

engines, robo

advisors, process

automation

• �N LP: OpenNLP

• �K ey Tools: H2O.ai,Apache

PredictionIO, IBM Watson,

Google TensorFlow

• �API .ai, Facebook

messenger platform,

Botsify, Telegram bots,

Botkit, ChattyPeople

• �T rain the models using

machine learning

algorithms.

• � Leverage AI and ML tools

for implementing the

recommendations, search

and chatbots.

Big data Structured and

unstructured

data processing,

real-time insights

• � Big data processing:

Apache Spark, Apache

Hadoop

• �N oSQL DB: Apache

Cassandra, MongoDB,

CouchDB,

• �S earch: Splunk

• �I mplement map reduce

framework to process

big data.

• �I mplement big data

to process structured

and unstructured data

(text, e-mail, video,

etc.) processing to get

360-degree insights.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

294

�Chapter Summary
•	 The main tenets of the banking experience platform are user-

centric experience redesign, customer insights gathering, optimized

business models, leveraging modern digital technologies and digital

open ecosystem.

•	 Core attributes of a digital bank are support for multiple channels,

self-learning and continuous improvement, enabling of new

integrations, open platform, mobility on the go, and next-gen

communication.

•	 The key DXP features that can be used for building the banking

experience platform are enterprise integration, robust platform, low

customization and high configuration, fitment to bank landscape,

functionality, user experience, content management, and security.

•	 The main technology trends in banking are AI, Blockchain,

cryptocurrency, APIs and microservices, Gamification, VR and AR,

and IoT.

•	 The main business trends in banking are crowd-based P2P lending,

digital-first bank, payment banks, digital wallets, and social media

banking.

•	 Technical reference architecture for the banking experience

platform consists of modules such as lean portal services,

presentation services, user experience enhancement services,

personalization services and analytic services, search services, social

and collaboration services, workflow and orchestration services,

campaign, self-learning services and marketing services, data

management services and content services, security services, delivery

support services, and infrastructure and maintenance services.

•	 Functional reference architecture for the banking platform

consists of visualization module, social and collaboration module,

administration module, loan module, investment module, core

banking services module, business intelligence (BI) and reports

module, analytics module, campaign module, content management

module, and Data management module.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

295

•	 Main methods for the digital transformation of traditional banks are

digitizing existing banking systems and reimagining the banking

experience.

•	 Digitizing existing banking systems is enabled by methods such as

providing omnichannel capabilities, digitizing banking business

models, digital facelift for user experience, service enablement,

automation, two-speed digital enablement, and standardization and

centralization.

•	 Reimagining the digital banking experience includes phases such as

digital opportunity assessment phase and data management.

•	 Key areas that will be assessed during the digital maturity assessment

are organization culture, business process, leadership, governance,

user engagement, collaboration and social media interaction,

IT alignment, business agility, analytics, infrastructure, and data

management.

Chapter 10 Transforming Legacy Banking Applications to Banking Experience Platforms

PART V

End to End Case Study

299
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9_11

CHAPTER 11

End to End DXP Case
Study
This chapter discusses an end to end DXP case study. We have chosen a business to

business (B2B) scenario to showcase how digital experience platforms can be used for all

scenarios. In this case study, we discuss the detailed requirements, DXP solution fitment,

and implementation.

We have considered a vehicle dealer management solution for this B2B case study.

�Drivers and Key Requirements of the Dealer
Platform Case Study
Given as follows are the main drivers for the next-generation dealer management digital

platform:

Next-generation user experience that engages customers and reduces complexity:

•	 The digital platform should provide a consistent, omnichannel and

personalized user experience across all touchpoints.

•	 The digital platform should provide self-service tools for dealers,

sales executives, and support personnel.

•	 The user experience should be accessible on any device anytime.

•	 Identify and improve customer engagement KPIs.

•	 Provide collaboration across dealers, customer, sales, and marketing

team.

300

Business process improvements:

•	 The digital platform should reduce the overall time needed to gather

all needed information.

•	 Seamlessly integrate the platform with various back-end systems and

services.

•	 Improve sales cycle time.

•	 Improve sales process and service tracking processes.

Improved information management:

•	 Improve the quality of lead/opportunity data and revenue

recognition data.

•	 Improve integration with the order and service management system.

•	 Optimize business processes related to sales, service, marketing, and

CRM.

Improved customer satisfaction:

•	 Improve the customer experience by providing a seamless sales and

service experience across all channels.

•	 Improve the dealer experience and productivity.

Scalable and robust platform:

•	 Develop a modern platform capable of scaling to future demands

and scale for increased dealer operations.

�Architecting the Next-Generation Dealer platform
This section looks at various phases of architecting the next-generation dealer digital

platform.

�Pain Point Analysis in Current Systems and Processes
The first step in the digital transformation of the dealer platform is to identify all the

challenges and pain points with the existing system, as detailed in Table 11-1.

Chapter 11 End to End DXP Case Study

301

Table 11-1.  Pain Point Analysis

User Persona Pain Points

Dealer •	 Dealers have to repeat entire processes when making multiple changes.

•	 Inability to accept electronic signatures

•	 There are too many unneeded applications.

•	 Dealers can’t identify priority messages.

•	 Application flow does not follow process flow used within the dealership.

•	 Common UI standards are not followed.

•	 No UI standards are followed. UI is not consistent for internally created

applications.

•	 Lack of standards for vendor sites

•	 No ability to “alert” dealers when action is needed

•	 Navigation menus and information architecture are not intuitive.

•	 Absence of contextual search feature

Administrators •	 Applications lack a robust, real-time, error checking/validation feature.

•	 Lot of manual processes and need to go to multiple applications to

complete a single business process

•	 Inability to easily upload photos where needed/helpful

•	 No ability to customize application placement

•	 No formal process to remove/update information

•	 Not able to identify priority messages

•	 Information is not automatically populated.

•	 Look and feel is not up to date.

Customers •	 The existing system takes lot of time in completing the processes.

•	 There is a lot of manual process involved, which seems outdated.

•	 Too much of redundant information is being asked

•	 Lack of personalization and contextual information

•	 Difficulty in finding relevant information quickly.

•	 Users need to access multiple applications to complete a single business

process.

Chapter 11 End to End DXP Case Study

302

�Solution Tenets of Next-Generation Dealer Platform
Based on the pain point analysis, the key solution tenets of the next-generation dealer

platform were developed, as listed in Table 11-2.

Table 11-2.  Solution Tenets

Solution Tenet Solution Description

A responsive site omnichannel-enabled

platform

•	 Responsive application that can be accessed from

desktop or any handheld device

•	 Multilanguage feature for localization

Improve overall efficiency by

streamlining processes and

incorporating new technologies

•	 Application workflow mapped to business

processes

•	 Consistent customer information throughout

original equipment manufacturer (OEM) systems

and dealer CRMs

•	 Single sign-on to access enterprise wide

applications

•	 Application portfolio rationalization that will

obsolete applications supporting redundant

processes and are duplicating some processes

•	 Real-time business and data validations

Enhance communication by updating

and expanding delivery options such

as redesigned messaging, e-mail, chat,

user level alerts and notifications.

•	 Support for chat, blog, communities, wiki, alert /

notification requirements

•	 Two-way communication channel with online help,

chat functionality

Improve platform availability. •	 Application available even during off business hours

•	 Disaster recovery strategy that predicts recovery

points and recovery through secondary sites

•	 Load balancing strategies to distribute transaction

loads to multiple servers

(continued)

Chapter 11 End to End DXP Case Study

303

Solution Tenet Solution Description

Improve navigation throughout the

system.

•	 Intuitive UI/UX experience

•	 Personalized experience like customizable views,

customizable dashboard, and app store-like

features

Provide powerful search capabilities •	 Provide contextual enterprise search capabilities.

•	 Fast and easy retrieval of relevant information

Integrate content management •	 Consistent and seamless information available to

customer throughout OEM, dealers, and third-party

sales channels

Collect usage analytics to enable

continuous improvement.

•	 Dealer sales performance and customer

satisfaction index monitoring

•	 Dealer surveys on new product and application

features

Utilize best practices for architecture,

design, development, and testing.

•	 Standardized integration formats and UI guidelines

with vendor sites

•	 Scalable and efficient application platform

Reduce custom code •	 Applications portfolio rationalization

•	 Capability to add new contents and functionalities

Extensibility for new business models

launch and support

•	 Enable workflow for mobile devices

•	 Telematics-based subscription offers

Seamless extension for financing and

leasing options

•	 Online credit application

•	 Online payment estimator for finance and leasing

Table 11-2.  (continued)

Chapter 11 End to End DXP Case Study

304

Figure 11-1.  Dealer platform solution tenets and features

�Solution Design Principles
The key solution design principles are given in Table 11-3.

The solution tenets and features provided by the next-generation dealer platform are

depicted in Figure 11-1.

Chapter 11 End to End DXP Case Study

305

Table 11-3.  Solution Design Principles

Solution Design
Principle

Core Implementation Points

Continuous availability •	 Set up monitoring infrastructure and real-time alert mechanism.

•	 Conduct scalability and availability testing.

•	 Implement multi-node cluster for failover for in house deployment.

•	 Leverage cloud deployment option.

•	 Set up disaster recovery environment.

•	 Implement failover mechanism.

Proven standards and

industry best practices

•	 Leverage open standards for development for future extensibility.

•	 Adopt industry best practices for performance and security.

•	 Create checklists and review gating criteria to ensure that

standards and best practices are followed.

Compliance to legal

regulations

•	 Compile all the regulatory and legal policy related requirements

(such as security related regulations, data retention-related

policies and such) and ensure testing for the same.

Modular and flexible

design

•	 Choose standards and open source technologies and products

wherever possible to avoid vendor lock in.

•	 Implement layered and loosely coupled architecture, with each

layer having distinct responsibility.

•	 Create modular solution components that can be easily extended.

High usability •	 Implement accessibility standards.

•	 Conduct usability testing on all supported browsers and devices.

•	 Provide contextual help, FAQ, and contextual menus.

•	 Provide intuitive information architecture and user-friendly

navigation structure.

•	 Provide consistent user interface.

•	 Provide search for all interfaces.

Service-oriented

architecture

•	 Use services for exposing and consuming services.

•	 Implement lightweight REST-based services to integrate with

external interfaces.

(continued)

Chapter 11 End to End DXP Case Study

306

An overall next-generation dealer platform with various features is depicted in

Figure 11-2.

Solution Design
Principle

Core Implementation Points

Quality attributes •	 Get the signed-off SLAs for quality attributes such as scalability,

availability, performance.

•	 Conduct iterative testing for verifying all the signed-off SLAs.

•	 Set up monitoring infrastructure to monitor the SLAs in real time.

Security •	 Implement layer-wise security.

•	 Create a security check list and use it for reviews.

•	 Conduct iterative security testing.

Lean web-oriented

architecture

•	 Develop lean UI interfaces based on latest JavaScript frameworks.

•	 Provide easy to use UI dashboards to provide an integrated unified

view of all information.

•	 Build lightweight UI widgets instead of heavier server-side

components.

Table 11-3.  (continued)

Chapter 11 End to End DXP Case Study

307

�Persona-Based Information Architecture
In order to improve information discoverability and provide an easy to use and easy to

find experience, the new dealer platform provides persona-based features. The user

interface provides the dashboards covering the needs and wants for the user persona.

The persona-based feature mapping is depicted in Figure 11-3.

Figure 11-2.  Next-generation dealer platform features

Chapter 11 End to End DXP Case Study

308

�Persona-Based Design and Information Architecture
User centricity is the main design goal of DXP. The solution architecture, UI design,

and information architecture are all designed with the end user in mind. “Persona-

based design” is one of the key elements of UI design. A persona represents a group of

users with similar needs, similar behavior, and similar information goals with similar

navigation patterns. We will identify all the user personas for a given digital solution and

this will help us to identify the UI design, information architecture, and DXP capabilities

that need to be leveraged. In Table 11-4 we have identified a few user personas and

mapped them to the DXP capabilities.

Figure 11-3.  Persona-based feature mapping

Chapter 11 End to End DXP Case Study

309

Table 11-4.  User Persona and DXP Capabilities

Information Goal Daily Tasks and Navigation
Behavior

DXP capabilities required

Sales Manager Persona

The sales manager

is looking to have a

single-stop shop for

all the vehicle sales

reports, vehicle change

request reports, and

vehicle inventory

information and would

like to use the same

to manage the digital

sales.

The user starts using the online

sales dashboard provided

to get access to the vehicle

inventory and other vehicle-

related sales information. The

user can create a custom,

personalized dashboard that

provides instant access to all

sales information.

The user also changes

the look and feel and to

personalize preferences.

The user wants to find the

information quickly with

minimal page hops.

The personalized dashboard, accessible

through multiple channels like mobile or

desktop, provides the flexibility to have access

to a readily defined view with only the banking

functionalities that the user uses regularly,

making it simple for the user to track.

Custom, personalized alerts provide real-

time updates to the user on all financial

transactions.

Provide omnichannel and responsive UX

to manage transactions anytime, anywhere,

and effectively manage the finances.

DXP should provide a personalized user

interface with contexual search capabilities

and self-service features.

Warrant Administrator Persona

The warranty

administrator handles

multiple operation

areas such as service

management, claims,

repair, orders, campaign

and payment and

currently has to scan

through multiple

applications to

understand the status of

the daily operations.

The user wants an integrated

platform.

The user wants real-time

and configurable reports

for claims, repairs, orders,

and campaign and payment

information.

DXP should be configured to provide an

integrated dashboard view that can pull

the data from desperate systems and

provide the user an end-to-end view of all

operations and also provide the user with a

personalized interface that can be modified

to suite his/her needs.

DXP should provide reporting capability that

can be configured/customized to effectively

monitor operations.

DXP should provide a customizable view by

adding/removing UI widgets.

(continued)

Chapter 11 End to End DXP Case Study

310

Information Goal Daily Tasks and Navigation
Behavior

DXP capabilities required

Regional Training Admin Persona

Regional training admin

wants to reuse the

organizational internal

knowledge base to

provide user training

and certification.

The regional training

admin wants to use the

centralized knowledge

base for web-based

training.

The regional training

admin carries out

a rewards and

recognition program.

The user uses the centralized

content management system

to access the training content

and course content.

The user leverages the

gamification feature of the

platform to promote learning.

DXP should provide real-time collaboration

features such as chat, blog, wiki,

messenger, and information sharing

platform.

The content management feature of DXP

should be used to create a knowledge

repository and provide a search feature for

efficient information discovery.

Table 11-4.  (continued)

�Functional View of the Next-Generation Dealer Platform
A functional view of the next-generation dealer platform is depicted in Figure 11-4.

Chapter 11 End to End DXP Case Study

311

Fi
gu

re
 1

1-
4.

 F
u

n
ct

io
n

al
 v

ie
w

Chapter 11 End to End DXP Case Study

312

The next-generation dealer platform needs various forward-looking features such as

AI, chatbot, predictive analytics, mobility, AR/VR, blockchain, and such.

The platform needs multiple functional modules for managing parts (orders, pricing,

inventory), sales (data, inventory, incentive, tracker), finance (vehicle finance, dealer

settlement and such), warranty (returns and repairs, claims), and services (service

information, customer satisfaction survey and such).

The content management capability of the DXP is used to implement the following

features:

•	 Sales promotion materials: The sales team can create promotion

content and target it for specific personas.

•	 Bulletins and publications: Share up-to-date vehicle-specific service

bulletins and other publications with dealers.

•	 Product catalogue and reference guides: OEMs can seamlessly

communicate sales promotions, product info, etc. through content

standardized (or) customized across dealerships.

•	 Technical information: To train dealer personnel on technical aspects

of the platform allows for faster product roll-out.

�Seamless and Optimized Business Process
In order to address the challenges with existing business processes, the next-generation

dealer platform is optimized to provide following features:

•	 One-stop deal processing and single-click submission of multiple

artifacts for dealers

•	 Real-time incentive inquiry from multiple devices (mobile, iPad,

desktop)

•	 Real-time incentive validation on submission of deal to avoid

postsubmission changes and reconciliation issues

•	 Real-time updates on the artifact status

A sample optimization of end-to-end deal processing flow is depicted in Figure 11-5.

Chapter 11 End to End DXP Case Study

313

Figure 11-5.  Deal processing flow optimization

�Open-Source-Based Next-Generation Deal Digital
Platform
The next-generation dealer digital platform is built on open-source technologies, and

the guiding principles for the platform are listed in Table 11-5.

Table 11-5.  Guiding Principles

Principles Benefits

Leveraging open-source components Leveraging open-source components like Angular JS,

Bootstrap, Springboot, etc.

Brings flexibility, agility, speed, and cost-effectiveness.

Micro ervices based Event-driven architecture / domain-driven design

Microservices are individually scalable and modular,

providing high availability and performance.

API driven Provide REST-based APIs that abstract the internal details of

the application. The APIs form the contract for consuminig

applications.

12-Factor apps Supports the “software-as-a-service” principle for

applications; this also brings scalability, resiliency,

continuous delivery, maintainability, and information security

(continued)

Chapter 11 End to End DXP Case Study

314

Principles Benefits

Scalable architecture for future cloud

deployment

By keeping the microservices, microfrontend-based

architecture can be easily moved to a cloud platform

(platform as service model).

Keeping everything secured Encryption in transit for all end-to-end traffic without

exception; encryption at rest as per data classification

Automation enablement Relentless automation in development and deployment

process, and application and business processes

Think of API as a service, not manual repetitive work.

Quality of Service (QoS) requirements

from the beginning

Engineering culture to include usability, performance,

scalability, releasability, and supportability as first-class

concerns instead of an afterthought

The logical architecture of the dealer digital platform is shown in Figure 11-6.

Table 11-5.  (continued)

Chapter 11 End to End DXP Case Study

315

Figure 11-6.  Dealer platform logical architecture

Chapter 11 End to End DXP Case Study

316

Various solution components mapping for the requirements are given in Table 11-6.

Table 11-6.  Solution Component Mapping

Logical Component Description Shortlisted Component

Security Security aspects of

solution

Lightweight Directory Access Protocol (LDAP),

Security Assertion Markup Language (SAML)

components

Search Enterprise content,

navigation search

capabilities

Apache Solr, ElasticSearch for domain data

search

Microservices Tools, frameworks to

develop and manage

microservices

SpringBoot and Docker

Provides excellent features in rapid development

and deployment of microservices. When

desired to move to the cloud, the integrations

to easily adopt microservice design patterns

like intelligent routing, circuit breaking, config

management, client-side load balancing, etc.

Content management Solution for managing

enterprise content

Drupal CMS-preferred considering the headless

CMS and robust features in CMS products

Self-service business

intelligence

Tool for creating, sharing

simple/complex reports,

both predefined, ad hoc,

and self-served

Jaspersoft and Pentaho are open-source

offerings. Jaspersoft is ideal for simple

reporting. Pentaho has BI reporting capabilities.

UI/UX User experience tool/

frameworks

Custom using Angular JS, because of the

flexibility it provides and ease of changing

frameworks/libraries in this fast-changing UI/

UX technology landscape

API Gateway Gateway that would be

the face of all channels

via which integration

services are provided

Kong, Tyk, DreamFactory

(continued)

Chapter 11 End to End DXP Case Study

317

Logical Component Description Shortlisted Component

DevOps Tools/frameworks for

DevOps

Maven / Jenkins

Analytics Analytics solution

framework

Google Web Analytics

Source code For maintaining source

code

Git, SVN, BitBucket

Functional testing Testing the code for

functional features

Junit

Performance testing Conduct performance

test

JMeter

Table 11-6.  (continued)

Key solution components are detailed as follows:

�UI Development

The next-gen dealer digital platform requires an intuitive UI that provides an engaging

experience to users. Because of this requirement, we suggest developing responsive

single-page application (SPA) following responsive web design (RWD) techniques using

HTML5, Angular, Bootstrap, CSS, and Angular Material Design. The key design principle

is to separate data from representation. SPA invokes APIs to get the required content

and renders so that it is responsive. Features like internationalization/localization are

implemented using frameworks like i18Next.

�Domain Specific Microservices

As the platform will be transformed over time, it is important to keep delivering business

value continuously. We can leverage microservices to be decomposed based on domains

and subdomains. This will allow business functions to be independently developed and

perhaps even coexist with other legacy functions before they are transformed.

Chapter 11 End to End DXP Case Study

318

Each microservice will have its own isolated stack include the data source. Docker

containerization will be used to ensure portability across environments and platforms.

For Java services, Spring Cloud libraries will be leveraged for implementation of various

microservices patterns of service discovery, client-side load balancer, token relay,

circuit breaker, and intelligent routing. Wherever available, the platform services will be

given preference to language-specific libraries. Depending on the needs of the specific

microservice, an appropriate datastore would be selected from relational, NoSQL, or

Object Cache offerings of the platform for that microservice.

�Drupal Headless CMS

A headless CMS is a back-end only CMS built from the ground up as a content repository

that makes content accessible via a RESTful API for display on any device. Headless

CMS functionalities provided by CMS solution providers such as Drupal deliver content

via API, and these solutions also can be hosted on the cloud. Rich UI application will

leverage these APIs to provide the content management functionalities in a next-

gen dealer system. The APIs will be accessed via API gateway for content retrieval.

Authentication and authorization will be done using security mechanisms like SSO,

SAML, OAuth, access tokens, etc.

�Innovations and Next-Generation Technologies
in Dealer Platform
Given in Table 11-7 are innovations and usage of cutting edge digital technology that can

be used for a dealer platform.

Chapter 11 End to End DXP Case Study

319

Table 11-7.  Next-Generation Technologies for Dealer Platform

Technology Description Applicable Scenarios in Dealer Digital
Platform

Chatbot Using a chatbot for dealer and

customer interaction

1. �E nquiring inventory of car models and

availability

2. �A sking about the process flow steps for

complex business process such as parts

ordering

Mobility Enable all key pages and

functionality on smart phones

and tablets.

1. � Functions such as dealer dashboards,

vehicle enquiry

2. �P rovide configurable home pages for

dealers and sales team

Gamification Applying game mechanics

and game design techniques

to engage and motivate all

stakeholders to achieve their

goals

1. � Create dealer dashboard and sales

dashboard to show the scoring and ranking

to motivate dealers and sales team.

2. �P rovide real-time view of performance

KPIs and metrics.

Digital experience Provide integrated experience

for all stakeholders.

1. �P rovide single-stop-shop experience for

end to end deal management including

pricing, application and deal closure.

2. �A utomate the key business processes.

Predictive analytics Analytics for improving

customer experience by

identifying improvement

opportunities at every

touchpoint in the sales and

service life cycle

1. �U se predictive analytics to proactively

forecast parts inventory based on sales.

2. �A nalyze the SLAs of the vehicle service

process and warranty/claims process and

identify the key bottleneck areas.

Automated
integrated systems
and dashboards

Seamless and streamlined

integrated data from various

business functions such as

parts ordering, servicing,

warranty

1. �P rovide dealer dashboard providing leads,

warranty, customer satisfaction score.

2. �P rovide sales dashboard showing the

region-wise sales and charts for the

same.

(continued)

Chapter 11 End to End DXP Case Study

320

Technology Description Applicable Scenarios in Dealer Digital
Platform

Artificial
intelligence

Leverage AI to augment the

chatbot and use for automate

repetitive jobs, and use AI to

gather insights from existing

data.

1. �A nalyze warranty and claims data to

identify the region-wise sales and leads.

2. �E nable voice based queries for dealers

3. �A nalyze service rating and customer

complaints to understand the issues with

business processes.

Blockchain Use of blockchain technology

for ensuring transparency

in information across

stakeholders

1. � Leverage blockchain to track the

vehicle parts across OEMs, dealers, and

customers.

2. �U se blockchain technologies to get the

complete vehicle ownership and service

history.

Augmented/virtual/
mixed reality

Workforce of the future

solution leveraging AR , VR,

and MR

1. �U sing AR / MR for remote technical

assistance

2. �U se the AR and VR for dealer training.

Table 11-7.  (continued)

�Chapter Summary
•	 A vehicle dealer management B2B scenario is used in this case

study. The key drivers and requirements for the dealer platform are

next-generation user experience, business process improvements,

improved information management, improved customer satisfaction,

and a scalable and robust platform.

•	 In order to architect the next-generation dealer platform we need to do

the pain point analysis, define solution tenets, devise solution design

principles, and develop persona-based information architecture.

•	 The overall solution architecture of the next-generation vehicle dealer

platform should define the functional view, create seamless and

optimized business processes, leverage open source technologies,

identify solution components mapped to key functional components,

and use innovations

Chapter 11 End to End DXP Case Study

321
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9

APPENDIX A

�Open-Source Tools
and Frameworks
A DXP uses open-source tools and frameworks to build its layers and mainly focuses on

open-source technology to provide a digital ecosystem to develop invocative solutions

and business processes. This section explains different frameworks that can be used in

developing a DXP.

�HTTP Accelerator
An HTTP accelerator is designed for content-heavy dynamic web application as well

as APIs.

•	 Varnish (https://varnish-cache.org/)

A DXP uses Varnish to accelerate web content delivery to the client.

�Web Server
A web server serves contents to the World Wide Web. A web server processes incoming

network requests over HTTP and several other related protocols.

•	 Microsoft IIS (https://www.iis.net/)

•	 Nginx (https://www.nginx.com/)

•	 Apache web server (https://httpd.apache.org/)

A DXP uses these web servers to deploy their static contents, like HTML, CSS, scripts,

images, etc. You can customize and use one of them to deploy and host their static content.

https://doi.org/10.1007/978-1-4842-4303-9
https://varnish-cache.org/
https://www.iis.net/
https://www.nginx.com/
https://httpd.apache.org/

322

�CSS Framework
A CSS framework is a framework that is meant to allow for easier, more standards-

compliant web design using the Cascading Style Sheets language. CSS frameworks

contain a grid structure for responsive web design.

•	 Bootstrap (https://getbootstrap.com/)

•	 Foundation (https://foundation.zurb.com/)

•	 Bulma (https://bulma.io/)

•	 Material UI (https://material-ui.com/)

•	 Semantic UI (https://semantic-ui.com/)

A DXP uses these open-source CSS frameworks to build UI designs. You need to

check the compatibility of these frameworks with the scripting framework.

�Scripting Framework
The scripting framework is a JavaScript framework. This library offers features that allow

you to implement complex requirements:

•	 Angular (https://angular.io/)

•	 React (https://reactjs.org/)

•	 React Native (https://facebook.github.io/react-native/)

•	 NativeScript (https://www.nativescript.org/)

•	 Electron (https://electronjs.org/)

A DXP uses these open-source CSS frameworks to develop UI components along

with CSS frameworks. You can choose permutations and combinations of CSS and

scripting framework to develop UI components.

Appendix A Open-Source Tools and Frameworks

https://getbootstrap.com/
https://foundation.zurb.com/
https://bulma.io/
https://material-ui.com/
https://semantic-ui.com/
https://angular.io/
https://reactjs.org/
https://facebook.github.io/react-native/
https://www.nativescript.org/
https://electronjs.org/

323

�User Interface Management
UI management tools like a package manger, module bundler, task runner, or testing

framework would help you to manage the modules and submodules in complex UI

application. A module bundler puts all its dependency in one JS file. A task runner

executes tasks based on the specific criteria to automate the UI build process.

•	 Package manager:

•	 NPM (https://www.npmjs.com/)

•	 YARN (https://yarnpkg.com/en/)

•	 Bower (https://bower.io/)

•	 Module bundler:

•	 Webpack (https://webpack.js.org/)

•	 Browserify (http://browserify.org/)

•	 Rollup (https://rollupjs.org/guide/en/)

•	 Task runner:

•	 Grunt (https://gruntjs.com/)

•	 Gulp (https://gulpjs.com/)

•	 Testing:

•	 Mocha (https://mochajs.org/)

•	 Jest (https://jestjs.io/)

•	 Jasmine (https://jasmine.github.io/)

•	 Cucumber (https://cucumber.io/)

•	 Karma (https://karma-runner.github.io/latest/index.html)

A DXP uses a package manager and module bundler to integrate and manage the

dependency package used while developing UI components, and uses a task runner to

build tasks to minify and watch the changes while developing UI components. A DXP

uses previously mentioned open-source testing frameworks for test-driven development

and behavior-driven development.

Appendix A Open-Source Tools and Frameworks

https://www.npmjs.com/
https://yarnpkg.com/en
https://bower.io
https://webpack.js.org/
http://browserify.org/
https://rollupjs.org/guide/en/
https://gruntjs.com/
https://gulpjs.com/
https://mochajs.org/
https://jestjs.io/
https://jasmine.github.io/
https://cucumber.io/
https://karma-runner.github.io/latest/index.html

324

�Integration
Integration provides a model for interaction and communication between mutually

interacting software applications in service-oriented architecture (SOA).

•	 Enterprise system bus (ESB):

•	 Apache Camel (http://camel.apache.org/what-is-camel.html)

•	 JBoss ESB (http://jbossesb.jboss.org/)

•	 Open ESB (https://www.open-esb.net/)

•	 Apache ServiceMix (http://servicemix.apache.org/)

•	 Integration framework:

•	 Apache CXF (http://cxf.apache.org/)

•	 Spring Integration (https://spring.io/projects/spring-

integration)

•	 Node Red (https://nodered.org/)

•	 API Gateway:

•	 Gravitee (https://gravitee.io/)

•	 Apiumbrella (https://apiumbrella.io/)

•	 Apiman by RedHat (http://www.apiman.io)

The DXP uses and recommends open-source ESB architecture to develop the

integration layer, but you can use another open-source integration framework to

develop your DXP’s applications and its integration layer. You can also use open-source

API gateways to manage, authenticate, and scale the API integration layer. The ESB

framework can handle large and complex integration, whereas an integration framework

would be used in small- and medium-scale integrations.

�Application Server
An application server is a component-based framework that resides in the middle tier of

a server-centric architecture. It provides middleware services. The application is hosted

on the application server.

Appendix A Open-Source Tools and Frameworks

http://camel.apache.org/what-is-camel.html
http://jbossesb.jboss.org
https://www.open-esb.net/
http://servicemix.apache.org
http://cxf.apache.org
https://spring.io/projects/spring-integration
https://spring.io/projects/spring-integration
https://nodered.org
https://gravitee.io
https://apiumbrella.io
http://www.apiman.io

325

•	 Tomcat (http://tomcat.apache.org/)

•	 JBoss (http://jbossas.jboss.org/downloads)

A DXP uses open-source application servers to deploy the integration and

middleware applications.

�Server-Level Cache
Sever-level caches are standards-based caches that boost performance and simplify

scalability. They are often used to speed up dynamic web applications by caching

data and objects in RAM to reduce the number of times an external data source, like a

database or API, is called.

•	 Jgroups (http://www.jgroups.org/)

•	 Ehcache (http://www.ehcache.org/)

•	 Memcached (https://memcached.org/)

•	 Redis (https://redis.io/)

A DXP uses open-source server level caches while developing an application to

cache data objects.

�Content Management Systems
A content management system (CMS) is a software application that is integrated with the

DXP’s applications to create and manage digital content.

•	 OpenCms (http://www.opencms.org/en/)

•	 TYPO3 (https://typo3.org/)

•	 Joomla (https://www.joomla.org/)

•	 Drupal (https://www.drupal.org/)

A DXP uses open-source CMS to provide a seamless digital experience that reach

one’s audience across multiple channels.

Appendix A Open-Source Tools and Frameworks

http://tomcat.apache.org
http://jbossas.jboss.org/downloads
http://www.jgroups.org
http://www.ehcache.org
https://memcached.org
https://redis.io
http://www.opencms.org/en
https://typo3.org
https://www.joomla.org
https://www.drupal.org

326

�CMIS
Content Management Interoperability Services (CMIS) is an open standard that allows

different content management systems to integrate with a DXP and control document

management systems and repositories using web protocols.

•	 Apache Chemistry (https://chemistry.apache.org/)

A DXP uses open-source CMIS specification to query CMS and integrated CMS with

multiple channels.

�SQL Database
DXP uses Open source Database to store relational data.

•	 MySQL (https://www.mysql.com/)

•	 PostgreSQL (https://www.postgresql.org/)

•	 Maria DB (https://mariadb.org/)

�NoSQL Database
A DXP uses an open-source NoSQL database to store nonrelational data. These

databases have capabilities to push JSON to one’s application in real-time.

•	 MongoDB (https://www.mongodb.com/)

•	 Redis (https://redis.io/)

•	 CouchDB (http://couchdb.apache.org/)

•	 Cassandra (http://cassandra.apache.org/)

•	 RethinkDB (https://www.rethinkdb.com/)

Appendix A Open-Source Tools and Frameworks

https://chemistry.apache.org
https://www.mysql.com
https://www.postgresql.org
https://mariadb.org
https://www.mongodb.com
https://redis.io
http://couchdb.apache.org
http://cassandra.apache.org/
https://www.rethinkdb.com

327

�IoT Framework
IoT frameworks and platforms are also called IoT middleware; the purpose is to function

as a mediator and integrator between the hardware and application layers. Primary tasks

include data collection from the devices over different protocols and networks.

•	 Eclipse Kura (https://www.eclipse.org/kura/)

•	 Node-RED (https://nodered.org/)

•	 Flogo (https://www.flogo.io/)

•	 Iotivity (https://iotivity.org/)

•	 AllJoyn (https://openconnectivity.org/developer/reference-

implementation/alljoyn)

A DXP uses open-source IoT middleware frameworks to connect, control, and

integrate multiple devices with the DXP’s applications.

�Distributed Data Streaming
A distributed streaming platform simplifies data integration between a DXP’s systems.

A stream is a pipeline to which one’s applications receive data in real time.

•	 Apache Kafka (https://kafka.apache.org/)

•	 Apache ActiveMQ (http://activemq.apache.org/)

•	 Redis (https://redis.io/)

A DXP uses an open-source distributed streaming framework to provide real-time

data access using producer, consumer, and broker streams.

�Analytics Engine
Spark is packaged with higher-level libraries and includes support for SQL queries,

streaming data, machine learning, and graph processing.

•	 Apache Spark (https://spark.apache.org/)

DXP uses an open-source analytics framework to analyze huge and diverse data sources.

Appendix A Open-Source Tools and Frameworks

https://www.eclipse.org/kura
https://nodered.org
https://www.flogo.io
https://iotivity.org
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://kafka.apache.org
http://activemq.apache.org
https://redis.io
https://spark.apache.org

328

�Distributed Processing
Apache Hadoop is a collection of open-source software utilities that facilitate using a

network of many computers to solve problems involving massive amounts of data and

computation.

•	 Apache Hadoop (https://hadoop.apache.org/)

A DXP uses a distributed processing framework that process large datasets across a

cluster of computers.

�Machine Learning Library and Framework
Machine learning is a part of artificial intelligence (AI) that provides a DXP the ability

to automatically learn and improve. In the following are mentioned open-source

framework and library implement machine learning algorithms, categorized as

supervised or unsupervised. These libraries easily get integrated with an application that

can access data and use it for learning of its own.

•	 Tensorflow (https://www.tensorflow.org/)

•	 PyTorch (https://pytorch.org/)

•	 Scikit-learn (http://scikit-learn.org/)

•	 Deeplearning4j (https://deeplearning4j.org/)

•	 Apache Ignite (https://ignite.apache.org/)

•	 Apache Mahout (https://mahout.apache.org/)

•	 Apache SINGA (https://singa.incubator.apache.org/en/index.

html)

A DXP uses an open-source machine learning and deep learning library and

framework to automate different tasks on different DXP layers, using diversified

programming languages.

Appendix A Open-Source Tools and Frameworks

https://hadoop.apache.org
https://www.tensorflow.org
https://pytorch.org
http://scikit-learn.org
https://deeplearning4j.org
https://ignite.apache.org
https://mahout.apache.org
https://singa.incubator.apache.org/en/index.html
https://singa.incubator.apache.org/en/index.html

329

�Blockchain Frameworks
Blockchain is an upcoming technology; frameworks listed in the following provide

enterprise business blockchain capabilities where DXP assets can be tracked and

audited with enabling distributed ledger capabilities.

•	 Hyperledger (https://www.hyperledger.org/)

•	 MultiChain (https://www.multichain.com/)

•	 HydraChain (https://github.com/HydraChain/hydrachain)

•	 Corda (https://www.corda.net/)

•	 Openchain (https://www.openchain.org/)

•	 IOTA (https://www.iota.org/)

A DXP uses an open-source blockchain framework and platform to deploy and

execute smart contracts and build the DXP’s applications on blockchain infrastructure.

�Augmented and Virtual Reality
Augmented reality (AR) and virtual reality (VR) are increasingly used in technology.

It’s reality created by the use of technology to add digital information on an image of

something. AR is used in apps for smart phones and tablets. AR applications use one’s

mobile or tablet camera to show one a view of the real world and augment information,

including text and images, on top of that view.

•	 ARToolkit (https://github.com/artoolkit)

•	 ARKit (https://developer.apple.com/arkit/)

•	 ARCore (https://developers.google.com/ar/)

•	 AR.js (https://aframe.io/blog/arjs/)

A DXP uses open-source AR and VR frameworks to build AR-VR applications on top

of the DXP’s integrated environment.

Appendix A Open-Source Tools and Frameworks

https://www.hyperledger.org
https://www.multichain.com
https://github.com/HydraChain/hydrachain
https://www.corda.net
https://www.openchain.org
https://www.iota.org
https://github.com/artoolkit
https://developer.apple.com/arkit
https://developers.google.com/ar
https://aframe.io/blog/arjs

330

�Enterprise Search Engine
An enterprise search engine would be integrated with a DXP to assist in locating

important information within a short period of time.

•	 Solr stack:

•	 Apache Solr (http://lucene.apache.org/solr/)

•	 Banana (https://github.com/lucidworks/banana)

•	 Elastic stack:

•	 Elasticsearch (https://www.elastic.co/)

•	 Logstash (https://www.elastic.co/products/logstash)

•	 Beats (https://www.elastic.co/products/beats)

•	 Kibana (https://www.elastic.co/products/kibana)

A DXP uses an open-source enterprise search engine platform to integrate it with the

DXP’s ecosystem and provide search engine capabilities to one’s application.

�Containerization
Containerization is a lightweight option to provide full machine virtualization that

involves encapsulating an application in a container with its own operating system

and environment. This provides many benefits of loading an application onto a virtual

machine (VM) hence the application can be run on any suitable physical machine

without any worries about dependencies.

•	 Docker (https://www.docker.com/)

A DXP uses an open-source container platform to build, manage, and secure one’s

application and wrap in a container.

Appendix A Open-Source Tools and Frameworks

http://lucene.apache.org/solr
https://github.com/lucidworks/banana
https://www.elastic.co
https://www.elastic.co/products/logstash
https://www.elastic.co/products/beats
https://www.elastic.co/products/kibana
https://www.docker.com/

331

�Containerization Orchestration
Containerization orchestration is a system for automating deployment, scaling, and

management of containerized applications.

•	 Docker Swarm (https://docs.docker.com/engine/swarm/)

•	 Kubernetes (https://kubernetes.io/)

A DXP uses containerization orchestration systems for automating deployment,

scaling, and management of containerized applications.

�Source Code Management
SCM is a software versioning and revision control system. Software developers use SCM

to maintain current and historical versions of files such as source code, web pages, and

documentation.

•	 Git (https://git-scm.com/)

•	 Apache Subversion (https://subversion.apache.org/)

A DXP uses an open-source SCM tool to manage and control versioning of an

application developed.

�Continuous Integration and Continuous Delivery
Continuous integration (CI) and continuous delivery (CD) are used to automate all sorts

of tasks related to building, testing, and delivering or deploying software.

•	 Jenkins (https://jenkins.io/)

•	 Gerrit (https://git.eclipse.org/r/Documentation/install.html)

A DXP uses an open-source DevOps platform to build, deploy, and review the DXP’s

applications.

Appendix A Open-Source Tools and Frameworks

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://git-scm.com/
https://subversion.apache.org/
https://jenkins.io/
https://git.eclipse.org/r/Documentation/install.html

333
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9

APPENDIX B

�Sample Code
This sample source code will demonstrate the BXP application’s two UI components

(also called widget or portlet), which are Account and Transaction. You will understand

the development of the UI layer and integrations layer, with mocking the data services

using mocking frameworks, as shown in Figure B-1. You can include a database while

doing integration. Mock services can be replaced with actual services after development

of the DXP’s application. Sample source code is available for download from the book’s

GitHub repository. You can access it at www.apress.com/9781484243022 and click the

Source Code button.

REST API REST API

Database

SQL
Database

No-SQL
Database

Integration. Data MockingUser Interface.

Figure B-1.  Developing UI and Integration

https://doi.org/10.1007/978-1-4842-4303-9
http://www.apress.com/9781484243022

334

�User Interface
You can use any one of the following UI scripting library or UI scripting frameworks to

develop the UI of the application along with its supporting CSS framework:

•	 Angular

•	 Native Script

•	 React Native

•	 React

•	 Electron

•	 Vue

We have chosen the Angular framework for this example because it’s based on MVC

architecture, whereas React’s JavaScript library just helps us to update the view of the

user. But you can integrate FLUX to control the workflow of React-based UI application.

You can choose one of the previously listed frameworks or libraries depending upon

your requirements, design and implementation of which will be suitable for your

application.

Points to evaluate before choosing a UI technology stack are:

•	 MVC: MVC pattern has three components: model, view, and controller.

•	 Model is bound with view as well as controller.

•	 View is a user interface that binds the model with the Document

Object Model (DOM) and display data to the user and also

enables the user to modify the model.

•	 Controllers are responsible for controlling the flow of the

application; if you make a web services request the controller is

responsible for providing a response back to the application.

The MVC pattern provides control over business logic implemented

on UI scripting; hence you should consider whether your

application needs the MVC pattern.

•	 Data binding: Data binding would help you to establish a

relationship between your business logic with the DOM. Angular has

two-way binding, whereas React has one-way binding.

Appendix B Sample Code

335

•	 Rendering: You need to consider which type of data rendering your

application requires; it is preferred to use server-side rendering

frameworks because of less load time as compared with client-side

rendering, and would optimize your application for web crawling.

•	 Performance: Two-way data binding would impact the performance

of the complex application, while one-way binding would not impact

as much.

You need to look at your requirement and the aforementioned considerations

together to evaluate and decide on a framework.

�Integration
We have chosen Apache Camel as the integration framework because it provides easy

implementation of integration of a variety of different applications, which use several

protocols, frameworks, and technologies. It is a lightweight mini enterprise service bus

(ESB) framework that implements all enterprise integration patterns.

You can use one of the following open-source frameworks to develop your

integration layer:

•	 Apache Camel

•	 Apache ServiceMix

•	 WSO2 ESB

•	 Open Source Mule ESB

•	 Open Source Talend ESB

You can use open-source mini-ESB frameworks if you want to integrate two to three

protocols and technologies, for example:

•	 Reading the files

•	 Soap to REST conversions

•	 XML to JSON conversions

•	 Reading or writing to data streams

Otherwise you can also use commercial ESB products for large-scale integration projects.

Appendix B Sample Code

336

�Data Mocking
We choose Swagger to mock web services because it gives features to design, build,

test, and share API along with mocking the web services as per the recommendation

of OpenAPI guidelines, which are meant to provide a standard format to unify how

an industry defines and describes RESTful APIs. You can use any of the following API

mocking frameworks:

•	 Swagger

•	 RAML

•	 WireMock

�Implementation and Logic
The Angular technology stack (Typescripts, Webpack, NPM, and NodeJS), as shown in

Figure B-2, would contain UI implementation and application logic to handle the state

of the client-side application. Client-side applications have web hooks; these hooks are

responsible for getting the data from the server-side application. Complex business logic

and calculation should be avoided on the client side, as one can manipulate it on the

browser’s developer tools.

Angular REST API REST APIApache Camel Swagger

UI Logic Integration Logic
Business Logic

Mocking API
Services

Figure B-2.  Implementation and logic

Appendix B Sample Code

337

The Apache Camel framework, as shown in Figure B-2, has a responsibility to

provide API endpoints while the client-side Angular technology stack strictly handles the

user interface. Complex business logic (like calculation of taxes, deduction of taxes, etc.)

is implemented along with integration at the server-side. The server-side application

contains a business controller, which is responsible for business logic, and integration

controllers that are responsible for sending and receiving data to other application using

Apache Camel’s messaging components and endpoints.

Swagger will mock the third-party web services, which will be removed while

integrating the DXP’s application with third-party systems.

�Deployment
We have chosen Apache Tomcat to deploy our application. You can deploy Angular code

on the Apache web server and the integration application on Apache Tomcat.

�Development
In development you can serve your Angular code through Angular CLI. Apache Camel

resides in a Spring container and this application is deployed on a Tomcat instance, as

shown in Figure B-3.

Angular

&

 Angular
Material

Rest API Rest API

Swagger

Mocking API

Apache Tomcat

Apache
Camel

Spring Container

Figure B-3.  Deployment

Appendix B Sample Code

338

�Production
In production you can deploy the code on a cluster of Apache web server and Apache

Tomcat server instances. You can do load balancing of your application through the

Apache web server.

�Prerequisite
Install the following tools and software:

	 1.	 Intellij IDEA community edition – Version: Latest (https://www.

jetbrains.com/idea/download/#section=windows)

	 2.	 Visual Studio Code – Version: Latest (https://code.

visualstudio.com/)

	 3.	 Java Development Kit (JDK) – Version: 8 and Java Runtime

environment (JRE) – Version: 1.8.0_191. (https://www.oracle.

com/technetwork/java/javase/downloads/index.html)

	 4.	 NodeJS – Version: v8.12.0 and NPM – Version: 6.4.1 (https://

nodejs.org/en/)

	 5.	 Git: Version Control System – Version: Latest (https://git-scm.com/)

	 6.	 Apache Maven – Version: 3.3+ (https://maven.apache.org/

download.cgi)

	 7.	 Apache Tomcat – Version: 8.5.34 (https://tomcat.apache.org/)

Important M ake sure that environmental variables and PATH contain the location
of JDK, JRE, NODE, and GIT.

You can access the source code by going to www.apress.com/9781484243022

Then clone the source code and folder structure from the Git repository

https://github.com/apress/building-digital-experience-platforms.

Appendix B Sample Code

https://www.jetbrains.com/idea/download/#section=windows
https://www.jetbrains.com/idea/download/#section=windows
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://nodejs.org/en/
https://nodejs.org/en/
https://git-scm.com/
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://tomcat.apache.org/
http://www.apress.com/9781484243022
https://github.com/apress/building-digital-experience-platforms

339

�API Specification and API Mocking
Let’s start with developing and mocking API using Swagger UI. An API consumer of the

application can use this specification to develop their solution by mocking the services

till development phase. This specification is the contract between the API consumer and

provider, which helps them to integrate the application in a production environment.

You can download the Swagger designer from the following locations. We have used

OpenAPI-Specification Version 2.

•	 https://swagger.io/

•	 https://github.com/swagger-api

•	 https://github.com/OAI/OpenAPI-Specification/blob/master/

versions/2.0.md

�Swagger-UI
You can access the API specification by using Swagger-UI.

Step 0: Open the Mocking_Services\swagger-ui folder in the

source code.

Clone Swagger UI: https://github.com/swagger-api/swagger-ui

Step 1: Clone Swagger UI using the following command:

git clone https://github.com/swagger-api/swagger-ui.git

Step 2: Run “npm install”; you need an open Internet connection

because this command will copy the dependency from the NPM

repository to your local machine.

Step 3: Run “npm start”; when the server starts, it will be running

on port number 3002. Access the following URL:

http://localhost:3002

Appendix B Sample Code

https://swagger.io/
https://github.com/swagger-api
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui.git

340

�Swagger-Editor
You can change the API specification by editing the API specification file in the Swagger

editor.

Step 1: Run “npm install -g http-server”. NPM will install the

http-server modules in the local repository.

Step 2: Run swagger-editor by running the following command:

http-server swagger-editor

Step 3: It will run on port Number 8080, or check the log of the

preceding command and access the URL, as shown in Figure B-4.

http://localhost:8080/

Figure B-4.  OpenAPI specification for transaction and account

Step 4: Click File ➤ Open and Example File and select abcBanking.

yaml as shown in Figure B-5.

Appendix B Sample Code

341

Step 5: abcBanking.yaml contains API specification for account

and transaction. One can created a mock server by selecting mock

server for abcBanking.yaml as shown in Figure B-6.

Figure B-5.  abcBanking.yaml

Figure B-6.  Node server generation

Step 6: Generate server by selecting the Node.js option; it will

create a zip file. Unzip (nodejs-server-server-generated) and

open the command prompt at the same location.

Appendix B Sample Code

342

�Swagger-Server
Continue with the following steps:

Step 7: Run “npm start” inside the unzipped folder. It will download

the dependency and the server will start at port number 8080, or

check the logs of command “npm start” as shown in Figure B-7.

http://localhost:8080/docs

Figure B-7.  API server

Step 8: Click default; you can access account and transaction

services. You can access the services at the following locations

using REST Client, as these are POST method requests.

•	 Account: http://localhost:8080/account

•	 Transaction: http://localhost:8080/transaction

�UI Screen Mocking on Node-RED
You can use Node-RED for modeling your application using APIs and UI screens. Node-

RED is a programming tool for wiring together hardware devices, APIs, web services, and

quickly making a model to visualize the data flow and UI screens. It provides a browser-

based editor that makes it easy to wire together flows using the wide range of nodes in

the palette, which can be deployed to its runtime in a single-click. You access Node-RED

documentation from the following URLs:

Appendix B Sample Code

343

•	 https://nodered.org/

•	 https://github.com/node-red/node-red

Step1: Open folder location from the source code \Intergartion_

Framework\ABC_Bank_Integration\Node-Red_Based_Integration

Step 2: Clone Node-RED using the following command:

git clone https://github.com/node-red/node-red.git

Step 3: Run “npm install”; you need an open Internet connection,

because this command will copy the dependency from NPM

repository to your local machine.

Step 4: Run “npm start”; the server starts on port number 1880, as

shown in Figure B-8, or access the log of the previous commands

and access the following URL: http://127.0.0.1:1880/

Figure B-8.  Node-RED

Step 5: Click (Menu ➤ Manage palette ➤ Install).

Step 6: Search and install (node-red-dashboard) palette as shown

in Figure B-9.

Appendix B Sample Code

https://nodered.org/
https://github.com/node-red/node-red
https://github.com/node-red/node-red.git
http://127.0.0.1:1880/

344

Step 7: Open folder (Intergartion_Framework\ABC_Bank_Integration\

Node-Red_Based_Integration\node-red-flow.txt) and copy the content

of the (node-red-flow.txt) file, as shown in Figure B-10.

Figure B-10.  Import flow

Figure B-9.  Install dashboard palette

Appendix B Sample Code

345

Step 8: Click (Menu ➤ Import ➤ Clipboard) and paste the

content of the (node-red-flow.txt) file. Click the import button, as

shown in Figure B-11.

Figure B-11.  Account and transaction flow

Figure B-12.  Account and transaction mockup dashboard

Step 9: Click the maroon deploy button on the right corner. After

clicking the deploy button, click and inject timestamp to the flow by

clicking the left side timestamp input highlighted in the red color box.

Step 10: Access the dashboard from the following URL, as shown

in Figure B-12: http://127.0.0.1:1880/ui/

Appendix B Sample Code

http://127.0.0.1:1880/ui/

346

Note  You can install the Node-RED library for integration like MySQL, MongoDB,
Swagger, etc. in a Flow-based wiring tool from the following location: https://
flows.nodered.org/

�Apache Camel
Apache Camel (http://camel.apache.org/) provides lot of useful components that

support many libraries and frameworks such as Hibernate, Apache Spark, Apache-

CXF, Apache Kafka, Restlet, Servlet, FTP, etc. These framework helps in integrating data

between two different systems. For example, using the Camel Servlet or Camel Restlet,

you can pull data from web services, transform it, and send it to another system or front-

end application over REST API calls.

Prerequisite step:

•	 Swagger mocking API server should be running before moving

forward.

In this application, we go over an integration example:

•	 Reading the account and transaction data from the Swagger API

specification

•	 You can calculate the total balance in the controller, which fetches

data from mock API and exposes another transformed API.

•	 Send the transformed API to an Angular application over REST

API calls.

Here are the full details of the example:

•	 Read the data from Swagger API endpoints.

•	 Access the API content and perform the transformation using a

custom processor.

•	 Create the Camel routes to expose the new API endpoint.

Appendix B Sample Code

https://flows.nodered.org/
https://flows.nodered.org/
http://camel.apache.org/
http://camel.apache.org/processor.html

347

�Build Automation System
Automation Systems will help you to provide support and maintenance of multiproject

builds that are expected to be quite huge, and helps you to maintain the dependencies

of the application with regard to third-party modules and parts, the build order, as

well as the needed plug-in. It will download libraries and plug-ins from the different

repositories and then put them all in a cache on your local machine. It also allows for

incrementally adding to your build, because it knows which parts of your project are

getting updated.

To demonstrate the application, we have chosen Maven. But you can also use other

build automation tools such as Gradle.

�Add Dependency

This integration application is a Maven-based Project’s; hence, add the following

dependencies in the POM.xml file of the project. It is available in the project’s root folder

for your reference.

•	 Camel-core: The main dependency for Apache Camel

•	 Camel-spring: Enables us to use Camel with Spring

•	 Camel-stream: An optional dependency, which you can use to display

some messages on the console while routes are running

•	 Spring-context: The standard spring dependency, required in our

case as we are going to run Camel routes in a Spring context (Spring

container)

•	 Spring-core: The main dependency of Spring

•	 log4j: Log4j is a Java-based logging utility that enables us to

implement logging in our application.

•	 Jetty: The Jetty plug-in is used to as a lightweight server to instantly

run the application and test the development work.

Appendix B Sample Code

348

Figure B-13 provides an overview of Apache Camel-based integration deployed on

Tomcat. It will help you to see that the rest of the URL is constructed from different layers

of the application.

•	 Application server host and port: http://localhost:8001/

•	 Application WAR filename: integration.0.0.1

•	 The URL pattern setting from web.xml: camel

•	 End point URI of the Camel servlet endpoint:

•	 account

•	 transaction

Hence the endpoint URI for account is: http://localhost:8001/integration.0.0.1/

camel/account

And for transaction, it is: http://localhost:8001/integration.0.0.1/camel/

transaction

Figure B-13.  Camel servlet integration application deployed in application server

Appendix B Sample Code

349

Camel Servlet Component

The Camel Servlet component is used to process incoming HTTP requests, where the

HTTP endpoint is bound to a published servlet. The servlet component is implemented

by the following servlet class:

org.apache.camel.component.servlet.CamelHttpTransportServlet

To create a Camel servlet endpoint in a Camel route, define a servlet endpoint URI as

the following syntax, as shown in Figure B-14.

servlet://RelativePath[?Options]

Web.xml File

To deploy the Apache Camel integration application, you must provide a properly

configured web.xml file. In the integration project, the web.xml file (Listing B-1) is stored

at the following location: Integration/src/main/webapp/WEB-INF.

Listing B-1.  Web.xml File for the Integration application Example

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/

xml/ns/j2ee/web-app_2_4.xsd">

<!-- location of spring xml files -->

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>classpath:applicationContext.xml</param-value>

</context-param>

<!-- the listener that kick-starts Spring -->

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

Appendix B Sample Code

350

<!-- Camel servlet -->

<servlet>

<servlet-name>CamelServlet</servlet-name>

<servlet-class>org.apache.camel.component.servlet.

CamelHttpTransportServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<!-- Camel servlet mapping -->

<servlet-mapping>

<servlet-name>CamelServlet</servlet-name>

<url-pattern>/camel/*</url-pattern>

</servlet-mapping>

</web-app>

listener/listener-class: This element launches the Spring container, as shown in

Figure B-14.

context-param: This element specifies the location of the Spring XML file, camel-

config.xml, in the WAR. The Spring container will read this parameter and load the

specified Spring XML file, which contains the definition of the Camel route.

servlet/servlet-class: Specifies the org.apache.camel.component.servlet.

CamelHttpTransportServlet class, which implements the Camel Servlet component

servlet-mapping/url-pattern. It determines which URLs are routed to this servlet.

In general, the servlet URL has the following form: http://Host:Port/WARFileName/

URLPattern.

Where the base URL, http://Host:Port, is determined by the configuration of the

web server, the WARFileName is the root of the WARFileName.war WAR file, and the

URLPattern is specified by the contents of the url-pattern element.

Assuming that the application server port is set to 8001, the

integration.0.0.1application would match URLs of the following form: http://

localhost:8001/integration.0.0.1/camel/*.

The Camel route for this example, defined in a Spring XML file in applicationContext.

xml, using Camel's XML DSL syntax, is shown in Listing B-2.

Appendix B Sample Code

351

Listing B-2.  Route Definition for the Camel Servlet Example

 <camelContextxmlns="http://camel.apache.org/schema/spring">

 <route>

 <!-- incoming requests from the servlet is routed -->

 <from uri="servlet:///test"/>

 <transform>

 <simple>Version 1.</simple>

 </transform>

 </route>

 <route>

 <!-- incoming requests from the account servlet is routed -->

 <from uri="servlet:///account"/>

 <process ref="accountControllerRequest"/>

 <camel:touri="direct:/v1/account" />

 <process ref="accountControllerResponse"/>

 </route>

 <route>

 <!-- incoming requests from the transaction servlet is routed-->

 <from uri="servlet:///transaction"/>

 <process ref="transactionControllerRequest"/>

 <camel:touri="direct:/v1/transaction" />

 <process ref="transactionControllerResponse"/>

 </route>

 <camel:routestreamCache="true">

 �<!-- outgoing requests from the account to http services

account -->

 <camel:fromuri="direct:/v1/account" />

 <camel:removeHeaderspattern="CamelHttp*"

excludePattern="CamelHttpMethod" />

 <camel:setHeaderheaderName="HttpMethod">

 <camel:constant>POST</camel:constant>

 </camel:setHeader>

Appendix B Sample Code

352

 <camel:setHeaderheaderName="CamelHttpMethod">

 <camel:constant>POST</camel:constant>

 </camel:setHeader>

 <camel:setHeaderheaderName="Content-Type">

 <camel:constant>application/json</camel:constant>

 </camel:setHeader>

 <camel:setHeaderheaderName="CamelHttpQuery">

 <camel:simple></camel:simple>

 </camel:setHeader>

 <camel:setBody>

 �<camel:simple>{"accountNumber":

"12345"}</camel:simple>

 </camel:setBody>

 <!—Swagger Mocking service http services account URL -->

 <camel:touri="http://localhost:8080/account" />

</camel:route>

 <camel:routestreamCache="true">

 �<!-- outgoing requests from the transaction to http services

transaction -->

 <camel:fromuri="direct:/v1/transaction" />

 <camel:removeHeaderspattern="CamelHttp*"

excludePattern="CamelHttpMethod" />

 <camel:setHeaderheaderName="HttpMethod">

 <camel:constant>POST</camel:constant>

 </camel:setHeader>

 <camel:setHeaderheaderName="CamelHttpMethod">

 <camel:constant>POST</camel:constant>

 </camel:setHeader>

 <camel:setHeaderheaderName="Content-Type">

 <camel:constant>application/json</camel:constant>

 </camel:setHeader>

 <camel:setHeaderheaderName="CamelHttpQuery">

 <camel:simple></camel:simple>

 </camel:setHeader>

Appendix B Sample Code

353

 <camel:setBody>

 <camel:simple>{

 "userID": "12345",

 "firstName": "Sourabh",

 "lastName": "Sethi"

 }</camel:simple>

 </camel:setBody>

<!—Swagger Mocking service http services transaction URL -->

 <camel:touri="http://localhost:8080/transaction" />

</camel:route>

 </camelContext>

The servlet URL, servlet: ///account, specifies the relative path, /account. The

complete URL to access this servlet is the following, as shown in Figure B-14: http://

localhost:8001/integration.0.0.1/camel/account.

•	 accountControllerResponse: This processor class is responsible for

transforming and converting responses from account services.

•	 accountControllerRequest: This processor class is responsible for

transforming request headers and body before heading to account

services.

The servlet URL, servlet: ///transaction, specifies the relative path, /

transaction. The complete URL to access this servlet is the following, as shown in

Figure B-14: http://localhost:8001/integration.0.0.1/camel/transaction

•	 transactionControllerResponse: This processor class is responsible for

transforming and converting responses from transaction services.

•	 transactionControllerRequest: This processor class is responsible for

transforming request headers and body before heading to transaction

services.

Appendix B Sample Code

354

�Run the Integration Application
To run the integration application’s sample code, please follow the following steps.

	 1.	 Ensure that the Swagger mock API server is working as shown in

the API Specification and API Mocking section.

	 2.	 Navigate to the following location in the sample source code.

Integration_Framework\ABC_Bank_Integration\Apache_Camel_

Based_Integration\integration

	 3.	 Ensure that the latest Maven version is installed on your machine

by executing the following command:

mvn –v

	 4.	 Execute the following command to test and run the application on

the local Jetty server:

mvn jetty:run -Djetty.port=8001

	 5.	 The following services will be up and running:

•	 http://localhost:8001/integration/camel/account

•	 http://localhost:8001/integration/camel/transaction

	 6.	 In the production environment, one can deploy an application

WAR file, available at location \integration\target\

integration-0.0.1.war in the application server.

	 7.	 You can open this application in Intellij IDEA IDE.

Figure B-14.  Overview of Camel application

Appendix B Sample Code

355

�Angular
Let’s start with developing a front-end responsive angular application for mobile as

well as desktop. We have created integration applications till now. We will use an API

provided by the integration application to an Angular application so that data can

be populated using this web API. You can read the Angular documentation from the

following locations:

•	 https://angular.io/

•	 https://angular.io/docs

Step 1: Navigate to source code location (Angular\ABC Bank\

angular-material)

Step 2: Execute the “npm install” command; it will download

dependency modules from remote repository to local repository.

Step 3: Check the (proxy.conf.json) file to implement revere

proxy for integrating web services while doing development, as

shown in Figure B-15. In production you can deploy these angular

production files directly into your back-end application or by

serving it via Apache 2 or Nginx.

{

 "/integration/*": {

 "target": "http://localhost:8001",

 "secure": false,

 "logLevel": "debug",

 "changeOrigin": true

 }

 }

Appendix B Sample Code

https://angular.io/
https://angular.io/docs

356

Step 4: Run “npm start”; it will start the application, as shown in

Figure B-16, at the following endpoint:

http://localhost:4200/first-page

Figure B-15.  Proxy web services for developing Angular application

Figure B-16.  ABC banking dashboard

You can modify the component or extend the components in the project structure

shown in Figure B-17. You can open this project in VS code IDE.

Appendix B Sample Code

357

�Microservices Architecture
You can replace the Apache framework (monolithic architecture) with microservices

architecture. Microservices architecture is an architectural style that structures an

application as a collection of loosely coupled services that implement business

capabilities. Microservices architecture is an alternative pattern that addresses the

limitations of monolithic architecture. You can deploy a service as a (Docker) container

image and deploy each service instance as a container; you can cluster Docker using

Docker clustering frameworks such as:

•	 Kubernetes (https://kubernetes.io/)

•	 Marathon (https://mesosphere.github.io/marathon/)

•	 Docker Swarm (https://docs.docker.com/engine/swarm/)

ABC banking microservices uses Spring Boot and Eureka Server. You can start

building a Spring microservices project by selecting the required modules and

generating the project from the following location: https://start.spring.io/

Figure B-17.  ABC banking angular project structure

Appendix B Sample Code

https://kubernetes.io/
https://mesosphere.github.io/marathon/
https://docs.docker.com/engine/swarm/
https://start.spring.io/

358

�Microservices Components
Microservices components are comprised of Config Server, Eureka Discovery server, and

services components such as account and transaction services, and gateway services, as

shown in Figure B-18. The user sends a request to integrator services (API gateway); the

API gateway is responsible for redirecting the request to microservices instances.

User 1

User 2

User 3

Integrator Service
(API Gateway

services)

Integration Service
Directory

(Eureka Discovery
server)

IntegrationConfigServer
(Config server)

accountService
(Services

Component)
Instance 1

transactionService
(Services

Component)
Instance 1

accountService
(Services

Component)
Instance 2

transactionService
(Services

Component)
Instance 2

accountService
(Services

Component)
Instance n

transactionService
(Services

Component)
Instance n

Figure B-18.  Microservices components

Config Server: This server helps you to keep the properties file centralized and

shared by all microservices and manage all the microservices properties files; those

files are version controlled using Git. One thing to remember is that every microservice

communicates with Config Server to get properties values.

Appendix B Sample Code

359

To run the ABC banking Config Server, take the following steps:

Step 1: Navigate to the source code.

\Intergartion_Framework\ABC_Bank_Integration\Microservices\

integrationConfigServer

Step 2: Execute “mvnspring-boot:run” to start the services.

Step 3: Hit the following URL to check the configurations:

http://localhost:9090/config/default

The response will be like

{"name":"config","profiles":["default"],"label":null,

"version":null,"state":null,"propertySources":[]}

Eureka Discovery server: Microservices is decentralization of the different

components based on the business features. It can be scaled as per need, so for

particular microservices, there can be multiple instances. These services are deployed as

a container and these containers have dynamic IP addresses, so to track all instances of

a service, a manager service will be needed. If other services need to communicate with

each other, it contacts a discovery service to get the instance of another service.

To run the ABC banking Eureka Server, use the following steps.

Step 1: Navigate to the source code.

\Integration_Framework\ABC_Bank_Integration\Microservices\

integrationServiceDirectory

Step 2: Execute “mvnspring-boot:run” to start the services.

Step 3: Hit the following URL to check the configurations, as

shown in Figure B-19:

http://localhost:9091/

Appendix B Sample Code

360

Services components: The goal of microservices is to break down complete business

functionality into several independent small features that will communicate with each

other. It provides modular architecture with proper encapsulation and properly defined

boundaries.

To run the ABC banking account services, use the following steps:

Step 1: Navigate to the source code.

D:\DXP\Code\Intergartion_Framework\ABC_Bank_Integration\

Microservices\accountService)

Step 2: Execute “mvnspring-boot:run” to start the services.

Step 3: Hit the following URL to check the configurations:

http://localhost:8083/account/findall

The response will be:

{"list":[{"accountNumber":10001,"balanceAmount":"200"},

{"accountNumber":10002,"balanceAmount":"200"},

{"accountNumber":10003,"balanceAmount":"200"}]}

Figure B-19.  Eureka server

Appendix B Sample Code

361

Note that static data is configured, but you can write your own logic in

AccountContoller and get the data from the database by integrating the database using a

JPA module.

To run the ABC banking transaction services, take the following steps:

Step 1: Navigate to the source code.

Intergartion_Framework\ABC_Bank_Integration\Microservices\

transactionService

Step 2: Execute “mvnspring-boot:run” to start the services.

Step 3: Hit the following URL to check the configurations:

http://localhost:8082/transaction/findall

The response will be:

{"list":[{"accountNumber":10001,"transactionId":"800",

"transactionAmount":"300","balanceAmount":"200"},

{"accountNumber":10002,"transactionId":"800",

"transactionAmount":"300","balanceAmount":"200"},

{"accountNumber":10003,"transactionId":"800",

"transactionAmount":"300","balanceAmount":"200"}]}

Note the following:

•	 Static data is configured, but you can write you own logic in

TransactionController and get the data from the database by

integrating the database using JPA module.

•	 You can replace microservices with Apache Camel services by

integrating the endpoints in an Angular application.

•	 You can open these microservices projects in Intellij IDEA IDE.

•	 You can access the Eureka Server URL and can check the services and

instance registered with Eureka Server as shown in Figure B-20.

Appendix B Sample Code

362

Gateway service: Because every microservice publishes a REST API, it is hard

to manage so many endpoint URLs. If you want to build an authentication and

authorization framework, which ought to be implemented across all the microservices, a

gateway service will help, which is Internet facing. The client will call only one endpoint

and it delegates the call to an actual microservice and all the authentication or security

checking will be done in the gateway service.

Step 1: To Run the service integrator, navigate to the following

source code location:

\Intergartion_Framework\ABC_Bank_Integration\Microservices\

integratorService

Step 2: Execute “mvnspring-boot:run” to start the services.

Step 3: Hit the following URLs to check the configurations:

•	 Account: http://localhost:8081/integrator/feign/account

•	 Transaction: http://localhost:8081/integrator/feign/

transaction

Step 4: You can open these microservices projects in Intellij IDEA IDE.

Figure B-20.  Account and transaction microservices

Appendix B Sample Code

363

You can use Zuul to load balance microservices, as shown in Figure B-21. When Zuul

receives a request, it routes the request to one of the physical locations available. The

process of caching the location of the service instance and forwarding the request to the

actual location is provided out of the box.

Request 1 Instance1
(Request 1)

Instance2
(Request 2)

Instance3
(Request 3)

Request 2

Request 3

Zuul

Figure B-21.  ZUUL load balancing

�Docker
After checking that all the services are running locally, you can use Docker to

containerize these microservices.

You can download and install Docker CE on your local machine from the following

URL: https://docs.docker.com/get-started/.

�Components
Dockerfile: It is a text file that contains all the instruction to build a Docker image;, these

files contain steps to copy files and do installation. For more information, you can check

the following link: https://docs.docker.com/engine/reference/builder/

Docker Composer: Docker Composer creates and spawns multiple containers. It

helps to build the required environment.

Appendix B Sample Code

https://docs.docker.com/get-started/
https://docs.docker.com/engine/reference/builder/

364

You can create an individual container for each service. The following is a list of

containers for this example:

•	 integrationConfigServer

•	 integrationServiceDiretory

•	 accountService

•	 transactionService

•	 integratorService

�Summary
•	 We have gone through mocking third party RESTful API using

OpenAPI specification using Swagger.

•	 We have gained an understanding of the application by prototyping it

using Node-RED.

•	 We have gotten hands-on experience on integrating the Apache

Camel framework (back-end integration) with an Angular application

(front-end application).

•	 We understood and implemented microservices architecture using

Spring Boot.

Appendix B Sample Code

365
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9

APPENDIX C

�Further Reading
Koelsch, George. Requirements Writing for System Engineering. Apress, 2016.

Shivakumar, Shailesh Kumar. Architecting High Performing, Scalable and Available

Enterprise Web Applications. Morgan Kaufmann, 2014.

Shivakumar, Shailesh Kumar. Complete Guide to Digital Project Management.

Apress, 2018.

Shivakumar, S. K. A Complete Guide to Portals and User Experience Platforms.

Chapman and Hall/CRC, 2015.

Shivakumar, S. K. (n.d.). “DevOps for Digital Enterprises.” Infosys. Retrieved

October 20, 2018, from https://www.infosys.com/digital/insights/Documents/

devops-digital-enterprises.pdf

Shivakumar, S. K. (n.d.). “Digital Experience Platforms – An Overview.” Infosys.

Retrieved October 20, 2018, from https://www.infosys.com/digital/insights/

Documents/digital-experience-platforms.pdf

Shivakumar, S. K. Enterprise Content and Search Management for Building Digital

Platforms. John Wiley & Sons, 2016.

Shivakumar, Shailesh Kumar. “Method and system for presenting personalized

content.” U.S. Patent Application No. 14/489,410.

Shivakumar, S. K. (n.d.). “Reimagining online experiences with digital experience

platforms.” Retrieved October 20, 2018, from https://www.infosys.com/digital/

insights/Documents/reimagining-digital-experience-platforms.pdf.

Sourabh Sethi. “Healthcare Blockchain leads to Transform Healthcare Industry.”

International Journal of Advance Research, Ideas and Innovations in Technology 4.1,

2018. https://www.ijariit.com/manuscripts/v4i1/V4I1-1359.pdf.

https://doi.org/10.1007/978-1-4842-4303-9
https://www.infosys.com/digital/insights/Documents/devops-digital-enterprises.pdf
https://www.infosys.com/digital/insights/Documents/devops-digital-enterprises.pdf
https://www.infosys.com/digital/insights/Documents/digital-experience-platforms.pdf
https://www.infosys.com/digital/insights/Documents/digital-experience-platforms.pdf
https://www.infosys.com/digital/insights/Documents/reimagining-digital-experience-platforms.pdf
https://www.infosys.com/digital/insights/Documents/reimagining-digital-experience-platforms.pdf
https://www.ijariit.com/manuscripts/v4i1/V4I1-1359.pdf

367
© Shailesh Kumar Shivakumar, Sourabhh Sethii 2019
S. K. Shivakumar and S. Sethii, Building Digital Experience Platforms,
https://doi.org/10.1007/978-1-4842-4303-9

Index

A
Accessibility, 216
AccountControllerRequest, 353
AccountControllerResponse, 353
Aggregator pattern architectures, 80–81
AI automation design

building model, 106
Chatbots, 107–108
data preprocessing, 106
goals, 106
improving and tuning model, 107
RPA, 106
testing model, 107
training model, 107

Amazon web services (AWS), 227
Analytic services, 271
Angular framework, 134
Angular library

bootstrap, 135
Gulp, 136
material UI, 135
NativeScript, 136
swagger, 135
Webpack, 136

Angular technology stack (ATS), 75, 133
Apache Camel

angular application, 355–357
run integration application, 354

Apache Lucene, 110

API ecosystem (integration), 64, 67
APIs and microservices, 268
Applicability to bank landscape, 267
Application server, 224, 324–325
Application-specific security analysis, 195
Artificial intelligence (AI), 121, 262, 268
Asset tracking, 95
Auditing and logging, 209
Augmented reality (AR), 269, 329
Augmented–Virtual Reality (AVR)

integration service layer, 112
presentation layer, 111

Authentication and authorization, 208
Automation, 279
Availability, 215, 225

B
Back office services, 273
Banking experience platform (BXP)

application consistency, 141
components, 145–147
dashboard, 142–144
key tenets, 16–17
KPIs, 24–25
layouts/containers, 142
location consistency, 141
requirements, 18–21
technical capabilities, 21–24
three Ps, 21

https://doi.org/10.1007/978-1-4842-4303-9

368

Big data and NoSQL
components, 102
containerization, 105
database, 104
data streams and processing, 103
employee engagement, 106
ETL, 102
IoT model-based algorithm, 105
open-source projects, 102
search and query web services, 103
SQL vs. NoSQL, 105
train and test predictive

data model, 102–103
Biometric authentication, 268
Blockchain, 96, 268

architecture, 100
claim management, 101
components

communication layer, 99
consensus layer, 99
crypto layer, 99
data services and API

managements, 99
data store layer, 99
identify services, 99
smart contract layer, 99

definition, 96
digital identity, 101
distributed ledger, 97
EHR, 100
enterprise network, 98
KYC, 100
letter of credit, 101
libraries, 97
loyalty and rewards, 101
network, 97–98
platforms, 98

PoE, 101
public network, 98
smart contracts, 97
transactions, 97
types, 98

Blog, 92
Bootstrap, 135
Brand value, 62
Business intelligence (BI), 275
Business layer

authorization, 85
business logging, 85
business rules validation, 85
data access layer, 85–86
model binding, 85
redirection, 84

Business to business (B2B)
architectures, 81

C
Camel-core, 347
Camel Servlet, 349, 351–353
Camel-spring, 347
Camel-stream, 347
Cascading style sheets (CSS), 124
Centralized access, 201
Chatbots, 92

AI strategy, 107
bot engine, 107
integration, legacy system, 108
open-source bot frameworks, 108
presentation layer, 107

Cloud testing, 211–212
Code backup, 230
Cold backup option, 231
Compartmentalization, 201

Index

369

Component architecture, 130–132
Configurability, 216
Containerization, 330
Content backup, 230
Content delivery network (CDN), 222
Content management, 267
Content management interoperability

services (CMIS), 326
Content management system (CMS), 70, 325
Content services, 273
Context-param, 350
Continuous delivery (CD), 331
Continuous deployment (CD), 114
Continuous integration (CI), 114, 331
Continuous learning and

improvement, 63, 67
Create, read, update and delete

(CRUD), 210
Cross-site request forgery (CSRF), 56
Cross-site scripting (XSS) filters, 57
Crowd-based P2P lending, 269
Cryptocurrency, 268
CSS framework, 322
Customer insights gathering, 262

D
Data access object (DAO), 85–87
Data access policy definition, 201
Data backup, 230
Database level security, 210
Database server, 225
Data binding, 334
Data design, 67
Data layer, 86–87
Data mocking, 336
Data sharing, 210

Data standardization, 164
Data validation, 189
Dealer platform

functional view, 310, 312
next-generation technologies, 319–320
open-source technologies, 313–314, 316
pain point analysis, 299–301
sample optimization, 312–313
solution design principles, 304–307
solution tenets, 302–304
user centricity, 308–309

Defense in depth, 201
backup and synch jobs, 203
DR, 203
firewall and proxies, 202
monitoring infrastructure, 202
server hardware level protection, 202

Denial of service (DoS), 202, 226
Deployment

development, 337
production, 337–338
tools and software, 338

Design
brand value, 62
IA, 62
interaction design, 62
layers, 70–72
principles, 63
visual, 62

Development life cycle, 129–130
DevOps, 68

CI and CD, 114
containerization, 113–114

Digital asset management (DAM), 8
Digital banking

business process-related trends, 269
technology related trends, 268–269

Index

370

Digital experience platform (DXP), 3
boundaryless banking, 4
business drivers, 14–16
case study, 254–256
challenges and solutions, 13
core components, 7–11
dealer platform, case study

(see Dealer platform)
evolution, 11–12
experience requirements, 32
functional requirements (see Functional

specification document (FSD))
key tenets, 5
mobility requirements, 32, 41–43
nonfunctional requirements, 32
reference architecture, 5
requirement elicitation and elaboration

methods, 28–31
security framework (see Security

framework)
security requirements, 32

Digital facelift for user experience, 279
Digital-first bank, 269
Digital imperatives, 25
Digital maturity assessment

analytics, 286
business agility, 285
business process, 282
collaboration and social media

interaction, 284
data management, 286
governance, 283
infrastructure, 286
IT alignment, 285
leadership, 283
organization culture, 281
user engagement, 284

Digital open ecosystem, 262
Digital opportunities, 287
Digital platform strategy, 65

API ecosystem (integration), 67
continuous learning and

improvement, 67
data design, 67
DevOps, 68
infrastructure design, 67
principle, 66
touch points, 67

Digital transformation
design phase, 287
execution phase, 288
road map, 288
tools and methods, 289

artificial intelligence and machine
learning, 293

big data, 293
content management, 292
DevOps, 291
digital experience capabilities, 292
integration model, 290
security, 293
social and collaboration, 290
user experience, 289
web analytics, 291

Digital wallets, 96, 269
Digitization, 280
Digitizing banking business models, 279
Digitizing existing banking systems, 278
Disaster recovery (DR), 203, 215

activities, 230
As-Is system analysis, 232
implementation, 230–231
maintenance, 231
planning, 229–230, 232–233

Index

371

scope and objective, 232
strategy, 228–229
requirements

RPO, 57–58
RTO, 57

Distributed denial of service (DDoS), 202, 226
Docker, 363
Docker composer, 363
Dockerfile, 363
Document object model (DOM), 257, 334
Domain specific microservices, 318
DR site

setup, 230
switching, 230

DXP solution
cloud deployment model, 226–228
cloud hosting

integration design, 226
platform coexistence, 225–226
security, 226
tiered architecture, 224–225

technology stacks, 132–133

E
ECMAscript, 130
Efficiency, 216
Elastic Stack

Beats, 109
Elastic Cloud, 110
Elasticsearch, 110
Kibana, 110
Logstash, 109

Electronic healthcare records (EHR), 100
Enable new integrations, 264
End-user experience, 235
Enterprise integration, 266
Enterprise resource planning (ERP), 150

Enterprise search engine
elastic stack, 109–110
indexing, 109
matching, 109
processing, 109
query processing, 109
SolrStack, 110–111
sources, 109

Enterprise service bus (ESB), 335
Error handling, 209
Experience requirements

dashboard user story, 39–40
language criteria, 38
navigational routers, 39
supported browsers, 38
supported device, 37

Extensibility, 216
Extract, transform, and load (ETL), 102

F
Fast delivery (infrastructure), 64
File management, 209
File storage server, 225
Firewall, 224
Flexibility, 216
Flexible integration middleware

API gateways, 167
EAI vs. SOA vs. ESB vs. Microservices,

165–166
MOU, 167

Forums, 92
Front office services, 271
Functionality, 267
Functional specification

document (FSD), 32
account use case, 33–34
transaction use case, 35–36

Index

372

G
Gamification, 268
Google calendar API, 92

H
Horizontal services, 273
Hot backup option, 231
HTTP accelerator, 321

I
Infrastructure design, 67–68
Implementation and logic, UI, 336–337
Information architecture (IA), 62
Information management, 188–189
Information security policies, 201

access controls, 205
archival and retention, 206
auditing and logging, 206
availability, 206
classification, 204
confidentiality, 207
definition, 205
description, 203
destruction, 206
incident response, 207
integrity, 207
ownership identification, 204
private data, 207–208
process creation, 203–204
sharing, 206
storage, 206

Infrastructure/capacity analysis, 250
Initial login performance, 255
Integrated analytics, 122
Integration, 335

patterns, 162–164
services, 9
systems, 161–162

Integration layer
advantages of microservices, 83
architectures

aggregator pattern, 80–81
B2B, 81
SOA, 81–82

BXP, case study, 176–179
channel patterns, 78
components and patterns, 79
consideration, 150–152
data formats, 153–154
data interoperability, 82
data standardization, 164
design, 83–84
endpoint patterns, 79
highly coupled, 78
Kubernetes cluster, 83
loosely coupled, 78
management patterns, 79
message components, 80
message construct, 79
message patterns, 80
microservices and monolithic

services, 82–83
patterns, 162–164
practices, 173–175
protocols, 158
routing patterns, 79
security, 171–172
services, 155–156
styles, 157–158
systems, 161–162
technology, 168–170
transformation patterns, 79

Index

373

Interaction design, 62
International electrotechnical

commission (IEC), 203
Internationalization, 122
International Organization for

Standardization (ISO), 203
Internet of Things (IoT), 269
Interoperability, 216
Intuitive architecture, 120
Intuitive data, 64
IoT integration design, 94

application layer, 94
ARIoT, AllJoyn and Iotivity, 95
asset tracking, 95
banking through wearable, 96
digital wallets, 96
fast-growing technology, 93
integration layer, 93
ML libraries, 95
open-source software components, 95
physical sensing layer, 93
sensors, 93
smart cities and real-time

streaming data, 95
smart payment contract, 96

J
Jasmine, 136
Jetty, 347
JSON-RPC, 159
JSON web tokens (JWTs), 57
JSON-WSP, 160

K
Karma-Mocha-Chai, 136
Key performance indicators (KPIs), 120
Knowledge management (KM) portals, 92

Know your customer (KYC), 100
Kubernetes, 114

L
Layer performance optimizations

database, 258
presentation, 257
server, 257–258

Lean portal services, 271
Least privilege by default, 201
Leveraging modern digital

technologies, 262
Live chat, 91
Load balancer, 224
log4j, 347
Log analysis, 250
Low customization and high

configuration, 266

M
Machine learning, 328
Maintainability, 216
Maintenance requirements

monitoring, 51
serviceability, 51
SLA, 50

Microservices architectural integration
technology, 170

Microservices architecture, 357–358
banking transaction services, 361
components, 358, 360
config server, 358–359
Eureka server, 359–362
gateway service, 362
JPA module, 361
services components, 360
ZUUL, 363

Index

374

Middleware layer
application logging, 89
application monitoring, 88
auditing, 89
components, 87–88
server logging, 89
server monitoring, 88
transaction processing, 89

Mid-office services, 272
campaign/marketing services, 272
commerce services, 272
search services, 272
self-learning services, 272
social and collaboration services, 272

Mobility, 265
Model-view-controller (MVC), 125, 271
Model-view-viewmodel (MVVM), 125
Modularity, 216
Monolithic architectural integration

technology, 168–169
Mutual memorandum of understanding

(MOU), 167
MVC pattern, 334

N
Natural language generation (NLG), 108
Natural language processing (NLP), 107
Natural language understanding

(NLU), 108
Next-gen communication, 265
Next-generation digital bank

attributes, 263–264
DXP features, 265–267

Node package manager (NPM), 130, 137
Node-RED, 342–343

account and transaction flow, 345
import flow, 344
mockup dashboard, 345
palette, 344

Nonfunctional requirements (NFRs), 43, 245

O
Object relational mapping (ORM), 255
Open platform, 264
Open-source framework

application server, 324–325
blockchain, 329
CSS, 322
distributed streaming, 327
integration, 324
IoT, 327
scripting, 322

Open-source technologies
domain specific microservices, 318
headless CMS, 318
principles, 313–314, 316–317
UI development, 317

Open-source tools
Apache Hadoop, 328
CD, 331
CI, 331
CMIS, 326
CMS, 325
HTTP accelerator, 321
NoSQL database, 326
SCM, 331
SQL database, 326
UI management, 323
web server, 321

Optimized business models, 262

Index

375

P
Page hits analysis, 48–49
Page response time (PRT), 244
Payment banks, 269
Payment card industry (PCI), 209, 265
Performance, 216, 335
Performance debugging framework

common performance issues, 252–254
component/system/layer, 251
root cause, 247–250
steps, 247

Performance optimization,
web pages, 236–238

Performance requirements
page hits analysis, 48–49
page response time, 47–48
use case, 46

Performance testing, DXP
design, 240
execution and reporting, 241–242
metrics, 243–244
requirement analysis, 239–240
sprints, 239
framework

critical transactions, 245
prediction, 247
qualitative assessment, 245
quantitative assessment, 246
workload model, 245

Persona-based information
architecture, 307–308

Personalization, 121
Platform design phases, 70

delivery, 69
design, 69
explore and elaborate requirements, 69
prototype, 69

SDLC, 69
validation, 69

Presentation component, 125–127
Presentation layer

Chatbot, VR, AR, Alexa, and voice
assistance, 73

CSS and scripting framework, 74
define, 73
design, 73
prototype, 73
test, 73
touch points, 72
UI deployment, 76–77
UI management, 75–76
user experience, 72

Proof of existence (PoE), 101
Providing omnichannel capabilities, 279

Q
Quality attributes

archival and retention, 221
availability, 220
logging and auditing, 221–222
performance, 222
reliability, 219
scalability, 219
security, 218
usability, 217

R
Ramp-up test, 242–243, 250
React technology stack (RTS), 75

flux, 138
Jest, 138
react native, 138
semantic UI, 137

Index

376

Real-time data streaming, 95
Recovery point objective (RPO), 57, 220
Recovery time objective (RTO), 57–58, 220
Redux-MobX, 138
Reference functional architecture, 273–275

analytics module, 275
banking services module, 275
BI, 275
campaign module, 275–276
content management module, 276
data management module, 276
loan module, 275
open platform features, 276
payment module, 275
security services, 276
technology transformation, 276–278

Reference technology architecture, 269
back office services, 273
delivery support, 273
front office services, 271
gamification, 273
horizontal services, 273
infrastructure and maintenance

services, 273
mid-office services, 272–273
security and identity services, 273

Reimagining the banking experience, 278
Remote procedural call (RPC), 151
Rendering, 335
Robotics process automation (RPA), 106, 264
Robust platform, 266
Rollout protocols, 52–53

S
Sales channels, 287
Scalability, 44–46, 215, 225
Scripting framework, 322

Search engine optimization
(SEO), 7, 58, 123

Secure incident management, 210
Secure sockets layer (SSL), 228
Security, 216, 267

providers, 224
testing, 211

Security and identity services, 273
Security awareness and training, 210
Security framework

checklist, 196–199
coding review, 193
data validation, 189
fund management, 196
information management, 188–189
key elements, 184
key vulnerabilities, 190–192
layers, 184–186
password policies, 187–188
service security management, 189
session management, 188
testing, 193–194
transaction management, 195
web security testing, 194

Security requirements
authenticity and authorization, 55–56
integrity, 56
session management use case, 54–55

Self-learning and continuous
improvement, 263–264

Server configuration analysis, 250
Server side performance issues, 255
Server-side rendering (SSR), 134
Service bus architectures (SOA), 81–82
Service enablement, 279
Service level agreements (SLAs), 215
Service security management, 189
Session management, 188

Index

377

Sever-level caches, 325
Simple object access protocol

(SOAP), 150, 158
Single-page applications (SPAs), 271
Single sign-on (SSO), 267, 293
Six-layered approach, 65

API ecosystem (integration), 64
continuous learning and

improvement, 63
fast delivery (infrastructure), 64
intuitive data, 64
touch points, 63
user interface, 63

Sizing of DXP, 222–224
Smart cities, 95
Smart contracts, 97
Smart payment contract, 96
Social and collaboration design

blogs, 92
calendar, 92
Chatbot, 92
forums, 92
KM portal, 92
live chat, 91
social interaction, 90
social media API, 92
software applications, 91
tools, 89
wiki, 92

Social and collaboration services, 9
Social media banking, 269
Social software applications, 91
Software as a service (SaaS), 5
Software development kits (SDKs), 265
Software development life cycle

(SDLC), 69, 209

SolrStack, 110–111
Solution tenets, 302–304
Source code management (SCM), 331
Spring-context, 347
Spring-core, 347
SQL vs. NoSQL, 105
Stability, 216
Standardization and centralization, 279
Standard operating procedures (SOPs), 210
Supplier portal and distributor portal, 255
Supply chain management (SCM), 52
Support multiple sales channels, 263
Swagger-Editor, 340–341
Swagger-Server, 342
Swagger-UI, 339
Swarm, 114
Syntactically awesome style sheets

(SASS), 135
SysAdmin, audit, network, security

(SANS), 209

T
Thumb rules, web page, 236–238
Time to first byte (TTFB), 243
Touch points, 63, 67
TransactionControllerRequest, 353
TransactionControllerResponse, 353
Two-speed digital enablement, 279

U
UI deployment, 76–77
UI frameworks

data flow, 139
language, 139
performance, 139

Index

378

UI management
components and dependencies, 75
CSS and scripting framework, 75
module bundler, 75
package manager, 75
task runner, 75
testing, 75

Unified and collaborative approach, 142
Usability, 216
User acceptance testing (UAT), 254
User-centric experience redesign, 262
User experience, 72, 267, 287
User experience enhancement services, 271
User interface (UI) design, 63, 334–335

components
hooks, 127
layouts, 123–124
MVC pattern, 125
MVVM pattern, 125–126
navigational router, 124
pages, 123

features
dashboard, 120
integrated analytics, 122
internationalization, 122
intuitive architecture, 120
personalization, 121
responsive interface, 120–121
SEO, 123

operable, 140
perceivable, 140
robust, 141

V
Varnish cache, 77
Virtual private cloud (VPC), 226
Virtual reality (VR), 269, 329
Visual design, 62, 127–129

W
Warm backup option, 231
Web and Http caches, 76
Web content accessibility guidelines

(WCAG), 217
Webpack, 136
Web security testing, 194
Web server, 224
Web services

JSON-RPC, 159
JSON-WSP, 160
SOAP, 158
XML_RPC, 159

Web.xml File, 349–350
Widget/portlet, 333
Wiki, 92
Workflow and orchestration module, 272

X, Y
XML_RPC, 159

Z
Zed attack proxy (ZAP), 293

Index

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part I: Requirements and Design
	Chapter 1: Introduction to Digital Experience Platforms
	Boundaryless Banking Enabled by Digital Technologies
	Overview of DXP
	Key Tenets of a DXP
	DXP Reference Architecture
	Evolution and Drivers for DXP
	Evolution of Digital Platforms
	Business Drivers for DXP

	Overview of Banking Experience Platform
	Key Tenets of Banking Experience Platform
	High-Level Requirements of Banking Experience Platform
	Three Ps of BXP
	Sample Technical Capabilities of Banking Experience Platform
	Sample Key Performance Indicators of Banking Experience Platform

	Digital Imperatives for Modern Banks
	Summary

	Chapter 2: Gathering Requirements
	Functional Requirements
	Experience Requirements
	Seamless Experience on All Supported devices
	Seamless Experience on All Supported Browsers
	Multilingual Requirements
	Navigation Elements, Menus, and Search

	Mobility Requirements
	Nonfunctional Requirements
	Scalability Requirements
	Performance–Response Time, Throughput, Utilization, Static Volumetric
	Performance Requirements
	Page Response Time at Normal and Peak Loads

	Page Hits Analysis

	Maintenance Requirements
	Versioning
	Rollout
	Security Requirements
	Disaster Recovery Requirements
	Accessibility Consideration
	Chapter Summary

	Chapter 3: Design
	Building an Experience Platform
	Digital Platform Strategy
	Platform Design Phases
	Design of Various Layers
	Presentation Layer
	Scripting Framework
	UI Management
	UI Deployment

	Integration Layer
	Loosely Coupled Integration and Highly Coupled Integration

	Business Layer
	Data Layer
	Middleware Layer
	Social and Collaboration Design
	IoT Integration Design
	IoT Case Study

	Blockchain Design
	What is Blockchain?
	What Is a Distributed Ledger?
	Smart Contract
	Blockchain Platforms
	DXP and Blockchain Network
	Blockchain Components
	Blockchain Case Study

	Big Data and NoSQL Design
	Big Data and NoSQL Integration
	Big Data and NoSQL Case Study

	AI Automation Design
	Determine Automation Goals
	Steps to Build AI Automation Model
	Chatbot Case Study

	Enterprise Search Engine
	Augmented – Virtual Reality Integration
	Presentation Layer
	Integration Service Layer

	Recent Trends in DevOps
	Containerization
	DevOps – Continuous Integration (CI), Continuous Deployment (CD)

	Chapter Summary

	Part II: Development of the Banking Experience Platform
	Chapter 4: User Interface Design
	Key Features
	Simplified Approach
	Intuitive Architecture
	Dashboard
	Responsive Interface
	Personalization
	Internationalization and Localization
	Preferences
	Integrated Analytics
	Search Engine Optimization

	User Interface Components
	Pages
	Layouts
	Navigational Router or Navigation Menu
	Presentation Component
	Design Goals
	Communication Between Presentation Components
	Hooks

	Development Process
	Development Life Cycle
	Architecture
	DXP UI Technology Stack
	Angular Technology Stack
	Angular Core
	Angular Support Library
	Material UI
	Bootstrap
	SASS (Syntactically Awesome Style Sheets) – CSS Preprocessor
	Swagger
	NativeScript
	Karma-Mocha-Chai
	Jasmine
	Webpack
	Gulp
	NPM

	React Technology Stack
	React
	React Support Library
	Elemental UI or Semantic UI
	React Native
	Redux-MobX
	Flux
	Jest

	Evaluating UI frameworks
	Data Flow
	Language
	Performance

	Best Practice
	BXP – Case Study
	Consistency Across Locations
	Consistency Across Application
	Unified and Collaborative Approach
	BXP UI Layouts/Containers
	BXP Dashboard

	Chapter Summary

	Chapter 5: Designing the Integration Layer
	Integration Consideration
	Data Formats
	Integration Services
	Integration Styles, Protocols, Systems, and Patterns
	Integration Styles
	Integration Protocols
	SOAP
	XML_RPC
	JSON-RPC
	JSON-WSP

	Integration Systems
	Messaging Systems
	Message Routing
	Message Construction and Transformation

	Integration Patterns
	Pattern – Simple (Internal) Integration
	Pattern – Rich Integration Interaction Model
	Pattern – Multichannel Application Interaction Model
	Pattern – External Partner Integration Interaction Model
	Pattern – Event-Driven Adaptive Enterprise

	Data Standards
	Flexible Integration Middleware
	EAI vs. SOA vs. ESB vs. Microservices
	Mutual Memorandum of Understanding (MOU)
	Service Protocol and Data Format
	API Management

	Why Do We Need Data Transformation Capabilities in DXP?
	Integration Technology Stack and Architecture
	Monolithic
	Microservices

	ESB and API Gateway
	Integration Security
	Authentication and Authorization
	Protocols
	Frameworks
	Session Management
	Token Management

	Integration Best Practices
	BXP Case Study
	Case Study Conclusion

	Chapter Summary

	Part III: Securing the Banking Experience Platform
	Chapter 6: DXP Security
	DXP Security Framework
	DXP Layer-Wise Security

	Common Security Scenarios of DXP
	Password Standards
	Session Management
	Information Management
	Data Validation
	Service Security Management

	Security Vulnerabilities and Best Practices of DXP
	Security Testing Framework for DXP
	Secure Code Scanning
	General Web Security testing
	Application-Specific Security Analysis
	Threat Profiling of Transaction Management in Banking DXP
	Threat profiling of Fund Management in Banking DXP

	DXP Security Checklists
	DXP Architecture and Design Phases Security Checklist
	DXP Information Management Security Checklist
	DXP Authentication and Session Management Checklist
	DXP Network Communication Management Security Checklist
	DXP Input Validation Security Checklist
	DXP Security Auditing and Logging Security Checklist

	Chapter Summary

	Chapter 7: DXP Information Security
	Information Security in DXP Solutions
	Implementing Defense in Depth
	Firewalls and Proxies
	Server Hardware Level Protection
	Monitoring Infrastructure
	Backup Jobs and Synch Jobs
	Disaster Recovery and Business Continuity Plan

	Implementing Information Security Policies
	Information Access Policies
	Information Ownership Identification
	Information Classification
	Information Security Policy Definition

	Protecting Private Data

	Information Security Best Practices
	Privacy Best Practices
	Authentication and Authorization
	Auditing and Logging
	File Management
	Error Handling
	Secure Software Development Life Cycle
	Secure Incident Management
	Database Level Security
	Sharing the Data with External Systems
	Security Awareness and Training
	Security Testing
	Cloud Testing

	Chapter Summary

	Part IV: Infrastructure and NFR for the Banking Experience Platform
	Chapter 8: Quality Attributes and Sizing of the DXP
	Key Quality Attributes of DXP
	Quality Attributes Deep Dive
	Usability Requirements
	Security Requirements
	Reliability Requirements
	Scalability Requirements
	Availability Requirements
	Archival and Retention Requirements
	Logging and Auditing Requirements
	Performance Requirements

	Infrastructure Sizing of DXP
	Cloud Hosting of DXP Solution
	Tiered Architecture
	Cloud Deployment Considerations
	Platform Coexistence
	Security
	Integration design

	Cloud Deployment Model

	Disaster Recovery and Business Continuity for DXP Applications
	DR Planning
	DR Implementation
	DR Maintenance
	DR Strategy Document
	Scope and Objectives
	As-Is System Analysis
	DR Planning

	Chapter Summary

	Chapter 9: DXP Performance Optimization
	DXP Performance Optimization of Presentation Layer
	User Experience
	Web Page Performance Optimization Scenarios

	Performance Testing for DXP
	Performance Testing Activities
	Requirement Analysis
	Design
	Performance Testing Execution and Reporting

	Key Performance Metrics

	Performance Testing Framework
	Identify Critical Transactions
	Document Workload Model
	Qualitative Assessment
	Quantitative Assessment
	Predict

	Performance Debugging Framework
	Identify the Root Cause
	Optimize the Component/System/Layer
	Common Performance Problem Pattern

	Performance Case study
	Application Context and Background
	Performance Analysis
	Recommendations and Improvements
	Presentation Layer Performance Optimizations
	Server layer performance optimizations
	Database Layer Performance Optimization

	Chapter Summary

	Chapter 10: Transforming Legacy Banking Applications to Banking Experience Platforms
	Key Tenets of a Banking Experience Platform
	Attributes of a Next-Generation Digital Bank
	DXP Features for Next-Generation Digital Bank

	Main Trends in Digital Banking
	Technology-Related Trends
	Business Process-Related Trends

	Digital Transformation of Traditional Banks to Digital Banks
	Reference Technology Architecture for a Digital Bank
	Front Office Services
	Mid-Office Services
	Back Office Services
	Horizontal Services

	Reference Functional View of Digital Bank
	Technology Transformation

	Main Digital Transformation Methods
	Digitizing Existing Banking Systems
	Digital Opportunity Assessment Phase
	Digital Transformation Design Phase
	Digital Transformation Execution Phase

	Digital Transformation Road Map
	Reimagining the Digital Banking Experience
	Digital Transformation Tools and Methods

	Chapter Summary

	Part V: End to End Case Study
	Chapter 11: End to End DXP Case Study
	Drivers and Key Requirements of the Dealer Platform Case Study
	Architecting the Next-Generation Dealer platform
	Pain Point Analysis in Current Systems and Processes
	Solution Tenets of Next-Generation Dealer Platform
	Solution Design Principles
	Persona-Based Information Architecture
	Persona-Based Design and Information Architecture
	Functional View of the Next-Generation Dealer Platform
	Seamless and Optimized Business Process
	Open-Source-Based Next-Generation Deal Digital Platform
	UI Development
	Domain Specific Microservices
	Drupal Headless CMS

	Innovations and Next-Generation Technologies in Dealer Platform
	Chapter Summary

	Appendix A: Open-Source Tools and Frameworks
	HTTP Accelerator
	Web Server
	CSS Framework
	Scripting Framework
	User Interface Management
	Integration
	Application Server
	Server-Level Cache
	Content Management Systems
	CMIS
	SQL Database
	NoSQL Database
	IoT Framework
	Distributed Data Streaming
	Analytics Engine
	Distributed Processing
	Machine Learning Library and Framework
	Blockchain Frameworks
	Augmented and Virtual Reality
	Enterprise Search Engine
	Containerization
	Containerization Orchestration
	Source Code Management
	Continuous Integration and Continuous Delivery

	Appendix B: Sample Code
	User Interface
	Integration
	Data Mocking
	Implementation and Logic
	Deployment
	Development
	Production

	Prerequisite
	API Specification and API Mocking
	Swagger-UI
	Swagger-Editor
	Swagger-Server

	UI Screen Mocking on Node-RED
	Apache Camel
	Build Automation System
	Add Dependency
	Camel Servlet Component
	Web.xml File

	Run the Integration Application

	Angular
	Microservices Architecture
	Microservices Components

	Docker
	Components
	Summary

	Appendix C: Further Reading
	Index

