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Preface 

The purpose of this book is to provide a unified, insightful, and modern 
treatment of linear optimization, that is, linear programming, network flow 
problems, and discrete linear optimization. We discuss both classical top­
ics , as well as the state of the art . We give special attention to theory, but 
also cover applications and present case studies . Our main objective is to 
help the reader become a sophisticated practitioner of (linear) optimiza­
tion, or a researcher. More specifically, we wish to develop the ability to 
formulate fairly complex optimization problems, provide an appreciation 
of the main classes of problems that are practically solvable, describe the 
available solution methods, and build an understanding of the qualitative 
properties of the solutions they provide. 

Our general philosophy is that insight matters most . For the sub­
ject matter of this book, this necessarily requires a geometric view. On 
the other hand, problems are solved by algorithms, and these can only 
be described algebraically. Hence, our focus is on the beautiful interplay 
between algebra and geometry. We build understanding using figures and 
geometric arguments, and then translate ideas into algebraic formulas and 
algorithms. Given enough time, we expect that the reader will develop the 
ability to pass from one domain to the other without much effort . 

Another of our objectives is to be comprehensive, but economical. We 
have made an effort to cover and highlight all of the principal ideas in this 
field. However, we have not tried to be encyclopedic , or to discuss every 
possible detail relevant to a particular algorithm. Our premise is that once 
mature understanding of the basic principles is in place, further details can 
be acquired by the reader with little additional effort . 

Our last objective is to bring the reader up to date with respect to the 
state of the art . This is especially true in our treatment of interior point 
methods, large scale optimization, and the presentation of case studies that 
stretch the limits of currently available algorithms and computers . 

The success of any optimization methodology hinges on its ability to 
deal with large and important problems. In that sense, the last chapter, 
on the art of linear optimization, is a critical part of this book. It will , we 
hope, convince the reader that progress on challenging problems requires 
both problem specific insight , as well as a deeper understanding of the 
underlying theory. 

xi 



xii Preface 

In any book dealing with linear programming, there are some impor­
tant choices to be made regarding the treatment of the simplex method. 
Traditionally, the simplex method is developed in terms of the full simplex 
tableau, which tends to become the central topic. We have found that the 
full simplex tableau is a useful device for working out numerical examples . 
But other than that , we have tried not to overemphasize its importance. 

Let us also mention another departure from many other textbooks. 
Introductory treatments often focus on standard form problems, which is 
sufficient for the purposes of the simplex method. On the other hand, this 
approach often leaves the reader wondering whether certain properties are 
generally true, and can hinder the deeper understanding of the subject . We 
depart from this tradition: we consider the general form of linear program­
ming problems and define key concepts (e.g . , extreme points) within this 
context . (Of course, when it comes to algorithms, we often have to special­
ize to the standard form. ) In the same spirit , we separate the structural 
understanding of linear programming from the particulars of the simplex 
method. For example, we include a derivation of duality theory that does 
not rely on the simplex method. 

Finally, this book contains a treatment of several important topics 
that are not commonly covered. These include a discussion of the col­
umn geometry and of the insights it provides into the efficiency of the 
simplex method, the connection between duality and the pricing of finan­
cial assets, a unified view of delayed column generation and cutting plane 
methods , stochastic programming and Benders decomposition, the auction 
algorithm for the assignment problem, certain theoretical implications of 
the ellipsoid algorithm, a thorough treatment of interior point methods, 
and a whole chapter on the practice of linear optimization. There are 
also several noteworthy topics that are covered in the exercises , such as 
Leontief systems, strict complementarity, options pricing, von Neumann's 
algorithm, submodular function minimization, and bounds for a number of 
integer programming problems . 

Here is a chapter by chapter description of the book. 

Chapter 1: Introduces the linear programming problem, together with 
a number of examples, and provides some background material on linear 
algebra. 

Chapter 2: Deals with the basic geometric properties of polyhedra, focus­
ing on the definition and the existence of extreme points, and emphasizing 
the interplay betwen the geometric and the algebraic viewpoints. 

Chapter 3: Contains more or less the classical material associated with the 
simplex method, as well as a discussion of the column geometry. It starts 
with a high-level and geometrically motivated derivation of the simplex 
method. It then introduces the revised simplex method, and concludes 
with the simplex tableau. The usual topics of Phase I and anticycling are 
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also covered. 

Chapter 4: It is a comprehensive treatment of linear programming du­
ality. The duality theorem is first obtained as a corollary of the simplex 
method. A more abstract derivation is also provided, based on the separat­
ing hyperplane theorem, which is developed from first principles . It ends 
with a deeper look into the geometry of polyhedra. 

Chapter 5 :  Discusses sensitivity analysis ,  that is, the dependence of so­
lutions and the optimal cost on the problem data, including parametric 
programming. It also develops a characterization of dual optimal solutions 
as subgradients of a suitably defined optimal cost function. 

Chapter 6: Presents the complementary ideas of delayed column gen­
eration and cutting planes. These methods are first developed at a high 
level, and are then made concrete by discussing the cutting stock prob­
lem, Dantzig-Wolfe decomposition, stochastic programming, and Benders 
decomposition. 

Chapter 7: Provides a comprehensive review of the principal results and 
methods for the different variants of the network flow problem. It contains 
representatives from all major types of algorithms : primal descent (the 
simplex method) , dual ascent (the primal-dual method) , and approximate 
dual ascent (the auction algorithm) .  The focus is on the major algorithmic 
ideas, rather than on the refinements that can lead to better complexity 
estimates . 

Chapter 8 :  Includes a discussion of complexity, a development of the el­
lipsoid method, and a proof of the polynomiality of linear programming. It 
also discusses the equivalence of separation and optimization, and provides 
examples where the ellipsoid algorithm can be used to derive polynomial 
time results for problems involving an exponential number of constraints. 

Chapter 9 :  Contains an overview of all major classes of interior point 
methods ,  including affine scaling, potential reduction, and path following 
(both primal and primal-dual) methods. It includes a discussion of the 
underlying geometric ideas and computational issues , as well as convergence 
proofs and complexity analysis .  

Chapter 10:  Introduces integer programming formulations of discrete 
optimization problems . It provides a number of examples , as well as some 
intuition as to what constitutes a "strong" formulation. 

Chapter 11 :  Covers the major classes of integer programming algorithms, 
including exact methods (branch and bound, cutting planes , dynamic pro­
gramming) , approximation algorithms, and heuristic methods (local search 
and simulated annealing) . It also introduces a duality theory for integer 
programming. 

Chapter 12 :  Deals with the art in linear optimization, i .e . , the process 
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of modeling, exploiting problem structure , and fine tuning of optimization 
algorithms. We discuss the relative performance of interior point meth­
ods and different variants of the simplex method, in a realistic large scale 
setting. We also give some indication of the size of problems that can be 
currently solved. 

An important theme that runs through several chapters is the model­
ing, complexity, and algorithms for problems with an exponential number 
constraints. We discuss modeling in Section 10 .3 , complexity in Section 8.5 , 
algorithmic approaches in Chapter 6 and 8 .5 , and we conclude with a case 
study in Section 12 .5 .  

There is  a fair number of  exercises that are given at  the end of  each 
chapter. Most of them are intended to deepen the understanding of the 
subject , or to explore extensions of the theory in the text , as opposed 
to routine drills . However, several numerical exercises are also included. 
Starred exercises are supposed to be fairly hard. A solutions manual for 
qualified instructors can be obtained from the authors . 

We have made a special effort to keep the text as modular as possible , 
allowing the reader to omit certain topics without loss of continuity. For 
example, much of the material in Chapters 5 and 6 is rarely used in the 
rest of the book. Furthermore, in Chapter 7 (on network flow problems) ,  a 
reader who has gone through the problem formulation (Sections 7. 1-7.2) can 
immediately move to any later section in that chapter . Also, the interior 
point algorithms of Chapter 9 are not used later, with the exception of 
some of the applications in Chapter 12 .  Even within the core chapters 
(Chapters 1-4) , there are many sections that can be skipped during a first 
reading. Some sections have been marked with a star indicating that they 
contain somewhat more advanced material that is not usually covered in 
an introductory course. 

The book was developed while we took turns teaching a first-year 
graduate course at M.LT. , for students in engineering and operations re­
search. The only prerequisite is a working knowledge of linear algebra. In 
fact , it is only a small subset of linear algebra that is needed (e.g. , the 
concepts of subspaces , linear independence, and the rank of a matrix) . 
However, these elementary tools are sometimes used in subtle ways, and 
some mathematical maturity on the part of the reader can lead to a better 
appreciation of the subject . 

The book can be used to teach several different types of courses . The 
first two suggestions below are one-semester variants that we have tried at 
M.LT. , but there are also other meaningful alternatives, depending on the 
students' background and the course's objectives . 

(a) Cover most of Chapters 1-7, and if time permits ,  cover a small number 
of topics from Chapters 9-12 . 

(b)  An alternative could be the same as above, except that interior point 
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algorithms (Chapter 9) are fully covered, replacing network flow prob­
lems (Chapter 7) . 

(c) A broad overview course can be constructed by concentrating on the 
easier material in most of the chapters . The core of such a course 
could consist of Chapter 1, Sections 2 . 1-2.4 , 3 . 1-3.5, 4 . 1-4 .3 , 5 . 1 ,  7 . 1-
7 .3 , 9 . 1 ,  10 . 1 ,  some of the easier material in Chapter 1 1 ,  and an 
application from Chapter 12 .  

(d)  Finally, the book is  also suitable for a half-course on integer pro­
gramming, based on parts of Chapters 1 and 8, as well as Chapters 
10-12 .  
There is  a truly large literature on linear optimization, and we make 

no attempt to provide a comprehensive bibliography. To a great extent , the 
sources that we cite are either original references of historical interest , or 
recent texts where additional information can be found. For those topics , 
however, that touch upon current research, we also provide pointers to 
recent journal articles . 

We would like to express our thanks to a number of individuals . We 
are grateful to our colleagues Dimitri Bertsekas and Rob Freund, for many 
discussions on the subjects in this book, as well as for reading parts of 
the manuscript . Several of our students, colleagues, and friends have con­
tributed by reading parts of the manuscript , providing critical comments, 
and working on the exercises: Jim Christodouleas, Thalia Chryssikou, 
Austin Frakt , David Gamarnik, Leon Hsu, Spyros Kontogiorgis , Peter Mar­
bach, Gina Mourtzinou, Yannis Paschalidis , Georgia Perakis , Lakis Poly­
menakos , Jay Sethuraman, Sarah Stock, Paul Tseng, and Ben Van Roy. 
But mostly, we are grateful to our families for their patience, love, and 
support in the course of this long project . 

Dimitris Bertsimas 
John N. Tsitsiklis 

Cambridge, January 1 997 
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2 Chap. 1 Introduction 

In this chapter , we introduce linear programming, the problem of mini­
mizing a linear cost function subject to linear equality and inequality con­
straints. We consider a few equivalent forms and then present a number 
of examples to illustrate the applicability of linear programming to a wide 
variety of contexts. We also solve a few simple examples and obtain some 
basic geometric intuition on the nature of the problem. The chapter ends 
with a review of linear algebra and of the conventions used in describing 
the computational requirements (operation count) of algorithms. 

1 . 1  Variants of the linear programming 

problem 

In this section, we pose the linear programming problem, discuss a few 
special forms that it takes, and establish some standard notation that we 
will be using. Rather than starting abstractly, we first state a concrete 
example, which is meant to facilitate understanding of the formal definition 
that will follow. The example we give is devoid of any interpretation. Later 
on, in Section 1 . 2 , we will have ample opportunity to develop examples that 
arise in practical settings . 

Example 1 . 1  The following is a linear programming problem: 

minimize 2Xl X2 + 4X3 
subject to Xl + X2 + X4 :::: 2 

3X2 X3 5 
X3 + X4 2 3 

Xl 2 0 
X3 :::: o. 

Here Xl , X2 , X3 , and X4 are variables whose values are to be chosen to minimize 

the linear cost function 2Xl - X2 + 4X3 , subject to a set of linear equality and 
inequality constraints. Some of these constraints, such as Xl 2 0 and X3 :::: 0 ,  
amount to  simple restrictions on the sign of  certain variables. The remaining 

constraints are of the form a/x :::: b, a/x = b, or a/x 2 b, where a = (al , a2 , a3 , a4 ) 
is a given vectorl , x = (Xl , X2 , X3 , X4 ) is the vector of decision variables, a/x is 
their inner product 2::=1 aixi , and b is a given scalar . For example, in the first 

constraint, we have a = ( 1 , 1 , 0 , 1 )  and b = 2 .  

We now generalize . In a general linear programming problem, we are 
given a cost vector c = (Cl, . . .  , cn ) and we seek to minimize a linear cost 
function c'x = 2:�=1 CiXi over all n-dimensional vectors x = (XI, . . . , xn ) , 

1 As discussed further in Section 1.5, all vectors are assumed to be column vectors, and 
are treated as such in matrix-vector products. Row vectors are indicated as transposes 
of (column) vectors. However, whenever we refer to a vector x inside the text, we 
use the more economical notation x = (Xl, ... , Xn ), even though x is a column vector. 
The reader who is unfamiliar with our notation may wish to consult Section 1.5 before 
continuing. 
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subject to a set of linear equality and inequality constraints .  In particular , 
let MI, M2, M3 be some finite index sets, and suppose that for every i in 
any one of these sets, we are given an n-dimensional vector ai and a scalar 
bi ,  that will be used to form the ith constraint . Let also NI and N2 be 
subsets of {I, . . .  , n} that indicate which variables Xj are constrained to be 
nonnegative or nonpositive ,  respectively. We then consider the problem 

minimize c'x 
subject to a�x > bi , i E MI, 

a�x < bi ,  i EM2, 
a�x bi , i E M3, ( 1 . 1 )  

Xj > 0, j E NI, 
Xj < 0, j E N2• 

The variables Xl , . . .  , Xn are called decision variables, and a vector x sat­
isfying all of the constraints is called a feasible solution or feasible vector. 
The set of all feasible solutions is called the feasible set or feasible region. 
If j is in neither NI nor N2, there are no restrictions on the sign of Xj , in 
which case we say that Xj is a free or unrestricted variable. The function 
c'x is called the objective function or cost function. A feasible solution x* 
that minimizes the objective function (that is , c'x* :s; c'x, for all feasible x) 
is called an optimal feasible solution or, simply, an optimal solution. The 
value of c'x* is then called the optimal cost. On the other hand, if for 
every real number K we can find a feasible solution x whose cost is less 
than K, we say that the optimal cost is - 00 or that the cost is unbounded 
below. (Sometimes , we will abuse terminology and say that the problem is 
unbounded. ) We finally note that there is no need to study maximization 
problems separately, because maximizing c'x is equivalent to minimizing 
the linear cost function -c'x. 

An equality constraint a�x = bi is equivalent to the two constraints 
a�x :s; bi and a�x 2 bi• In addition, any constraint of the form a�x :s; bi can 
be rewritten as (-ai) 'x 2 -bi. Finally, constraints of the form Xj 2 0 or 
Xj :s; 0 are special cases of constraints of the form a�x 2 bi , where � is a 
unit vector and bi = O. We conclude that the feasible set in a general linear 
programming problem can be expressed exclusively in terms of inequality 
constraints of the form a�x 2 bi. Suppose that there is a total of m such 
constraints, indexed by i = 1 ,  ... , m, let b = (bl , ... , bTn), and let A be the 
m x n matrix whose rows are the row vectors a� , ... , a� , that is , 

A = [- a� -j. 
a� 

Then, the constraints a�x 2 bi , i = 1 ,  ... , m, can be expressed compactly 
in the form Ax 2 b, and the linear programming problem can be written 
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as 
minimize c' x 

subject to Ax 2:: b. 

Chap. 1 Introduction 

( 1 . 2) 

Inequalities such as Ax 2:: b will always be interpreted componentwise; that 
is, for every i ,  the ith component of the vector Ax, which is a�x, is greater 
than or equal to the ith component bi of the vector b. 

Example 1 .2  The linear programming problem in Example 1 . 1  can b e  rewrit-
ten as 

minimize 2X I X2 + 4X3 
subject to -Xl X2 - X4 2 -2 

3X2 X3 > 5 
3X2 + X3 > -5 

X3 + X4 2 3 
Xl 2 0 

X3 2 0, 

which is of the same form as the problem ( 1 . 2 ) ,  with c = (2 ,  - 1 , 4 , 0) , 

- 1  - 1  0 - 1  
0 3 - 1  0 

A =  
0 -3 1 0 
0 0 1 1 
1 0 0 0 
0 0 - 1  0 

and b = (-2 , 5 ,  -5 , 3 , 0 , 0) . 

Standard form problems 

A linear programming problem of the form 

minimize c'x 
subject to Ax b ( 1 .3) 

x > 0, 

is  said to be in standard form. We provide an interpretation of problems in 
standard form. Suppose that x has dimension n and let AI , . . .  , An be the 
columns of A. Then, the constraint Ax = b can be written in the form 

n L Aixi = b. 
i=l 

Intuitively, there are n available resource vectors AI ' . . .  ' An , and a target 
vector b. We wish to "synthesize" the target vector b by using a non­
negative amount Xi of each resource vector Ai , while minimizing the cost 
l:�=l CiXi , where Ci is the unit cost of the ith resource . The following is a 
more concrete example. 
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Example 1.3 (The diet problem) Suppose that there are n different foods 
and m different nutrients, and that we are given the following table with the 
nutritional content of a unit of each food: 

food 1 . . .  food n 

nutrient 1 al l  . . .  aln 

nutrient m aml . . . amn 

Let A be the m x n matrix with entries aij. Note that the jth column Aj 
of this matrix represents the nutritional content of the jth food. Let b be a 
vector with the requirements of an ideal diet or, equivalently, a specification of 

the nutritional contents of an "ideal food." We then interpret the standard form 
problem as the problem of mixing nonnegative quantities Xi of the available foods, 
to synthesize the ideal food at minimal cost . In a variant of this problem, the 
vector b specifies the minimal requirements of an adequate diet ; in that case, the 

constraints Ax = b are replaced by Ax ;::: b, and the problem is not in standard 
form. 

Reduction to standard form 

As argued earlier , any linear programming problem, including the standard 
form problem ( 1 . 3) ,  is a special case of the general form ( 1 . 1 ) .  We now 
argue that the converse is also true and that a general linear programming 
problem can be transformed into an equivalent problem in standard form. 
Here, when we say that the two problems are equivalent , we mean that given 
a feasible solution to one problem, we can construct a feasible solution to 
the other , with the same cost . In particular , the two problems have the 
same optimal cost and given an optimal solution to one problem, we can 
construct an optimal solution to the other . The problem transformation 
we have in mind involves two steps : 

(a) Elimination of free variables: Given an unrestricted variable Xj in a 
problem in general form, we replace it by xj - xj , where xj and xj 
are new variables on which we impose the sign constraints xj ;::: 0 
and xj 2 O .  The underlying idea is that any real number can be 
written as the difference of two nonnegative numbers . 

(b) Elimination of inequality constraints: Given an inequality constraint 
of the form 

n L aijXj ::; bi , 
j=1 
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we introduce a new variable Si and the standard form constraints 
n L aijXj + Si bi , 

j=l 
Si > O. 

Such a variable Si is called a slack variable. Similarly, an inequality 
constraint �7=1 aijXj ;::: bi can be put in standard form by intro­
ducing a surplus variable Si and the constraints �7=1 aijXj - Si = 
bi , Si ;::: O. 

We conclude that a general problem can be brought into standard form 
and, therefore, we only need to develop methods that are capable of solving 
standard form problems . 

Example 1 .4 The problem 

minimize 2Xl + 4X2 
subject to Xl  + X2 2 3 

3Xl + 2X2 14 
Xl 2 0 ,  

i s  equivalent to  the standard form problem 

minimize 2Xl + 4x� 4x;-
subject to Xl + x� - x;- - X3 3 

3Xl + 2x� - 2x;- 14 
Xl , X� , X;- , X3 2 o. 

For example, given the feasible solution (X l , X2 ) = (6, -2) to the original prob­
lem, we obtain the feasible solution (X l , X� , x;-, X3 ) = (6 , 0 , 2 , 1 )  to the standard 
form problem, which has the same cost . Conversely, given the feasible solution 

(Xl , x�, x;-, X3)  = (8 , 1 , 6 , 0) to the standard form problem, we obtain the feasible 
solution (X l , X2 ) = (8 , -5) to the original problem with the same cost . 

In the sequel, we will often use the general form Ax ;::: b to develop 
the theory of linear programming. However, when it comes to algorithms, 
and especially the simplex and interior point methods, we will be focusing 
on the standard form Ax = b, x ;::: 0, which is computationally more 
convenient . 

1 . 2  Examples of linear programming 

problems 

In this section, we discuss a number of examples of linear programming 
problems. One of our purposes is to indicate the vast range of situations to 
which linear programming can be applied. Another purpose is to develop 
some familiarity with the art of constructing mathematical formulations of 
loosely defined optimization problems. 
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A production problem 

A firm produces n different goods using m different raw materials. Let bi , 
i = 1, .. . , m, be the available amount of the ith raw material . The jth 
good, j = 1, ... , n, requires aij units of the ith material and results in a 
revenue of Cj per unit produced. The firm faces the problem of deciding 
how much of each good to produce in order to maximize its total revenue. 

In this example, the choice of the decision variables is simple. Let Xj , 
j = 1, . . . , n, be the amount of the jth good. Then, the problem facing the 
firm can be formulated as follows: 

maximize CIXI + + CnXn 
subject to ailXl + + ainXn < bi , 

Xj > 0 ,  
i = 1, . . . , m, 
j = 1 ,  ... ,n. 

Production planning by a computer manufacturer 

The example that we consider here is a problem that Digital Equipment 
Corporation (DEC) had faced in the fourth quarter of 1988. It illustrates 
the complexities and uncertainties of real world applications, as well as 
the usefulness of mathematical modeling for making important strategic 
decisions . 

In the second quarter of 1988 , DEC introduced a new family of (single 
CPU) computer systems and workstations: GP-l, GP-2 ,  and GP-3, which 
are general purpose computer systems with different memory, disk storage, 
and expansion capabilities , as well as WS-l and WS-2 ,  which are work­
stations . In Table 1 . 1 ,  we list the models , the list prices , the average disk 
usage per system, and the memory usage . For example, GP-l uses four 
256K memory boards, and 3 out of every 10 units are produced with a disk 
drive . 

System Price # disk drives # 256K boards 

GP-1 $60 ,000 0 .3  4 

GP-2 $40 ,000 1 . 7  2 

GP-3 $30,000 0 2 

WS-1 $30 ,000 1 .4 2 

WS-2 $15 ,000 0 1 

Table 1 . 1 :  Features of the five different DEC systems. 

Shipments of this new family of products started in the third quarter 
and ramped slowly during the fourth quarter. The following difficulties 
were anticipated for the next quarter: 
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(a) The in-house supplier of CPUs could provide at most 7,000 units, due 
to debugging problems . 

(b) The supply of disk drives was uncertain and was estimated by the 
manufacturer to be in the range of 3 ,000 to 7,000 units. 

( c) The supply of 256K memory boards was also limited in the range of 
8 ,000 to 16 ,000 units. 

On the demand side , the marketing department established that the 
maximum demand for the first quarter of 1989 would be 1 ,800 for GP-1 
systems, 300 for GP-3 systems, 3 ,800 systems for the whole GP family, and 
3 ,200 systems for the WS family. Included in these projections were 500 
orders for GP-2,  500 orders for WS-1 ,  and 400 orders for WS-2 that had 
already been received and had to be fulfilled in the next quarter . 

In the previous quarters , in order to address the disk drive shortage, 
DEC had produced GP- 1 ,  GP-3,  and WS-2 with no disk drive (although 
3 out of 10 customers for GP-1 systems wanted a disk drive) , and GP-2 ,  
WS-1 with one disk drive. We refer to this way of configuring the systems 
as the constrained mode of production. 

In addition, DEC could address the shortage of 256K memory boards 
by using two alternative boards , instead of four 256K memory boards , in 
the GP-1 system. DEC could provide 4 ,000 alternative boards for the next 
quarter. 

It was clear to the manufacturing staff that the problem had become 
complex, as revenue, profitability, and customer satisfaction were at risk. 
The following decisions needed to be made: 

(a) The production plan for the first quarter of 1989. 

(b) Concerning disk drive usage, should DEC continue to manufacture 
products in the constrained mode , or should it plan to satisfy cus­
tomer preferences? 

(c) Concerning memory boards, should DEC use alternative memory 
boards for its GP-1 systems? 

( d) A final decision that had to be made was related to tradeoffs be­
tween shortages of disk drives and of 256K memory boards. The 
manufacturing staff would like to concentrate their efforts on either 
decreasing the shortage of disks or decreasing the shortage of 256K 
memory boards. Hence , they would like to know which alternative 
would have a larger effect on revenue. 

In order to model the problem that DEC faced, we introduce variables 
Xl , X2 , X3 , X4 , X5 ,  that represent the number (in thousands) of GP- 1 ,  GP-
2, GP-3, WS- 1 ,  and WS-2 systems, respectively, to be produced in the 
next quarter. Strictly speaking, since 1000Xi stands for number of units, it 
must be an integer . This can be accomplished by truncating each Xi after 
the third decimal point ; given the size of the demand and the size of the 
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variables Xi , this has a negligible effect and the integrality constraint on 
1000Xi can be ignored. 

DEC had to make two distinct decisions : whether to use the con­
strained mode of production regarding disk drive usage , and whether to 
use alternative memory boards for the GP-1 system. As a result , there are 
four different combinations of possible choices . 

We first develop a model for the case where alternative memory 
boards are not used and the constrained mode of production of disk drives 
is selected. The problem can be formulated as follows: 

maximize 60Xl + 40X2 + 30X3 + 30X4 + 15xs (total revenue) 

subject to the following constraints: 

Xl + X2 + X3 + X4 + X5 < 7 (CPU availability) 
4Xl + 2X2 + 2X3 + 2X4 + Xs < 8 (256K availability) 

X2 + X4 < 3 (disk drive availability) 
Xl < 1 .8 (max demand for GP-1 )  

X3 < 0 .3 (max demand for GP-3) 
Xl + X2 + x3 < 3.8 (max demand for GP) 

X4 + Xs < 3.2 (max demand for WS) 
X2 > 0.5 (min demand for GP-2) 

X4 > 0.5 (min demand for WS-1 )  
Xs > 0.4 (min demand for WS-2) 

Xl, X2 , X3 , X4 , X5 2: O . 

Notice that the objective function is  in millions of dollars . In some 
respects, this is a pessimistic formulation, because the 256K memory and 
disk drive availability were set to 8 and 3, respectively, which is the lowest 
value in the range that was estimated. It is actually of interest to determine 
the solution to this problem as the 256K memory availability ranges from 
8 to 16 , and the disk drive availability ranges from 3 to 7, because this 
provides valuable information on the sensitivity of the optimal solution on 
availability. In another respect , the formulation is optimistic because, for 
example , it assumes that the revenue from GP-1 systems is 60Xl for any 
Xl :-:; 1 . 8 ,  even though a demand for 1 ,800 GP-1 systems is not guaranteed. 

In order to accommodate the other three choices that DEC had, some 
of the problem constraints have to be modified, as follows. If we use the 
unconstrained mode of production for disk drives , the constraint X2+X4 :-:; 3 
is replaced by 

Furthermore, if we wish to use alternative memory boards in GP-1 systems, 
we replace the constraint 4Xl + 2X2 + 2X3 + 2X4 + Xs :-:; 8 by the two 
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constraints 

2Xl < 4, 

2X2 + 2X3 + 2X4 + X5 < 8. 

Chap. 1 Introduction 

The four combinations of choices lead to four different linear programming 
problems, each of which needs to be solved for a variety of parameter values 
because, as discussed earlier, the right-hand side of some of the constraints 
is only known to lie within a certain range. Methods for solving linear 
programming problems, when certain parameters are allowed to vary, will 
be studied in Chapter 5, where this case study is revisited. 

Multiperiod planning of electric power capacity 

A state wants to plan its electricity capacity for the next T years. The 
state has a forecast of dt megawatts, presumed accurate, of the demand 
for electricity during year t = 1 ,  . . .  , T .  The existing capacity, which is in 
oil-fired plants, that will not be retired and will be available during year 
t, is et. There are two alternatives for expanding electric capacity: coal­
fired or nuclear power plants. There is a capital cost of Ct per megawatt 
of coal-fired capacity that becomes operational at the beginning of year t .  
The corresponding capital cost for nuclear power plants i s  nt. For various 
political and safety reasons, it has been decided that no more than 20% 
of the total capacity should ever be nuclear . Coal plants last for 20 years, 
while nuclear plants last for 15 years . A least cost capacity expansion plan 
is desired . 

The first step in formulating this problem as a linear programming 
problem is to define the decision variables . Let Xt and Yt be the amount 
of coal (respectively, nuclear) capacity brought on line at the beginning 
of year t. Let Wt and Zt be the total coal (respectively, nuclear) capacity 
available in year t. The cost of a capacity expansion plan is therefore, 

T �)ctXt + ntYt ) . 
t=l 

Since coal-fired plants last for 20 years, we have 

t 
Wt= L t = 1 ,  . . .  ,T .  

s=rnax{1,t-19} 

Similarly, for nuclear power plants, 

t 

Zt = L Ys, t = 1 , . . .  ,T .  
s=rnax{1,t-14} 
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Since the available capacity must meet the forecasted demand, we require 

t = 1 ,  . . .  ,T .  

Finally, since no more than 20% of  the total capacity should ever be  nuclear, 
we have 

which can be written as 

Zt ----- <0.2 ,  
Wt + Zt  + et -

Summarizing, the capacity expansion problem is as follows: 

T 
minimize l )CtXt + ntYt ) 

t=l 
t 

subject to Wt - L Xs = 0,  
s=max{1,t-19} 

t 

Zt - L Ys = 0 ,  
s=max{1,t-14} 

t =  1 ,  . . .  ,T ,  

t = 1 ,  . . .  ,T ,  

t = 1 ,  . . .  ,T ,  

t= 1 ,  . . .  ,T ,  

t = 1 ,  . . .  ,T .  

We note that this formulation is  not entirely realistic, because i t  disregards 
certain economies of scale that may favor larger plants. However, it can 
provide a ballpark estimate of the true cost . 

A scheduling problem 

In the previous examples , the choice of the decision variables was fairly 
straightforward. We now discuss an example where this choice is less obvi­
ous. 

A hospital wants to make a weekly night shift ( 12pm-8am) schedule 
for its nurses . The demand for nurses for the night shift on day j is an 
integer dj , j = 1 ,  . . .  , 7. Every nurse works 5 days in a row on the night 
shift .  The problem is to find the minimal number of nurses the hospital 
needs to hire . 

One could try using a decision variable Yj equal to the number of 
nurses that work on day j .  With this definition, however, we would not be 
able to capture the constraint that every nurse works 5 days in a row. For 
this reason, we choose the decision variables differently, and define Xj as 
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the number of nurses starting their week on day j .  (For example, a nurse 
whose week starts on day 5 will work days 5, 6 , 7 , 1 , 2 . )  We then have the 
following problem formulation: 

minimize Xl + X2 + X3 + X4 + X5 + X6 + X7 
subject to Xl + X4 + X5 + X6 + X7 > dl 

Xl + X2 + X5 + X6 + X7 > d2 
Xl + X2 + X3 + X6 + X7 > d3 
Xl + X2 + X3 + X4 + X7 > d4 
Xl + X2 + X3 + X4 + X5 > d5 

X2 + X3 + X4 + X5 + X6 > d6 
X3 + X4 + X5 + X6 + X7 > d7 

Xj � 0,  Xj integer. 

This would be a linear programming problem, except for the constraint that 
each Xj must be an integer, and we actually have a linear integer program­
ming problem. One way of dealing with this issue is to ignore ( "relax" ) 
the integrality constraints and obtain the so-called linear programming re­
laxation of the original problem. Because the linear programming problem 
has fewer constraints, and therefore more options, the optimal cost will be 
less than or equal to the optimal cost of the original problem. If the optimal 
solution to the linear programming relaxation happens to be integer, then 
it is also an optimal solution to the original problem. If it is not integer , we 
can round each Xj upwards, thus obtaining a feasible, but not necessarily 
optimal, solution to the original problem. It turns out that for this partic­
ular problem, an optimal solution can be found without too much effort . 
However, this is the exception rather than the rule : finding optimal solu­
tions to general integer programming problems is typically difficult ; some 
methods will be discussed in Chapter 1 1 . 

Choosing paths in a communication network 

Consider a communication network consisting of n nodes. Nodes are con­
nected by communication links . A link allowing one-way transmission from 
node i to node j is described by an ordered pair (i , j ) .  Let A be the set 
of all links. We assume that each link (i ,  j) E A can carry up to Uij bits 
per second. There is a positive charge Cij per bit transmitted along that 
link. Each node k generates data, at the rate of bk€ bits per second, that 
have to be transmitted to node £, either through a direct link (k ,  £) or by 
tracing a sequence of links . The problem is to choose paths along which 
all data reach their intended destinations, while minimizing the total cost . 
We allow the data with the same origin and destination to be split and be 
transmitted along different paths. 

In order to formulate this problem as a linear programming problem, 
we introduce variables x'iJ indicating the amount of data with origin k and 
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destination £ that traverse link (i ,  j ) .  Let 

{ bk£ 
b�£ = _bkt

' 
< , 

0, 

if i = k,  
i f  i = £, 
otherwise . 
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Thus , b�£ is  the net inflow at node i ,  from outside the network, of data with 
origin k and destination £. We then have the following formulation: 

n n 

minimize L L LCijx7} 
(i,j)EA k=l £=1 

subject to 

n n 

L Lx7} :::; Uij, 
k=l £=1 

i, k, £ = 1 ,  ... , n, 

(i , j )  E A, 

x�}?:O, (i , j )EA, k, £ = 1 , . . . ,n. 
The first constraint is a flow conservation constraint at node i for data with 
origin k and destination £. The expression 

{j1(i,j)EA} 
x�£ <J 

represents the amount of data with origin and destination k and £, respec­
tively, that leave node i along some link. The expression 

{j1(j,i)EA} 
xk£ J< 

represents the amount of data with the same origin and destination that 
enter node i through some link. Finally, b7£ is the net amount of such 
data that enter node i from outside the network. The second constraint 
expresses the requirement that the total traffic through a link (i ,  j) cannot 
exceed the link's capacity. 

This problem is known as the multicommodity flow problem, with the 
traffic corresponding to each origin-destination pair viewed as a different 
commodity. A mathematically similar problem arises when we consider a 
transportation company that wishes to transport several commodities from 
their origins to their destinations through a network. There is a version 
of this problem, known as the minimum cost network flow problem, in 
which we do not distinguish between different commodities . Instead, we 
are given the amount bi of external supply or demand at each node i ,  and 
the objective is to transport material from the supply nodes to the demand 
nodes, at minimum cost . The network flow problem, which is the subject 
of Chapter 7, contains as special cases some important problems such as 
the shortest path problem, the maximum flow problem, and the assignment 
problem. 
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Pattern classification 

We are given m examples of objects and for each one, say the ith one, a 
description of its features in terms of an n-dimensional vector a;. Objects 
belong to one of two classes, and for each example we are told the class 
that it belongs to. 

More concretely, suppose that each object is an image of an apple 
or an orange (these are our two classes) .  In this context , we can use a 
three-dimensional feature vector ai to summarize the contents of the ith 
image. The three components of ai (the features) could be the ellipticity 
of the object , the length of its stem, and its color, as measured in some 
scale. We are interested in designing a classifier which, given a new object 
(other than the originally available examples) ,  will figure out whether it is 
an image of an apple or of an orange. 

A linear classifier is defined in terms of an n-dimensional vector x 
and a scalar Xn+1 , and operates as follows. Given a new object with feature 
vector a, the classifier declares it to be an object of the first class if 

and of the second class if 
a/x < xn+l . 

In words, a linear classifier makes decisions on the basis of a linear combina­
tion of the different features. Our objective is to use the available examples 
in order to design a "good" linear classifier . 

There are many ways of approaching this problem, but a reasonable 
starting point could be the requirement that the classifier must give the 
correct answer for each one of the available examples. Let S be the set of 
examples of the first class. We are then looking for some x and Xn+l that 
satisfy the constraints 

a�x ;::: Xn+l , 
a�x < Xn+! ,  

i E S, 

i tf- S. 

Note that the second set of constraints involves a strict inequality and is 
not quite of the form arising in linear programming. This issue can be 
bypassed by observing that if some choice of x and Xn+l satisfies all of 
the above constraints, then there exists some other choice (obtained by 
multiplying x and Xn+l by a suitably large positive scalar) that satisfies 

a�x;::: Xn+l , 
a�x ::; Xn+l - 1 , 

i E S, 

i tf- S. 

We conclude that the search for a linear classifier consistent with all avail­
able examples is a problem of finding a feasible solution to a linear pro­
gramming problem. 
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All of the examples in the preceding section involved a linear objective 
function. However, there is an important class of optimization problems 
with a nonlinear objective function that can be cast as linear programming 
problems ; these are examined next . 

We first need some definitions : 

Definition 1.1  

(a) A function f : lRn I--t lR is called convex if  for every x,y E lRn, 
and every A E [0 , 1] , we have 

f (AX + ( 1  - A)Y) :::; Af(x) + (1- A)f(y) · 

(b) A function f : lRn I--t lR is called concave if for every x, y E lRn, 
and every A E [0 , 1] , we have 

f (AX + ( 1  - A)y) :2: Af(x) + ( 1 - A)f(y)· 

Note that if x and y are vectors in lRn and if A ranges in [0 , 1] ' then 
points of the form AX + (1 - A)y belong to the line segment joining x 
and y. The definition of a convex function refers to the values of f, as 
its argument traces this segment . If f were linear , the inequality in part 
(a) of the definition would hold with equality. The inequality therefore 
means that when we restrict attention to such a segment , the graph of the 
function lies no higher than the graph of a corresponding linear function; 
see Figure 1 . 1 (a) . 

It is easily seen that a function f is convex if and only if the function 
-f is concave. Note that a function of the form f(x) = ao + I:�=l aixi , 
where ao, . . .  , an are scalars, called an affine function, is both convex and 
concave . (It turns out that affine functions are the only functions that are 
both convex and concave . )  Convex (as well as concave) functions play a 
central role in optimization. 

We say that a vector x is a local minimum of f if f(x) :::; f(y) for all y 
in the vicinity of x. We also say that x is a global minimum if f(x) :::; f(y) 
for all y .  A convex function cannot have local minima that fail to be global 
minima (see Figure 1 . 1 ) ,  and this property is of great help in designing 
efficient optimization algorithms. 

Let Cl , . . .  ,Cm be vectors in lRn , let d1 , . . .  ,dm be scalars , and consider 
the function f : lRn I--t lR defined by 

f(x) = . max (c�x + di ) 1..=l ,  ... ,m 
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V(x) + ( 1  - J..) f (y) 
"--�/-----:7f(Y) f(x) 

x h + ( l - J..)y y 

(a) 
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~ 
(b )  

(c) 

Figure 1 . 1 :  (a) Illustration of the definition of a convex function. 

(b) A concave function. (c) A function that is neither convex nor 
concave; note that A is a local, but not global, minimum. 

[see Figure 1 . 2 (a)] . Such a function is convex, as a consequence of the 
following result . 

Theorem 1 . 1  Let II ,  . . .  , f m : �n I--t � be convex functions. Then, 
the function f defined by f(x) = maxi=l , . . . ,m fi (X) is also convex. 

Proof. Let x, y E �n and let A E [0, 1 ] . We have 

f (AX + ( 1  - A)Y) . max fi (AX + (1 - A)Y) 
'l=l ,  . . .  , ffi  

< . max (Afi (X) + ( 1 - A)h (y))  
t= l ,  . . .  ,m  

< . max Afi (X) + . max ( 1  - A)fi (Y) t=l ,  . . .  ,m t= l ,  . . . , ffi  

Af (x) + ( 1  - A)f(y) .  0 

A function of the form maxi=l ,  . . .  ,m (c�x+di ) is called a piecewise linear 
convex function. A simple example is the absolute value function defined by 
f (x) = Ix l = max{ x, -x} . As illustrated in Figure 1 . 2 (b) , a piecewise linear 
convex function can be used to approximate a general convex function. 

We now consider a generalization of linear programming, where the 
objective function is piecewise linear and convex rather than linear : 

minimize . max (c�x + di ) 
t=l ,  . . .  ,m 

subject to Ax ;::: h.  
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.. 
x 

(a )  (b )  

Figure 1.2 :  (a) A piecewise linear convex function of a single 
variable. (b) An approximation of a convex function by a piecewise 
linear convex function. 

17 

... 
x 

Note that maxi=l , . . .  ,m (c�x + di ) is equal to the smallest number z that 
satisfies z � c�x + di for all i .  For this reason, the optimization problem 
under consideration is equivalent to the linear programming problem 

minimize 
subject to 

z 

z � c�x + di , 
Ax � b, 

where the decision variables are z and x. 

i = 1, . . . , m, 

To summarize, linear programming can be used to solve problems with 
piecewise linear convex cost functions , and the latter class of functions can 
be used as an approximation of more general convex cost functions . On 
the other hand, such a piecewise linear approximation is not always a good 
idea because it can turn a smooth function into a nonsmooth one (piecewise 
linear functions have discontinuous derivatives) . 

We finally note that if we are given a constraint of the form f (x) :s: h,  
where f is  the piecewise linear convex function f(x) = maxi=1 , . . .  ,m (f[x+9i ) ,  
such a constraint can be rewritten as 

fIx + 9i :s: h,  i = 1 ,  . . .  , m, 

and linear programming is again applicable . 

Problems involving absolute values 

Consider a problem of the form 
n 

minimize L Ci IXi I 
i=l 

subject to Ax � b,  
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where x = (Xl ' . . .  ' Xn ) ,  and where the cost coefficients c; are assumed 
to be nonnegative. The cost criterion, being the sum of the piecewise 
linear convex functions Ci I Xi I is easily shown to be piecewise linear and 
convex (Exercise 1 .2 ) . However, expressing this cost criterion in the form 
maxj (cjx + dj ) is a bit involved, and a more direct route is preferable . 
We observe that I Xi I is the smallest number Zi that satisfies Xi :::; Zi and 
-Xi :::; Zi , and we obtain the linear programming formulation 

n 

minimize LCiZi 
i=l 

subject to Ax > b 
Xi < Zi , i = 1 ,  . . .  ,n, 

-Xi < Zi , i = 1 ,  . . .  ,n . 

An alternative method for dealing with absolute values is to introduce 
new variables xi , xi , constrained to be nonnegative, and let Xi = xi - xi . 
(Our intention is to have Xi = xi or Xi = -xi , depending on whether Xi is 
positive or negative . )  We then replace every occurrence of I Xi l with xi +xi 
and obtain the alternative formulation 

n 

minimize L ci (xi + xi ) 
i=l 

subject to Ax+ - Ax- 2:: b 
x+ , x- 2:: 0,  

where x+ = (xt , . . .  , x;t )  and x- = (xl ' . . .  ' x;;:-) . 
The relations Xi = xi - xi , xi 2:: 0 ,  xi 2:: 0, are not enough to 

guarantee that I Xi I = xi + xi , and the validity of this reformulation may 
not be entirely obvious . Let us assume for simplicity that Ci > 0 for all 
i .  At an optimal solution to the reformulated problem, and for each i ,  we 
must have either xi = 0 or Xi = 0, because otherwise we could reduce both 
xi and xi by the same amount and preserve feasibility, while reducing the 
cost , in contradiction of optimality. Having guaranteed that either xi = 0 
or xi = 0, the desired relation I Xi I = xi + xi now follows. 

The formal correctness of the two reformulations that have been pre­
sented here, and in a somewhat more general setting, is the subject of 
Exercise 1 . 5 .  We also note that the nonnegativity assumption on the cost 
coefficients Ci is crucial because, otherwise , the cost criterion is nonconvex. 

Example 1.5 Consider the problem 

minimize 2 1x I I + X2 

subject to Xl + X2 2: 4. 
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Our first reformulation yields 

minimize 2Zl + X2 
subject to Xl + X2 2: 4 

Xl ::::; Zl 
-Xl ::::; Zl , 

while the second yields 

minimize 2xt + 2xI + X2 

subject to x+ 1 xl + X2 2: 4 

x+ 1 2: 0 

Xl > o .  

We now continue with some applications involving piecewise linear 
convex objective functions. 

Data fitting 

We are given m data points of the form (�, bi ), i = 1 ,  . . .  , m, where � E �n 
and bi E �, and wish to build a model that predicts the value of the variable 
b from knowledge of the vector a. In such a situation, one often uses a linear 
model of the form b = a/x, where x is a parameter vector to be determined. 
Given a particular parameter vector x, the residual, or prediction error, at 
the ith data point is defined as I bi - a�x l . Given a choice between alternative 
models , one should choose a model that "explains" the available data as 
best as possible, i .e . ,  a model that results in small residuals. 

One possibility is to minimize the largest residual. This is the problem 
of minimizing 

max I bi - a�x l , • 

with respect to x, subject to no constraints. Note that we are dealing here 
with a piecewise linear convex cost criterion. The following is an equivalent 
linear programming formulation: 

minimize z 
subject to bi - a�x ::::; Z , 

bi + a�x � z ,  

the decision variables being z and x.  

i = 1 ,  . . . , m, 
i = 1 ,  . . .  , m, 

In an alternative formulation, we could adopt the cost criterion 

m 
L I bi - a�x l ·  
i=l 
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Since I bi - a�x l  is the smallest number Zi that satisfies bi - a�x ::; Zi and 
-bi + a�x ::; Zi , we obtain the formulation 

minimize 

subject to 

Z1 + . . .  + Zrn 
bi - a�x ::; Zi , 
bi + a�x ::; Zi , 

i =  1 ,  . . .  , m, 
i = 1 ,  . . .  , m .  

In practice, one may wish to use the quadratic cost criterion 2:7:1 (bi -
a�x) 2 , in order to obtain a "least squares fit ."  This is a problem which is 
easier than linear programming; it can be solved using calculus methods, 
but its discussion is outside the scope of this book. 

Optimal control of linear systems 

Consider a dynamical system that evolves according to a model of the form 

x(t + 1 )  
y(t) 

Ax(t) + Bu(t) , 
c'x(t) . 

Here x(t) is the state of the system at time t, y (t) is the system output , 
assumed scalar , and u(t) is a control vector that we are free to choose 
subject to linear constraints of the form Du(t) ::; d [these might include 
saturation constraints, i .e . , hard bounds on the magnitude of each com­
ponent of u(t)] . To mention some possible applications, this could be a 
model of an airplane, an engine, an electrical circuit , a mechanical system, 
a manufacturing system, or even a model of economic growth. We are also 
given the initial state x(O) . In one possible problem, we are to choose the 
values of the control variables u(O) , . . .  , u(T - 1) to drive the state x(T) to 
a target state, assumed for simplicity to be zero. In addition to zeroing the 
state, it is often desirable to keep the magnitude of the output small at all 
intermediate times , and we may wish to minimize 

max l y (t) l . t=1 , . . .  ,T- 1 

We then obtain the following linear programming problem: 

minimize Z 
subject to -z ::; y(t) ::; z, 

x(t + 1 )  = Ax(t) + Bu(t) , 
y(t) = c'x(t) , 
Du(t) ::; d, 

x(T) = 0 ,  

x(O) = given. 

t = 1, . . .  , T  - 1 , 

t = 0, . . . , T  - 1 , 

t = 1 ,  . . .  , T  - 1 , 

t = 0 ,  . . .  , T  - 1 , 
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Additional linear constraints on the state vectors x(t) ,  or  a more general 
piecewise linear convex cost function of the state and the control, can also 
be incorporated. 

Rocket control 

Consider a rocket that travels along a straight path. Let Xt , Vt , and at be 
the position, velocity, and acceleration, respectively, of the rocket at time 
t. By discretizing time and by taking the time increment to be unity, we 
obtain an approximate discrete-time model of the form 

Xt+l  X t  + Vt , 

vt+ l  Vt + at · 

We assume that the acceleration at is under our control, as it is determined 
by the rocket thrust . In a rough model, the magnitude l at l  of the accelera­
tion can be assumed to be proportional to the rate of fuel consumption at 
time t .  

Suppose that the rocket is  initially at rest at the origin, that is ,  Xo = 0 
and Vo = o .  We wish the rocket to take off and "land softly" at unit dis­
tance from the origin after T time units, that is, XT = 1 and VT = o.  
Furthermore, we wish to accomplish this in an economical fashion. One 
possibility is to minimize the total fuel L'{';:�/ l at l  spent subject to the pre­
ceding constraints. Alternatively, we may wish to minimize the maximum 
thrust required, which is maxt l at l .  Under either alternative, the problem 
can be formulated as a linear programming problem (Exercise 1 .6) . 

1 . 4 Graphical representation and solution 

In this section, we consider a few simple examples that provide useful geo­
metric insights into the nature of linear programming problems . Our first 
example involves the graphical solution of a linear programming problem 
with two variables. 

Example 1 .6  Consider the problem 

minimize -Xl X2 
subject to Xl + 2X2 ::; 3 

2Xl + X2 ::; 3 
Xl , X2 2: o .  

The feasible set is  the shaded region in Figure 1 .3 .  In order to find an optimal 
solution, we proceed as follows. For any given scalar z, we consider the set of 
all points whose cost c'x is equal to z; this is the line described by the equation 
-Xl - X2 = Z • Note that this line is perpendicular to the vector c = (- 1 ,  - 1 ) .  
Different values of z lead t o  different lines , all of them parallel t o  each other. In 
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Figure 1 .3 : Graphical solution of the problem in Example 1 . 6 .  

particular, increasing z corresponds to  moving the line z = - X l  - X 2  along the 

direction of the vector c. Since we are interested in minimizing z, we would like 

to move the line as much as possible in the direction of -c, as long as we do not 

leave the feasible region. The best we can do is z = -2 (see Figure 1 .3) , and the 

vector x = ( 1 , 1 )  is an optimal solution. Note that this is a corner of the feasible 
set . (The concept of a "corner" will be defined formally in Chapter 2 . )  

For a problem in  three dimensions , the same approach can be  used 
except that the set of points with the same value of c'x is a plane, instead of 
a line. This plane is again perpendicular to the vector c, and the objective 
is to slide this plane as much as possible in the direction of -c, as long as 
we do not leave the feasible set . 

Example 1 .  7 Suppose that the feasible set is the unit cube, described by the 

constraints 0 :S Xi :S 1, i = 1 , 2 , 3 , and that c = (- 1 , - 1 ,  - 1 ) .  Then, the vector 

x = ( 1 , 1 , 1 )  is an optimal solution. Once more, the optimal solution happens to 
be a corner of the feasible set (Figure 1 .4) .  
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- c = (1 , 1 , 1) 

Figure 1 .4: The three-dimensional linear programming problem 

in Example 1 .7. 
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In both of the preceding examples, the feasible set is bounded (does 
not extend to infinity) , and the problem has a unique optimal solution. 
This is not always the case and we have some additional possibilities that 
are illustrated by the example that follows. 

Example 1 .8  Consider the feasible set in lR2 defined by the constraints 

which is shown in Figure 1 . 5 . 

-Xl + X2 :s: 1 
Xl > 0 
X2 > 0, 

(a) For the cost vector c = ( 1 , 1 ) ,  it is clear that x = (0, 0) is the unique 
optimal solution. 

(b) For the cost vector c = (1 , 0) , there are multiple optimal solutions , namely, 
every vector x of the form x = (0, X2 ) ,  with 0 :s: X2 :s: 1 ,  is optimal. Note 
that the set of optimal solutions is bounded. 

(c) For the cost vector c = (0, 1 ) , there are multiple optimal solutions , namely, 
every vector x of the form x = (Xl , 0) , with Xl 2': 0, is optimal. In this case, 
the set of optimal solutions is unbounded (contains vectors of arbitrarily 
large magnitude) . 

(d) Consider the cost vector c = (- 1 ,  - 1 ) . For any feasible solution (Xl , X2 ) ,  we 
can always produce another feasible solution with less cost , by increasing 
the value of Xl . Therefore, no feasible solution is optimal. Furthermore, 
by considering vectors (Xl , X2)  with ever increasing values of Xl and X2 , we 
can obtain a sequence of feasible solutions whose cost converges to - 00 .  
We therefore say that the optimal cost i s  - 00 .  

(e) If  we impose an additional constraint of  the form Xl + X2 :s: -2 , i t  i s  evident 
that no feasible solution exists .  
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c = (1 ,0) 

Figure 1 .5 : The feasible set in Example 1 . 8 .  For each choice of 

c,  an optimal solution is obtained by moving as much as possible 

in the direction of -c.  

To summarize the insights obtained from Example 1.8, we have the 
following possibilities : 

(a) There exists a unique optimal solution. 

(b) There exist multiple optimal solutions ; in this case, the set of optimal 
solutions can be either bounded or unbounded. 

(c) The optimal cost is - 00 ,  and no feasible solution is optimal. 

(d) The feasible set is empty. 

In principle , there is an additional possibility: an optimal solution 
does not exist even though the problem is feasible and the optimal cost is 
not - 00 ;  this is the case , for example, in the problem of minimizing l /x 
subject to x > 0 (for every feasible solution, there exists another with less 
cost , but the optimal cost is not - 00 ) . We will see later in this book that 
this possibility never arises in linear programming. 

In the examples that we have considered, if the problem has at least 
one optimal solution, then an optimal solution can be found among the 
corners of the feasible set . In Chapter 2, we will show that this is a general 
feature of linear programming problems, as long as the feasible set has at 
least one corner . 
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Visualizing standard form problems 

We now discuss a method that allows us to visualize standard form problems 
even if the dimension n of the vector x is greater than three. The reason 
for wishing to do so is that when n ::::: 3, the feasible set of a standard 
form problem does not have much variety and does not provide enough 
insight into the general case. (In contrast, if the feasible set is described by 
constraints of the form Ax ?: b, enough variety is obtained even if x has 
dimension three. )  

Suppose that we have a standard form problem, and that the matrix 
A has dimensions m x n. In particular , the decision vector x is of dimension 
n and we have m equality constraints .  We assume that m ::::: n and that 
the constraints Ax = b force x to lie on an (n - m)-dimensional set . 
(Intuitively, each constraint removes one of the "degrees of freedom" of x.) 
If  we "stand" on that (n - m )-dimensional set and ignore the m dimensions 
orthogonal to it , the feasible set is only constrained by the linear inequality 
constraints Xi ?: 0, i = 1 ,  . . .  , n . In particular , if n - m = 2, the feasible 
set can be drawn as a two-dimensional set defined by n linear inequality 
constraints. 

To illustrate this approach, consider the feasible set in lR3 defined by 
the constraints Xl + X2 + X3 = 1 and Xl , X2 , X3 ?: 0 [Figure 1 .6 (  a)] , and note 
that n = 3 and m = 1 .  If we stand on the plane defined by the constraint 
Xl + X2 + X3 = 1 ,  then the feasible set has the appearance of a triangle in 
two-dimensional space. Furthermore, each edge of the triangle corresponds 
to one of the constraints Xl , X2 , X3 ?: 0; see Figure 1 . 6 (b) . 

(a) (b )  

Figure 1 .6 :  (a) An n-dimensional view of  the feasible set . (b) 
An (n - m ) -dimensional view of the same set . 
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1 . 5  Linear algebra background and notation 

This section provides a summary of the main notational conventions that 
we will be employing. It also contains a brief review of those results from 
linear algebra that are used in the sequel. 

Set theoretic notation 

If 8 is a set and x is an element of 8, we write x E 8. A set can be 
specified in the form 8 = {x I x satisfies P} , as the set of all elements 
having property P. The cardinality of a finite set 8 is denoted by 1 8 1 . The 
union of two sets 8 and T is denoted by 8 U T, and their intersection by 
8nT. We use 8\T to denote the set of all elements of 8 that do not belong 
to T. The notation 8 c T means that 8 is a subset of T, i .e . , every element 
of 8 is also an element of T; in particular, 8 could be equal to T. If in 
addition 8 f= T, we say that 8 is a proper subset of T. We use 0 to denote 
the empty set . The symbols :J and 'V have the meanings "there exists" and 
"for all ,"  respectively. 

We use � to denote the set of real numbers . For any real numbers a 
and b, we define the closed and open intervals [a , bl and (a ,  b) , respectively, 
by 

[a, bl = {x E � I a :::; x :::; b} , 

and 

(a, b) = {x E � I a < x < b} .  

Vectors and matrices 

A matrix of dimensions m x n is an array of real numbers aij : 

Matrices will be always denoted by upper case boldface characters . If A 
is a matrix, we use the notation aij or [Al ij to refer to its ( i , j)th entry. 
A row vector is a matrix with m = 1 and a column vector is a matrix 
with n = 1 .  The word vector will always mean column vector unless the 
contrary is explicitly stated. Vectors will be usually denoted by lower case 
boldface characters . We use the notation �n to indicate the set of all 
n-dimensional vectors . For any vector x E �n , we use Xl , X2 , . . .  , Xn to 
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indicate its  components. Thus, 

The more economical notation x = (Xl , X2 , . . .  , Xn) will also be used even 
if we are referring to column vectors . We use 0 to denote the vector with 
all components equal to zero. The ith unit vector ei is the vector with all 
components equal to zero except for the ith component which is equal to 
one. 

The transpose A' of an m x n matrix A is the n x m matrix 

that is, [A/l ij = [Alji . Similarly, if x is a vector in �n , its transpose x' is 
the row vector with the same entries . 

If x and y are two vectors in �n , then 

n 
I I '"""' X Y = Y x = L..t XiYi . 

i=l 

This quantity is called the inner product of x and y. Two vectors are 
called orthogonal if their inner product is zero. Note that XiX � 0 for every 
vector x, with equality holding if and only if x = o. The expression ";X/X 
is the Euclidean norm of x and is denoted by I l x l l . The Schwartz inequality 
asserts that for any two vectors of the same dimension, we have 

IX/y l � I l x l l · l l y l l , 

with equality holding if and only if one of the two vectors is a scalar multiple 
of the other . 

If A is an m x n matrix, we use Aj to denote its jth column, that is, 
Aj = (alj , a2j , . . .  , amj ) .  (This is our only exception to the rule of using 
lower case characters to represent vectors . )  We also use ai to denote the 
vector formed by the entries of the ith row, that is, ai = (ai l , ai2 , · · · ,  ain ) .  
Thus, 
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Given two matrices A, B of dimensions m x n and n x k ,  respectively, 
their product AB is a matrix of dimensions m x k whose entries are given 
by 

n 
[AB] ij = I )A] ie [B] £j = a�Bj , 

£=1 
where a� is the ith row of A, and Bj is the jth column of B. Matrix 
multiplication is associative, i .e . , (AB)C = A(BC) , but , in general , it is 
not commutative , that is , the equality AB = BA is not always true. We 
also have (AB) '  = B' A' . 

Let A be an m x n matrix with columns Ai . We then have Aei = Ai . 
Any vector x E lRn can be written in the form x = Z:::�=1  Xiei , which leads 
to n n n 

Ax = A L eiXi = L Aeixi = L AiXi · 
i= 1  i= 1  i= 1  

A different representation of  the matrix-vector product Ax i s  provided by 
the formula [ a�x 1 

a�x 
Ax = . , 

�x 

where a� , . . .  , a� are the rows of A. 
A matrix is called square if the number m of its rows is equal to the 

number n of its columns. We use I to denote the identity matrix, which is 
a square matrix whose diagonal entries are equal to one and its off-diagonal 
entries are equal to zero. The identity matrix satisfies IA = A and BI = B 
for any matrices A, B of dimensions compatible with those of I .  

If x is  a vector, the notation x � 0 and x > 0 means that every 
component of x is nonnegative (respectively, positive) . If A is a matrix, 
the inequalities A � 0 and A > 0 have a similar meaning. 

Matrix inversion 

Let A be a square matrix. If there exists a square matrix B of the same 
dimensions satisfying AB = BA = I, we say that A is invertible or non­
singular. Such a matrix B, called the inverse of A, is unique and is de­
noted by A - 1 . We note that (A, ) - 1 = (A - 1 ) ' .  Also, if A and B are 
invertible matrices of the same dimensions , then AB is also invertible and 
(AB)- 1 = B- 1 A - 1 . 

Given a finite collection of vectors Xl , . . .  , xK E lRn , we say that they 
are linearly dependent if there exist real numbers al , . . .  , aK , not all of 
them zero, such that z:::J:=1 akxk = 0; otherwise, they are called linearly 
independent . An equivalent definition of linear independence requires that 
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none of the vectors Xl , . . .  , xK is a linear combination of the remaining 
vectors (Exercise 1 . 18) . We have the following result . 

Theorem 1 .2  Let A be a square matrix. Then, the following state­
ments are equivalent: 

(a) The matrix A is invertible. 

(b) The matrix A' is  invertible. 

(c) The determinant of A is nonzero. 

(d) The rows of A are linearly independent. 

(e) The columns of A are linearly independent.  

(f) For every vector b, the linear system Ax = b has a unique 
solution. 

(g) There exists some vector b such that the linear system Ax = b 
has a unique solution . 

Assuming that A is an invertible square matrix, an explicit formula 
for the solution x = A - lb of the system Ax = b, is given by Cramer 's 
rule. Specifically, the jth component of x is given by 

det (Aj ) Xj = 
det (A) 

, 

where Aj is the same matrix as A,  except that its jth column is replaced 
by b. Here, as well as later, the notation det (A) is used to denote the 
determinant of a square matrix A.  

Subspaces and bases 

A nonempty subset S of 3tn is called a subspace of 3tn if ax + by E S for 
every x, y E S  and every a, b E 3t. If, in addition, S =1= 3tn , we say that S is 
a proper subspace. Note that every subspace must contain the zero vector. 

The span of a finite number of vectors xl , . . .  , xK in 3tn is the subspace 
of 3tn defined as the set of all vectors y of the form y = ��=l akxk , where 
each ak is a real number. Any such vector y is called a linear combination 
of xl , . . .  , xK 

Given a subspace S of 3tn , with S =1= {O} , a basis of S is a collection of 
vectors that are linearly independent and whose span is equal to S. Every 
basis of a given subspace has the same number of vectors and this number 
is called the dimension of the subspace. In particular , the dimension of 
3tn is equal to n and every proper subspace of 3tn has dimension smaller 
than n. Note that one-dimensional subspaces are lines through the origin; 
two-dimensional subspaces are planes through the origin. Finally, the set 
{O} is a subspace and its dimension is defined to be zero. 
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If 8 is a proper subspace of �n , then there exists a nonzero vector a 
which is orthogonal to 8, that is , a'x = 0 for every x E 8. More generally, 
if 8 has dimension m < n, there exist n - m linearly independent vectors 
that are orthogonal to 8. 

The result that follows provides some important facts regarding bases 
and linear independence. 

Theorem 1 .3  8uppose that the span S of the vectors Xl , . . . , xK 
has 

dimension m. Then: 

(a) There exists a basis of 8 consisting of m of the vectors Xl , . . .  , xK . 
(b) If k :::; m and xl , . . .  , xk 

are linearly independent, we can form a 
basis of 8 by starting with xl , . . .  , xk , and choosing m - k of the 
vectors Xk + l , • • . , xK . 

Proof. We only prove part (b) , because (a) is the special case of part 
(b) with k = O. If every vector xk+ l , . . .  , xK 

can be expressed as a linear 
combination of Xl , . . .  , xk 

, then every vector in the span of xl , . . .  , xK 
is 

also a linear combination of Xl , . . .  , xk , and the latter vectors form a basis . 
(In particular , m = k . )  Otherwise, at least one of the vectors xk+ l , . . .  , xK 

is linearly independent from Xl , . . . , xk . By picking one such vector, we 
now have k + 1 of the vectors Xl , . . .  , xK 

that are linearly independent . By 
repeating this process m - k times, we end up with the desired basis of 8. 

D 
Let A be a matrix of dimensions m x n. The column space of A 

is the subspace of �m spanned by the columns of A.  The row space of 
A is the subspace of �n spanned by the rows of A .  The dimension of 
the column space is always equal to the dimension of the row space, and 
this number is called the rank of A .  Clearly, rank(A) :::; min{m, n} . The 
matrix A is said to have full rank if rank(A) = min{m, n} . Finally, the set 
{x E �n I Ax = o} is called the nullspace of A; it is a subspace of �n and 
its dimension is equal to n - rank(A) . 

Affine subspaces 

Let 80 be a subspace of �n and let xO 
be some vector. If we add xO 

to 
every element of 80 , this amounts to translating 80 by xO . The resulting 
set 8 can be defined formally by 

8 = 80 + xO 
= {x + xO 

I x E 80 } .  

In general, 8 is not a subspace, because it does not necessarily contain 
the zero vector, and it is called an affine subspace. The dimension of 8 is 
defined to be equal to the dimension of the underlying subspace 80 , 
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As an example, let XO ,  Xl , . . .  , xk be  some vectors in  �n , and consider 
the set 8 of all vectors of the form 

where >'1 ,  . . . , Ak are arbitrary scalars . For this case, 80 can be identified 
with the span of the vectors Xl , . . .  , xk , and 8 is an affine subspace. If 
the vectors xl , . . .  , xk are linearly independent , their span has dimension 
k, and the affine subspace 8 also has dimension k .  

For a second example, we are given an m x n matrix A and a vector 
b E �m , and we consider the set 

8 = {x E �n I Ax = b } ,  

which we assume t o  be nonempty. Let us fix some xO such that Axo = b. 
An arbitrary vector x belongs to 8 i f  and only if Ax = b = Axo , or 
A(x - XO ) = o. Hence, x E 8 if and only if x - xO belongs to the subspace 
80 = {y I Ay = O} .  We conclude that 8 = {y + xO l y E  80} ,  and 
8 is an affine subspace of �n . If A has m linearly independent rows, its 
nullspace 80 has dimension n - m. Hence , the affine subspace 8 also has 
dimension n - m .  Intuitively, if a� are the rows of A, each one of the 
constraints a�x = bi removes one degree of freedom from x, thus reducing 
the dimension from n to n - mj see Figure 1 .  7 for an illustration. 

Figure 1 . 7: Consider a set S in � defined by a single equality 

constraint a/x = b. Let xO be an element of S. The vector a is 

perpendicular to S. If Xl and x2 are linearly independent vectors 
that are orthogonal to a, then every x E S  is of the form x = 
XO + A1Xl + A2X2 . In particular, S is a two-dimensional affine 

subspace. 
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1 . 6  Algorithms and operation counts 

Optimization problems such as  linear programming and, more generally, 
all computational problems are solved by algorithms. Loosely speaking, an 
algorithm is a finite set of instructions of the type used in common pro­
gramming languages (arithmetic operations , conditional statements, read 
and write statements, etc. ) . Although the running time of an algorithm 
may depend substantially on clever programming or on the computer hard­
ware available , we are interested in comparing algorithms without having 
to examine the details of a particular implementation. As a first approx­
imation, this can be accomplished by counting the number of arithmetic 
operations (additions , multiplications, divisions, comparisons) required by 
an algorithm. This approach is often adequate even though it ignores the 
fact that adding or multiplying large integers or high-precision floating 
point numbers is more demanding than adding or multiplying single-digit 
integers . A more refined approach will be discussed briefly in Chapter 8. 

Example 1 .9  
(a) Let a and b b e  vectors in �n . The natural algorithm for computing a'b 

requires n multiplications and n - l  additions , for a total of 2n- l  arithmetic 
operations . 

(b) Let A and B be matrices of dimensions n x n. The traditional way of 
computing AB forms the inner product of a row of A and a column of B 
to obtain an entry of AB . Since there are n2 entries to be evaluated, a 
total of (2n - 1)n2 arithmetic operations are involved . 

In Example 1 . 9 ,  an exact operation count was possible . However , 
for more complicated problems and algorithms, an exact count is usually 
very difficult . For this reason, we will settle for an estimate of the rate of 
growth of the number of arithmetic operations , as a function of the problem 
parameters . Thus, in Example 1 . 9 ,  we might be content to say that the 
number of operations in the computation of an inner product increases 
linearly with n, and the number of operations in matrix multiplication 
increases cubically with n. This leads us to the order of magnitude notation 
that we define next . 

Definition 1 .2  Let f and g be functions that map positive numbers 
to positive numbers. 

(a) We write f (n) = O (g (n) ) if there exist positive numbers no and 
c such that f (n) :; cg (n) for all n ;::: no . 

(b) We write f (n) = n (g(n))  if there exist positive numbers no and 
c such that f (n) ;::: cg (n) for all n ;::: no . 

(c) We write f (n) = 8 (g(n) ) if both f(n) = O (g(n))  and f (n) 
n (g (n) )  hold. 
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For example , we have 3n3 + n2 + 10 = 8 (n3 ) , n log n = O (n2 ) , and 
n log n = O(n) . 

While the running time of the algorithms considered in Example 1 .9 is 
predictable , the running time of more complicated algorithms often depends 
on the numerical values of the input data. In such cases , instead of trying 
to estimate the running time for each possible choice of the input , it is 
customary to estimate the running time for the worst possible input data of a 
given "size . "  For example, if we have an algorithm for linear programming, 
we might be interested in estimating its worst-case running time over all 
problems with a given number of variables and constraints. This emphasis 
on the worst case is somewhat conservative and, in practice , the "average" 
running time of an algorithm might be more relevant . However, the average 
running time is much more difficult to estimate, or even to define, and for 
this reason, the worst-case approach is widely used. 

Example 1 . 10 (Operation count of linear system solvers and matrix 
inversion) Consider the problem of solving a system of n linear equations in n 
unknowns . The classical method that eliminates one variable at a time (Gaussian 
elimination) is known to require O(n3 ) arithmetic operations in order to either 

compute a solution or to decide that no solution exists. Practical methods for 
matrix inversion also require O(n3 ) arithmetic operations . These facts will be of 
use later on. 

Is the O (n3 ) running time of Gaussian elimination good or bad? Some 
perspective into this question is provided by the following observation: each 
time that technological advances lead to computer hardware that is faster 
by a factor of 8 (presumably every few years) , we can solve problems of twice 
the size than earlier possible. A similar argument applies to algorithms 
whose running time is O (nk ) for some positive integer k. Such algorithms 
are said to run in polynomial time. 

Algorithms also exist whose running time is O(2cn ) ,  where n is a 
parameter representing problem size and c is a constant ; these are said to 
take at least exponential time . For such algorithms and if c = 1, each time 
that computer hardware becomes faster by a factor of 2 ,  we can increase 
the value of n that we can handle only by 1. It is then reasonable to expect 
that no matter how much technology improves , problems with truly large 
values of n will always be difficult to handle. 

Example 1 . 1 1  Suppose that we have a choice of two algorithms. The running 

time of the first is IOn /100 (exponential) and the running time of the second 
is lOn3 (polynomial) . For very small n, e.g. , for n = 3, the exponential time 

algorithm is preferable . To gain some perspective as to what happens for larger 
n, suppose that we have access to a workstation that can execute 107 arithmetic 

operations per second and that we are willing to let it run for 1000 seconds. 
Let us figure out what size problems can each algorithm handle within this time 
frame. The equation IOn /100 = 107 X 1000 yields n = 12 ,  whereas the equation 
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lOn3 = 107 X 1000 yields n = 1000, indicating that the polynomial time algorithm 
allows us to solve much larger problems. 

The point of view emerging from the above discussion is that , as a first 
cut , it is useful to juxtapose polynomial and exponential time algorithms, 
the former being viewed as relatively fast and efficient , and the latter as 
relatively slow. This point of view is justified in many - but not all -
contexts and we will be returning to it later in this book. 

1 . 7  Exercises 

Exercise 1 . 1  * Suppose that a function I : lRn f-+ lR is both concave and convex. 
Prove that I is an affine function. 

Exercise 1 .2  Suppose that Jr ,  . . .  , 1m are convex functions from lRn into lR and 
let I(x) = 2::1 li (X) . 

(a) Show that if each Ii is convex, so is I. 
(b) Show that if  each Ii is  piecewise linear and convex, so is  I .  

Exercise 1 .3  Consider the problem of  minimizing a cost function of  the form 
c'x + I(d'x) , subject to the linear constraints Ax � b.  Here, d is a given 
vector and the function I : lR f-+ lR is as specified in Figure 1 . 8 .  Provide a linear 
programming formulation of this problem. 

I(x ) 

1 x 

Figure 1 .8 :  The function I of Exercise 1 . 3 .  

Exercise 1 .4 Consider the problem 

minimize 2Xl  + 3 1x2 - 10 1  

subject to I X I + 2 1 + I X2 1  :::; 5 , 

and reformulate it as a linear programming problem. 
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Exercise 1 . 5  Consider a linear optimization problem, with absolute values, of 
the following form: 

minimize c' x + d' Y 
subject to Ax + By :::; b 

Yi = lXi i , 'v' i . 

Assume that all entries of B and d are nonnegative. 

(a) Provide two different linear programming formulations , along the lines dis­
cussed in Section 1 .3 .  

(b)  Show that the original problem and the two reformulations are equivalent 
in the sense that either all three are infeasible, or all three have the same 
optimal cost . 

(c) Provide an example to show that if B has negative entries , the problem 
may have a local minimum that is not a global minimum. (It will be seen 
in Chapter 2 that this is never the case in linear programming problems. 
Hence, in the presence of such negative entries, a linear programming re­
formulation is implausible. )  

Exercise 1 .6  Provide linear programming formulations of  the two variants of 
the rocket control problem discussed at the end of Section 1 .3 .  

Exercise 1 .7 (The moment problem) Suppose that Z i s  a random variable 
taking values in the set 0, 1 ,  . . .  , K, with probabilities Po , PI , . . .  , PK ,  respectively. 
We are given the values of the first two moments E[Z] = 'E:=o kPk and E[Z2] = 
'E:=o k2Pk of Z and we would like to obtain upper and lower bounds on the value 

of the fourth moment E[Z4] = 'E:=o k4pk of Z. Show how linear programming 
can be used to approach this problem. 

Exercise 1 .8  (Road lighting) Consider a road divided into n segments that is 
illuminated by m lamps. Let Pj be the power of the jth lamp. The illumination Ii 
of the ith segment is assumed to be 'E;'=I aijpj , where aij are known coefficients. 
Let Ii be the desired illumination of road i. 

We are interested in choosing the lamp powers Pj so that the illuminations 
Ii are close to the desired illuminations Ii . Provide a reasonable linear program­
ming formulation of this problem. Note that the wording of the problem is loose 
and there is more than one possible formulation. 

Exercise 1 .9  Consider a school district with I neighborhoods , J schools , and 
G grades at each school. Each school j has a capacity of Gjg for grade g. In each 
neighborhood i, the student population of grade i is Big . Finally, the distance 
of school j from neighborhood i is dij . Formulate a linear programming problem 
whose objective is to assign all students to schools , while minimizing the total 
distance traveled by all students. (You may ignore the fact that numbers of 
students must be integer. )  

Exercise 1 . 10  (Production and inventory planning) A company must de­
liver di units of its product at the end of the ith month. Material produced during 
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a month can be delivered either at the end of the same month or can be stored 
as inventory and delivered at the end of a subsequent month; however, there is 
a storage cost of Cl dollars per month for each unit of product held in inventory. 
The year begins with zero inventory. If the company produces Xi units in month 
i and Xi+ l units in month i + 1 ,  it incurs a cost of c2 l xi+l - xi i dollars , reflecting 
the cost of switching to a new production level. Formulate a linear programming 
problem whose objective is to minimize the total cost of the production and in­
ventory schedule over a period of twelve months . Assume that inventory left at 
the end of the year has no value and does not incur any storage costs. 

Exercise 1 . 1 1  (Optimal currency conversion) Suppose that there are N 
available currencies, and assume that one unit of currency i can be exchanged for 
'rij units of currency j .  (Naturally, we assume that 'rij > 0 . )  There also certain 
regulations that impose a limit Ui on the total amount of currency i that can be 
exchanged on any given day. Suppose that we start with B units of currency 1 and 
that we would like to maximize the number of units of currency N that we end up 
with at the end of the day, through a sequence of currency transactions . Provide 
a linear programming formulation of this problem. Assume that for any sequence 
i I , . . .  , i k of currencies , we have 'ri1 i2 'ri2 i3 . . .  'rik - 1 ik 'rik i 1  :S 1 ,  which means that 
wealth cannot be multiplied by going through a cycle of currencies . 

Exercise 1 . 12  (Chebychev center) Consider a set P described by linear 
inequality constraints, that is, P = {x E 1Rn I a;x :S bi , i = 1 ,  . . .  , m} .  A ball 
with center y and radius 'r is defined as the set of all points within (Euclidean) 
distance 'r from y. We are interested in finding a ball with the largest possible 
radius , which is entirely contained within the set P. (The center of such a ball is 
called the Chebychev cente'r of P.)  Provide a linear programming formulation of 
this problem. 

Exercise 1 . 13  (Linear fractional programming) Consider the problem 

c'x + d 
f'x + g 

minimize 

subject to Ax :S b  
f'x + g > O .  

Suppose that we have some prior knowledge that the optimal cost belongs to an 
interval [K, L] . Provide a procedure, that uses linear programming as a subrou­
tine, and that allows us to compute the optimal cost within any desired accuracy. 
Hint: Consider the problem of deciding whether the optimal cost is less than or 
equal to a certain number . 

Exercise 1 . 14 A company produces and sells two different products. The de­
mand for each product is unlimited, but the company is constrained by cash 
availability and machine capacity. 

Each unit of the first and second product requires 3 and 4 machine hours, 
respectively. There are 20,000 machine hours available in the current production 
period. The production costs are $3 and $2 per unit of the first and second 
product , respectively. The selling prices of the first and second product are $6 
and $5 .40 per unit , respectively. The available cash is $4,000; furthermore, 45% 
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of the sales revenues from the first product and 30% of the sales revenues from the 
second product will be made available to finance operations during the current 
period .  

(a) Formulate a linear programming problem that aims at maximizing net in­
come subject to the cash availability and machine capacity limitations . 

(b) Solve the problem graphically to obtain an optimal solution. 

(c) Suppose that the company could increase its available machine hours by 
2 ,000, after spending $400 for certain repairs. Should the investment be 
made? 

Exercise 1 . 15 A company produces two kinds of products. A product of the 
first type requires 1/4 hours of assembly labor, 1/8 hours of testing, and $1 . 2  
worth of  raw materials . A product of  the second type requires 1/3  hours of 
assembly, 1/3 hours of testing, and $0.9 worth of raw materials . Given the current 
personnel of the company, there can be at most 90 hours of assembly labor and 
80 hours of testing, each day. Products of the first and second type have a market 
value of $9 and $8, respectively. 

(a) Formulate a linear programming problem that can be used to maximize the 
daily profit of the company. 

(b) Consider the following two modifications to the original problem: 
(i) Suppose that up to 50 hours of overtime assembly labor can be sched­

uled, at a cost of $7 per hour . 

(ii) Suppose that the raw material supplier provides a 10% discount if 
the daily bill is above $300. 

Which of the above two elements can be easily incorporated into the lin­
ear programming formulation and how? If one or both are not easy to 
incorporate, indicate how you might nevertheless solve the problem. 

Exercise 1 . 16  A manager of an oil refinery has 8 million barrels of crude oil A 
and 5 million barrels of crude oil B allocated for .production during the coming 
month. These resources can be used to make either gasoline, which sells for $38 
per barrel , or home heating oil, which sells for $33 per barrel. There are three 
production processes with the following characteristics: 

Process 1 Process 2 Process 3 

Input crude A 3 1 5 

Input crude B 5 1 3 

Output gasoline 4 1 3 

Output heating oil 3 1 4 

Cost $51 $ 1 1  $40 

All quantities are in barrels . For example, with the first process , 3 barrels of 
crude A and 5 barrels of crude B are used to produce 4 barrels of gasoline and 
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3 barrels of heating oil. The costs in this table refer to variable and allocated 
overhead costs, and there are no separate cost items for the cost of the crudes . 
Formulate a linear programming problem that would help the manager maximize 
net revenue over the next month. 

Exercise 1 . 17  (Investment under taxation) An investor has a portfolio of 
n different stocks. He has bought Si shares of stock i at price pi , i = 1 ,  . . .  , n .  
The current price of one share of stock i is  qi . The investor expects that the price 
of one share of stock i in one year will be Ti . If he sells shares , the investor pays 
transaction costs at the rate of 1 % of the amount transacted. In addition, the 
investor pays taxes at the rate of 30% on capital gains. For example, suppose that 
the investor sells 1 ,000 shares of a stock at $50 per share. He has bought these 
shares at $30 per share. He receives $50,000 . However, he owes 0 .30 x  (50,000 -
30,000) = $6,000 on capital gain taxes and 0 .01 x (50,000) = $500 on transaction 
costs .  So, by selling 1 ,000 shares of this stock he nets 50,000 - 6,000 - 500 = 
$43,500. Formulate the problem of selecting how many shares the investor needs 
to sell in order to raise an amount of money K, net of capital gains and transaction 
costs, while maximizing the expected value of his portfolio next year. 

Exercise 1 . 18  Show that the vectors in a given finite collection are linearly 
independent if and only if none of the vectors can be expressed as a linear com­
bination of the others . 

Exercise 1 . 19 Suppose that we are given a set of vectors in !Rn that form a 
basis , and let y be an arbitrary vector in !Rn . We wish to express y as a linear 
combination of the basis vectors. How can this be accomplished? 

Exercise 1 .20 
(a) Let S = {Ax I x E !Rn } ,  where A is a given matrix. Show that S is a 

subspace of !Rn . 

(b) Assume that S is a proper subspace of !Rn . Show that there exists a matrix 
B such that S = {y E !Rn I By = O} .  Hint: Use vectors that are orthogonal 
to S to form the matrix B. 

(c) Suppose that V i s  an m-dimensional affine subspace of  !Rn , with m < 
n. Show that there exist linearly independent vectors al , . . .  , an-rn , and 
scalars bl , . . . , bn-rn , such that 

V = {y l a�y = bi ' i = 1 , . . . , n - m} . 

1 . 8 History, notes , and sources 

The word "programming" has been used traditionally by planners to de­
scribe the process of operations planning and resource allocation. In the 
1940s, it was realized that this process could often be aided by solving op­
timization problems involving linear constraints and linear objectives. The 
term "linear programming" then emerged. The initial impetus came in the 
aftermath of World War II, within the context of military planning prob­
lems . In 1947, Dantzig proposed an algorithm, the simplex method, which 
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made the solution of linear programming problems practical. There fol­
lowed a period of intense activity during which many important problems in 
transportation, economics, military operations , scheduling, etc . ,  were cast 
in this framework. Since then, computer technology has advanced rapidly, 
the range of applications has expanded, new powerful methods have been 
discovered, and the underlying mathematical understanding has become 
deeper and more comprehensive. Today, linear programming is a routinely 
used tool that can be found in some spreadsheet software packages .  

Dantzig's development of the simplex method has been a defining 
moment in the history of the field, because it came at a time of grow­
ing practical needs and of advances in computing technology. But , as is 
the case with most "scientific revolutions ," the history of the field is much 
richer . Early work goes back to Fourier , who in 1824 developed an algo­
rithm for solving systems of linear inequalities . Fourier's method is far less 
efficient than the simplex method,  but this issue was not relevant at the 
time. In 1910 ,  de la Vallee Poussin developed a method, similar to the sim­
plex method,  for minimizing maxi I bi - a�x l ,  a problem that we discussed 
in Section 1 . 3 .  

In  the late 1930s, the Soviet mathematician Kantorovich became in­
terested in problems of optimal resource allocation in a centrally planned 
economy, for which he gave linear programming formulations . He also pro­
vided a solution method, but his work did not become widely known at the 
time. Around the same time, several models arising in classical, Walrasian, 
economics were studied and refined, and led to formulations closely related 
to linear programming. Koopmans, an economist , played an important role 
and eventually (in 1975) shared the Nobel Prize in economic science with 
Kantorovich. 

On the theoretical front , the mathematical structures that under­
lie linear programming were independently studied, in the period 1870-
1930, by many prominent mathematicians, such as Farkas , Minkowski, 
Caratheodory, and others. Also, in 1928, von Neumann developed an im­
portant result in game theory that would later prove to have strong con­
nections with the deeper structure of linear programming. 

Subsequent to Dantzig's work, there has been much and important 
research in areas such as large scale optimization, network optimization, 
interior point methods , integer programming, and complexity theory. We 
defer the discussion of this research to the notes and sources sections of later 
chapters . For a more detailed account of the history of linear programming, 
the reader is referred to Schrijver ( 1986) , Orden ( 1993) , and the volume 
edited by Lenstra, Rinnooy Kan, and Schrijver (1991)  (see especially the 
article by Dantzig in that volume) . 

There are several texts that cover the general subject of linear pro­
gramming, starting with a comprehensive one by Dantzig ( 1963) . Some 
more recent texts are Papadimitriou and Steiglitz ( 1982) , Chvatal ( 1983) , 
Murty ( 1983) , Luenberger ( 1984) , Bazaraa, Jarvis, and Sherali ( 1990) . Fi-
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nally, Schrijver ( 1986) is a comprehensive, but more advanced reference on 
the subject . 

1 . 1 .  The formulation o f  the diet problem is due to  Stigler ( 1945) . 

1 .2 .  The case study on DEC's production planning was developed by Fre­
und and Shannahan ( 1992) . Methods for dealing with the nurse 
scheduling and other cyclic problems are studied by Bartholdi, Orlin, 
and Ratliff ( 1980) . More information on pattern classification can be 
found in Duda and Hart (1973) , or Haykin ( 1994) . 

1 .3 .  A deep and comprehensive treatment of  convex functions and their 
properties is provided by Rockafellar ( 1970) . Linear programming 
arises in control problems, in ways that are more sophisticated than 
what is described here; see , e .g. , Dahleh and Diaz-Bobillo ( 1995) . 

1 .5 .  For an introduction to  linear algebra, see Strang ( 1988) . 

1 .6 .  For a more detailed treatment of  algorithms and their computational 
requirements ,  see Lewis and Papadimitriou ( 198 1 ) ,  Papadimitriou 
and Steiglitz ( 1982) , or Cormen, Leiserson, and Rivest ( 1990) . 

1 .  7. Exercise 1 . 8  is adapted from Boyd and Vandenberghe ( 1995) . Ex­
ercises 1 . 9  and 1 . 14 are adapted from Bradley, Hax, and Magnanti 
( 1977) . Exercise 1 . 1 1  is adapted from Ahuja, Magnanti, and Orlin 
( 1993) . 
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In this chapter, we define a polyhedron as a set described by a finite number 
of linear equality and inequality constraints. In particular , the feasible set 
in a linear programming problem is a polyhedron. We study the basic 
geometric properties of polyhedra in some detail , with emphasis on their 
"corner points" (vertices) . As it turns out , common geometric intuition 
derived from the familiar three-dimensional polyhedra is essentially correct 
when applied to higher-dimensional polyhedra. Another interesting aspect 
of the development in this chapter is that certain concepts (e.g . , the concept 
of a vertex) can be defined either geometrically or algebraically. While the 
geometric view may be more natural, the algebraic approach is essential for 
carrying out computations . Much of the richness of the subject lies in the 
interplay between the geometric and the algebraic points of view. 

Our development starts with a characterization of the corner points 
of feasible sets in the general form {x I Ax ;::: b} . Later on, we focus on the 
case where the feasible set is in the standard form {x I Ax = b, x ;::: O} ,  
and we derive a simple algebraic characterization o f  the corner points.  The 
latter characterization will play a central role in the development of the 
simplex method in Chapter 3 .  

The main results of this chapter state that a nonempty polyhedron has 
at least one corner point if and only if it does not contain a line , and if this 
is the case, the search for optimal solutions to linear programming problems 
can be restricted to corner points.  These results are proved for the most 
general case of linear programming problems using geometric arguments .  
The same results will also be proved in the next chapter , for the case of 
standard form problems, as a corollary of our development of the simplex 
method. Thus, the reader who wishes to focus on standard form problems 
may skip the proofs in Sections 2 . 5  and 2 .6 .  Finally, Sections 2 . 7  and 2 .8  can 
also be skipped during a first reading; any results in these sections that are 
needed later on will be rederived in Chapter 4, using different techniques . 

2 . 1  Polyhedra and convex sets 

In this section, we introduce some important concepts that will be used 
to study the geometry of linear programming, including a discussion of 
convexity. 

Hyperplanes, halfspaces, and polyhedra 

We start with the formal definition of a polyhedron. 

Definition 2 . 1  A polyhedron is a set that can be described in the 
form {x E lRn I Ax ;::: b} ,  where A is an m x n matrix and b is a 
vector in lRm . 
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As discussed in Section 1 . 1 ,  the feasible set of any linear programming 
problem can be described by inequality constraints of the form Ax � b,  
and is  therefore a polyhedron. In particular, a set of  the form {x E �n I 
Ax = b,  x � o} is also a polyhedron and will be referred to as a polyhedron 
in standard form. 

A polyhedron can either "extend to infinity," or can be confined in a 
finite region. The definition that follows refers to this distinction. 

Definition 2 .2  A set S c ?Rn is bounded if there exists a constant 
K such that the absolute value of every component of every element 
of S is less than or equal to K. 

The next definition deals with polyhedra determined by a single linear 
constraint . 

Definition 2 .3 Let a be a nonzero vector in ?Rn and let b be a scalar. 

(a) The set {x E �n I a/x = b} is called a hyperplane. 
(b) The set {x E �n I a/x � b} is called a halfspace. 

Note that a hyperplane is the boundary of a corresponding halfspace. 
In addition, the vector a in the definition of the hyperplane is perpendicular 
to the hyperplane itself. [To see this, note that if x and y belong to the 
same hyperplane, then a/x = a/yo Hence , a/ (x - y) = 0 and therefore a 
is orthogonal to any direction vector confined to the hyperplane. ]  Finally, 
note that a polyhedron is equal to the intersection of a finite number of 
halfspaces; see Figure 2 . 1 .  

Convex Sets 

We now define the important notion of a convex set . 

Definition 2 .4 A set S c ?Rn is convex if for any x, y E S, and any 
A E [O, I J ,  we have AX + ( 1  - A)y E S. 

Note that if  A E [0, 1 ] ' then Ax + ( 1  - A)y is  a weighted average of 
the vectors x, y, and therefore belongs to the line segment joining x and 
y. Thus, a set is convex if the segment joining any two of its elements is 
contained in the set ; see Figure 2 . 2 .  

Our next definition refers to  weighted averages of  a finite number of 
vectors ; see Figure 2 .3 .  
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( a) ( b )  

Figure 2 . 1 :  (a) A hyperplane and two halfspaces . (b) The poly­
hedron {x I �x ;::: bi , i = 1, . . . , 5} is the intersection of five halfs­
paces . Note that each vector ai is perpendicular to the hyperplane 
{x I �x = bi } .  

Definition 2 . 5  Let Xl , . . . , xk b e  vectors in �n and let >'1 ,  . . . , Ak be 
nonnegative scalars whose sum is unity. 

(a) The vector L:�=l AiXi is said to be a convex combination of 
the vectors Xl , . . .  , xk 

(b) The convex hull of the vectors xl , . . .  , xk is the set of all convex 

combinations of these vectors. 

The result that follows establishes some important facts related to 
convexity. 

Theorem 2 .1  
(a) The intersection of convex sets is convex. 

(b) Every polyhedron is a convex set .  

( c) A convex combination of a finite number of elements of a convex 
set also belongs to that set. 

(d) The convex hull of a finite number of vectors is a convex set .  
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Figure 2 .2 :  The set S is convex, but the set Q is not , because 
the segment joining x and y is not contained in Q . 

..--_____ x3 

Figure 2.3 :  The convex hull of seven points in R2 . 

Proof. 

45 

(a) Let Si , i E I, be convex sets where I is some index set , and suppose 
that x and y belong to the intersection niEISi . Let A E [0 , 1] . Since 
each Si is convex and contains x, y, we have AX + ( 1 - A)y E Si , which 
proves that AX + (1 - A)y also belongs to the intersection of the sets 
Si . Therefore, niEI Si is convex. 

(b) Let a be a vector and let b a scalar . Suppose that x and y satisfy 
a'x � b and a'y � b, respectively, and therefore belong to the same 
halfspace. Let A E [0 , 1 ] . Then, a' (Ax + ( 1 - A)Y) � Ab + ( 1 - A)b = b, 
which proves that AX + ( 1  - A)y also belongs to the same halfspace. 
Therefore a halfspace is convex. Since a polyhedron is the intersection 
of a finite number of halfspaces, the result follows from part (a) . 

(c) A convex combination of two elements of a convex set lies in that 
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set , by the definition of convexity. Let us assume, as an induction 
hypothesis , that a convex combination of k elements of a convex set 
belongs to that set . Consider k + 1 elements xl , . . .  , xk+1 of a convex 
set S and let ).1 , . . .  , ).k+1 be nonnegative scalars that sum to 1 .  We 
assume, without loss of generality, that ).k+1 f=. 1 .  We then have 

(2 . 1 )  

The coefficients ).d(l - ).k+1 ) ,  i = 1 ,  . . .  , k ,  are nonnegative and sum 
to unity; using the induction hypothesis, L7=1 ).ixi / ( 1  - ).k+1 )  E S. 

Then, the fact that S is convex and Eq. (2 . 1 )  imply that L7�1
1 
).iXi E 

S, and the induction step is complete. 

(d) Let S be the convex hull of the vectors xl , . . .  , xk and let y = 
�k . �k . 
L..ti=l (iX' , Z = L..ti=l {}iX' be two elements of S, where (i 2:: 0 ,  {}i 2:: 0 ,  
and L7=1 (i = L7=1 (}i = 1 .  Let ). E [0 , 1] . Then, 

k k k 
).y + ( 1 - ).)z = ). L (iXi + ( 1 - ),) L {}iXi = L ().(i + ( 1 - ).){}i)Xi . 

i= l i= l 

We note that the coefficients ).(i + ( 1  - ).){}i , i = 1 ,  . . .  , k ,  are non­
negative and sum to unity. This shows that ).y + ( 1  - ).)z is a convex 
combination of Xl , . . . , xk and, therefore, belongs to S. This estab­
lishes the convexity of S. D 

2 . 2  Extreme points,  vertices , and basic 

feasible solutions 

We observed in Section 1 .4 that an optimal solution to a linear programming 
problem tends to occur at a "corner" of the polyhedron over which we are 
optimizing. In this section, we suggest three different ways of defining the 
concept of a "corner" and then show that all three definitions are equivalent . 

Our first definition defines an extreme point of a polyhedron as a point 
that cannot be expressed as a convex combination of two other elements of 
the polyhedron, and is illustrated in Figure 2 .4 .  Notice that this definition 
is entirely geometric and does not refer to a specific representation of a 
polyhedron in terms of linear constraints. 

Definition 2.6 Let P be a polyhedron. A vector x E P is an ex­
treme point of P if we cannot find two vectors y, z E P, both different 
from x , and a scalar ). E [0, 1] ' such that x = ).y + ( 1  - ).)z. 
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fI ' " 

Y 

Figure 2.4: The vector w is not an extreme point because it is a 
convex combination of v and u. The vector x is an extreme point : 

if x = .>..y + ( 1  - .>..)z and '>" E [0, 1] ' then either y f/. P, or z f/. P, or 

x = y, or x = z. 
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An alternative geometric definition defines a vertex of a polyhedron 
P as the unique optimal solution to some linear programming problem with 
feasible set P. 

Definition 2 .7  Let P be a polyhedron. A vector x E P is  a vertex 
of P if there exists some e such that e/x < e'y for all y satisfying 
y E P  and y i= x. 

In other words, x is a vertex of P if and only if P is on one side of 
a hyperplane (the hyperplane {y I e'y = e/x} ) which meets P only at the 
point x; see Figure 2 .5 .  

The two geometric definitions that we have given so  far are not easy 
to work with from an algorithmic point of view. We would like to have a 
definition that relies on a representation of a polyhedron in terms of linear 
constraints and which reduces to an algebraic test . In order to provide such 
a definition, we need some more terminology. 

Consider a polyhedron P C 3?n defined in terms of the linear equality 
and inequality constraints 

a�x > bi , i E MI , 

a�x < bi , i E M2 , 

a�x bi , i E M3 , 

where MI , M2 , and M3 are finite index sets, each ai is a vector in 3?n , and 
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Figure 2 .5 :  The line at the bottom touches P at a single point 
and x is a vertex. On the other hand, w is not a vertex because 
there is no hyperplane that meets P only at w .  

each bi is a scalar. The definition that follows is illustrated in Figure 2 .6 .  

Definition 2 .8 If a vector x* satisfies a�x* = b i  for some i in MI , M2, 
or M3 , we say that the corresponding constraint is active or binding 
at x* . 

If there are n constraints that are active at a vector x* , then x* satis­
fies a certain system of n linear equations in n unknowns. This system has a 
unique solution if and only if these n equations are "linearly independent ."  
The result that follows gives a precise meaning to this statement , together 
with a slight generalization. 

Theorem 2 .2  Let x* be an element onJ�n and let I = {i I a�x* = bd 
be the set of indices of constraints that are active at x* . Then, the 
following are eq uivalent: 

(a) There exist n vectors in the set {ai l i E  I} , which are linearly 
independent.  

(b) The span of the vectors ai ,  i E I, is all of �n , that is, every 
element of �n can be expressed as a linear combination of the 
vectors ai , i E I .  

(c) The system of equations a�x = bi , i E I, has a uniq ue solution. 

Proof. Suppose that the vectors ai ,  i E I, span �n . Then, the span of 
these vectors has dimension n. By Theorem 1 . 3 (a) in Section 1 .5 ,  n of 
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Figure 2 .6 :  Let P = { (X l , X2 , X3 ) I Xl + X2 + X3 = 1 ,  Xl , X2 , X3 � 
o} . There are three constraints that are active at each one of the 
points A, B, C and D. There are only two constraints that are 
active at point E, namely Xl + X2 + X3 = 1 and X2 = o.  
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these vectors form a basis of �n , and are therefore linearly independent . 
Conversely, suppose that n of the vectors ai , i E I, are linearly independent . 
Then, the subspace spanned by these n vectors is n-dimensional and must 
be equal to �n . Hence, every element of �n is a linear combination of the 
vectors � ,  i E I. This establishes the equivalence of (a) and (b) . 

If the system of equations a�x = bi , i E I, has multiple solutions, say 
xl and x2 , then the nonzero vector d = Xl - x2 satisfies a�d = 0 for all 
i E I. Since d is orthogonal to every vector ai , i E I, d is not a linear 
combination of these vectors and it follows that the vectors ai , i E I, do 
not span �n . Conversely, if the vectors ai , i E I, do not span �n , choose 
a nonzero vector d which is orthogonal to the subspace spanned by these 
vectors . If x satisfies a�x = bi for all i E I, we also have a� (x + d) = bi for 
all i E I, thus obtaining multiple solutions . We have therefore established 
that (b) and (c) are equivalent . D 

With a slight abuse of language, we will often say that certain con­
straints are linearly independent, meaning that the corresponding vectors 
ai are linearly independent . With this terminology, statement (a) in The­
orem 2 .2  requires that there exist n linearly independent constraints that 
are active at x* . 

We are now ready to provide an algebraic definition of a corner point , 
as a feasible solution at which there are n linearly independent active con­
straints .  Note that since we are interested in a feasible solution, all equality 
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constraints must be active. This suggests the following way of looking for 
corner points: first impose the equality constraints and then require that 
enough additional constraints be active, so that we get a total of n linearly 
independent active constraints. Once we have n linearly independent active 
constraints, a unique vector x* is determined (Theorem 2 .2 ) . However, this 
procedure has no guarantee of leading to a feasible vector x* , because some 
of the inactive constraints could be violated; in the latter case we say that 
we have a basic (but not basic feasible) solution. 

Definition 2 .9 Consider a polyhedron P defined by linear equality 
and inequality constraints, and let x* be an element of 3?n . 
(a) The vector x* is a basic solution if: 

(i) All equality constraints are active; 
(ii) Out of the constraints that are active at x* , there are n of 

them that are linearly independent. 

(b) If x* is a basic solution that satisfies all of the constraints, we 
say that it is a basic feasible solution. 

In reference to Figure 2 .6 ,  we note that points A, B, and C are 
basic feasible solutions . Point D is not a basic solution because it fails to 
satisfy the equality constraint . Point E is feasible , but not basic . If the 
equality constraint Xl + X2 + X3 = 1 were to be replaced by the constraints 
Xl + X2 + X3 � 1 and Xl + X2 + X3 � 1 ,  then D would be a basic solution, 
according to our definition. This shows that whether a point is a basic 
solution or not may depend on the way that a polyhedron is represented. 
Definition 2.9 is also illustrated in Figure 2 . 7. 

Note that if the number m of constraints used to define a polyhedron 
P C 3?n is less than n, the number of active constraints at any given point 
must also be less than n, and there are no basic or basic feasible solutions . 

We have given so far three different definitions that are meant to cap­
ture the same concept ; two of them are geometric (extreme point , vertex) 
and the third is algebraic (basic feasible solution) . Fortunately, all three 
definitions are equivalent as we prove next and, for this reason, the three 
terms can be used interchangeably. 

Theorem 2.3 Let P be a nonempty polyhedron and let x * E P. 
Then, the following are equivalent: 

(a) x * is a vertex; 

(b) x* is an extreme point; 

(c) x* is a basic feasible solution . 
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Figure 2 .7 :  The points A, B, C, D, E, F are all basic solutions 
because at each one of them, there are two linearly independent 
constraints that are active. Points C, D, E, F are basic feasible 
solutions . 
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Proof. For the purposes o f  this proof and without loss o f  generality, we 
assume that P is represented in terms of constraints of the form a�x � bi 
and a�x = bi . 
Vertex =? Extreme point 
Suppose that x* E P is a vertex. Then, by Definition 2 .7 ,  there exists 
some e E �n such that e'x* < e'y for every y satisfying y E P  and 
y =1= x* . If Y E P, Z E P, y =1= x* , Z =1= x* , and ° � A � 1 ,  then 
e'x* < e'y and e'x* < e'z ,  which implies that e'x* < e' (Ay + (1 - A)z) 
and, therefore, x* =1= Ay+ ( 1 - A)z .  Thus, x* cannot be expressed as a convex 
combination of two other elements of P and is , therefore , an extreme point 
(cf. Definition 2 .6) . 
Extreme point =? Basic feasible solution 
Suppose that x* E P is not a basic feasible solution. We will show that x* 
is not an extreme point of P. Let I = {i I a�x* = bi } .  Since x* is not a 
basic feasible solution, there do not exist n linearly independent vectors in 
the family ai , i E I. Thus, the vectors � ,  i E I, lie in a proper subspace 
of �n , and there exists some nonzero vector d E �n such that a�d = 0,  
for all i E I. Let E be a small positive number and consider the vectors 
y = x* + Ed and z = x* - Ed. Notice that a�y = a�x* = bi , for i E I. 
Furthermore, for i 1:- I, we have a�x* > bi and, provided that E is small , we 
will also have a�y > bi . (It suffices to choose E so that E la�d l < a�x* - bi for 
all i 1:- I . )  Thus , when E is small enough, y E P  and, by a similar argument , 
z E P. We finally notice that x* = (y + z)/2 ,  which implies that x* is not 
an extreme point . 
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Basic feasible solution ::::} Vertex 

Let x* be a basic feasible solution and let I 
c = 2: iE I ai ' We then have 

c'x* = L a�x* = L bi . 
iE I iEI 

{i I a�x* 

Furthermore, for any x E P and any i ,  we have �x 2: bi , and 

c'x = L �x 2: L bi . 
iE I iEI 

bd . Let 

(2 .2 )  

This shows that x* is  an optimal solution to the problem of minimizing c'x 
over the set P. Furthermore, equality holds in (2 .2 )  if and only if a�x = bi 
for all i E I. Since x* is a basic feasible solution, there are n linearly 
independent constraints that are active at x* , and x* is the unique solution 
to the system of equations a�x = bi , i E I (Theorem 2 .2 ) . It follows that x* 
is the unique minimizer of c'x over the set P and, therefore, x* is a vertex 
of P. D 

Since a vector is a basic feasible solution if and only if it is an extreme 
point , and since the definition of an extreme point does not refer to any 
particular representation of a polyhedron, we conclude that the property 
of being a basic feasible solution is also independent of the representation 
used. (This is in contrast to the definition of a basic solution, which is 
representation dependent , as pointed out in the discussion that followed 
Definition 2 .9 . )  

We finally note the following important fact . 

Corollary 2 . 1  Given a finite number of linear inequality constraints, 
there can only be a finite number of basic or basic feasible solutions. 

Proof. Consider a system of m linear inequality constraints imposed on 
a vector x E Rn . At any basic solution, there are n linearly independent 
active constraints. Since any n linearly independent active constraints de­
fine a unique point , it follows that different basic solutions correspond to 
different sets of n linearly independent active constraints. Therefore, the 
number of basic solutions is bounded above by the number of ways that we 
can choose n constraints out of a total of m ,  which is finite. D 

Although the number of basic and, therefore, basic feasible solutions 
is guaranteed to be finite, it can be very large. For example, the unit cube 
{x E Rn l O S;  Xi S; 1, i = 1, ... ,n } is defined in terms of 2n constraints, 
but has 2n basic feasible solutions . 
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Adjacent basic solutions 

Two distinct basic solutions to a set of linear constraints in �n are said to 
be adjacent if we can find n - 1 linearly independent constraints that are 
active at both of them. In reference to Figure 2 .7 ,  D and E are adjacent 
to B; also, A and C are adjacent to D.  If two adjacent basic solutions are 
also feasible , then the line segment that joins them is called an edge of the 
feasible set (see also Exercise 2 . 15 ) .  

2 . 3  Polyhedra in standard form 

The definition of a basic solution (Definition 2.9) refers to general polyhe­
dra. We will now specialize to polyhedra in standard form. The definitions 
and the results in this section are central to the development of the simplex 
method in the next chapter. 

Let P = {x E �n I Ax = b, x 2: O} be a polyhedron in standard 
form, and let the dimensions of A be m x n, where m is the number of 
equality constraints. In most of our discussion of standard form problems, 
we will make the assumption that the m rows of the matrix A are lin­
early independent . (Since the rows are n-dimensional, this requires that 
m ::; n. )  At the end of this section, we show that when P is nonempty, 
linearly dependent rows of A correspond to redundant constraints that can 
be discarded; therefore, our linear independence assumption can be made 
without loss of generality. 

Recall that at any basic solution, there must be n linearly indepen­
dent constraints that are active. Furthermore, every basic solution must 
satisfy the equality constraints Ax = b, which provides us with m active 
constraints; these are linearly independent because of our assumption on 
the rows of A. In order to obtain a total of n active constraints, we need 
to choose n - m of the variables Xi and set them to zero, which makes the 
corresponding nonnegativity constraints Xi 2: 0 active. However, for the 
resulting set of n active constraints to be linearly independent , the choice 
of these n - m variables is not entirely arbitrary, as shown by the following 
result . 

Theorem 2 .4 Consider the constraints Ax = b and x 2: 0 and as­
sume that the m x n matrix A has linearly independent rows. A vector 
x E �n is a basic solution if and only if we have Ax = b, and there 
exist indices B ( l ) , . . .  , B (m) such that: 

(a) The columns AB( l ) , " " AB(m) are linearly independent; 

(b) If i =F B ( l ) , . . . , B (m) , then Xi = O .  

Proof. Consider some x E �n and suppose that there are indices B ( l ) , . . .  , 
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B(m) that satisfy (a) and (b) in the statement of the theorem. The active 
constraints Xi = 0, i =I=- B(l ) , . . .  , B (m) , and Ax = b imply that 

m n 

i=l i=l 

Since the columns AB(i) , i = 1 ,  . . .  , m, are linearly independent , XB( l ) , . . .  , 
XB(m) are uniquely determined . Thus, the system of equations formed by 
the active constraints has a unique solution. By Theorem 2 . 2 ,  there are n 
linearly independent active constraints, and this implies that x is a basic 
solution. 

For the converse, we assume that x is a basic solution and we will 
show that conditions (a) and (b) in the statement of the theorem are satis­
fied. Let XB(l ) , . . .  , XB (k) be the components of x that are nonzero. Since 
x is a basic solution, the system of equations formed by the active con­
straints 2::7=1 AiXi = b and Xi = 0, i =I=- B(l ) ,  . . .  , B (k) , have a unique 
solution (ef. Theorem 2 . 2) ; equivalently, the equation 2::7=1 AB(i) XB(i) = b 
has a unique solution. It follows that the columns AB(l ) , . . .  , AB (k) are 
linearly independent . [If they were not , we could find scalars AI , . . .  , Ak , 
not all of them zero , such that 2::7=1 AB (i) Ai = 0. This would imply that 

2::7=1 AB (i) (XB (i) + Ai ) = b, contradicting the uniqueness of the solution. ] 
We have shown that the columns AB(l ) , . . .  , AB(k) are linearly inde­

pendent and this implies that k :::; m. Since A has m linearly independent 
rows, it also has m linearly independent columns, which span �m . It follows 
[ef. Theorem 1 . 3 (b) in Section 1 .5] that we can find m-k additional columns 
AB(k+1 ) , . . .  , AB(m) so that the columns AB(i) , i = 1 ,  . . .  , m, are linearly 
independent . In addition, if i =I=- B(l ) ,  . . .  , B (m) , then i =I=- B(l ) ,  . . .  , B (k) 
(because k :::; m) , and Xi = 0 .  Therefore, both conditions (a) and (b) in 
the statement of the theorem are satisfied. 0 

In view of Theorem 2 .4 ,  all basic solutions to a standard form poly­
hedron can be constructed according to the following procedure. 

Procedure for constructing basic solutions 
1 .  Choose m linearly independent columns AB(1 ) , . . .  , AB(m) · 
2 .  Let Xi  = ° for all i =I=- B(l ) ,  . . .  , B (m) . 

3.  Solve the system of  m equations Ax = b for the unknowns X B ( 1 ) ' 
. . .  , XB (m) · 

If a basic solution constructed according to this procedure is nonneg­
ative, then it is feasible , and it is a basic feasible solution. Conversely, since 
every basic feasible solution is a basic solution, it can be obtained from this 
procedure. If x is a basic solution, the variables X B ( 1 ) , . . .  , X  B (m) are called 
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basic variables; the remaining variables are called nonbasic. The columns 
AB(l ) , " "  AB(m) are called the basic columns and, since they are linearly 
independent , they form a basis of �m . We will sometimes talk about two 
bases being distinct or different; our convention is that distinct bases in­
volve different sets {B(l ) , . . .  , B (m) } of basic indices; if two bases involve 
the same set of indices in a different order, they will be viewed as one and 
the same basis . 

By arranging the m basic columns next to each other, we obtain an 
m x m matrix B,  called a basis matrix. (Note that this matrix is invertible 
because the basic columns are required to be linearly independent . ) We can 
similarly define a vector XB with the values of the basic variables. Thus, 

[ XB( l ) 1 
XB�m) 

I 
AB(2) 

I 

The basic variables are determined by solving the equation BXB = b whose 
unique solution is given by 

XB = B-1b .  

Example 2 .1  Let the constraint A x  = b be  of  the form 

[ � 1 2 1 0 0 n x � [ ,n 1 6 0 1 0 
0 0 0 0 1 
1 0 0 0 0 

Let us choose A4 , A5 , A6 , A7 as our basic columns. Note that they are linearly 
independent and the corresponding basis matrix is the identity. We then obtain 
the basic solution x = (0, 0, 0 , 8 , 12 , 4 , 6) which is nonnegative and, therefore, 
is a basic feasible solution. Another basis is obtained by choosing the columns 
A3 , A5 , A6 , A7 (note that they are linearly independent) . The corresponding 
basic solution is x = (0, 0 , 4, 0 ,  - 12 , 4 , 6) , which is not feasible because X5 = 
-12 < O.  

Suppose now that there was an eighth column As , identical to A7. Then, 
the two sets of columns {A3 , A5 ,  A6 , A 7} and {A3 , A5 , A6 , As } coincide. On 
the other hand the corresponding sets of basic indices , which are {3 , 5, 6,  7} and 
{3, 5, 6, 8} ,  are different and we have two different bases , according to our con­
ventions . 

For an intuitive view of basic solutions, recall our interpretation of 
the constraint Ax = b,  or ��=l AiXi = b,  as a requirement to synthesize 
the vector b E �m using the resource vectors Ai (Section 1 . 1 ) .  In a basic 
solution, we use only m of the resource vectors , those associated with the 
basic variables . Furthermore, in a basic feasible solution, this is accom­
plished using a nonnegative amount of each basic vector; see Figure 2 .8 .  
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Figure 2 .8 :  Consider a standard form problem with n = 4 and 
m = 2 ,  and let the vectors b, AI , . . .  , A4 be as shown. The vectors 
AI , A2 form a basis ; the corresponding basic solution is infeasible 
because a negative value of X2 is needed to synthesize b from AI , 
A2 . The vectors AI , A3 form another basis ; the corresponding 
basic solution is feasible . Finally, the vectors AI , A4 do not form 
a basis because they are linearly dependent . 

Correspondence of bases and basic solutions 

We now elaborate on the correspondence between basic solutions and bases . 
Different basic solutions must correspond to different bases , because a basis 
uniquely determines a basic solution. However, two different bases may lead 
to the same basic solution. (For an extreme example, if we have b = 0, 
then every basis matrix leads to the same basic solution, namely, the zero 
vector. )  This phenomenon has some important algorithmic implications, 
and is closely related to degeneracy, which is the subject of the next section. 

Adjacent basic solutions and adjacent bases 

Recall that two distinct basic solutions are said to be adjacent if there are 
n - 1 linearly independent constraints that are active at both of them. 
For standard form problems, we also say that two bases are adjacent if 
they share all but one basic column. Then, it is not hard to check that 
adjacent basic solutions can always be obtained from two adjacent bases. 
Conversely, if two adjacent bases lead to distinct basic solutions , then the 
latter are adjacent . 

Example 2 .2  In reference to Example 2 . 1 ,  the bases {A4 , A5 , A6 , A7} and 
{A3 , A5 , A6 , A7} are adjacent because all but one columns are the same. The 
corresponding basic solutions x = (0, 0 , 0 , 8 , 12 , 4, 6) and x = (0, 0 , 4 , 0 ,  - 12 , 4, 6) 
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are adjacent : we have n = 7 and a total of six common linearly independent 
active constraints; these are Xl 2: 0, X2 2: 0, and the four equality constraints. 

The full row rank assumption on A 

We close this section by showing that the full row rank assumption on the 
matrix A results in no loss of generality. 

Theorem 2 .5  Let P = {x I Ax = h, x 2: O} be a nonempty polyhe­
dron, where A is a matrix of dimensions m x n, with rows a� , . . .  , a� . 
Suppose that rank(A) = k < m and that the rows a�l ' · . · ' a�k are 
linearly independent. Consider the polyhedron 

Then Q = P. 

Proof. We provide the proof for the case where i 1 = 1 ,  . . . , ik = k ,  that 
is , the first k rows of A are linearly independent . The general case can be 
reduced to this one by rearranging the rows of A. 

Clearly P C Q since any element of P automatically satisfies the 
constraints defining Q. We will now show that Q C P. 

Since rank(A) = k,  the row space of A has dimension k and the rows 
a� , . . .  , a� form a basis of the row space. Therefore, every row a� of A can 
be expressed in the form a� = 2:7=1 Aijaj ,  for some scalars Aij . Let x be 
an element of P and note that 

k k 
bi = a�x = I:>ijajx = L Aijbj , 

j= l j= l 
i = 1 ,  . . .  , m. 

Consider now an element y of Q. We will show that it belongs to P. Indeed, 
for any i ,  

k k 
a�y = L Aij ajy = L Aij bj = bi , 

j= l j=l 

which establishes that y E P  and Q C P. o 
Notice that the polyhedron Q in Theorem 2 .5  is in standard form; 

namely, Q = {x I Dx = f, x 2: O} where D is a k x n submatrix of A, 
with rank equal to k, and f is a k-dimensional subvector of h.  We conclude 
that as long as the feasible set is nonempty, a linear programming problem 
in standard form can be reduced to an equivalent standard form problem 
(with the same feasible set) in which the equality constraints are linearly 
independent . 
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Example 2 .3 Consider the (nonempty) polyhedron defined by the constraints 

2X I + X2 + X3 2 
Xl + X2 1 

1 

The corresponding matrix A has rank two. This is because the last two rows 
( 1 , 1 , 0) and ( 1 , 0 , 1 )  are linearly independent , but the first row is equal to the 
sum of the other two. Thus, the first constraint is redundant and after it is 
eliminated, we still have the same polyhedron. 

2 . 4  Degeneracy 

According to our definition, at a basic solution, we must have n linearly 
independent active constraints .  This allows for the possibility that the 
number of active constraints is greater than n .  (Of course, in n dimensions, 
no more than n of them can be linearly independent . ) In this case, we say 
that we have a degenerate basic solution. In other words, at a degenerate 
basic solution, the number of active constraints is greater than the minimum 
necessary. 

Definition 2 .10 A basic solution x E lRn is said to be degenerate if 
more than n of the constraints are active at x. 

In two dimensions, a degenerate basic solution is at the intersection 
of three or more lines ; in three dimensions, a degenerate basic solution is at 
the intersection of four or more planes ; see Figure 2 .9  for an illustration. It 
turns out that the presence of degeneracy can strongly affect the behavior 
of linear programming algorithms and for this reason, we will now develop 
some more intuition. 

Example 2.4 Consider the polyhedron P defined by the constraints 

Xl + X2 + 2X3 S 8 

X2 + 6X3 S 12  

X l S 4 

X2 S 6 

Xl , X2 , X3 > o. 

The vector x = (2 , 6 , 0) is a nondegenerate basic feasible solution, because there 
are exactly three active and linearly independent constraints, namely, Xl + X2 + 
2X3 S 8, X2 S 6, and X3 ::::: o. The vector x = (4, 0, 2) is a degenerate basic 
feasible solution, because there are four active constraints, three of them linearly 
independent , namely, Xl + X2 + 2X3 S 8, X2 + 6X3 S 12 ,  Xl S 4, and X2 ::::: o.  
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B 

(a) (b)  

Figure 2 .9 :  The points A and C are degenerate basic feasible 
solutions . The points B and E are nondegenerate basic feasible 
solutions . The point D is a degenerate basic solution. 

Degeneracy in standard form polyhedra 
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At a basic solution of a polyhedron in standard form, the m equality con­
straints are always active. Therefore, having more than n active constraints 
is the same as having more than n - m variables at zero level. This leads 
us to the next definition which is a special case of Definition 2 . 10 .  

Definition 2 . 1 1  Consider the standard form polyhedron P = {x E 
3?n I Ax = b, x � O} and let x be a basic solution. Let m be the 
number of rows of A. The vector x is a degenerate basic solution if 
more than n - m of the components of x are zero. 

Example 2 .5  Consider once more the polyhedron of Example 2 .4 .  By intro­
ducing the slack variables X4 , • • •  , X7 ,  we can transform it into the standard form 
p = {x = (X l , . . .  , X7 ) I Ax = b,  x � O } ,  where 

1 2 
1 6 
o 0 
1 0 

1 0 
o 1 
o 0 
o 0 

o 
o 
1 
o 

Consider the basis consisting of the linearly independent columns AI , A2 , A3 , 
A7 .  To calculate the corresponding basic solution, we first set the nonbasic 
variables X4 , X5 ,  and X6 to zero, and then solve the system Ax = b for the 
remaining variables , to obtain x = (4, 0 , 2 , 0 , 0 , 0 , 6) . This is a degenerate basic 
feasible solution, because we have a total of four variables that are zero, whereas 
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n - m = 7 - 4 = 3. Thus, while we initially set only the three nonbasic variables 
to zero, the solution to the system Ax = b turned out to satisfy one more of 
the constraints (namely, the constraint X2 � 0) with equality. Consider now the 
basis consisting of the linearly independent columns AI , A3 , A4 , and A7 . The 
corresponding basic feasible solution is again x = (4, 0 , 2 , 0 , 0 , 0 , 6) .  

The preceding example suggests that we can think of degeneracy in 
the following terms. We pick a basic solution by picking n linearly indepen­
dent constraints to be satisfied with equality, and we realize that certain 
other constraints are also satisfied with equality. If the entries of A or 
b were chosen at random, this would almost never happen. Also, Figure 
2 . 10  illustrates that if the coefficients of the active constraints are slightly 
perturbed, degeneracy can disappear (cf. Exercise 2 . 18 ) .  In practical prob­
lems, however, the entries of A and b often have a special (nonrandom) 
structure, and degeneracy is more common than the preceding argument 
would seem to suggest . 

Figure 2 . 10: Small changes in the constraining inequalities can 
remove degeneracy. 

In order to visualize degeneracy in standard form polyhedra, we as­
sume that n - m = 2 and we draw the feasible set as a subset of the 
two-dimensional set defined by the equality constraints Ax = b ;  see Fig­
ure 2 . 1 1 .  At a nondegenerate basic solution, exactly n - m  of the constraints 
Xi ;::: 0 are active; the corresponding variables are nonbasic. In the case of 
a degenerate basic solution, more than n - m of the constraints Xi ;::: 0 are 
active, and there are usually several ways of choosing which n - m variables 
to call nonbasic; in that case , there are several bases corresponding to that 
same basic solution. (This discussion refers to the typical case. However, 
there are examples of degenerate basic solutions to which there corresponds 
only one basis . )  

Degeneracy is  not a purely geometric property 

We close this section by pointing out that degeneracy of basic feasible solu­
tions is not , in general, a geometric (representation independent) property, 
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Figure 2 . 11 :  An (n - m)-dimensional illustration of degener­
acy. Here , n = 6 and m = 4. The basic feasible solution A is 
nondegenerate and the basic variables are Xl , X2 , X3 , X6 . The ba­
sic feasible solution B is degenerate. We can choose Xl , X6 as the 
nonbasic variables . Other possibilities are to choose Xl , Xs , or to 
choose Xs , X6 . Thus, there are three possible bases , for the same 
basic feasible solution B .  
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but rather i t  may depend on the particular representation of  a polyhedron. 
To illustrate this point , consider the standard form polyhedron (cf. Figure 
2 . 12)  

We have n = 3 ,  m = 2 and n - m = 1 .  The vector ( 1 , 1 , 0) is  nondegenerate 
because only one variable is zero. The vector (0 ,0 , 1 )  is degenerate because 
two variables are zero. However, the same polyhedron can also be described 

(0 ,0 , 1 )  

Figure 2 .12 :  An example of  degeneracy in  a standard form problem. 
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Figure 2 .13 :  The polyhedron P contains a line and does not 
have an extreme point , while Q does not contain a line and has 
extreme points. 

in the (nonstandard) form 

p = { (Xl , X2 , X3 ) I Xl - X2 = 0, Xl + X2 + 2X3 = 2 ,  Xl 2 0,  X3 2 O} .  
The vector (0 ,0 , 1 )  is now a nondegenerate basic feasible solution, because 
there are only three active constraints. 

For another example , consider a nondegenerate basic feasible solution 
x* of a standard form polyhedron P = {x I Ax = b, x 2 O} ,  where A 
is of dimensions m x n. In particular , exactly n - m of the variables xi 
are equal to zero. Let us now represent P in the form P = {x I Ax 2 
b, -Ax 2 -b,  x 2 O} .  Then, at the basic feasible solution x* , we have 
n - m variables set to zero and an additional 2m inequality constraints are 
satisfied with equality. We therefore have n + m active constraints and x* 
is degenerate. Hence, under the second representation, every basic feasible 
solution is degenerate. 

We have established that a degenerate basic feasible solution under 
one representation could be nondegenerate under another representation. 
Still, it can be shown that if a basic feasible solution is degenerate under one 
particular standard form representation, then it is degenerate under every 
standard form representation of the same polyhedron (Exercise 2 . 19) . 

2 . 5  Existence of extreme points 

We obtain in  this section necessary and sufficient conditions for a polyhe­
dron to have at least one extreme point . We first observe that not every 
polyhedron has this property. For example, if n > 1 ,  a halfspace in �n is a 
polyhedron without extreme points. Also, as argued in Section 2 . 2  (cf. the 
discussion after Definition 2 .9) , if the matrix A has fewer than n rows , then 
the polyhedron {x E �n I Ax 2 b} does not have a basic feasible solution. 
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It turns out that the existence of an extreme point depends on whether 
a polyhedron contains an infinite line or not ; see Figure 2 . 13 .  We need the 
following definition. 

Definition 2 . 12  A polyhedron P C lRn contains a line if there exists 
a vector x E P and a nonzero vector d E lRn such that x + Ad E P for 
all scalars A .  

We then have the following result . 

Theorem 2.6 Suppose that the polyhedron P = {x E lRn I a�x ?:: 
bi , i = 1 ,  . . . , m} is non empty. Then, the following are equivalent: 

(a) The polyhedron P has at least one extreme point. 

(b) The polyhedron P does not contain a line. 

(c) There exist n vectors out of the family aI , . . . , am , which are 
linearly independent. 

Proof. 

(b) =? (a) 

We first prove that if P does not contain a line, then it has a basic feasible 
solution and, therefore, an extreme point . A geometric interpretation of 
this proof is provided in Figure 2 . 14. 

Let x be an element of P and let I = {i I a�x = bi } .  If n of the vectors 
ai , i E I, corresponding to the active constraints are linearly independent , 
then x is , by definition, a basic feasible solution and, therefore, a basic 
feasible solution exists . If this is not the case, then all of the vectors � ,  
i E I ,  lie in a proper subspace of lRn and there exists a nonzero vector 
d E lRn such that a�d = 0, for every i E I. Let us consider the line 
consisting of all points of the form y = x + Ad, where A is an arbitrary 
scalar. For i E I, we have a�y = a�x + Aa�d = a�x = bi . Thus , those 
constraints that were active at x remain active at all points on the line . 
However, since the polyhedron is assumed to contain no lines , it follows 
that as we vary A, some constraint will be eventually violated. At the 
point where some constraint is about to be violated, a new constraint must 
become active, and we conclude that there exists some A * and some j tf. I 
such that aj (x + A*d) = bj . 

We claim that aj is not a linear combination of the vectors ai , i E I.  
Indeed, we have ajx -I- bj (because j tf. I) and aj (x + A*d) = bj (by the 
definition of A* ) . Thus , aj d -I- o. On the other hand, a�d = 0 for every 
i E I (by the definition of d) and therefore, d is orthogonal to any linear 
combination of the vectors � ,  i E I. Since d is not orthogonal to aj , we 
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Figure 2 . 14: Starting from an arbitrary point of a polyhedron, 
we choose a direction along which all currently active constraints 
remain active. We then move along that direction until a new 
constraint is about to be violated. At that point , the number of 
linearly independent active constraints has increased by at least 
one. We repeat this procedure until we end up with n linearly 
independent active constraints, at which point we have a basic 
feasible solution. 

conclude that aj is a not a linear combination of the vectors ai , i E I. 
Thus , by moving from x to x + .A*d,  the number of linearly independent 
active constraints has been increased by at least one. By repeating the same 
argument , as many times as needed, we eventually end up with a point at 
which there are n linearly independent active constraints. Such a point is, 
by definition, a basic solution; it is also feasible since we have stayed within 
the feasible set . 

(a) =} (c) 
If P has an extreme point x, then x is also a basic feasible solution (cf. The­
orem 2 .3) , and there exist n constraints that are active at x, with the 
corresponding vectors ai being linearly independent . 

(c) =} (b) 
Suppose that n of the vectors ai are linearly independent and, without 
loss of generality, let us assume that al , . . .  , an are linearly independent . 
Suppose that P contains a line x + .Ad, where d is a nonzero vector. We 
then have a� (x + .Ad) � bi for all i and all .A .  We conclude that a�d = 0 for 
all i .  (If a�d < 0,  we can violate the constraint by picking .A very large; a 
symmetric argument applies if a�d > 0 . )  Since the vectors ai , i = 1 ,  . . .  , n,  
are linearly independent , this implies that d = o . This is a contradiction 
and establishes that P does not contain a line. 0 

Notice that a bounded polyhedron does not contain a line. Similarly, 
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the positive orthant {x I x � O} does not contain a line . Since a polyhedron 
in standard form is contained in the positive orthant , it does not contain a 
line either . These observations establish the following important corollary 
of Theorem 2 .6 .  

Corollary 2 .2  Every nonempty bounded polyhedron and every 
non empty polyhedron in standard form has at least one basic feasi­
ble solution . 

2 . 6  Optimality of extreme points 

Having established the conditions for the existence of  extreme points, we 
will now confirm the intuition developed in Chapter 1 :  as long as a linear 
programming problem has an optimal solution and as long as the feasible 
set has at least one extreme point , we can always find an optimal solution 
within the set of extreme points of the feasible set . Later in this section, 
we prove a somewhat stronger result , at the expense of a more complicated 
proof. 

Theorem 2 . 7 Consider the linear programming problem of minimiz­
ing c'x over a polyhedron P. Suppose that P has at least one extreme 
point and that there exists an optimal solution. Then, there exists an 
optimal solution which is an extreme point of P. 

Proof. (See Figure 2.15 for an illustration. )  Let Q be the set of all optimal 
solutions , which we have assumed to be nonempty. Let P be of the form 
P = {x E lRn I Ax � b} and let v be the optimal value of the cost c' x. 
Then, Q = {x E lRn I Ax � b,  c'x = v} , which is also a polyhedron. Since 

p 

Q x* 

Figure 2 .15 :  Illustration of the proof of Theorem 2 .7 .  Here, Q 
is the set of optimal solutions and an extreme point x· of Q is also 
an extreme point of P. 
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Q c P, and since P contains no lines (cf. Theorem 2 .6) , Q contains no lines 
either . Therefore, Q has an extreme point . 

Let x* be an extreme point of Q .  We will show that x* is also an 
extreme point of P. Suppose, in order to derive a contradiction, that x* 
is not an extreme point of P. Then, there exist y E P, z E P, such that 
y -I- x* , z -I- x* , and some A E [0 , 1] such that x* = Ay + ( 1 - A)Z . It follows 
that v = e'x* = Ae'y + ( 1  - A)e'z. Furthermore, since v is the optimal 
cost , e'y 2": v and e'z 2": v . This implies that e'y = e'z = v and therefore 
z E Q and y E Q. But this contradicts the fact that x* is an extreme point 
of Q .  The contradiction establishes that x* is an extreme point of P. In 
addition, since x* belongs to Q, it is optimal . 0 

The above theorem applies to polyhedra in standard form, as well as 
to bounded polyhedra, since they do not contain a line . 

Our next result is stronger than Theorem 2 .7 .  It shows that the 
existence of an optimal solution can be taken for granted, as long as the 
optimal cost is finite. 

Theorem 2.8 Consider the linear programming problem of minimiz­
ing e'x over a polyhedron P. Suppose that P has at least one extreme 
point. Then, either the optimal cost is equal to - 00 ,  or there exists 
an extreme point which is optimal. 

Proof. The proof is essentially a repetition of the proof of Theorem 2 .6 .  
The difference i s  that as we move towards a basic feasible solution, we will 
also make sure that the costs do not increase. We will use the following 
terminology: an element x of P has rank k if we can find k ,  but not more 
than k, linearly independent constraints that are active at x. 

Let us assume that the optimal cost is finite . Let P = {x E �n I 
Ax 2": b} and consider some x E P of rank k < n. We will show that there 
exists some y E P  which has greater rank and satisfies e'y ::; e'x. Let 
I = {i I a�x = bi } ,  where a� is the ith row of A. Since k < n, the vectors 
ai , i E I, lie in a proper subspace of �n , _and we can choose some nonzero 
d E �n orthogonal to every ai , i E I. Furthermore, by possibly taking the 
negative of d, we can assume that e'd ::; o. 

Suppose that e'd < O .  Let us consider the half-line y = x + Ad, 
where A i s  a positive scalar . As in the proof of Theorem 2 .6 ,  all points 
on this half-line satisfy the relations a�y = bi , i E I. If the entire half­
line were contained in P, the optimal cost would be - 00 ,  which we have 
assumed not to be the case . Therefore, the half-line eventually exits P. 
When this is about to happen, we have some A * > 0 and j tt I such that 
aj (x + A*d) = bj • We let y = x + A*d and note that e'y < e'x. As in the 
proof of Theorem 2 .6 ,  aj is linearly independent from ai , i E I, and the 
rank of y is at least k + 1 .  
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Suppose now that e'd = o.  We consider the line y = x + Ad, where 
A is an arbitrary scalar . Since P contains no lines , the line must eventually 
exit P and when that is about to happen, we are again at a vector y of rank 
greater than that of x. Furthermore, since e'd = 0, we have e'y = e'x. 

In either case, we have found a new point y such that e'y ::; e'x, and 
whose rank is greater than that of x. By repeating this process as many 
times as needed, we end up with a vector w of rank n (thus , w is a basic 
feasible solution) such that e'w ::; e'x. 

Let WI , . . .  , wT be the basic feasible solutions in P and let w* be a 
basic feasible solution such that e'w* ::; e'wi for all i .  We have already 
shown that for every x there exists some i such that e'wi ::; e'x. It follows 
that e'w* ::; e'x for all x E P, and the basic feasible solution w* is optimal. 

D 

For a general linear programming problem, if the feasible set has 
no extreme points, then Theorem 2 .8 does not apply directly. On the 
other hand, any linear programming problem can be transformed into an 
equivalent problem in standard form to which Theorem 2 . 8  does apply. 
This establishes the following corollary. 

Corollary 2 .3 Consider the linear programming problem of minimiz­
ing e'x over a nonempty polyhedron. Then, either the optimal cost is 
equal to - 00  or there exists an optimal solution. 

The result in Corollary 2 .3 should be contrasted with what may hap­
pen in optimization problems with a nonlinear cost function. For example, 
in the problem of minimizing l/x subject to x ::::: 1 ,  the optimal cost is not 
- 00 ,  but an optimal solution does not exist . 

2 . 7  Representation of bounded polyhedra* 

So far, we have been representing polyhedra in terms of their defining in­
equalities . In this section, we provide an alternative, by showing that a 
bounded polyhedron can also be represented as the convex hull of its ex­
treme points. The proof that we give here is elementary and constructive, 
and its main idea is summarized in Figure 2 . 16 .  There is a similar repre­
sentation of unbounded polyhedra involving extreme points and "extreme 
rays" (edges that extend to infinity) . This representation can be developed 
using the tools that we already have, at the expense of a more complicated 
proof. A more elegant argument , based on duality theory, will be presented 
in Section 4.9 and will also result in an alternative proof of Theorem 2 .9 
below. 
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Figure 2 .16 :  Given the vector z, we express it as a convex com­
bination of y and u. The vector u belongs to the polyhedron Q 
whose dimension is lower than that of P. Using induction on di­
mension, we can express the vector u as a convex combination of 
extreme points of Q. These are also extreme points of P. 

Theorem 2.9 A nonempty and bounded polyhedron is the convex 
hull of its extreme points. 

Proof. Every convex combination of extreme points is an element of the 
polyhedron, since polyhedra are convex sets. Thus , we only need to prove 
the converse result and show that every element of a bounded polyhedron 
can be represented as a convex combination of extreme points. 

We define the dimension of a polyhedron P C lRn as the smallest 
integer k such that P is contained in some k-dimensional affine subspace 
of lRn . (Recall from Section 1 . 5 ,  that a k-dimensional affine subspace is a 
translation of a k-dimensional subspace. ) Our proof proceeds by induction 
on the dimension of the polyhedron P. If P is zero-dimensional , it consists 
of a single point . This point is an extreme point of P and the result is true. 

Let us assume that the result is true for all polyhedra of dimension less 
than k. Let P = {x E lRn I a�x ?: bi , i = 1 ,  . . .  , m} be a nonempty bounded 
k-dimensional polyhedron. Then, P is contained in a k-dimensional affine 
subspace S of lRn , which can be assumed to be of the form 

where Xl , . . .  , xk are some vectors in lRn . Let f1 ' . . .  , fn-k be n - k linearly 
independent vectors that are orthogonal to xl , . . .  , xk . Let 9i = flxo , for 
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i = 1 ,  . . .  , n - k. Then, every element x of S satisfies 

i = 1 ,  . . .  , n  - k .  

Since P e S, the same must be true for every element of P. 
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(2 .3) 

Let Z be an element of P. If z is an extreme point of P, then z 
is a trivial convex combination of the extreme points of P and there is 
nothing more to be proved. If z is not an extreme point of P, let us choose 
an arbitrary extreme point y of P and form the half-line consisting of all 
points of the form z + A (Z - y) , where A is a nonnegative scalar . Since 
P is bounded, this half-line must eventually exit P and violate one of the 
constraints, say the constraint a�* x � bi* . By considering what happens 
when this constraint is just about to be violated, we find some A * � 0 and 
U E P, such that 

U = Z + A* (Z - Y) ,  

and 

Since the constraint a�* x � bi* is violated if A grows beyond A* , it follows 
that a�* (z - y) < O. 

Let Q be the polyhedron defined by 

Q {x E P I a�* x = bi * } 
{X E �n l a�x � bi ' i = l , . . .  , m , a�* x = bi * } ' 

Since Z , y E P, we have r;z = gi = r;y which shows that z - y  is orthogonal 
to each vector ri , for i = 1 ,  . . .  , n-k .  On the other hand, we have shown that 
a�* (z - y) < 0,  which implies that the vector ai* is not a linear combination 
of, and is therefore linearly independent from, the vectors ri . Note that 

Q c {x E �n l a�* x = bi '  r{X = gi , i = l , . . .  , n - k } , 

since Eq. (2 .3)  holds for every element of P. The set on the right is defined 
by n - k + 1 linearly independent equality constraints.  Hence , it is an affine 
subspace of dimension k - 1 (see the discussion at the end of Section 1 . 5 ) .  
Therefore, Q has dimension at most k - 1 .  

B y  applying the induction hypothesis t o  Q and u ,  we see that U can 
be expressed as a convex combination 

U = L Aiyi 

of the extreme points yi of Q, where Ai are nonnegative scalars that sum 
to one. Note that at an extreme point y of Q, we must have a�y = bi for n 
linearly independent vectors � ; therefore, y must also be an extreme point 
of P. Using the definition of A * ,  we also have 

U + A*Y 
Z = . 1 + A* 
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Therefore, 
A*Y � Ai i Z = 

1 + A* 
+ � 1 + A* v , 

• 

which shows that z is a convex combination of the extreme points of P. D 

Example 2 .6 Consider the polyhedron 

P = { (X1 , X2 , X3 ) I Xl + X2 + X3 S 1, X1 , X2 , X3 ;::: O} . 

It has four extreme points, namely, Xl = ( 1 , 0 , 0) ,  x2 = (0, 1 , 0) ,  x3 = (0, 0 , 1 ) ,  and 
X4 = (0, 0 , 0) . The vector x = ( 1/3 , 1/3 , 1/4) belongs to P. It can be represented 
as 

1 1 1 2 1 3 1 4 X = -x + -x + -x + -x . 
3 3 4 12  

There is  a converse to Theorem 2 .9 asserting that the convex hull of 
a finite number of points is a polyhedron. This result is proved in the next 
section and again in Section 4.9 .  

2 . 8  Projections of polyhedra: 

Fourier-Motzkin elimination * 

In this section, we present perhaps the oldest method for solving linear pro­
gramming problems . This method is not practical because it requires a very 
large number of steps, but it has some interesting theoretical corollaries . 

The key to this method is the concept of a projection, defined as 
follows: if x = (XI , . . .  , Xn) is a vector in lRn and k ::::: n, the projection 
mapping 7rk : lRn I--t lRk projects x onto its first k coordinates : 

7rk (X) = 7rk (Xl , . . .  , xn ) = (Xl " ' " Xk ) . 

We also define the projection I1k (S) of a set S c lRn by letting 

I1k (S) = {7rk (X) I X E S} ;  

see Figure 2 . 1 7  for an illustration. Note that S is nonempty if and only if 
I1k (S) is nonempty. An equivalent definition is 

I1k (S) = { (Xl , " " Xk ) I there exist Xk+l , · · · ,  Xn s . t .  (Xl " ' " Xn) E S} . 

Suppose now that we wish to decide whether a given polyhedron 
P c lRn is nonempty. If we can somehow eliminate the variable Xn and 
construct the set I1n- l (P) c lRn-l , we can instead consider the presum­
ably easier problem of deciding whether I1n- l (P) is nonempty. If we keep 
eliminating variables one by one, we eventually arrive at the set 111 (P) that 
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Figure 2 . 17: The projections IlI (S) and Il2 (S) of a rotated 
three-dimensional cube. 
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involves a single variable, and whose emptiness is easy to check. The main 
disadvantage of this method is that while each step reduces the dimension 
by one, a large number of constraints is usually added . Exercise 2 .20 deals 
with a family of examples in which the number of constraints increases 
exponentially with the problem dimension. 

We now describe the elimination method. We are given a polyhedron 
P in terms of linear inequality constraints of the form 

n 
L aijXj 2': bi , 
j= l 

i = 1 ,  . . .  , m. 

We wish to eliminate Xn and construct the projection IIn- 1 (P) . 
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Elimination algorithm 

1. Rewrite each constraint 2:7= 1 aijXj ;?: bi in the form 

n- 1 
ainXn ;?: - L aijXj + bi , 

j=l 
i = 1 ,  . . . , m; 

if ain =I- 0,  divide both sides by ain . By letting x = (Xl " ' " Xn- 1 ) , 
we obtain an equivalent representation of P involving the follow­
ing constraints: 

Xn > di + fix, if ain > 0, (2 .4) 

dj + fjx > Xn , if ajn < 0,  ( 2 . 5) 

0 > dk + f£x, if akn = O. (2 .6) 

Here , each di , dj , dk is a scalar, and each fi '  fj , fk is a vector in 
?Rn- 1 . 

2. Let Q be the polyhedron in ?Rn- 1 defined by the constraints 

dj + fjx ;?: di + fix, 
o ;?: dk + f£x, 

if ain > 0 and ajn < 0, 

if akn = O. 

Example 2 .7  Consider the polyhedron defined by the constraints 

Xl + X2 ?: 1 

Xl  + X2 + 2xs ?: 2 

2Xl + 3xs ?: 3 

Xl - 4xs > 4 

-2Xl + X2 - Xs ?: 5 .  

We rewrite these constraints in the form 

0 ?: 1 - Xl - X2 

Xs ?: 1 - (xl /2) - (x2/2) 

Xs ?: 1 - (2X l /3) 

-1 + (xl /4) ?: Xs 

-5 - 2Xl + X2 ?: Xs ·  

Then, the set Q is defined by the constraints 

o ?: 1 - Xl - X2 

- 1 + x l/4 ?: 1 - (xl /2) - (x2/2) 

(2 .7) 
(2 .8) 
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- 1  + xl /4 2 1 - (2Xl /3) 

-5 - 2Xl + X2 > 1 - (xl /2) - (X2 /2) 

-5 - 2Xl + X2 2 1 - (2Xl /3) . 

Theorem 2 .10 The polyhedron Q constructed by the elimination al­
gorithm is equal to the projection IIn- 1 (P) of P. 

Proof. If x E IIn- 1 (P) , there exists some Xn such that (x, xn ) E P. In 
particular, the vector x = (x, xn ) satisfies Eqs . (2 .4)- (2 .6) , from which it 
follows immediately that x satisfies Eqs . (2 .7)- (2 .8 ) , and x E Q.  This shows 
that IIn- I (P) C Q.  

We will now prove that Q C IIn- I (P) . Let x E Q. It follows from 
Eq. (2 .7) that 

Let Xn be any number between the two sides of the above inequality. It 
then follows that (x, xn ) satisfies Eqs . (2 .4)- (2 .6) and, therefore, belongs to 
the polyhedron P. D 

Notice that for any vector x = (Xl , . . .  , xn ) , we have 

Accordingly, for any polyhedron P, we also have 

By generalizing this observation, we see that if we apply the elimination al­
gorithm k times, we end up with the set IIn-k (P) ; if we apply it n - l times, 
we end up with III (P) . Unfortunately, each application of the elimination 
algorithm can increase the number of constraints substantially, leading to 
a polyhedron II1 (P) described by a very large number of constraints. Of 
course ,  since III (P) is one-dimensional, almost all of these constraints will 
be redundant , but this is of no help: in order to decide which ones are 
redundant , we must , in general, enumerate them. 

The elimination algorithm has an important theoretical consequence: 
since the projection Ilk (P) can be generated by repeated application of the 
elimination algorithm, and since the elimination algorithm always produces 
a polyhedron, it follows that a projection IIk (P) of a polyhedron is also a 
polyhedron. This fact might be considered obvious, but a proof simpler 
than the one we gave is not apparent . We now restate it in somewhat 
different language. 
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Corollary 2.4 Let P C lRn+k be a polyhedron. Then, the set 

{x E lRn I there exists y E lRk such that (x, y) E P} 

is also a polyhedron. 

A variation of Corollary 2 .4 states that the image of a polyhedron 
under a linear mapping is also a polyhedron. 

Corollary 2 .5  Let P C lRn be a polyhedron and let A be an m x n 
matrix. Then, the set Q = {Ax I x E P} is also a polyhedron. 

Proof. We have Q = {y E lRm I there exists x E lRn such that Ax = 
y, x E Pl. Therefore, Q is the projection of the polyhedron { (x, y) E 
lRn+m I Ax = y, x E P} onto the y coordinates . D 

Corollary 2 .6 The convex hull of a finite number of vectors is a poly­
hedron. 

Proof. The convex hull 

of a finite number of vectors Xl , . . .  , xk is the image of the polyhedron 

under the linear mapping that maps (>'1 , . . .  , Ak ) to E�l AiXi and is, there­
fore, a polyhedron. D 

We finally indicate how the elimination algorithm can be used to 
solve linear programming problems. Consider the problem of minimizing 
c'x subject to x belonging to a polyhedron P. We define a new variable Xo 
and introduce the constraint Xo = c'x. If we use the elimination algorithm 
n times to eliminate the variables Xl ,  . . . , Xn , we are left with the set 

Q = {xo I there exists x E P such that Xo = c'x} , 

and the optimal cost is equal to the smallest element of Q .  An optimal 
solution x can be recovered by backtracking (Exercise 2 . 2 1 ) . 
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2 . 9  S ummary 

We summarize our main conclusions so far regarding the solutions to linear 
programming problems . 

(a) If the feasible set is nonempty and bounded, there exists an optimal 
solution. Furthermore, there exists an optimal solution which is an 
extreme point .  

(b) I f  the feasible set i s  unbounded, there are the following possibilities: 

(i) There exists an optimal solution which is an extreme point . 

(ii) There exists an optimal solution, but no optimal solution is an 
extreme point . (This can only happen if the feasible set has 
no extreme points; it never happens when the problem is in 
standard form. ) 

(iii) The optimal cost is - 00 .  
Suppose now that the optimal cost i s  finite and that the feasible set 

contains at least one extreme point . Since there are only finitely many 
extreme points, the problem can be solved in a finite number of steps , by 
enumerating all extreme points and evaluating the cost of each one. This 
is hardly a practical algorithm because the number of extreme points can 
increase exponentially with the number of variables and constraints. In the 
next chapter, we will exploit the geometry of the feasible set and develop 
the simplex method, a systematic procedure that moves from one extreme 
point to another, without having to enumerate all extreme points. 

An interesting aspect of the material in this chapter is the distinction 
between geometric (representation independent ) properties of a polyhedron 
and those properties that depend on a particular representation. In that 
respect , we have established the following: 

(a) Whether or not a point is an extreme point (equivalently, vertex, or 
basic feasible solution) is a geometric property. 

(b) Whether or not a point is a basic solution may depend on the way 
that a polyhedron is represented. 

(c) Whether or not a basic or basic feasible solution is degenerate may 
depend on the way that a polyhedron is represented. 

2 . 1 0  Exercises 

Exercise 2 . 1  For each one of the following sets, determine whether it is a poly­
hedron. 

(a) The set of all (x, y) E ))(2 satisfying the constraints 

x cos () + y sin (} S 1 ,  

x 2: 0 ,  

y 2: 0 .  

\;f () E [0, 7r /2] , 
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(b) The set of all x E iR satisfying the constraint x2 - 8x + 15 :S O .  
(c) The empty set . 

Exercise 2 .2 Let f : iRn ....... iR be a convex function and let c be some constant . 
Show that the set S = {x E iRn I f(x) :S c} is convex. 

Exercise 2 .3 (Basic feasible solutions in standard fOrIn polyhedra with 
upper bounds) Consider a polyhedron defined by the constraints Ax = b and 
o :S x :S u, and assume that the matrix A has linearly independent rows. Provide 
a procedure analogous to the one in Section 2 .3  for constructing basic solutions, 
and prove an analog of Theorem 2 .4 .  
Exercise 2.4 We know that every linear programming problem can be con­
verted to an equivalent problem in standard form. We also know that nonempty 
polyhedra in standard form have at least one extreme point . We are then tempted 
to conclude that every nonempty polyhedron has at least one extreme point . Ex­
plain what is wrong with this argument . 

Exercise 2 .5  (ExtreIne points of isoInorphic polyhedra) A mapping f is 
called affine if it is of the form f(x) = Ax + b, where A is a matrix and b is a 
vector. Let P and Q be polyhedra in iRn and iRm , respectively. We say that P 
and Q are isomorphic if there exist affine mappings f : P ....... Q and 9 : Q ....... P 
such that g (J(x» ) = x for all x E P, and f (g (y» ) = y for all y E Q. (Intuitively, 
isomorphic polyhedra have the same shape . )  

(a) If P and Q are isomorphic, show that there exists a one-to-one correspon­
dence between their extreme points. In particular , if f and 9 are as above, 
show that x is an extreme point of P if and only if f (x) is an extreme point 
of Q. 

(b) (Introducing slack variables leads to an isoInorphic polyhedron) 
Let P = {x E iRn I Ax 2: b, x 2: O} ,  where A is a matrix of dimensions 
k x n. Let Q = { (x , z) E iRnH I Ax - z = b, x 2: 0 ,  z 2: o} .  Show that P 
and Q are isomorphic. 

Exercise 2.6 (Caratheodory's theoreIn) Let AI , . . .  , An be a collection of 
vectors in iRm . 

(a) Let 

c = {� AiAi I AI , . . . , An 2: o} . 

Show that any element of C can be expressed in the form L�=l AiAi , with 
Ai 2: 0, and with at most m of the coefficients Ai being nonzero. Hint: 
Consider the polyhedron 

(b) Let P be the convex hull of the vectors Ai : 
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Show that any element of P can be expressed in the form L:�l AiAi , where 
L:�l Ai = 1 and Ai ::::: 0 for all i, with at most m + 1 of the coefficients Ai 
being nonzero. 

Exercise 2 .7 Suppose that {x E �n I a�x ::::: bi , i = 1, . . .  , m} and {x E �n I 
g�x ::::: hi , i = 1 ,  . . .  , k} are two representations of the same nonempty polyhedron. 
Suppose that the vectors aI , . . .  , am span �n . Show that the same must be true 
for the vectors gl , . . .  , gk . 

Exercise 2 .8  Consider the standard form polyhedron {x I Ax = b, x ::::: O} ,  
and assume that the rows of  the matrix A are linearly independent . Let x be a 
basic solution, and let J = {i I Xi =1= O} . Show that a basis is associated with the 
basic solution x if and only if every column Ai , i E J, is in the basis . 

Exercise 2 .9  Consider the standard form polyhedron {x I Ax = b, x ::::: O } ,  
and assume that the rows of  the matrix A are linearly independent . 

(a) Suppose that two different bases lead to the same basic solution. Show 
that the basic solution is degenerate. 

(b) Consider a degenerate basic solution. Is it true that it corresponds to two 
or more distinct bases? Prove or give a counterexample. 

(c) Suppose that a basic solution is degenerate. Is it true that there exists an 
adjacent basic solution which is degenerate? Prove or give a counterexam­
ple. 

Exercise 2 .10 Consider the standard form polyhedron P = {x I Ax = b, x ::::: 
O} .  Suppose that the matrix A has dimensions m x n and that its rows are 
linearly independent . For each one of the following statements, state whether it 
is true or false. If true, provide a proof, else, provide a counterexample. 

(a) If n = m + 1 ,  then P has at most two basic feasible solutions . 

(b) The set of all optimal solutions is bounded. 

(e) At every optimal solution, no more than m variables can be positive. 

(d) If there is more than one optimal solution, then there are uncountably 
many optimal solutions . 

(e) If there are several optimal solutions , then there exist at least two basic 
feasible solutions that are optimal. 

(f) Consider the problem of minimizing max{ e'x, d'x} over the set P. If this 
problem has an optimal solution, it must have an optimal solution which 
is an extreme point of P. 

Exercise 2 . 1 1  Let P = {x E �n I Ax ::::: b} .  Suppose that at a particular 
basic feasible solution, there are k active constraints, with k > n. Is it true 
that there exist exactly (�) bases that lead to this basic feasible solution? Here 
(�) = k! / ( n! (k - n) !) is the number of ways that we can choose n out of k given 
items. 

Exercise 2 . 12  Consider a nonempty polyhedron P and suppose that for each 
variable Xi we have either the constraint Xi ::::: 0 or the constraint Xi ::; O. Is it 
true that P has at least one basic feasible solution? 
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Exercise 2 .13 Consider the standard form polyhedron P = {x I Ax = b, x 2: 
o} .  Suppose that the matrix A, of dimensions m x n, has linearly independent 
rows, and that all basic feasible solutions are nondegenerate. Let x be an element 
of P that has exactly m positive components. 

(a) Show that x is a basic feasible solution. 
(b) Show that the result of part (a) is false if the nondegeneracy assumption is 

removed. 

Exercise 2 .14 Let P be a bounded polyhedron in )Rn , let a be a vector in )Rn , 
and let b be some scalar . We define 

Q =  {x E P l a'x = b} .  

Show that every extreme point of Q is either an extreme point of P or a convex 
combination of two adjacent extreme points of P. 

Exercise 2 .15 (Edges joining adjacent vertices) Consider the polyhedron 
P = {x E )Rn I a�x 2: bi , i = 1 ,  . . . , m} . Suppose that u and v are distinct 
basic feasible solutions that satisfy a�u = a�v = bi , i = 1 ,  . . .  , n - 1, and that 
the vectors al , . . .  , an- l  are linearly independent . (In particular , u and v are 
adjacent . ) Let L = {Au + ( 1 - A)V I ° ::; A ::; I } be the segment that joins u and 
v. Prove that L = {z E P l a�z = bi ,  i = 1 , . . .  , n - 1 } .  

Exercise 2 .16 Consider the set {x  E )Rn I Xl = . . .  = Xn- l  = 0, 0 ::; Xn ::; I} .  
Could this b e  the feasible set o f  a problem in  standard form? 

Exercise 2 .17 Consider the polyhedron {x E )Rn I Ax ::; b, x 2: o} and a 
nondegenerate basic feasible solution x* . We introduce slack variables z and 
construct a corresponding polyhedron { (x, z) I Ax + z = b, x 2: 0, z 2: o} in 
standard form. Show that (x* , b-Ax* ) is a nondegenerate basic feasible solution 
for the new polyhedron. 

Exercise 2 .18 Consider a polyhedron P = {x I Ax 2: b} . Given any E > 0, 
show that there exists some b with the following two properties : 

(a) The absolute value of every component of b - b is bounded by E .  

(b) Every basic feasible solution in the polyhedron P = {x I Ax 2: b} is 
nondegenerate. 

Exercise 2 . 19*  Let P c  )Rn be a polyhedron in standard form whose definition 
involves m linearly independent equality constraints. Its dimension is defined as 
the smallest integer k such that P is contained in some k-dimensional affine 
subspace of )Rn . 

(a) Explain why the dimension of P is at most n - m. 
(b) Suppose that P has a nondegenerate basic feasible solution. Show that the 

dimension of P is equal to n - m. 
(c) Suppose that x is  a degenerate basic feasible solution. Show that x is  degen­

erate under every standard form representation of the same polyhedron (in 
the same space )Rn) .  Hint: Using parts (a) and (b) , compare the number of 
equality constraints in two representations of P under which x is degenerate 
and nondegenerate, respectively. Then, count active constraints. 
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Exercise 2 .20 * Consider the Fourier-Motzkin elimination algorithm. 

(a) Suppose that the number m of constraints defining a polyhedron P is even. 
Show, by means of an example, that the elimination algorithm may produce 
a description of the polyhedron IIn- l (P) involving as many as m 2/4 linear 
constraints, but no more than that . 

(b) Show that the elimination algorithm produces a description of the one­
dimensional polyhedron III (P) involving no more than m2n- 1  /22n -2 con­
straints. 

(c) Let n = 2P +p+ 2 ,  where p is a nonnegative integer. Consider a polyhedron 
in Rn defined by the 8 (�) constraints 

1 :s: i < j < k :s: n, 

where all possible combinations are present . Show that after p eliminations, 
we have at least 

22P+2 

constraints. (Note that this number increases exponentially with n. ) 

Exercise 2 .21 Suppose that Fourier-Motzkin elimination is used in the manner 
described at the end of Section 2 .8  to find the optimal cost in a linear programming 
problem. Show how this approach can be augmented to obtain an optimal solution 
as well . 

Exercise 2 .22 Let P and Q be polyhedra in Rn . Let P + Q = {x + y I x E 
P, y E Q} .  
(a) Show that P + Q i s  a polyhedron. 

(b) Show that every extreme point of P + Q is the sum of an extreme point of 
P and an extreme point of Q.  

2 . 1 1  Notes and sources 

The relation between algebra and geometry goes far back in the history of 
mathematics , but was limited to two and three-dimensional spaces . The 
insight that the same relation goes through in higher dimensions only came 
in the middle of the nineteenth century. 

2.2 .  Our algebraic definition of basic (feasible) solutions for general poly­
hedra, in terms of the number of linearly independent active con­
straints, is not common. Nevertheless, we consider it to be quite 
central, because it provides the main bridge between the algebraic 
and geometric viewpoint , it allows for a unified treatment , and shows 
that there is not much that is special about standard form problems . 

2.8. Fourier-Motzkin elimination is due to Fourier ( 1827) , Dines ( 1918) , 
and Motzkin ( 1936) . 
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We saw in Chapter 2, that if a linear programming problem in standard 
form has an optimal solution, then there exists a basic feasible solution that 
is optimal . The simplex method is based on this fact and searches for an op­
timal solution by moving from one basic feasible solution to another , along 
the edges of the feasible set , always in a cost reducing direction. Eventu­
ally, a basic feasible solution is reached at which none of the available edges 
leads to a cost reduction; such a basic feasible solution is optimal and the 
algorithm terminates . In this chapter, we provide a detailed development 
of the simplex method and discuss a few different implementations , includ­
ing the simplex tableau and the revised simplex method. We also address 
some difficulties that may arise in the presence of degeneracy. We provide 
an interpretation of the simplex method in terms of column geometry, and 
we conclude with a discussion of its running time, as a function of the 
dimension of the problem being solved. 

Throughout this chapter , we consider the standard form problem 

minimize c' x 
subject to Ax b 

x > 0 ,  

and we let P be the corresponding feasible set . We assume that the dimen­
sions of the matrix A are m x n and that its rows are linearly independent . 
We continue using our previous notation: Ai is the ith column of the matrix 
A, and a� is its ith row. 

3 . 1  Optimality conditions 

Many optimization algorithms are structured as follows : given a feasible 
solution, we search its neighborhood to find a nearby feasible solution with 
lower cost . If no nearby feasible solution leads to a cost improvement , the 
algorithm terminates and we have a locally optimal solution. For general 
optimization problems, a locally optimal solution need not be (globally) 
optimal. Fortunately, in linear programming, local optimality implies global 
optimality; this is because we are minimizing a convex function over a 
convex set (cf. Exercise 3 . 1 ) .  In this section, we concentrate on the problem 
of searching for a direction of cost decrease in a neighborhood of a given 
basic feasible solution, and on the associated optimality conditions . 

Suppose that we are at a point x E P and that we contemplate moving 
away from x, in the direction of a vector d E �n . Clearly, we should only 
consider those choices of d that do not immediately take us outside the 
feasible set . This leads to the following definition, illustrated in Figure 3 . 1 .  
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Figure 3 . 1 :  Feasible directions at different points of a polyhedron. 

Definition 3 . 1  Let x be an element of a polyhedron P. A vector 
d E �n is said to be a feasible direction at x, if there exists a 
positive scalar e for which x + ed E P. 

Let x be a basic feasible solution to the standard form problem, 
let B(l ) ,  . . .  , B (m) be the indices of the basic variables , and let B = 
[AB(l ) . . . AB(m) ] be the corresponding basis matrix. In particular , we have 
Xi = 0 for every nonbasic variable , while the vector XB = (x B ( l ) ' . . .  , x  B(m) ) 
of basic variables is given by 

XB = B-lb. 
We consider the possibility of moving away from x, to a new vector 

x + ed, by selecting a nonbasic variable Xj (which is initially at zero level) ,  
and increasing it t o  a positive value e ,  while keeping the remaining nonbasic 
variables at zero. Algebraically, dj = 1 ,  and di = 0 for every nonbasic index 
i other than j .  At the same time, the vector XB of basic variables changes 
to XB + edB , where dB = (dB( l ) , dB (2) , • • . , dB(m) ) is the vector with those 
components of d that correspond to the basic variables . 

Given that we are only interested in feasible solutions , we require 
A (x + ed) = b, and since x is feasible , we also have Ax = b. Thus , for the 
equality constraints to be satisfied for e > 0, we need Ad = o. Recall now 
that dj = 1 ,  and that di = 0 for all other nonbasic indices i. Then, 

n m 
0 =  Ad = L Aidi = L AB(i) dB (i) + Aj = BdB + Aj . 

i= l i=l 
Since the basis matrix B is invertible , we obtain 

dB = -B-lAj . (3 . 1 )  
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The direction vector d that we have just constructed will be referred 
to as the jth basic direction. We have so far guaranteed that the equality 
constraints are respected as we move away from x along the basic direction 
d. How about the nonnegativity constraints? We recall that the variable 
Xj is increased, and all other nonbasic variables stay at zero level. Thus, 
we need only worry about the basic variables . We distinguish two cases : 

(a) Suppose that x is a nondegenerate basic feasible solution. Then, 
XB > 0, from which it follows that XB + OdB ?: 0, and feasibility is 
maintained, when 0 is sufficiently small . In particular , d is a feasible 
direction. 

(b) Suppose now that x is degenerate. Then, d is not always a feasible di­
rection. Indeed, it is possible that a basic variable XB(i) is zero, while 
the corresponding component dB(i) of dB = -B-1 Aj is negative. In 
that case, if we follow the jth basic direction, the nonnegativity con­
straint for XB(i) is immediately violated, and we are led to infeasible 
solutions; see Figure 3 .2 .  

We now study the effects on the cost function i f  we move along a basic 
direction. If d is the jth basic direction, then the rate c'd of cost change 
along the direction d is given by C�dB + Cj , where CB = (CB ( l ) , " "  CB (m) ) ' 
Using Eq. (3 . 1 ) ,  this is the same as Cj - C�B-1 Aj . This quantity is im­
portant enough to warrant a definition. For an intuitive interpretation, Cj 
is the cost per unit increase in the variable Xj , and the term -C�B-1 Aj is 
the cost of the compensating change in the basic variables necessitated by 
the constraint Ax = h.  

Definition 3 .2  Let x be a basic solution, let B be an associated basis 
matrix, and let CB be the vector of costs of the basic variables. For 
each j ,  we define the reduced cost (;j of the variable Xj according to 
the formula - , B- 1A Cj = Cj - cB j . 

Example 3 .1  Consider the linear programming problem 

minimize CI XI + C2X2 + C3X3 + C4X4 
subject to Xl  + X2 + X3 + X4 

2XI + 3X3 + 4X4 
Xl , X2 , X3 , X4 2: O .  

2 
2 

The first two columns of the matrix A are Al = ( 1 , 2) and A2 = ( 1 , 0 ) .  Since 
they are linearly independent , we can choose Xl and X2 as our basic variables. 
The corresponding basis matrix is 
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Figure 3 .2 :  Let n = 5, n - m  = 2. As discussed in Section 1 .4 , we 
can visualize the feasible set by standing on the two-dimensional 
set defined by the constraint Ax = b, in which case, the edges of 
the feasible set are associated with the nonnegativity constraints 
Xi 2: O. At the nondegenerate basic feasible solution E, the vari­
ables Xl and X3 are at zero level (nonbasic) and X2 , X4 , X5 are 
positive basic variables. The first basic direction is obtained by 
increasing Xl , while keeping the other nonbasic variable X3 at zero 
level. This is the direction corresponding to the edge EF. Con­
sider now the degenerate basic feasible solution F and let X3 , X5 

be the nonbasic variables . Note that X4 is a basic variable at zero 
level. A basic direction is obtained by increasing X3 , while keeping 
the other nonbasic variable X5 at zero level. This is the direction 
corresponding to the line FG and it takes us outside the feasible 
set . Thus, this basic direction is not a feasible direction. 

85 

We set X3 = X4 = 0 ,  and solve for Xl , X2 , to obtain Xl  = 1 and X2 = 1 . We have 
thus obtained a nondegenerate basic feasible solution. 

A basic direction corresponding to an increase in the nonbasic variable X3 , 
is constructed as follows. We have d3 = 1 and d4 = O. The direction of change of 
the basic variables is obtained using Eq. (3 . 1 ) : 

1/2 ] [ 1 ]  [ -3/2 ] 

-1/2 3 1/2 ' 

The cost of moving along this basic direction is c'd = -3Cl /2 + c2 /2 + C3 . This 
is the same as the reduced cost of the variable X3 . 

Consider now Definition 3 .2  for the case of a basic variable . Since B 
is the matrix [AB ( l ) ' " AB (rn) l , we have B-1 [AB(1 ) ' " AB(rn) l = I, where 
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I is the m x m identity matrix. In particular , B-1 AB(i) is the ith column 
of the identity matrix, which is the ith unit vector ei . Therefore, for every 
basic variable XB(i) , we have 

- , B- 1A ' 0 CB (i) = CB (i) - CB B (i) = CB (i) - CBei = CB (i) - CB (i) = , 

and we see that the reduced cost of every basic variable is zero . 
Our next result provides us with optimality conditions . Given our 

interpretation of the reduced costs as rates of cost change along certain 
directions, this result is intuitive. 

Theorem 3 .1  Consider a basic feasible solution x associated with a 
basis matrix B, and let c be the corresponding vector of reduced costs. 

(a) If c � 0 ,  then x is optimal. 
(b) If x  is optimal and non degenerate, then c � o .  

Proof. 
(a) We assume that c � 0 ,  we let y be an arbitrary feasible solution, and 

we define d = y - x. Feasibility implies that Ax = Ay = b and, 
therefore, Ad = o. The latter equality can be rewritten in the form 

BdB + L Aidi = 0 ,  
iEN 

where N is the set of indices corresponding to the nonbasic variables 
under the given basis . Since B is invertible, we obtain 

and 

dB = - L B-1Aidi ,  
iEN 

c'd = C�dB + L Cidi = L(Ci - C�B-1Ai )di = L Cidi . 
iEN iEN iEN 

For any nonbasic index i E N, we must have Xi = 0 and, since y 
is feasible, Yi � O. Thus, di � 0 and cidi � 0, for all i E N. We 
conclude that c' (y - x) = c'd � 0 ,  and since y was an arbitrary 
feasible solution, x is optimal . 

(b) Suppose that x is a nondegenerate basic feasible solution and that 
Cj < 0 for some j .  Since the reduced cost of a basic variable is always 
zero, Xj must be a nonbasic variable and Cj is the rate of cost change 
along the jth basic direction. Since x is nondegenerate ,  the jth basic 
direction is a feasible direction of cost decrease, as discussed earlier. 
By moving in that direction, we obtain feasible solutions whose cost 
is less than that of x, and x is not optimal . D 
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Note that Theorem 3 .1  allows the possibility that x i s  a (degenerate) 
optimal basic feasible solution, but that Cj < 0 for some nonbasic index j .  
There is an analog of Theorem 3 . 1  that provides conditions under which 
a basic feasible solution x is a unique optimal solution; see Exercise 3 .6 .  
A related view of the optimality conditions is  developed in Exercises 3 .2 
and 3 .3 .  

According to Theorem 3 .1 ,  in order to decide whether a nondegenerate 
basic feasible solution is optimal, we need only check whether all reduced 
costs are nonnegative , which is the same as examining the n - m basic 
directions . If x is a degenerate basic feasible solution, an equally simple 
computational test for determining whether x is optimal is not available 
(see Exercises 3 .7  and 3 .8) . Fortunately, the simplex method, as developed 
in subsequent sections, manages to get around this difficulty in an effective 
manner . 

Note that in order to use Theorem 3 . 1  and assert that a certain ba­
sic solution is optimal, we need to satisfy two conditions : feasibility, and 
nonnegativity of the reduced costs. This leads us to the following definition. 

Definition 3.3 A basis matrix B is said to be optimal if: 

(a) B- 1b  � 0, and 

(b) c' = c' - c�B- l  A � 0' . 

Clearly, if an optimal basis is found, the corresponding basic solution 
is feasible , satisfies the optimality conditions, and is therefore optimal . On 
the other hand, in the degenerate case, having an optimal basic feasible 
solution does not necessarily mean that the reduced costs are nonnegative. 

3 . 2  Development of the simplex method 

We will now complete the development of the simplex method.  Our main 
task is to work out the details of how to move to a better basic feasible 
solution, whenever a profitable basic direction is discovered. 

Let us assume that every basic feasible solution is nondegenerate. 
This assumption will remain in effect until it is explicitly relaxed later 
in this section. Suppose that we are at a basic feasible solution x and 
that we have computed the reduced costs Cj of the nonbasic variables . If 
all of them are nonnegative , Theorem 3 . 1  shows that we have an optimal 
solution, and we stop. If on the other hand, the reduced cost Cj of a nonbasic 
variable Xj is negative, the jth basic direction d is a feasible direction of 
cost decrease . [This is the direction obtained by letting dj = 1 ,  di = 0 
for i -=I- B(1 ) , . . .  , B(m) , j , and dB = -B- 1Aj . ]  While moving along this 
direction d, the nonbasic variable Xj becomes positive and all other nonbasic 
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variables remain at zero . We describe this situation by saying that Xj (or 
Aj ) enters or is brought into the basis. 

Once we start moving away from x along the direction d, we are 
tracing points of the form x + Od, where 0 :2: O. Since costs decrease along 
the direction d, it is desirable to move as far as possible . This takes us to 
the point x + O*d, where 

0* = max { 0 :2: 0 I x + Od E p} .  

The resulting cost change is O* c'd, which is the same as O*Cj . 
We now derive a formula for 0* . Given that Ad = 0 ,  we have A(x + 

Od) = Ax = b for all 0, and the equality constraints will never be violated. 
Thus , x + Od can become infeasible only if one of its components becomes 
negative. We distinguish two cases: 

(a) If d :2: 0, then x + Od :2: ° for all 0 :2: 0, the vector x + Od never 
becomes infeasible , and we let 0* = 00 .  

(b) If  di < 0 for some i ,  the constraint Xi + Odi :2: 0 becomes 0 � -xi/di . 
This constraint on 0 must be satisfied for every i with di < O. Thus , 
the largest possible value of 0 is 

0* = min (_ Xi ) . { i l d; <O} di 

Recall that if Xi is a nonbasic variable, then either Xi is the entering 
variable and di = 1 ,  or else di = O. In either case, di is nonnegative. 
Thus , we only need to consider the basic variables and we have the 
equivalent formula 

ll* • ( XS (i) ) u = mIn - -- . { i=l , . . .  ,m l dB (; ) <O} dS(i) 
(3 .2) 

Note that 0* > 0, because XS (i) > 0 for all i ,  as a consequence of 
nondegeneracy. 

Example 3 .2 This is a continuation of Example 3 . 1  from the previous section, 
dealing with the linear programming problem 

minimize C1 Xl  + C2X2 + C3X3 + C4X4 
subject to Xl + X2 + X3 + X4 2 

2Xl + 3X3 + 4X4 2 
Xl , X2 , X3 , X4 � O. 

Let us again consider the basic feasible solution x = ( 1 , 1 , 0 , 0) and recall that the 
reduced cost C3 of the nonbasic variable X3 was found to be -3cd2 + c2/2 + C3 . 

Suppose that c = (2 , 0 , 0 , 0) , in which case, we have C3 = -3.  Since C3 is negative, 
we form the corresponding basic direction, which is d = (-3/2 , 1/2 , 1 , 0) ,  and 
consider vectors of the form x+9d, with 9 � O. As 9 increases, the only component 
of x that decreases is the first one (because dl < 0) . The largest possible value 
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of () is given by ()* = - (X I /dl ) = 2/3. This takes us to the point y = x + 2d/3 = 
(0, 4/3, 2/3, 0 ) .  Note that the columns A2 and A3 corresponding to the nonzero 
variables at the new vector y are ( 1 , 0) and ( 1 , 3) , respectively, and are linearly 
independent . Therefore, they form a basis and the vector y is a new basic feasible 
solution. In particular , the variable X3 has entered the basis and the variable Xl 
has exited the basis . 

Once ()* is chosen, and assuming it is finite, we move to the new 
feasible solution y = x+()*d.  Since Xj = 0 and dj = 1 ,  we have Yj = ()* > O. 
Let £ be a minimizing index in Eq. (3 .2 ) , that is , 

in particular, 

and 

_ XB(R) = min (_ XB(i) ) = ()* . 
dB(£) {i= l , . . .  ,m l dB (i ) <O} dB (i) 

, 

dB(R) < 0, 

XB (R) + ()*dB (R) = O. 
We observe that the basic variable x B(e) has become zero, whereas the 
nonbasic variable Xj has now become positive, which suggests that Xj should 
replace x B(R) in the basis . Accordingly, we take the old basis matrix B and 
replace AB(e) with Aj , thus obtaining the matrix 

I 
AB(R- l ) 

I 
A� (m) ] .  (3 .3) 

Equivalently, we are replacing the set {B(I ) , . . .  , B(m) } of basic indices by 
a new set {B(I ) , . . .  , B (m) } of indices given by 

B(i) = { l!(i) ,  
J ,  

(3 .4) 

Theorem 3 .2  
(a) The columns AB(i) , i =1= £, and Aj are linearly independent and, 

therefore, B is a basis matrix. 

(b) The vector y = x + ()*d is a basic feasible solution associated 
with the basis matrix B .  

Proof. 
(a) If the vectors AB(i) ' i = 1 ,  . . .  , m, are linearly dependent , then there 

exist coefficients AI , . .  " Am , not all of them zero, such that 
m 

L AiAB(i) = 0 ,  
i=l 
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which implies that 
m 
L AiB- 1 AB(i) = 0,  
i=l 

and the vectors B-1 AB(i) are also linearly dependent . To show that 

this is not the case , we will prove that the vectors B- 1 AB (i) , i =f. e, 
and B- 1  Aj are linearly independent . We have B- 1 B = I. Since 
AB(i) is the ith column of B,  it follows that the vectors B- 1 AB(i) , 
i =f. e, are all the unit vectors except for the eth unit vector . In 
particular , they are linearly independent and their eth component is 
zero . On the other hand, B- 1 Aj is equal to -dB . Its eth entry, 
-dB(R) , is nonzero by the definition of e. Thus , B- 1Aj is linearly 
independent from the unit vectors B- 1 AB(i) , i =f. e. 

(b) We have y ?:  0, Ay = b, and Yi = 0 for i =f. B( l ) , . . . , B (m) . Fur­
thermore, the columns AB(l ) ' . . .  ' AB(m) have just been shown to be 
linearly independent . It follows that y is a basic feasible solution 
associated with the basis matrix B .  D 

Since B* is positive , the new basic feasible solution x + B*d is distinct 
from x; since d is a direction of cost decrease, the cost of this new basic 
feasible solution is strictly smaller . We have therefore accomplished our 
objective of moving to a new basic feasible solution with lower cost . We 
can now summarize a typical iteration of the simplex method, also known 
as a pivot (see Section 3 .6 for a discussion of the origins of this term) . For 
our purposes , it is convenient to define a vector u = (U1 ' . . .  , um)  by letting 

where Aj is the column that enters the basis ; in particular , Ui = -dB(i) , 
for i = 1 ,  . . .  , m. 

An iteration of the simplex method 
1. In a typical iteration, we start with a basis consisting of the 

basic columns AB( l ) , . . .  , AB(m) , and an associated basic feasible 
solution x. 

2 .  Compute the reduced costs Cj = Cj - C�B- 1  Aj for all nonbasic 
indices j . If they are all nonnegative, the current basic feasible 
solution is optimal, and the algorithm terminates; else , choose 
some j for which Cj < O . 

3. Compute u = B- 1 Aj . If no component of u is positive, we have 
B* = 00, the optimal cost is -00,  and the algorithm terminates. 
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4. If some component of u is positive, let 

()* = min 
XB(i) 

{ i= l ,  . . .  ,m lui >O } Ui 
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5 .  Let C be such that ()* = XB(R) /Uf. ' Form a new basis by replacing 
AB(f.) with Aj • If y is the new basic feasible solution, the values 
of the new basic variables are Yj = ()* and YB(i) = XB(i) - ()*Ui , 
i -I C. 

The simplex method is initialized with an arbitrary basic feasible 
solution, which, for feasible standard form problems, is guaranteed to exist . 
The following theorem states that , in the nondegenerate case, the simplex 
method works correctly and terminates after a finite number of iterations . 

Theorem 3.3 Assume that the feasible set is nonempty and that ev­
ery basic feasible solution is nondegenerate. Then, the simplex method 
terminates after a finite number of iterations. At termination, there 
are the following two possibilities: 

(a) We have an optimal basis B and an associated basic feasible 
solution which is optimal. 

(b) We have found a vector d satisfying Ad = 0 ,  d � 0 ,  and c'd < 0, 
and the optimal cost is -00.  

Proof. I f  the algorithm terminates due to  the stopping criterion in  Step 
2, then the optimality conditions in Theorem 3 . 1  have been met , B is an 
optimal basis, and the current basic feasible solution is optimal. 

If the algorithm terminates because the criterion in Step 3 has been 
met , then we are at a basic feasible solution x and we have discovered a 
nonbasic variable Xj such that Cj < ° and such that the corresponding basic 
direction d satisfies Ad = 0 and d � O. In particular , x + ()d E P for all 
() > 0. Since c'd = Cj < 0, by taking () arbitrarily large, the cost can be 
made arbitrarily negative, and the optimal cost is -00.  

At each iteration, the algorithm moves by a positive amount ()* along 
a direction d that satisfies c'd < 0. Therefore, the cost of every successive 
basic feasible solution visited by the algorithm is strictly less than the cost 
of the previous one, and no basic feasible solution can be visited twice . 
Since there is a finite number of basic feasible solutions, the algorithm 
must eventually terminate. D 

Theorem 3 .3  provides an independent proof of some of the results 
of Chapter 2 for nondegenerate standard form problems . In particular , 
it shows that for feasible and nondegenerate problems, either the optimal 



92 Chap. 3 The simplex method 

cost is - 00 ,  or there exists a basic feasible solution which is optimal (cf. 
Theorem 2 .8  in Section 2.6) . While the proof given here might appear more 
elementary, its extension to the degenerate case is not as simple . 

The simplex method for degenerate problems 

We have been working so far under the assumption that all basic feasible 
solutions are nondegenerate .  Suppose now that the exact same algorithm 
is used in the presence of degeneracy. Then, the following new possibilities 
may be encountered in the course of the algorithm. 

(a) If the current basic feasible solution x is degenerate, ()* can be equal 
to zero, in which case, the new basic feasible solution y is the same as 
x. This happens if some basic variable XB(l) is equal to zero and the 
corresponding component dB(l) of the direction vector d is negative. 
Nevertheless, we can still define a new basis B, by replacing AB(l) 
with Aj [ef. Eqs. (3 .3)-(3 .4) ] , and Theorem 3 . 2  is still valid. 

(b) Even if ()* is positive, it may happen that more than one of the original 
basic variables becomes zero at the new point x + ()* d. Since only one 
of them exits the basis, the others remain in the basis at zero level, 
and the new basic feasible solution is degenerate. 

Basis changes while staying at the same basic feasible solution are 
not in vain. As illustrated in Figure 3 .3 ,  a sequence of such basis changes 
may lead to the eventual discovery of a cost reducing feasible direction. On 
the other hand, a sequence of basis changes might lead back to the initial 
basis , in which case the algorithm may loop indefinitely. This undesirable 
phenomenon is called cycling. An example of cycling is given in Section 3.3 ,  
after we develop some bookkeeping tools for carrying out the mechanics of 
the algorithm. It is sometimes maintained that cycling is an exceptionally 
rare phenomenon. However, for many highly structured linear program­
ming problems, most basic feasible solutions are degenerate, and cycling 
is a real possibility. Cycling can be avoided by judiciously choosing the 
variables that will enter or exit the basis (see Section 3 .4) . We now discuss 
the freedom available in this respect . 

Pivot Selection 

The simplex algorithm, as we described it , has certain degrees of freedom: 
in Step 2, we are free to choose any j whose reduced cost Cj is negative; 
also, in Step 5, there may be several indices £ that attain the minimum in 
the definition of ()* , and we are free to choose any one of them. Rules for 
making such choices are called pivoting rules. 

Regarding the choice of the entering column, the following rules are 
some natural candidates: 
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1 

Figure 3 .3 :  We visualize a problem in standard form, with 
n - m = 2, by standing on the two-dimensional plane defined by 
the equality constraints Ax = b. The basic feasible solution x is 
degenerate. If X4 and X5 are the nonbasic variables, then the two 
corresponding basic directions are the vectors g and f.  For either of 
these two basic directions, we have e* = O .  However, if we perform 
a change of basis , with X4 entering the basis and X6 exiting, the 
new nonbasic variables are X5 and X6 , and the two basic directions 
are h and -g.  (The direction -g is the one followed if X6 is in­
creased while X5 is kept at zero . ) In particular, we can now follow 
direction h to reach a new basic feasible solution y with lower cost . 

93 

(a) Choose a column Aj , with Cj < 0, whose reduced cost is the most 
negative. Since the reduced cost is the rate of change of the cost 
function, this rule chooses a direction along which costs decrease at 
the fastest rate. However, the actual cost decrease depends on how 
far we move along the chosen direction. This suggests the next rule . 

(b) Choose a column with Cj < 0 for which the corresponding cost de­
crease e* I Cj I is largest .  This rule offers the possibility of reaching 
optimality after a smaller number of iterations . On the other hand, 
the computational burden at each iteration is larger, because we need 
to compute e* for each column with Cj < O . The available empirical 
evidence suggests that the overall running time does not improve. 

For large problems, even the rule that chooses the most negative Cj 
can be computationally expensive, because it requires the computation of 
the reduced cost of every variable. In practice, simpler rules are sometimes 
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used, such as the smallest subscript rule , that chooses the smallest j for 
which Cj is negative. Under this rule , once a negative reduced cost is 
discovered, there is no reason to compute the remaining reduced costs. 
Other criteria that have been found to improve the overall running time 
are the Devex (Harris , 1973) and the steepest edge rule (Goldfarb and Reid, 
1977) . Finally, there are methods based on candidate lists whereby one 
examines the reduced costs of nonbasic variables by picking them one at 
a time from a prioritized list . There are different ways of maintaining 
such prioritized lists, depending on the rule used for adding, removing, or 
reordering elements of the list . 

Regarding the choice of the exiting column, the simplest option is 
again the smallest subscript rule: out of all variables eligible to exit the 
basis , choose one with the smallest subscript . It turns out that by following 
the smallest subscript rule for both the entering and the exiting column, 
cycling can be avoided (cf. Section 3.4) . 

3 . 3  Implementations of the simplex method 

In this section, we discuss some ways of carrying out the mechanics of the 
simplex method.  It should be clear from the statement of the algorithm 
that the vectors B- 1 Aj play a key role . If these vectors are available , 
the reduced costs, the direction of motion, and the stepsize ()* are easily 
computed. Thus , the main difference between alternative implementations 
lies in the way that the vectors B-1 Aj are computed and on the amount 
of related information that is carried from one iteration to the next . 

When comparing different implementations, it is important to keep 
the following facts in mind (cf. Section 1 .6) . If B is a given m x m matrix 
and b E iRm is a given vector, computing the inverse of B or solving a linear 
system of the form Bx = b takes O (m3 ) arithmetic operations . Computing 
a matrix-vector product Bb takes O (m2 ) operations . Finally, computing 
an inner product p'b of two m-dimensional vectors takes O (m) arithmetic 
operations . 

Naive implementation 

We start by describing the most straightforward implementation in which 
no auxiliary information is carried from one iteration to the next . At the 
beginning of a typical iteration, we have the indices B(l ) ,  . . .  , B (m) of 
the current basic variables . We form the basis matrix B and compute 
p' = C�B- 1 , by solving the linear system p'B = c� for the unknown vector 
p. (This vector p is called the vector of simplex multipliers associated with 
the basis B. )  The reduced cost Cj = Cj - C�B- 1 Aj of any variable Xj is 
then obtained according to the formula 
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Depending on the pivoting rule employed, we may have to compute all of the 
reduced costs or we may compute them one at a time until a variable with 
a negative reduced cost is encountered. Once a column Aj is selected to 
enter the basis , we solve the linear system Bu = Aj in order to determine 
the vector u = B-1 Aj . At this point , we can form the direction along 
which we will be moving away from the current basic feasible solution. We 
finally determine 0* and the variable that will exit the basis , and construct 
the new basic feasible solution. 

We note that we need O (m3 ) arithmetic operations to solve the sys­
tems p'B = c� and Bu = Aj . In addition, computing the reduced costs of 
all variables requires O (mn) arithmetic operations , because we need to form 
the inner product of the vector p with each one of the nonbasic columns Aj . 
Thus , the total computational effort per iteration is O (m3 + mn) . We will 
see shortly that alternative implementations require only O(m2 +mn) arith­
metic operations . Therefore, the implementation described here is rather 
inefficient , in general . On the other hand, for certain problems with a spe­
cial structure , the linear systems p'B = c� and Bu = Aj can be solved 
very fast , in which case this implementation can be of practical interest . 
We will revisit this point in Chapter 7, when we apply the simplex method 
to network flow problems . 

Revised simplex method 

Much of the computational burden in the naive implementation is due to 
the need for solving two linear systems of equations . In an alternative 
implementation, the matrix B-1  is made available at the beginning of each 
iteration, and the vectors c�B- 1 and B-1Aj are computed by a matrix­
vector multiplication. For this approach to be practical , we need an efficient 
method for updating the matrix B-1  each time that we effect a change of 
basis . This is discussed next . 

Let 

be the basis matrix at the beginning of an iteration and let 

B = [AB(1 ) . . .  AB(R- 1 ) Aj AB(H1 ) · · ·  AB(m) ] 
be the basis matrix at the beginning of the next iteration. These two basis 
matrices have the same columns except that the £th column AB(R) (the one 
that exits the basis) has been replaced by Aj . It is then reasonable to expect 
that B- 1 contains information that can be exploited in the computation of 
--1 B . After we develop some needed tools and terminology, we will see that 
this is indeed the case. An alternative explanation and line of development 
is outlined in Exercise 3 . 13 .  
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Definition 3.4 Given a matrix, not necessarily square, the operation 
of adding a constant multiple of one row to the same or to another row 
is called an elementary row operation. 

The example that follows indicates that performing an elementary row 
operation on a matrix C is equivalent to forming the matrix QC, where Q 
is a suitably constructed square matrix. 

Example 3.3 Let 

Q = [ � 
0 

� ] , 

1 
0 

and note that 

[ 
1 1  

QC = � 

C = [ � 

14 

] 
4 . 
6 

:
] 

, 

In particular, multiplication from the left by the matrix Q has the effect of mul­
tiplying the third row of C by two and adding it to the first row. 

Generalizing Example 3 .3 ,  we see that multiplying the jth row by (3 
and adding it to the ith row (for i =f. j )  is the same as left-multiplying by 
the matrix Q = I + Dij ,  where Dij is a matrix with all entries equal to 
zero, except for the (i , j)th entry which is equal to (3. The determinant of 
such a matrix Q is equal to 1 and, therefore, Q is invertible. 

Suppose now that we apply a sequence of K elementary row oper­
ations and that the kth such operation corresponds to left-multiplication 
by a certain invertible matrix Qk . Then, the sequence of these elementary 
row operations is the same as left-multiplication by the invertible matrix 
QKQK- 1 · · ·  Q2Q1 . We conclude that performing a sequence of elemen­
tary row operations on a given matrix is equivalent to left-multiplying that 
matrix by a certain invertible matrix. 

Since B - 1 B = I, we see that B - 1 AB(i) is the ith unit vector ei . 
Using this observation, we have 

B - ' B � [ 
I I 

1 
e1 ee- 1 u ee+l em 
I I I I 

1 Ul 

Ue 

Urn 1 
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where u = B - 1 Aj . Let us apply a sequence of elementary row operations 
that will change the above matrix to the identity matrix. In particular , 
consider the following sequence of elementary row operations . 

(a) For each i "I- f, we add the fth row times -ui/u£ to the ith row. 
(Recall that u£ > 0 . )  This replaces Ui by zero. 

(b) We divide the fth row by u£ . This replaces u£ by one. 

In words, we are adding to each row a multiple of the fth row to 
replace the fth column u by the fth unit vector e£ . This sequence of ele­
mentary row operations is equivalent to left-multiplying B-1 B by a certain 
invertible matrix Q. Since the result is the identity, we have QB- 1B = I, 
which yields QB- 1 = B- 1

. The last equation shows that if we apply 
the same sequence of row operations to the matrix B- 1 (equivalently, left-

multiply by Q ) ,  we obtain B- 1 . We conclude that all it takes to generate 

B-1 , is to start with B- 1 and apply the sequence of elementary row oper­
ations described above. 

Example 3.4 Let 

B- 1 = [ -! 
2 
3 

-3 � 1 ' -2 

and suppose that f. = 3. Thus , our objective is to transform the vector u to the 
unit vector e3 = (0, 0 , 1 ) .  We multiply the third row by 2 and add it to the first 
row. We subtract the third row from the second row. Finally, we divide the third 
row by 2. We obtain 

B- 1 = [ -�2 
-: 
-1 . 5  

- 1 

1 

3 . 
- 1 

When the matrix B- 1 is updated in the manner we have described , we ob­
tain an implementation of the simplex method known as the revised simplex 
method, which we summarize below. 

An iteration of the revised simplex method 
1 .  In a typical iteration, we start with a basis consisting of the basic 

columns AB(l ) , . . •  , AB(m) , an associated basic feasible solution 
x, and the inverse B-1  of the basis matrix. 

2 .  Compute the row vector p' = c'aB- 1 and then compute the re­
duced costs Cj = Cj - p' Aj . If they are all nonnegative, the 
current basic feasible solution is optimal, and the algorithm ter­
minates; else, choose some j for which Cj < O .  

3 .  Compute u = B- 1 Aj . I f  no component of  u i s  positive, the 
optimal cost is - 00 ,  and the algorithm terminates. 
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4. If some component of u is positive , let 

()* = min 
XB(i ) 

{ i= l ,  . . .  ,m l u; >O}  Ui 

The simplex method 

5 .  Let f. be  such that ()* = XB(eJ iUe . Form a new basis by replacing 
A Bee) with Aj . If y is the new basic feasible solution, the values 
of the new basic variables are Yj = ()* and YB(i) = XB(i) - ()*Ui , 
i =J f. .  

6.  Form the m x (m + 1 )  matrix [B- 1  I u] . Add to each one of 
its rows a multiple of the f.th row to make the last column equal 
to the unit vector ee . The first m columns of the result is the 
matrix B- 1 . 

The full tableau implementation 

We finally describe the implementation of simplex method in terms of the 
so-called full tableau. Here, instead of maintaining and updating the matrix 
B- l , we maintain and update the m x (n + 1) matrix 

with columns B- lb and B- 1 AI " ' " B- 1 An . This matrix is called the 
simplex tableau. Note that the column B-lb, called the zeroth column, 
contains the values of the basic variables. The column B- 1 Ai is called the 
ith column of the tableau. The column u = B- 1 Aj corresponding to the 
variable that enters the basis is called the pivot column. If the f.th basic 
variable exits the basis , the f.th row of the tableau is called the pivot row. 
Finally, the element belonging to both the pivot row and the pivot column 
is called the pivot element. Note that the pivot element is Ue and is always 
positive (unless u :"::: 0 ,  in which case the algorithm has met the termination 
condition in Step 3) . 

The information contained in the rows of the tableau admits the fol­
lowing interpretation. The equality constraints are initially given to us 
in the form b = Ax. Given the current basis matrix B,  these equality 
constraints can also be expressed in the equivalent form 

which is precisely the information in the tableau. In other words, the rows 
of the tableau provide us with the coefficients of the equality constraints 
B-lb = B- IAx. 

At the end of each iteration, we need to update the tableau B- 1 [b I A] 
and compute B- 1 [b I A] . This can be accomplished by left-multiplying the 
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simplex tableau with a matrix Q satisfying QB-1 = B- 1 . As explained 
earlier, this is the same as performing those elementary row operations that 
turn B-1 to B- 1 ; that is , we add to each row a multiple of the pivot row to 
set all entries of the pivot column to zero, with the exception of the pivot 
element which is set to one. 

Regarding the determination of the exiting column AB(R) and the 
stepsize ()* , Steps 4 and 5 in the summary of the simplex method amount 
to the following: XB (i) /Ui is the ratio of the ith entry in the zeroth column 
of the tableau to the ith entry in the pivot column of the tableau. We only 
consider those i for which Ui is positive . The smallest ratio is equal to ()* 
and determines f. 

It is customary to augment the simplex tableau by including a top 
row, to be referred to as the zeroth row. The entry at the top left corner 
contains the value -e�xB ' which is the negative of the current cost . (The 
reason for the minus sign is that it allows for a simple update rule, as will 
be seen shortly. ) The rest of the zeroth row is the row vector of reduced 
costs ,  that is , the vector c' = e' - e�B- 1 A. Thus , the structure of the 
tableau is : 

or, in more detail, 

-e�B- 1b e' - e�B- 1A 

B- 1b B- 1A 

-e�XB C1 . . . 

XB( l ) I 

B- 1A1 . . . 

XB Cm) I 

en 

I 

B- 1An 

I 

The rule for updating the zeroth row turns out to be identical to the 
rule used for the other rows of the tableau: add a multiple of the pivot row 
to the zeroth row to set the reduced cost of the entering variable to zero. 
We will now verify that this update rule produces the correct results for 
the zeroth row. 

At the beginning of a typical iteration, the zeroth row is of the form 

[0 I e'l - g' [b I Al , 

where g' = e�B- 1 . Hence, the zeroth row is equal to [0 I e'l plus a linear 
combination of the rows of [b I Al . Let column j be the pivot column, and 
row f be the pivot row. Note that the pivot row is of the form h' [b I Al , 
where the vector h' is the fth row of B-1 . Hence, after a multiple of the 
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pivot row is added to the zeroth row, that row is again equal to [0 I e' l plus 
a (different ) linear combination of the rows of [b I A] , and is of the form 

[0 I e' l - p' [b I A] , 

for some vector p. Recall that our update rule is such that the pivot column 
entry of the zeroth row becomes zero, that is, 

cB(f) - p' AB(l) = Cj - p' Aj = O. 

Consider now the B (i)th column for i =I- £. (This is a column corresponding 
to a basic variable that stays in the basis. ) The zeroth row entry of that 
column is zero, before the change of basis , since it is the reduced cost of 
a basic variable. Because B-1  AB(i) is the ith unit vector and i =I- £, the 
entry in the pivot row for that column is also equal to zero. Hence, adding 
a multiple of the pivot row to the zeroth row of the tableau does not affect 
the zeroth row entry of that column, which is left at zero. We conclude 
that the vector p satisfies CB(i) - p' AB(i) = 0 for every column AB(i) in 

the new basis . This implies that � - p'B = 0, and p' = �B-1 . Hence, 
with our update rule , the updated zeroth row of the tableau is equal to 

as desired. 
We can now summarize the mechanics of the full tableau implemen­

tation. 

An iteration of the full tableau implementation 
1 .  A typical iteration starts with the tableau associated with a basis 

matrix B and the corresponding basic feasible solution x. 
2. Examine the reduced costs in the zeroth row of the tableau. If 

they are all nonnegative, the current basic feasible solution is 
optimal , and the algorithm terminates; else, choose some j for 
which Cj < O . 

3. Consider the vector u = B-1Aj , which is  the jth column (the 
pivot column) of the tableau. If no component of u is positive, 
the optimal cost is - 00 ,  and the algorithm terminates . 

4. For each i for which Ui is positive, compute the ratio XB(i) /Ui ' 
Let £ be the index of a row that corresponds to the smallest ratio. 
The column AB(l) exits the basis and the column Aj enters the 
basis . 

5. Add to each row of the tableau a constant multiple of the £th 
row (the pivot row) so that Ul (the pivot element) becomes one 
and all other entries of the pivot column become zero. 
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B =  (0 ,0 ,10) 

c =  (0, 10,0) 
�----------------�� 

D =  (10 ,0,0) 

Figure 3.4: The feasible set in Example 3 .5 .  Note that we 
have five extreme points. These are A = (0, 0, 0) with cost 0, 

B = (0, 0,  10) with cost - 120, C = (0, 10, 0) with cost - 120, 

D = (10 , 0, 0) with cost - 100, and E = (4, 4 , 4) with cost - 136. In 
particular, E is the unique optimal solution. 

Example 3 .5  Consider the problem 

minimize - lOXl 12x2 12x3 

subject to Xl  + 2X2 + 2X3 :::; 20 

2Xl + X2 + 2X3 :::; 20 

2Xl + 2X2 + X3 :::; 20 
Xl , X2 , X3 2: 0. 

The feasible set is shown in Figure 3.4 .  

101 

After introducing slack variables, we obtain the following standard form 

problem: 

minimize - lOXl 12x2 12x3 

subject to Xl  + 2X2 + 2X3 + X4 20 

2Xl + X2 + 2X3 + X5 20 

2Xl + 2X2 + X3 + X6 20 

X l , . . .  , X6 2: 0. 

Note that x = (0, 0 , 0 , 20, 20, 20) is a basic feasible solution and can be used to 
start the algorithm. Let accordingly, B(l )  = 4, B(2)  = 5, and B(3) = 6. The 
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corresponding basis matrix is the identity matrix I. To obtain the zeroth row of 
the initial tableau, we note that CB = 0 and, therefore, C�XB = 0 and c = c. 
Hence, we have the following initial tableau: 

Xl X2 X3 X4 X5 X6 

0 - 10 -12  -12  0 0 0 

20 1 2 2 1 0 0 

X5 = 20 2* 1 2 0 1 0 

20 2 2 1 0 0 1 

We note a few conventions in the format of the above tableau: the label Xi 
on top of the ith column indicates the variable associated with that column. The 
labels "Xi =" to the left of the tableau tell us which are the basic variables and in 
what order . For example, the first basic variable XB( l ) is X4 , and its value is 20. 
Similarly, XB(2) = X5 = 20, and XB (3) = X6 = 20. Strictly speaking, these labels 
are not quite necessary. We know that the column in the tableau associated with 
the first basic variable must be the first unit vector . Once we observe that the 
column associated with the variable X4 is the first unit vector, it follows that X4 
is the first basic variable . 

We continue with our example. The reduced cost of Xl is negative and we 
let that variable enter the basis. The pivot column is u = ( 1 , 2 , 2) . We form the 
ratios XB (i ) /Ui , i = 1 , 2 , 3 ; the smallest ratio corresponds to i = 2 and i =  3. We 
break this tie by choosing .e = 2 .  This determines the pivot element , which we 
indicate by an asterisk. The second basic variable XB(2) , which is X5 , exits the 
basis . The new basis is given by :8(1 )  = 4, B (2) = 1 ,  and B(3) = 6. We multiply 
the pivot row by 5 and add it to the zeroth row. We multiply the pivot row by 
1/2 and subtract it from the first row. We subtract the pivot row from the third 
row. Finally, we divide the pivot row by 2. This leads us to the new tableau: 

Xl X2 X3 X4 X5 X6 

100 0 -7 -2 0 5 0 

X4 = 10 0 1 . 5  1* 1 -0 .5  0 

10 1 0 .5  1 0 0 .5  0 

0 0 1 - 1  0 - 1  1 

The corresponding basic feasible solution is x = ( 10 , 0 , 0 , 10 , 0 , 0) . In terms 
of the original variables Xl , X2 , X3 , we have moved to point D = ( 10 , 0 , 0) in 
Figure 3.4 . Note that this is a degenerate basic feasible solution, because the 
basic variable X6 is equal to zero. This agrees with Figure 3 .4 where we observe 
that there are four active constraints at point D. 

We have mentioned earlier that the rows of  the tableau (other than the 
zeroth row) amount to a representation of the equality constraints B- 1 Ax = 
B- I b, which are equivalent to the original constraints Ax = b. In our current 
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example, the tableau indicates that the equality constraints can be written in the 
equivalent form: 

10 Xl + 0 .5X2 + X3 + 0 .5X5 

o X2 X3 X5 + X6 . 

We now return to the simplex method. With the current tableau, the 
variables X2 and X3 have negative reduced costs. Let us choose X3 to be the one 
that enters the basis . The pivot column is u = ( 1 , 1 ,  - 1 ) .  Since U3 < 0, we only 
form the ratios XB (i ) /Ui , for i = 1 , 2 .  There is again a tie, which we break by 
letting £ = 1 ,  and the first basic variable, X4 , exits the basis . The pivot element is 
again indicated by an asterisk. After carrying out the necessary elementary row 
operations, we obtain the following new tableau: 

Xl X2 X3 X4 X5 X6 

120 0 -4 0 2 4 0 

X3 = 10 0 1 . 5  1 1 -0 .5 0 

0 1 - 1  0 -1  1 0 

10 0 2 . 5* 0 1 - 1 . 5  1 

In terms of Figure 3.4 , we have moved to point B = (0 , 0 , 10) , and the cost 
has been reduced to - 120. At this point , X2 is the only variable with negative 
reduced cost . We bring X2 into the basis , X6 exits ,  and the resulting tableau is: 

Xl X2 X3 X4 X5 X6 

136 0 0 0 3 .6  1 .6  1 . 6  

X3 = 4 0 0 1 0.4 0.4 -0 .6 

4 1 0 0 -0 .6 0.4 0.4 

4 0 1 0 0 .4 -0 .6 0.4 

We have now reached point E in Figure 3.4 . Its optimality is confirmed by 
observing that all reduced costs are nonnegative. 

In this example, the simplex method took three changes of basis to reach 
the optimal solution, and it traced the path A - D - B - E in Figure 3 .4 . With 
different pivoting rules , a different path would have been traced. Could the 
simplex method have solved the problem by tracing the path A - D - E, which 
involves only two edges, with only two iterations? The answer is no. The initial 
and final bases differ in three columns, and therefore at least three basis changes 
are required. In particular, if the method were to trace the path A - D - E, there 
would be a degenerate change of basis at point D (with no edge being traversed) , 
which would again bring the total to three . 
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Example 3 .6 This example shows that the simplex method can indeed cycle. 
We consider a problem described in terms of the following initial tableau. 

Xl X2 X3 X4 X5 X6 X7 

3 -3/4 20 - 1/2 6 0 0 0 

0 1/4* -8 -1 9 1 0 0 

X6 = 0 1/2 -12  - 1/2 3 0 1 0 

X7 = 1 0 0 1 0 0 0 1 

We use the following pivoting rules : 

(a) We select a nonbasic variable with the most negative reduced cost Cj to be 
the one that enters the basis . 

(b) Out of all basic variables that are eligible to exit the basis , we select the 
one with the smallest subscript . 

We then obtain the following sequence of tableaux (the pivot element is indicated 
by an asterisk) : 

Xl X2 X3 X4 X5 X6 X7 

3 0 -4 -7/2 33 3 0 0 

0 1 -32 -4 36 4 0 0 

0 0 4* 3/2 -15  -2 1 0 

X7 = 1 0 0 1 0 0 0 1 

Xl X2 X3 X4 X5 X6 X7 

3 0 0 -2 18 1 1 0 

0 1 0 8* -84 -12  8 0 

X2 = 0 0 1 3/8 -15/4 -1/2 1/4 0 

X7 = 1 0 0 1 0 0 0 1 

Xl X2 X3 X4 X5 X6 X7 

3 1/4 0 0 -3 -2 3 0 

0 1/8 0 1 -21/2 -3/2 1 0 

0 -3/64 1 0 3/16* 1/16 -1/8 0 

X7 = 1 -1/8 0 0 21/2 3/2 - 1  1 



Sec. 3.3 Implementations of the simplex method 105 

Xl X2 X3 X4 X5 X6 X7 

3 - 1/2 16 0 0 - 1  1 0 

X3 = 0 -5/2 56 1 0 2* -6 0 

0 - 1/4 16/3 0 1 1/3 -2/3 0 

1 5/2 -56 0 0 -2 6 1 

Xl X2 X3 X4 X5 X6 X7 

3 -7/4 44 1/2 0 0 -2 0 

0 -5/4 28 1/2 0 1 -3 0 

0 1/6 -4 -1/6 1 0 1/3* 0 

X7 = 1 0 0 1 0 0 0 1 

Xl X2 X3 X4 X5 X6 X7 

3 -3/4 20 -1/2 6 0 0 0 

0 1/4 -8 - 1  9 1 0 0 

X6 = 0 1/2 -12 -1/2 3 0 1 0 

X7 = 1 0 0 1 0 0 0 1 

After six pivots ,  we have the same basis and the same tableau that we started 
with. At each basis change, we had 8* = O. In particular , for each interme­
diate tableau, we had the same feasible solution and the same cost . The same 
sequence of pivots can be repeated over and over, and the simplex method never 
terminates . 

Comparison of the full tableau and the revised simplex 

methods 

Let us pretend that the problem is changed to 

minimize c' x + 0' Y 
subject to Ax + Iy = b 

x, y � O. 

We implement the simplex method on this new problem, except that we 
never allow any of the components of the vector y to become basic. Then, 
the simplex method performs basis changes as if the vector y were entirely 
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absent . Note also that the vector of reduced costs in the augmented problem 
is 

Thus, the simplex tableau for the augmented problem takes the form 

-C�B-1b c' -c�B-1  

B-1b B-1A B- 1  

In particular , by following the mechanics of the full tableau method on the 
above tableau, the inverse basis matrix B-1  is made available at each iter­
ation. We can now think of the revised simplex method as being essentially 
the same as the full tableau method applied to the above augmented prob­
lem, except that the part of the tableau containing B-1  A is never formed 
explicitly; instead, once the entering variable Xj is chosen, the pivot column 
B-1  Aj is computed on the fly. Thus , the revised simplex method is just 
a variant of the full tableau method, with more efficient bookkeeping. If 
the revised simplex method also updates the zeroth row entries that lie on 
top of B-1  (by the usual elementary operations) , the simplex multipliers 
p' = C�B-1  become available , thus eliminating the need for solving the 
linear system p'B = c� at each iteration. 

We now discuss the relative merits of the two methods. The full 
tableau method requires a constant (and small) number of arithmetic op­
erations for updating each entry of the tableau. Thus , the amount of com­
putation per iteration is proportional to the size of the tableau, which is 
O (mn) . The revised simplex method uses similar computations to update 
B-1  and C�B-1 , and since only O(m2 ) entries are updated, the compu­
tational requirements per iteration are O(m2 ) .  In addition, the reduced 
cost of each variable x.i can be computed by forming the inner product 
p' Aj , which requires O (m) operations . In the worst case , the reduced cost 
of every variable is computed, for a total of O(mn) computations per it­
eration. Since m � n, the worst-case computational effort per iteration is 
O(mn + m2) = O (mn) , under either implementation. On the other hand, if 
we consider a pivoting rule that evaluates one reduced cost at a time, until 
a negative reduced cost is found, a typical iteration of the revised simplex 
method might require a lot less work. In the best case, if the first reduced 
cost computed is negative, and the corresponding variable is chosen to en­
ter the basis , the total computational effort is only O(m2 ) .  The conclusion 
is that the revised simplex method cannot be slower than the full tableau 
method, and could be much faster during most iterations . 

Another important element in favor of the revised simplex method 
is that memory requirements are reduced from O (mn) to O(m2 ) .  As n is 
often much larger than m, this effect can be quite significant . It could be 
counterargued that the memory requirements of the revised simplex method 
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are also O(mn) because of the need to store the matrix A. However, in 
most large scale problems that arise in applications, the matrix A is very 
sparse (has many zero entries) and can be stored compactly. (Note that the 
sparsity of A does not usually help in the storage of the full simplex tableau 
because even if A and B are sparse, B-1  A is not sparse, in general. )  

We summarize this discussion in  the following table : 

Full tableau Revised simplex 

Memory O(mn) O(m2 ) 

Worst-case time O(mn) O(mn) 

Best-case time O (mn) O (m2 ) 

Table 3 . 1 :  Comparison of the full tableau method and revised 
simplex. The time requirements refer to a single iteration. 

Practical performance enhancements 

Practical implementations of the simplex method aimed at solving problems 
of moderate or large size incorporate a number of additional ideas from 
numerical linear algebra which we briefly mention. 

The first idea is related to reinversion. Recall that at each iteration 
of the revised simplex method, the inverse basis matrix B-1 is updated 
according to certain rules. Each such iteration may introduce roundoff 
or truncation errors which accumulate and may eventually lead to highly 
inaccurate results .  For this reason, it is customary to recompute the matrix 
B-1 from scratch once in a while . The efficiency of such reinversions can be 
greatly enhanced by using suitable data structures and certain techniques 
from computational linear algebra. 

Another set of ideas is related to the way that the inverse basis matrix 
B-1 is represented. Suppose that a reinversion has been just carried out 
and B- 1  is available. Subsequent to the current iteration of the revised 
simplex method, we have the option of generating explicitly and storing 
the new inverse basis matrix B- 1 . An alternative that carries the same 
information, is to store a matrix Q such that QB - 1 = B-1 . Note that Q 
basically prescribes which elementary row operations need to be applied to 
B-1  in order to produce B- 1 . It is not a full matrix, and can be completely 
specified in terms of m coefficients :  for each row, we need to know what 
multiple of the pivot row must be added to it . 

Suppose now that we wish to solve the system Bu = Aj for u, where 
Aj is the entering column, as is required by the revised simplex method. 

We have u = B-1  Aj = QB- 1  Aj , which shows that we can first compute 
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B-1  Aj and then left-multiply by Q (equivalently, apply a sequence of el­
ementary row operations) to produce u. The same idea can also be used 
to represent the inverse basis matrix after several simplex iterations , as a 
product of the initial inverse basis matrix and several sparse matrices like 
Q .  

The last idea we mention i s  the following. Subsequent to a "rein­
version," one does not usually compute B-1 explicitly, but B-1  is instead 
represented in terms of sparse triangular matrices with a special structure. 

The methods discussed in this subsection are designed to accomplish 
two objectives : improve numerical stability (minimize the effect of roundoff 
errors) and exploit sparsity in the problem data to improve both running 
time and memory requirements. These methods have a critical effect in 
practice . Besides having a better chance of producing numerically trust­
worthy results, they can also speed up considerably the running time of 
the simplex method. These techniques lie much closer to the subject of 
numerical linear algebra, as opposed to optimization, and for this reason 
we do not pursue them in any greater depth. 

3 . 4  Anticycling: lexicography and Bland 's 

rule 

In this section, we discuss anticycling rules under which the simplex method 
is guaranteed to terminate, thus extending Theorem 3 .3 to degenerate prob­
lems. As an important corollary, we conclude that if the optimal cost is fi­
nite ,  then there exists an optimal basis , that is, a basis satisfying B-1b  ;:::: 0 
and (5' = c' - C�B-1A ;:::: 0' . 

Lexicography 

We present here the lexicographic pivoting rule and prove that it prevents 
the simplex method from cycling. Historically, this pivoting rule was de­
rived by analyzing the behavior of the simplex method on a nondegenerate 
problem obtained by means of a small perturbation of the right-hand side 
vector b. This connection is pursued in Exercise 3 . 1 5 .  

We start with a definition. 

Definition 3 .5  A vector u E �n is said to be lexicographically 
larger (or smaller) than another vector v E 1}?n if u =I- v and the 
first nonzero component ofu - v  is positive (or negative, respectively) . 
Symbolically, we write 

L 
u > v  or 

L 
u < v.  
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For example, 

(0 , 2 ,  3 , 0) 
L 
> (0 , 2 ,  1 ,  4) , 

(0 , 0) 
L 

( 1 ,  2 ) .  4 ,  5 ,  < 2 ,  1 ,  

Lexicographic pivoting rule 
1 .  Choose an entering column Aj arbitrarily, as long as its reduced 

cost Cj is negative. Let u = B-1 Aj be the jth column of the 
tableau. 

2 .  For each i with Ui > 0, divide the ith row of  the tableau (includ­
ing the entry in the zeroth column) by Ui and choose the lexico­
graphically smallest row. If row f is lexicographically smallest , 
then the fth basic variable x B(l) exits the basis. 

Example 3 .7 Consider the following tableau (the zeroth row is omitted) , and 
suppose that the pivot column is the third one (j = 3) . 

1 0 5 3 

2 4 6 - 1  

3 0 7 9 

Note that there is a tie in trying to determine the exiting variable because 
XB ( l ) /Ul  = 1/3 and XB (3) /U3 = 3/9 = 1/3 .  We divide the first and third rows of 
the tableau by Ul = 3 and U3 = 9, respectively, to obtain: 

1/3 0 5/3 1 

* * * * 

1/3 0 7/9 1 

The tie between the first and third rows is resolved by performing a lexicographic 
comparison. Since 7/9 < 5/3, the third row is chosen to be the pivot row, and 
the variable XB(3) exits the basis . 

We note that the lexicographic pivoting rule always leads to a unique 
choice for the exiting variable . Indeed, if this were not the case, two of the 
rows in the tableau would have to be proportional . But if two rows of the 
matrix B- 1 A are proportional , the matrix B-1 A has rank smaller than m 
and, therefore, A also has rank less than m, which contradicts our standing 
assumption that A has linearly independent rows . 
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Theorem 3.4 Suppose that the simplex algorithm starts with all the 
rows in the simplex tableau, other than the zeroth row, lexicographi­
cally positive. Suppose that the lexicographic pivoting rule is followed. 
Then: 

(a) Every row of the simplex tableau, other than the zeroth row, 
remains lexicographically positive throughout the algorithm. 

(b) The zeroth row strictly increases lexicographically at each itera­
tion. 

(c) The simplex method terminates after a finite number of itera­
tions. 

Proof. 
(a) Suppose that all rows of the simplex tableau, other than the zeroth 

row, are lexicographically positive at the beginning of a simplex iter­
ation. Suppose that Xj enters the basis and that the pivot row is the 
.eth row. According to the lexicographic pivoting rule , we have Uc > 0 
and 

(.eth row) � (ith row)
, if i =I- .e  and Ui > O. (3 . 5) Uc Ui 

To determine the new tableau, the .eth row is divided by the positive 
pivot element Uc and, therefore , remains lexicographically positive . 
Consider the ith row and suppose that Ui < O. In order to zero the 
(i , j )th entry of the tableau, we need to add a positive multiple of 
the pivot row to the ith row. Due to the lexicographic positivity of 
both rows, the ith row will remain lexicographically positive after this 
addition. Finally, consider the ith row for the case where Ui > 0 and 
i =I- .e. We have 

U -
(new ith row) = (old ith row) - � (old .eth row) . Uc 

Because of the lexicographic inequality (3 . 5 ) , which is satisfied by the 
old rows, the new ith row is also lexicographically positive . 

(b) At the beginning of an iteration, the reduced cost in the pivot column 
is negative. In order to make it zero, we need to add a positive 
multiple of the pivot row. Since the latter row is lexicographically 
positive, the zeroth row increases lexicographically. 

( c) Since the zeroth row increases lexicographically at each iteration, it 
never returns to a previous value. Since the zeroth row is determined 
completely by the current basis , no basis can be repeated twice and 
the simplex method must terminate after a finite number of iterations . 

o 
The lexicographic pivoting rule is straightforward to use if the simplex 

method is implemented in terms of the full tableau. It can also be used 
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in conjunction with the revised simplex method, provided that the inverse 
basis matrix B- 1 is formed explicitly (see Exercise 3 . 16) . On the other 
hand, in sophisticated implementations of the revised simplex method, the 
matrix B-1 is never computed explicitly, and the lexicographic rule is not 
really suitable . 

We finally note that in order to apply the lexicographic pivoting rule , 
an initial tableau with lexicographically positive rows is required. Let us 
assume that an initial tableau is available (methods for obtaining an initial 
tableau are discussed in the next section) . We can then rename the vari­
ables so that the basic variables are the first m ones . This is equivalent 
to rearranging the tableau so that the first m columns of B-1  A are the m 

unit vectors . The resulting tableau has lexicographically positive rows, as 
desired. 

Bland's rule 

The smallest subscript pivoting rule , also known as Bland's rule , is as fol­
lows . 

Smallest subscript pivoting rule 
1 .  Find the smallest j for which the reduced cost Cj i s  negative and 

have the column Aj enter the basis . 

2 .  Out o f  all variables Xi that are tied in  the test for choosing an 
exiting variable , select the one with the smallest value of i .  

This pivoting rule i s  compatible with an implementation of  the re­
vised simplex method in which the reduced costs of the nonbasic variables 
are computed one at a time, in the natural order, until a negative one is 
discovered . Under this pivoting rule , it is known that cycling never occurs 
and the simplex method is guaranteed to terminate after a finite number 
of iterations . 

3 . 5  Finding an initial basic feasible solution 

In order to start the simplex method, we need to find an initial basic feasible 
solution. Sometimes this is straightforward. For example, suppose that we 
are dealing with a problem involving constraints of the form Ax :::; b,  where 
b ?: O. We can then introduce nonnegative slack variables s and rewrite 
the constraints in the form Ax + s = b. The vector (x, s) defined by x = 0 
and s = b is a basic feasible solution and the corresponding basis matrix is 
the identity. In general , however, finding an initial basic feasible solution 
is not easy and requires the solution of an auxiliary linear programming 
problem, as will be seen shortly. 
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Consider the problem 

minimize c' x 
subject to Ax b 

x > o. 

By possibly multiplying some of the equality constraints by -1 ,  we can 
assume, without loss of generality, that b � o. We now introduce a vector 
y E lRm of artificial variables and use the simplex method to solve the 
auxiliary problem 

minimize Yl + Y2 + · · · + Ym 
subject to Ax + y b 

x > 0 
y > o. 

Initialization is  easy for the auxiliary problem: by letting x = 0 and 
y = b, we have a basic feasible solution and the corresponding basis matrix 
is the identity. 

If x is a feasible solution to the original problem, this choice of x 

together with y = 0 ,  yields a zero cost solution to the auxiliary problem. 
Therefore, if the optimal cost in the auxiliary problem is nonzero, we con­
clude that the original problem is infeasible . If on the other hand, we obtain 
a zero cost solution to the auxiliary problem, it must satisfy y = 0, and x 

is a feasible solution to the original problem. 
At this point , we have accomplished our objectives only partially. We 

have a method that either detects infeasibility or finds a feasible solution to 
the original problem. However, in order to initialize the simplex method for 
the original problem, we need a basic feasible solution, an associated basis 
matrix B,  and - depending on the implementation - the corresponding 
tableau. All this is straightforward if the simplex method, applied to the 
auxiliary problem, terminates with a basis matrix B consisting exclusively 
of columns of A. We can simply drop the columns that correspond to the 
artificial variables and continue with the simplex method on the original 
problem, using B as the starting basis matrix. 

Driving artificial variables out of the basis 

The situation is more complex if the original problem is feasible , the simplex 
method applied to the auxiliary problem terminates with a feasible solution 
x* to the original problem, but some of the artificial variables are in the 
final basis . (Since the final value of the artificial variables is zero, this 
implies that we have a degenerate basic feasible solution to the auxiliary 
problem. ) Let k be the number of columns of A that belong to the final basis 
(k < m) and, without loss of generality, assume that these are the columns 
AB(l ) , . . .  , AB(k) . (In particular, XB( l ) ' . . .  ' XB(k) are the only variables 
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that can be at nonzero level. ) Note that the columns AB( l ) ,  . . .  , AB(k) must 
be linearly independent since they are part of a basis . Under our standard 
assumption that the matrix A has full rank, the columns of A span �m , 
and we can choose m - k additional columns AB(k+1 ) ,  . . .  , AB(m) of A, to 
obtain a set of m linearly independent columns , that is , a basis consisting 
exclusively of columns of A. With this basis , all nonbasic components of 
x* are at zero level, and it follows that x* is the basic feasible solution 
associated with this new basis as well . At this point , the artificial variables 
and the corresponding columns of the tableau can be dropped. 

The procedure we have just described is called driving the artificial 
variables out of the basis , and depends crucially on the assumption that the 
matrix A has rank m. After all , if A has rank less than m, constructing a 
basis for �m using the columns of A is impossible and there exist redundant 
equality constraints that must be eliminated, as described by Theorem 2 .5  
in  Section 2 .3 .  All of  the above can be carried out mechanically, in  terms 
of the simplex tableau, in the following manner. 

Suppose that the lth basic variable is an artificial variable , which is 
in the basis at zero level. We examine the lth row of the tableau and find 
some j such that the lth entry of B- 1 Aj is nonzero. We claim that Aj 
is linearly independent from the columns AB(l ) ,  . . .  , AB(k) . To see this , 
note that B-1 AB(i ) = ei , i = 1 ,  . . .  , k, and since k < l, the lth entry of 
these vectors is zero . It follows that the lth entry of any linear combination 
of the vectors B-1 AB( l ) ,  . . .  , B- 1 AB(k) is also equal to zero. Since the 
lth entry of B-1 Aj is nonzero, this vector is not a linear combination 
of the vectors B- 1 AB( 1 ) ,  . . .  , B- 1  AB(k) . Equivalently, Aj is not a linear 
combination of the vectors AB(l ) ,  . . .  , AB(k) , which proves our claim. We 
now bring Aj into the basis and have the lth basic variable exit the basis. 
This is accomplished in the usual manner : perform those elementary row 
operations that replace B- 1 Aj by the lth unit vector. The only difference 
from the usual mechanics of the simplex method is that the pivot element 
(the lth entry of B- 1 Aj ) could be negative . Because the lth basic variable 
was zero, adding a multiple of the lth row to the other rows does not change 
the values of the basic variables . This means that after the change of basis, 
we are still at the same basic feasible solution to the auxiliary problem, 
but we have reduced the number of basic artificial variables by one. We 
repeat this procedure as many times as needed until all artificial variables 
are driven out of the basis . 

Let us now assume that the lth row of B-1  A is zero, in which case 
the above described procedure fails. Note that the lth row of B-1 A is 
equal to g' A, where g' is the lth row of B-1 . Hence, g' A = 0' for some 
nonzero vector g, and the matrix A has linearly dependent rows. Since we 
are dealing with a feasible problem, we must also have g'b = o. Thus , the 
constraint g' Ax = g'h is redundant and can be eliminated (cf. Theorem 2 .5 
in  Section 2 .3) . Since this constraint i s  the information provided by the lth 
row of the tableau, we can eliminate that row and continue from there. 
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Example 3 .8  Consider the linear programming problem: 

minimize Xl + X2 + X3 
subject to Xl + 2X2 + 3X3 

-Xl + 2X2 + 6X3 
4X2 + 9X3 

3X3 
Xl , . . .  , X4 � o .  

+ X4 

3 
2 
5 
1 

In order to find a feasible solution, we form the auxiliary problem 

minimize X5 + X6 + X7 + Xs 
subject to Xl + 2X2 + 3X3 + X5 

-Xl + 2X2 + 6X3 + X6 
4X2 + 9X3 + X7 

3X3 + X4 + Xs 
Xl , . . .  , Xs � o . 

3 
2 
5 
1 

A basic feasible solution to the auxiliary problem is obtained by letting 
(X5 , X6 , X7 , xs ) = b = (3 , 2 , 5 , 1 ) . The corresponding basis matrix is the identity. 
Furthermore, we have CB = ( 1 , 1 , 1 , 1 ) .  We evaluate the reduced cost of each one 
of the original variables Xi , which is -C�Ai , and form the initial tableau: 

Xl X2 X3 X4 X5 X6 X7 Xs 

-11  0 -8 -21 - 1  0 0 0 0 

3 1 2 3 0 1 0 0 0 

2 -1  2 6 0 0 1 0 0 

X7 = 5 0 4 9 0 0 0 1 0 

Xs = 1 0 0 3 1* 0 0 0 1 

We bring X4 into the basis and have Xs exit the basis . The basis matrix B is still 
the identity and only the zeroth row of the tableau changes. We obtain: 

Xl X2 X3 X4 X5 X6 X7 Xs 

-10 0 -8 - 18 0 0 0 0 1 

3 1 2 3 0 1 0 0 0 

2 -1  2 6 0 0 1 0 0 

5 0 4 9 0 0 0 1 0 

1 0 0 3* 1 0 0 0 1 
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We now bring X3 into the basis and have X4  exit the basis . The new tableau is: 

Xl X2 X3 X4 Xs X6 X7 Xs 

-4 0 -8 0 6 0 0 0 7 
Xs = 2 1 2 0 -1  1 0 0 - 1  

0 - 1  2* 0 -2 0 1 0 -2 

2 0 4 0 -3 0 0 1 -3 

1/3 0 0 1 1/3 0 0 0 1/3 

We now bring X2 into the basis and X6 exits . Note that this is  a degenerate pivot 
with (J* = O. The new tableau is : 

Xl X2 X3 X4 Xs X6 X7 Xs 

-4 -4 0 0 -2 0 4 0 - 1  

Xs = 2 2* 0 0 1 1 - 1  0 1 

X2 = 0 -1/2 1 0 - 1  0 1/2 0 - 1  

X 7  = 2 2 0 0 1 0 -2 1 1 

1/3 0 0 1 1/3 0 0 0 1/3 

We now have Xl enter the basis and Xs exit the basis . We obtain the following 
tableau: 

Xl X2 X3 X4 Xs X6 X7 Xs 

0 0 0 0 0 2 2 0 1 

1 1 0 0 1/2 1/2 - 1/2 0 1/2 

1/2 0 1 0 -3/4 1/4 1/4 0 -3/4 

0 0 0 0 0 - 1  - 1  1 0 
1/3 0 0 1 1/3 0 0 0 1/3 

Note that the cost in the auxiliary problem has dropped to zero, indicating that 
we have a feasible solution to the original problem. However, the artificial variable 
X7 is still in the basis , at zero level. In order to obtain a basic feasible solution 
to the original problem, we need to drive X7 out of the basis . Note that X7 is the 
third basic variable and that the third entry of the columns B- 1 Aj , j = 1, . . .  , 4 , 
associated with the original variables, is zero. This indicates that the matrix 
A has linearly dependent rows . At this point , we remove the third row of the 
tableau, because it corresponds to a redundant constraint , and also remove all of 
the artificial variables. This leaves us with the following initial tableau for the 
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original problem: 

Xl X2 X3 X4 

* * * * * 

Xl = 1 1 0 0 1/2 

1/2 0 1 0 -3/4 

X3 = 1/3 0 0 1 1/3 

We may now compute the reduced costs of the original variables, fill in the ze­
roth row of the tableau, and start executing the simplex method on the original 
problem. 

We observe that in this example, the artificial variable Xg was unnecessary. 
Instead of starting with Xg = 1 ,  we could have started with X4 = 1 thus elimi­
nating the need for the first pivot . More generally, whenever there is a variable 
that appears in a single constraint and with a positive coefficient (slack variables 
being the typical example) , we can always let that variable be in the initial basis 
and we do not have to associate an artificial variable with that constraint . 

The two-phase simplex method 

We can now summarize a complete algorithm for linear programming prob­
lems in standard form. 

Phase I: 
1. By multiplying some of the constraints by - 1 ,  change the prob­

lem so that b ;::: O .  
2 .  Introduce artificial variables Y1 , . . .  , Ym , i f  necessary, and apply 

the simplex method to the auxiliary problem with cost L::1 Yi . 
3. If the optimal cost in the auxiliary problem is positive , the orig­

inal problem is infeasible and the algorithm terminates. 

4. If the optimal cost in the auxiliary problem is zero , a feasible 
solution to the original problem has been found. If no artificial 
variable is in the final basis , the artificial variables and the cor­
responding columns are eliminated, and a feasible basis for the 
original problem is available . 

5 .  If  the eth basic variable i s  an artificial one, examine the eth entry 
of the columns B- 1 Aj , j = 1 ,  . . .  , n. If all of these entries are 
zero, the eth row represents a redundant constraint and is elimi­
nated. Otherwise, if the eth entry of the jth column is nonzero, 
apply a change of basis (with this entry serving as the pivot 
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element) : the £th basic variable exits and Xj enters the basis . 
Repeat this operation until all artificial variables are driven out 
of the basis. 

Phase II: 
1 .  Let the final basis and tableau obtained from Phase I be the 

initial basis and tableau for Phase II. 

2. Compute the reduced costs of all variables for this initial basis, 
using the cost coefficients of the original problem. 

3.  Apply the simplex method to the original problem. 

The above two-phase algorithm is a complete method, in the sense 
that it can handle all possible outcomes. As long as cycling is avoided (due 
to either nondegeneracy, an anticycling rule , or luck) , one of the following 
possibilities will materialize : 

(a) If the problem is infeasible, this is detected at the end of Phase I .  

(b) If the problem is feasible but the rows of A are linearly dependent , 
this is detected and corrected at the end of Phase I, by eliminating 
redundant equality constraints .  

(c) If the optimal cost is equal to -00, this is detected while running 
Phase II. 

(d) Else, Phase II terminates with an optimal solution. 

The big-M method 

We close by mentioning an alternative approach, the big-M method, that 
combines the two phases into a single one . The idea is to introduce a cost 
function of the form 

j=l i=l 

where M i s  a large positive constant , and where Yi are the same artificial 
variables as in Phase I simplex. For a sufficiently large choice of M, if the 
original problem is feasible and its optimal cost is finite, all of the artificial 
variables are eventually driven to zero (E�ercise 3 .26) , which takes us back 
to the minimization of the original cost function. In fact , there is no reason 
for fixing a numerical value for M. We can leave M as an undetermined 
parameter and let the reduced costs be functions of M. Whenever M is 
compared to another number (in order to determine whether a reduced cost 
is negative) , M will be always treated as being larger. 
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Example 3 .9 We consider the same linear programming problem as in Exam­
ple 3 .8 :  

minimize Xl + X2 + X3 
subject to Xl + 2X2 + 3X3 3 

-Xl + 2X2 + 6X3 2 
4X2 + 9X3 5 

3X3 + X4 1 
Xl , . . .  , X4 2: o . 

We use the big-M method in conjunction with the following auxiliary problem, 
in which the unnecessary artificial variable Xs is omitted. 

minimize Xl + X2 + X3 + MX5 + MX6 + MX7 
subject to Xl + 2X2 + 3X3 + X5 3 

-Xl + 2X2 + 6X3 + X6 2 
4X2 + 9X3 + X7 5 

3X3 + X4 1 
Xl , . . . , X7 2: o . 

A basic feasible solution to the auxiliary problem is obtained by letting 
(X5 , X6 , X7 , X4) = b = (3 , 2 , 5 , 1 ) .  The corresponding basis matrix is the identity. 
Furthermore, we have CB = (M, M, M, 0) . We evaluate the reduced cost of each 
one of the original variables Xi ,  which is Ci - C�Ai , and form the initial tableau: 

Xl X2 X3 X4 X5 X6 X7 

- 10M 1 -8M + l - 18M + 1 0 0 0 0 

X5 = 3 1 2 3 0 1 0 0 

X6 = 2 -1  2 6 0 0 1 0 

X7 = 5 0 4 9 0 0 0 1 

X4 = 1 0 0 3* 1 0 0 0 

The reduced cost of X3 is negative when M is large enough. We therefore bring 
X3 into the basis and have X4 exit . Note that in order to set the reduced cost 
of X3 to zero, we need to multiply the pivot row by 6M - 1/3 and add it to the 
zeroth row. The new tableau is : 

Xl X2 X3 X4 X5 X6 X7 

-4M - 1/3 1 -8M + l 0 6M - 1/3 0 0 0 

X5 = 2 1 2 0 - 1  1 0 0 

X6 = 0 - 1  2* 0 -2 0 1 0 

X7 = 2 0 4 0 -3 0 0 1 

X3 = 1/3 0 0 1 1/3 0 0 0 

The reduced cost of X2 is negative when M is large enough. We therefore bring 
X2 into the basis and X6 exits. Note that this is a degenerate pivot with e* = o. 
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The new tableau is: 

Xl X2 X3 X4 X5 X6 X7 

1 3 2 1 
-4M - - -4M + - 0 0 -2M + - 0 4M - - 0 

3 2 3 2 

2 2* 0 0 1 1 - 1  0 
X2 = 0 - 1/2 1 0 -1  0 1/2 0 
X7 = 2 2 0 0 1 0 -2 1 

1/3 0 0 1 1/3 0 0 0 
We now have Xl enter and X5 exit the basis. We obtain the following tableau: 

Xl X2 X3 X4 X5 X6 X7 

-1 1/6 0 0 0 - 1/12 2M - 3/4 2M + 1/4 0 
1 1 0 0 1/2 1/2 -1/2 0 

X2 = 1/2 0 1 0 -3/4 1/4 1/4 0 
X7 = 0 0 0 0 0 -1  - 1  1 

1/3 0 0 1 1/3* 0 0 0 
We now bring X4 into the basis and X3 exits .  The new tableau is: 

Xl X2 X3 X4 X5 X6 X7 

-7/4 0 0 1/4 0 2M - 3/4 2M + 1/4 0 
1/2 1 0 -3/2 0 1/2 -1/2 0 

X2 = 5/4 0 1 9/4 0 1/4 1/4 0 
X7 = 0 0 0 0 0 - 1  -1  1 

X4 = 1 0 0 3 1 0 0 0 
With M large enough, all of the reduced costs are nonnegative and we have 
an optimal solution to the auxiliary problem. In addition, all of the artificial 
variables have been driven to zero, and we have an optimal solution to the original 
problem. 

3 . 6  Column geometry and the simplex 

method 

In this section, we introduce an alternative way of visualizing the workings 
of the simplex method. This approach provides some insights into why the 
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simplex method appears to be efficient in practice . 
We consider the problem 

minimize c'x 
subject to Ax b 

e'x 1 (3 .6) 

x > 0 ,  

where A i s  an m x n matrix and e i s  the n-dimensional vector with all 
components equal to one. Although this might appear to be a special type 
of a linear programming problem, it turns out that every problem with a 
bounded feasible set can be brought into this form (Exercise 3 .28) . The 
constraint e'x = 1 is called the convexity constraint. We also introduce 
an auxiliary variable z defined by z = c' x. If AI , A2 , . . .  , An are the n 
columns of A, we are dealing with the problem of minimizing z subject to 
the nonnegativity constraints x � 0, the convexity constraint L:�=1 Xi = 1 ,  
and the constraint 

In order to capture this problem geometrically, we view the horizontal 
plane as an m-dimensional space containing the columns of A, and we 
view the vertical axis as the one-dimensional space associated with the cost 
components Ci .  Then, each point in the resulting three-dimensional space 
corresponds to a point (Ai , Ci ) ;  see Figure 3 .5 .  

In this geometry, our objective i s  to  construct a vector (b, z ) , which 
is a convex combination of the vectors (Ai , Ci ) ,  such that z is as small as 
possible. Note that the vectors of the form (b, z) lie on a vertical line , which 
we call the requirement line, and which intersects the horizontal plane at 
b. If the requirement line does not intersect the convex hull of the points 
(Ai , Ci ) ,  the problem is infeasible . If it does intersect it , the problem is 
feasible and an optimal solution corresponds to the lowest point in the 
intersection of the convex hull and the requirement line . For example, in 
Figure 3 .6 , the requirement line intersects the convex hull of the points 
(Ai , Ci ) ;  the point G corresponds to an optimal solution, and its height is 
the optimal cost . 

We now need some terminology. 

Definition 3 .6 
(a) A collection of vectors yl , . . . , yk+l in �n are said to be affinely 

independent if the vectors yl _ yk+ 1 ,  y2 _ yk+ 1 , . . .  , yk _ yk+ 1 
are linearly independent. (Note that we must have k :::; n.) 

(b) The convex hull of k + 1 affinely independent vectors in �n is 
called a k-dimensional simplex. 
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z 

Figure 3 .5 :  The column geometry. 

Thus, three points are either collinear or they are affinely independent 
and determine a two-dimensional simplex (a triangle) . Similarly, four points 
either lie on the same plane, or they are affinely independent and determine 
a three-dimensional simplex (a pyramid) . 

Let us now give an interpretation of basic feasible solutions to prob­
lem (3 .6) in this geometry. Since we have added the convexity constraint , 
we have a total of m +  1 equality constraints. Thus , a basic feasible solution 
is associated with a collection of m + 1 linearly independent columns (Ai , 1 )  
of  the linear programming problem (3 .6) . These are in  turn associated with 
m + 1 of the points (Ai , Ci ) ,  which we call basic points; the remaining points 
(Ai , Ci ) are called the nonbasic points. It is not hard to show that the m +  1 
basic points are affinely independent (Exercise 3.29) and, therefore, their 
convex hull is an m-dimensional simplex, which we call the basic simplex. 
Let the requirement line intersect the m-dimensional basic simplex at some 
point (b, z) . The vector of weights Xi used in expressing (b, z) as a convex 
combination of the basic points, is the current basic feasible solution, and z 

represents its cost . For example, in Figure 3 .6 ,  the shaded triangle CDF is 
the basic simplex, and the point H corresponds to a basic feasible solution 
associated with the basic points C, D, and F. 

Let us now interpret a change of basis geometrically. In a change of 
basis, a new point (Aj , Cj ) becomes basic, and one of the currently basic 
points is to become nonbasic. For example, in Figure 3 .6 ,  if C, D, F,  
are the current basic points, we could make point B basic, replacing F 
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z 

B 

Figure 3 .6 :  Feasibility and optimality in the column geometry. 

(even though this turns out not to be profitable) . The new basic simplex 
would be the convex hull of B, C, D, and the new basic feasible solution 
would correspond to point I. Alternatively, we could make point E basic, 
replacing C, and the new basic feasible solution would now correspond to 
point G. After a change of basis , the intercept of the requirement line with 
the new basic simplex is lower, and hence the cost decreases , if and only 
if the new basic point is below the plane that passes through the old basic 
points; we refer to the latter plane as the dual plane. For example ,  point 
E is below the dual plane and having it enter the basis is profitable; this is 
not the case for point B.  In fact , the vertical distance from the dual plane 
to a point (Aj ,  Cj ) is equal to the reduced cost of the associated variable Xj 
(Exercise 3 .30) ;  requiring the new basic point to be below the dual plane 
is therefore equivalent to requiring the entering column to have negative 
reduced cost . 

We discuss next the selection of the basic point that will exit the 
basis. Each possible choice of the exiting point leads to a different basic 
simplex. These m basic simplices, together with the original basic simplex 
(before the change of basis) form the boundary (the faces) of an (m + 1)­
dimensional simplex. The requirement line exits this (m + 1 )-dimensional 
simplex through its top face and must therefore enter it by crossing some 
other face .  This determines which one of the potential basic simplices will 
be obtained after the change of basis . In reference to Figure 3 .6 ,  the basic 
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points C, D, F, determine a two-dimensional basic simplex. If point E 
is to become basic, we obtain a three-dimensional simplex (pyramid) with 
vertices C, D, E, F. The requirement line exits the pyramid through its 
top face with vertices C, D, F. It enters the pyramid through the face with 
vertices D, E, F; this is the new basic simplex. 

We can now visualize pivoting through the following physical analogy. 
Think of the original basic simplex with vertices C, D, F, as a solid object 
anchored at its vertices . Grasp the corner of the basic simplex at the vertex 
C leaving the basis , and pull the corner down to the new basic point E. 
While so moving, the simplex will hinge, or pivot, on its anchor and stretch 
down to the lower position. The somewhat peculiar terms (e.g. , "simplex" , 
"pivot" ) associated with the simplex method have their roots in this column 
geometry. 

Example 3 .10  Consider the problem illustrated in Figure 3 .7 , in which m = 1 ,  
and the following pivoting rule : choose a point (Ai , Ci ) below the dual plane to 
become basic, whose vertical distance from the dual plane is largest . According to 
Exercise 3.30, this is identical to the pivoting rule that selects an entering variable 
with the most negative reduced cost . Starting from the initial basic simplex 
consisting of the points (A3 , C3 ) ,  (A6 , C6 ) ,  the next basic simplex is determined 
by the points (A3 , C3 ) ,  (A5 , C5 ) ,  and the next one by the points (A5 , C5 ) ,  (As , cs ) .  
In particular , the simplex method only takes two pivots in this case. This example 
indicates why the simplex method may require a rather small number of pivots, 
even when the number of underlying variables is large . 

z 6 

3 
• 1 

7 
• 
next basis 

b 

Figure 3.7:  The simplex method finds the optimal basis after 
two iterations . Here, the point indicated by a number i corre­
sponds to the vector (Ai , Ci ) . 
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3 . 7  Computational efficiency of the simplex 

method 

The computational efficiency of the simplex method is determined by two 
factors : 

(a) the computational effort at each iteration; 
(b) the number of iterations. 

The computational requirements of each iteration have already been dis­
cussed in Section 3 .3 . For example, the full tableau implementation needs 
O (mn) arithmetic operations per iteration; the same is true for the revised 
simplex method in the worst case. We now turn to a discussion of the 
number of iterations. 

The number of iterations in the worst case 

Although the number of extreme points of the feasible set can increase 
exponentially with the number of variables and constraints, it has been 
observed in practice that the simplex method typically takes only O(m) 
pivots to find an optimal solution. Unfortunately, however, this practical 
observation is not true for every linear programming problem. We will 
describe shortly a family of problems for which an exponential number of 
pivots may be required. 

Recall that for nondegenerate problems, the simplex method always 
moves from one vertex to an adjacent one, each time improving the value 
of the cost function. We will now describe a polyhedron that has an ex­
ponential number of vertices , along with a path that visits all vertices , by 
taking steps from one vertex to an adjacent one that has lower cost . Once 
such a polyhedron is available , then the simplex method - under a pivoting 
rule that traces this path - needs an exponential number of pivots .  

Consider the unit cube in �n , defined by the constraints 

i = 1 ,  . . .  , n o 

The unit cube has 2n vertices (for each i ,  we may let either one of the two 
constraints 0 ::; Xi or Xi ::; 1 become active) . Furthermore, there exists a 
path that travels along the edges of the cube and which visits each vertex 
exactly once; we call such a path a spanning path. It can be constructed 
according to the procedure illustrated in Figure 3 .8 . 

Let us now introduce the cost function -Xn - Half of the vertices of 
the cube have zero cost and the other half have a cost of -1 .  Thus, the cost 
cannot decrease strictly with each move along the spanning path, and we do 
not yet have the desired example . However, if we choose some E E (0 , 1/2) 
and consider the perturbation of the unit cube defined by the constraints 

E ::; Xl ::; 1 ,  

EXi- 1 ::; Xi ::; 1 - EXi- l , i = 2 ,  . . .  , n , 

(3 .7) 
(3 .8) 



Sec. 3. 7 Computational efficiency of the simplex method 

(a) (b ) 

Figure 3 .8 :  (a) A spanning path pz in the two-dimensional cube. 
(b) A spanning path P3 in the three-dimensional cube. Notice 
that this path is obtained by splitting the three-dimensional cube 
into two two-dimensional cubes , following path pz in one of them, 
moving to the other cube, and following pz in the reverse order . 
This construction generalizes and provides a recursive definition of 
a spanning path for the general n-dimensional cube. 
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then it  can be verified that the cost function decreases strictly with each 
move along a suitably chosen spanning path. If we start the simplex method 
at the first vertex on that spanning path and if our pivoting rule is to always 
move to the next vertex on that path, then the simplex method will require 
2n - 1  pivots .  We summarize this discussion in the following theorem whose 
proof is left as an exercise (Exercise 3 .32 ) .  

Theorem 3 .5  Consider the linear programming problem of minimiz­
ing -Xn subject to the constraints (3. 7)- (3.8).  Then: 

(a) The feasible set has 2n vertices. 

(b) The vertices can be ordered so that each one is adjacent to and 
has lower cost than the previous one. 

(c) There exists a pivoting rule under which the simplex method 
requires 2n - 1 changes of basis before it terminates. 

We observe in Figure 3 .8  that the first and the last vertex in the span­
ning path are adjacent . This property persists in the perturbed polyhedron 
as well . Thus , with a different pivoting rule , the simplex method could 
terminate with a single pivot . We are thus led to the following question: is 
it true that for every pivoting rule there are examples where the simplex 
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method takes an exponential number of iterations? For several popular 
pivoting rules , such examples have been constructed. However, these ex­
amples cannot exclude the possibility that some other pivoting rule might 
fare better. This is one of the most important open problems in the theory 
of linear programming. In the next subsection, we address a closely related 
issue. 

The diameter of polyhedra and the Hirsch conjecture 

The preceding discussion leads us to the notion of the diameter of a poly­
hedron P, which is defined as follows. Suppose that from any vertex of 
the polyhedron, we are only allowed to jump to an adjacent vertex. We 
define the distance d(x, y) between two vertices x and y as the minimum 
number of such jumps required to reach y starting from x. The diameter 
D(P) of the polyhedron P is then defined as the maximum of d(x, y) over 
all pairs (x, y) of vertices . Finally, we define D.(n,  m) as the maximum of 
D(P) over all bounded polyhedra in lRn that are represented in terms of m 
inequality constraints. The quantity D.u (n, m) is defined similarly, except 
that general, possibly unbounded, polyhedra are allowed. For example, we 
have 

D.(2 , m) = l; J ' 
and 

D.u (2 ,  m) = m - 2 ;  

see Figure 3 .9 .  

( a) (b )  

Figure 3.9 :  Let n = 2 and m = 8. (a) A bounded polyhedron 
with diameter lm/2J = 4. (b) An unbounded polyhedron with 
diameter m - 2 = 6 .  

Suppose that the feasible set in a linear programming problem has 
diameter d and that the distance between vertices x and y is equal to d. If 
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the simplex method (or any other method that proceeds from one vertex 
to an adjacent vertex) is initialized at x , and if y happens to be the unique 
optimal solution, then at least d steps will be required. Now, if �(n, m) or 
�u (n, m) increases exponentially with n and m, this implies that there exist 
examples for which the simplex method takes an exponentially increasing 
number of steps , no matter which pivoting rule is used. Thus, in order to 
have any hope of developing pivoting rules under which the simplex method 
requires a polynomial number of iterations, we must first establish that 
�(n, m) or �u (n, m) grows with n and m at the rate of some polynomial. 
The practical success of the simplex method has led to the conjecture that 
indeed �(n, m) and �u(n, m) do not grow exponentially fast . In fact , the 
following, much stronger , conjecture has been advanced: 

Hirsch Conjecture: � (n, m) ::; m - n. 

Despite the significance of �(n, m) and �u (n, m) , we are far from es­
tablishing the Hirsch conjecture or even from establishing that these quan­
tities exhibit polynomial growth. It is known (Klee and Walkup, 1967) that 
the Hirsch conjecture is false for unbounded polyhedra and, in particular , 
that 

�u (n, m) � m - n + l�J . 
Unfortunately, this is the best lower bound known; even though it disproves 
the Hirsch conjecture for unbounded polyhedra, it does not provide any 
insights as to whether the growth of �u (n, m) is polynomial or exponential. 

Regarding upper bounds , it has been established (Kalai and Kleit­
man, 1993) that the worst-case diameter grows slower than exponentially, 
but the available upper bound grows faster than any polynomial. In par­
ticular , the following bounds are available : 

�(n, m) ::; �u (n, m) < m1+1og2 n = (2n) log2 m . 

The average case behavior of the simplex method 

Our discussion has been focused on the worst-case behavior of the simplex 
method,  but this is only part of the story. Even if every pivoting rule re­
quires an exponential number of iterations in the worst case, this is not 
necessarily relevant to the typical behavior of the simplex method. For 
this reason, there has been a fair amount of research aiming at an under­
standing of the typical or average behavior of the simplex method, and an 
explanation of its observed behavior. 

The main difficulty in studying the average behavior of any algorithm 
lies in defining the meaning of the term "average." Basically, one needs to 
define a probability distribution over the set of all problems of a given size , 
and then take the mathematical expectation of the number of iterations 
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required by the algorithm, when applied to a random problem drawn ac­
cording to the postulated probability distribution. Unfortunately, there is 
no natural probability distribution over the set of linear programming prob­
lems . Nevertheless , a fair number of positive results have been obtained for 
a few different types of probability distributions . In one such result , a set of 
vectors c ,  al , . . .  , am E lRn and scalars bI , . . .  , bm is given. For i = 1 ,  . . .  , m ,  

we introduce either constraint a�x ::; bi or a�x 2: bi , with equal probabil­
ity. We then have 2m possible linear programming problems, and suppose 
that L of them are feasible. Haimovich ( 1983) has established that under 
a rather special pivoting rule, the simplex method requires no more than 
n/2 iterations , on the average over those L feasible problems . This linear 
dependence on the size of the problem agrees with observed behavior; some 
empirical evidence is discussed in Chapter 12 .  

3 . 8  Summary 

This chapter was centered on the development of the simplex method, which 
is a complete algorithm for solving linear programming problems in stan­
dard form. The cornerstones of the simplex method are: 

(a) the optimality conditions (nonnegativity of the reduced costs) that 
allow us to test whether the current basis is optimal; 

(b) a systematic method for performing basis changes whenever the op­
timality conditions are violated. 

At a high level , the simplex method simply moves from one extreme 
point of the feasible set to another, each time reducing the cost , until an 
optimal solution is reached . However, the lower level details of the simplex 
method, relating to the organization of the required computations and the 
associated bookkeeping, play an important role. We have described three 
different implementations : the naive one , the revised simplex method, and 
the full tableau implementation. Abstractly, they are all equivalent , but 
their mechanics are quite different . Practical implementations of the sim­
plex method follow our general description of the revised simplex method, 
but the details are different , because an explicit computation of the inverse 
basis matrix is usually avoided. 

We have seen that degeneracy can cause substantial difficulties , in­
cluding the possibility of nonterminating behavior (cycling) . This is because 
in the presence of degeneracy, a change of basis may keep us at the same 
basic feasible solution, with no cost improvement resulting. Cycling can 
be avoided if suitable rules for choosing the entering and exiting variables 
(pivoting rules) are applied (e.g . , Bland's rule or the lexicographic pivoting 
rule) . 

Starting the simplex method requires an initial basic feasible solution, 
and an associated tableau. These are provided by the Phase I simplex 
algorithm, which is nothing but the simplex method applied to an auxiliary 
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problem. We saw that the changeover from Phase I to Phase II involves 
some delicate steps whenever some artificial variables are in the final basis 
constructed by the Phase I algorithm. 

The simplex method is a rather efficient algorithm and is incorporated 
in most of the commercial codes for linear programming. While the number 
of pivots can be an exponential function of the number of variables and 
constraints in the worst case, its observed behavior is a lot better, hence 
the practical usefulness of the method. 

3 . 9  Exercises 

Exercise 3 . 1  (Local Illinhna of convex functions) Let f : Rn f-+ R be a 
convex function and let S c Rn be a convex set . Let x* be an element of S.  
Suppose that x* i s  a local optimum for the problem of minimizing f (x) over S; 
that is ,  there exists some E > 0 such that f (x* ) ::::; f (x) for all x E S  for which 
I l x  - x* 1 1  ::::; E. Prove that x* is globally optimal; that is , f (x* ) :S f (x) for all 
x E  S .  

Exercise 3 .2  (OptiIllality conditions) Consider the problem of minimizing 
c/x over a polyhedron P. Prove the following: 

(a) A feasible solution x is optimal if and only if c' d ;::: 0 for every feasible 
direction d at x. 

(b) A feasible solution x is the unique optimal solution if and only if c' d > 0 
for every nonzero feasible direction d at x. 

Exercise 3.3 Let x be an element of the standard form polyhedron P = {x E 
Rn I Ax = b, x ;::: O} . Prove that a vector d E Rn is a feasible direction at x if 
and only if Ad = 0 and di ;::: 0 for every i such that Xi = O .  

Exercise 3.4 Consider the problem of minimizing c/x over the set P = {x E 
Rn I Ax = b, Dx ::::; f, Ex :S g} . Let x* be an element of P that satisfies 
Dx* = f, Ex* < g. Show that the set of feasible directions at the point x* is the 
set 

{ d E Rn I Ad = 0, Dd :S O} . 

Exercise 3 .5  Let P = {x E R3 I Xl + X2 + X3 = 1 ,  x ;::: O } and consider the 
vector x = (0 , 0 , 1 ) .  Find the set of feasible directions at x. 

Exercise 3.6 (Conditions for a unique optiIllUIll) Let x be a basic feasible 
solution associated with some basis matrix B.  Prove the following: 

(a) If the reduced cost of every nonbasic variable is positive , then x is the 
unique optimal solution. 

(b) If x is the unique optimal solution and is nondegenerate, then the reduced 
cost of every nonbasic variable is positive. 
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Exercise 3 .7 (Optimality conditions) Consider a feasible solution x to a 
standard form problem, and let Z = {i I Xi = O} .  Show that x is an optimal 
solution if and only if the linear programming problem 

minimize c'd 

subject to Ad = 0 

di � 0, i E Z, 

has an optimal cost of zero. (In this sense, deciding optimality is equivalent to 
solving a new linear programming problem. )  

Exercise 3 .8*  This exercise deals with the problem of  deciding whether a given 
degenerate basic feasible solution is optimal and shows that this is essentially as 
hard as solving a general linear programming problem. 

Consider the linear programming problem of minimizing c'x over all x E P, 
where P C �n is a given bounded polyhedron. Let 

Q = { (tx, t) E �n+l  I x E P, t E [0 , IJ } .  

(a) Show that Q is a polyhedron. 

(b) Give an example of P and Q, with n = 2, for which the zero vector (in 
�n+l ) is a degenerate basic feasible solution in Q; show the example in a 
figure. 

(c) Show that the zero vector (in �n+l ) minimizes (c , O) 'y over all y E Q if 
and only if the optimal cost in the original linear programming problem is 
greater than or equal to zero. 

Exercise 3.9 (Necessary and sufficient conditions for a unique opti­
mum) Consider a linear programming problem in standard form and suppose 
that x* is an optimal basic feasible solution. Consider an optimal basis associ­
ated with x* . Let B and N be the set of basic and nonbasic indices , respectively. 
Let I be the set of nonbasic indices i for which the corresponding reduced costs 
Ci are zero. 

(a) Show that if I is empty, then x* is the only optimal solution. 

(b) Show that x* is the unique optimal solution if and only if the following 
linear programming problem has an optimal value of zero: 

maximize LXi 
iE I  

subject to Ax = b 
Xi = 0, 
Xi � 0 , 

i E N \ I, 
i E B U I. 

Exercise 3.10 * Show that if n - m = 2 ,  then the simplex method will not 
cycle, no matter which pivoting rule is used. 

Exercise 3 .11  * Construct an example with n - m = 3 and a pivoting rule 
under which the simplex method will cycle. 
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Exercise 3 .12  Consider the problem 

minimize 
subject to 

-2X1 X2 
Xl X2 ::::; 2 
Xl + X2 ::::; 6 
X1 , X2 2 0. 
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(a) Convert the problem into standard form and construct a basic feasible 
solution at which (X1 , X2 ) = (0 , 0) . 

(b) Carry out the full tableau implementation of the simplex method, starting 
with the basic feasible solution of part (a) . 

(c) Draw a graphical representation of the problem in terms of the original 
variables Xl , X2 , and indicate the path taken by the simplex algorithm. 

Exercise 3 .13  This exercise shows that our efficient procedures for updating a 
tableau can be derived from a useful fact in numerical linear algebra. 

(a) (Matrix inversion lemma) Let C be an m x m invertible matrix and let 
u, v be vectors in lRm . Show that 

(C + WV, ) - l = C- 1 _ C-1WV'C- 1 
1 + v'C- 1w 

(Note that wv' is an m x m matrix) . Hint: Multiply both sides by (C + 
wv' ) .  

( b )  Assuming that C-1 i s  available, explain how to  obtain (C + WV, ) - l using 
only O (m2 ) arithmetic operations. 

(c) Let B and B be basis matrices before and after an iteration of the simplex 
method. Let AB(£) , AB(£) be the exiting and entering column, respectively. 
Show that 

B - B = (AS(£) - AB(£) )e� ,  
where e£ is the £th unit vector. 

(d) Note that e�B - l is the ith row of B- 1 and e�B- 1 is the pivot row. Show 
that 

i =  1 ,  . . .  , m, 
for suitable scalars gi . Provide a formula for gi . Interpret the above equa­
tion in terms of the mechanics for pivoting in the revised simplex method. 

(e) Multiply both sides of the equation in part (d) by [b I A] and obtain an 
interpretation of the mechanics for pivoting in the full tableau implemen­
tation. 

Exercise 3 .14 Suppose that a feasible tableau is available. Show how to obtain 
a tableau with lexicographically positive rows. Hint: Permute the columns. 

Exercise 3 .15  (Perturbation approach to lexicography) Consider a stan­
dard form problem, under the usual assumption that the rows of A are linearly 
independent . Let € be a scalar and define 

b (€) = b + [ :€m2 ] 
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For every E > 0, we define the E-perturbed problem to be the linear programming 
problem obtained by replacing b with b(E) . 

(a) Given a basis matrix B, show that the corresponding basic solution XB (E) 
in the E-perturbed problem is equal to 

(b) Show that there exists some E* > 0 such that all basic solutions to the 
E-perturbed problem are nondegenerate, for 0 < E < E* . 

(c) Suppose that all rows of B- 1  [b I I] are lexicographically positive . Show 
that XB (E) is a basic feasible solution to the E-perturbed problem for E 
positive and sufficiently small. 

(d) Consider a feasible basis for the original problem, and assume that all rows 
of B-1  [b I I] are lexicographically positive. Let some nonbasic variable 
Xj enter the basis , and define u = B-1 Aj . Let the exiting variable be 
determined as follows . For every row i such that Ui is positive, divide the ith 
row of B- 1  [b I I] by Ui , compare the results lexicographically, and choose 
the exiting variable to be the one corresponding to the lexicographically 
smallest row. Show that this is the same choice of exiting variable as in 
the original simplex method applied to the E-perturbed problem, when E is 
sufficiently small. 

(e) Explain why the revised simplex method, with the lexicographic rule de­
scribed in part (d) , is guaranteed to terminate even in the face of degener­
acy. 

Exercise 3 .16 (Lexicography and the revised shnplex method) Suppose 
that we have a basic feasible solution and an associated basis matrix B such that 
every row of B- 1  is lexicographically positive . Consider a pivoting rule that 
chooses the entering variable Xj arbitrarily (as long as Cj < 0) and the exiting 
variable as follows . Let u = B- 1  Aj • For each i with Ui > 0, divide the ith row 
of [B- 1b  I B-1 ]  by Ui and choose the row which is lexicographically smallest . If 
row I! was lexicographically smallest , then the I!th basic variable XB (£) exits the 
basis . Prove the following: 

(a) The row vector (-C�B- 1b, -C�B- 1 )  increases lexicographically at each 
iteration . 

(b) Every row of B-1  is lexicographically positive throughout the algorithm. 
(c) The revised simplex method terminates after a finite number of steps . 

Exercise 3 . 17  Solve completely (Le . ,  both Phase I and Phase II) via the sim­
plex method the following problem: 

minimize 2X1 + 3X2 + 3X3 + X4 2X5 
subject to Xl + 3X2 + 4X4 + X5 2 

Xl + 2X2 3X4 + X5 2 
-Xl 4X2 + 3X3 1 

Xl , . . .  , X5 2: o .  
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Exercise 3 .18 Consider the simplex method applied to a standard form prob­
lem and assume that the rows of the matrix A are linearly independent . For each 
of the statements that follow, give either a proof or a counterexample. 

(a) An iteration of the simplex method may move the feasible solution by a 
positive distance while leaving the cost unchanged. 

(b) A variable that has just left the basis cannot reenter in the very next 
iteration. 

(c) A variable that has just entered the basis cannot leave in the very next 
iteration. 

(d) If there is a nondegenerate optimal basis , then there exists a unique optimal 
basis. 

(e) If x is an optimal solution, no more than m of its components can be 
positive, where m is the number of equality constraints. 

Exercise 3 .19 While solving a standard form problem, we arrive at the follow­
ing tableau, with X3 , X4 , and X5 being the basic variables: 

- 10 8 -2 0 0 0 

4 - 1  'f/ 1 0 0 

1 Q -4 0 1 0 

(3 "( 3 0 0 1 

The entries Q, (3, ,,(, 8, 'f/ in the tableau are unknown parameters . For each 
one of the following statements, find some parameter values that will make the 
statement true. 

(a) The current solution is optimal and there are multiple optimal solutions . 

(b) The optimal cost is - 00 . 

(c) The current solution is feasible but not optimal. 

Exercise 3 .20 Consider a linear programming problem in standard form, de­
scribed in terms of the following initial tableau: 

0 0 0 0 8 3 "( e 

(3 0 1 0 Q 1 0 3 

2 0 0 1 -2 2 'f/ - 1  

3 1 0 0 0 - 1  2 1 

The entries Q, (3, ,,(, 8, 'f/, e in the tableau are unknown parameters . Furthermore, 
let B be the basis matrix corresponding to having X2 , X3 ,  and Xl (in that order) 
be the basic variables . For each one of the following statements, find the ranges 
of values of the various parameters that will make the statement to be true. 

(a) Phase II of the simplex method can be applied using this as an initial 
tableau. 
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(b) The first row in the present tableau indicates that the problem is infeasible. 

(c) The corresponding basic solution is feasible, but we do not have an optimal 
basis . 

(d) The corresponding basic solution is feasible and the first simplex iteration 
indicates that the optimal cost is - 00 . 

(e) The corresponding basic solution is feasible, X6 is a candidate for entering 
the basis, and when X6 is the entering variable, X3 leaves the basis . 

(f) The corresponding basic solution is feasible, X7 is a candidate for enter­
ing the basis , but if it does, the solution and the objective value remain 
unchanged. 

Exercise 3 .21 Consider the oil refinery problem in Exercise 1 . 16 .  

(a) Use the simplex method to find an optimal solution. 

(b) Suppose that the selling price of heating oil is sure to remain fixed over the 
next month, but the selling price of gasoline may rise. How high can it go 
without causing the optimal solution to change? 

(c) The refinery manager can buy crude oil B on the spot market at $40/barrel, 
in unlimited quantities . How much should be bought? 

Exercise 3 .22 Consider the following linear programming problem with a sin­
gle constraint : 

n 
minimize L CiXi 

i= l 

subject to L aiXi = b 
i= l 
Xi :::: 0,  i = 1 ,  . . .  , n . 

(a) Derive a simple test for checking the feasibility of this problem. 

(b) Assuming that the optimal cost is finite, develop a simple method for ob­
taining an optimal solution directly. 

Exercise 3.23 While solving a linear programming problem by the simplex 
method, the following tableau is obtained at some iteration. 

o o 

1 

o 

Assume that in this tableau we have Cj :::: 0 for j = m + 1 ,  . . .  , n - 1 ,  and cn < O. 
In particular, Xn is the only candidate for entering the basis . 

(a) Suppose that Xn indeed enters the basis and that this is a nondegenerate 
pivot (that is, ()* i 0) . Prove that Xn will remain basic in all subsequent 
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iterations of the algorithm and that Xn is a basic variable in any optimal 
basis . 

(b) Suppose that Xn indeed enters the basis and that this is a degenerate pivot 
(that is, ()* = 0) . Show that Xn need not be basic in an optimal basic 
feasible solution. 

Exercise 3 .24 Show that in Phase I of the simplex method, if an artificial vari­
able becomes nonbasic, it need never again become basic. Thus, when an artificial 
variable becomes nonbasic, its column can be eliminated from the tableau. 

Exercise 3 .25 (The simplex method with upper bound constraints) 
Consider a problem of the form 

minimize 

subject to 

I e x 

Ax = b  

° � x � u, 

where A has linearly independent rows and dimensions m x n. Assume that 
Ui > 0 for all i .  

(a)  Let AB( l ) . . .  , AB(rn) be m linearly independent columns of  A (the "basic" 
columns) .  We partition the set of all i =I- B(l ) ,  . . .  , B (m) into two disjoint 
subsets L and U. We set Xi = 0 for all i E L, and Xi = Ui for all i E U. We 
then solve the equation Ax = b for the basic variables XB( l ) , . . .  , XB (rn) . 
Show that the resulting vector x is a basic solution. Also, show that it is 
nondegenerate if and only if 0 < Xi < Ui for every basic variable Xi . 

(b) For this part and the next , assume that the basic solution constructed in 
part (a) is feasible. We form the simplex tableau and compute the reduced 
costs as usual . Let Xj be some nonbasic variable such that Xj = 0 and 
Cj < o. As in Section 3 .2 ,  we increase Xj by (), and adjust the basic variables 
from XB to xB -(}B- l Aj . Given that we wish to preserve feasibility, what is 
the largest possible value of ()? How are the new basic columns determined? 

(e) Let Xj be some nonbasic variable such that Xj = Uj and Cj > o. We 
decrease Xj by () ,  and adjust the basic variables from XB to XB + (}B - l Aj . 
Given that we wish to preserve feasibility, what is the largest possible value 
of ()? How are the new basic columns determined? 

(d) Assuming that every basic feasible solution is nondegenerate, show that the 
cost strictly decreases with each iteration and the method terminates .  

Exercise 3.26 (The big-M method) Consider the variant of the big-M meth­
od in which M is treated as an undetermined large parameter. Prove the follow­
ing. 

(a) If the simplex method terminates with a solution (x , y) for which y = 0,  
then x i s  an optimal solution to the original problem. 

(b) If the simplex method terminates with a solution (x, y) for which y =I- 0 ,  
then the original problem i s  infeasible. 

( e ) If the simplex method terminates with an indication that the optimal cost 
in the auxiliary problem is - 00 ,  show that the original problem is either 
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infeasible or its optimal cost is - 00 .  Hint: When the simplex method ter­
minates, it has discovered a feasible direction d = (dx , dy ) of cost decrease. 
Show that dy = O. 

(d) Provide examples to show that both alternatives in part (c) are possible . 

Exercise 3 .27 * 
(a) Suppose that we wish to find a vector x E Rn that satisfies Ax = 0 and 

x ::::: 0, and such that the number of positive components of x is maximized. 
Show that this can be accomplished by solving the linear programming 
problem 

n 
maximize L Yi 

i= l 
subject to A(z + Y) = 0 

Yi s:: 1 ,  for all i ,  

z , y ::::: O .  

(b) Suppose that we wish to  find a vector x E Rn that satisfies Ax = b and 
x ::::: 0, and such that the number of positive components of x is maximized. 
Show how this can be accomplished by solving a single linear programming 
problem. 

Exercise 3 .28 Consider a linear programming problem in standard form with 
a bounded feasible set . Furthermore, suppose that we know the value of a scalar 
U such that any feasible solution satisfies Xi s:: U, for all i. Show that the 
problem can be transformed into an equivalent one that contains the constraint 
L�=l Xi = 1 .  

Exercise 3 .29 Consider the simplex method, viewed in  terms o f  column geom­
etry. Show that the m + 1 basic points (Ai , Ci ) ,  as defined in Section 3 .6 ,  are 
affinely independent . 

Exercise 3.30 Consider the simplex method, viewed in terms of column geom­
etry. In the terminology of Section 3 .6 ,  show that the vertical distance from the 
dual plane to a point (Aj , Cj ) is equal to the reduced cost of the variable Xj . 

Exercise 3 .31 Consider the linear programming problem 

minimize Xl + 3X2 + 2X3 + 2X4 
subject to 2Xl + 3X2 + X3 + X4 bl 

Xl + 2X2 + X3 + 3X4 b2 
Xl + X2 + X3 + X4 1 
Xl , . . .  , X4 ::::: 0, 

where bl , b2 are free parameters . Let P(bl , b2 ) be the feasible set . Use the column 
geometry of linear programming to answer the following questions . 

(a) Characterize explicitly (preferably with a picture) the set of all (bl ' b2 ) for 
which P(h , b2 ) is nonempty. 
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(b)  Characterize explicitly (preferably with a picture) the set of  all (b1 , b2 ) for 
which some basic feasible solution is degenerate. 

(c) There are four bases in this problem; in the ith basis , all variables except 
for Xi are basic . For every (b1 , b2 ) for which there exists a degenerate basic 
feasible solution, enumerate all bases that correspond to each degenerate 
basic feasible solution. 

(d) For i = 1 ,  . . .  , 4 , let 8i = { (b1 , b2 ) I the ith basis is optimal} . Identify, 
preferably with a picture, the sets 81 , . . .  , 84 .  

(e) For which values of (b1 , b2 ) is the optimal solution degenerate? 

(f) Let b1 = 9/5 and b2 = 7/5. Suppose that we start the simplex method 
with X2 , X3 , X4 as the basic variables. Which path will the simplex method 
follow? 

Exercise 3 .32 * Prove Theorem 3 .5 .  

Exercise 3.33 Consider a polyhedron in standard form, and let x,  y be two 
different basic feasible solutions . If we are allowed to move from any basic feasible 
solution to an adjacent one in a single step, show that we can go from x to y in 
a finite number of steps . 

3 . 1 0 Notes and sources 

3.2 .  The simplex method was pioneered by Dantzig in  1947, who later 
wrote a comprehensive text on the subject (Dantzig, 1963) . 

3.3.  For more discussion of practical implementations of the simplex meth­
od based on products of sparse matrices , instead of B- 1 , see the books 
by Gill, Murray, and Wright ( 1981 ) , Chvatal ( 1983) , Murty ( 1983) , 
and Luenberger ( 1984) . An excellent introduction to numerical linear 
algebra is the text by Golub and Van Loan ( 1983 ) .  Example 3 .6 ,  
which shows the possibility of cycling, is  due to Beale ( 1955) . 

If we have upper bounds for all or some of the variables , instead 
of converting the problem to standard form, we can use a suitable 
adaptation of the simplex method. This is developed in Exercise 3 .25 
and in the textbooks that we mentioned earlier. 

3.4. The lexicographic anticycling rule is due to Dantzig, Orden, and Wolfe 
( 1955) . It can be viewed as an outgrowth of a perturbation method 
developed by Orden and also by Charnes ( 1952) . For an exposition 
of the perturbation method, see Chvatal ( 1983) and Murty ( 1983) , 
as well as Exercise 3 . 15 .  The smallest subscript rule is due to Bland 
( 1977) . A proof that Bland's rule avoids cycling can also be found in 
Papadimitriou and Steiglitz ( 1982) , Chvatal ( 1983) , or Murty ( 1983) . 

3.6 .  The column geometry interpretation of the simplex method is  due to 
Dantzig ( 1963) . For further discussion, see Stone and Tovey (1991 ) .  
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3 .7. The example showing that the simplex method can take an exponen­
tial number of iterations is due to Klee and Minty ( 1972) . The Hirsch 
conjecture was made by Hirsch in 1957. The first results on the aver­
age case behavior of the simplex method were obtained by Borgwardt 
( 1982) and Smale ( 1983) . Schrijver ( 1986) contains an overview of 
the early research in this area, as well as proof of the n/2 bound on 
the number of pivots due to Haimovich ( 1 983) . 

3.9 .  The results in Exercises 3 . 10  and 3 . 1 1 ,  which deal with the smallest 
examples of cycling, are due to Marshall and Suurballe ( 1969) . The 
matrix inversion lemma [Exercise 3 . 13 (a)] is known as the Sherman­
Morrison formula. 
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In this chapter, we start with a linear programming problem, called the pri­
mal , and introduce another linear programming problem, called the dual. 
Duality theory deals with the relation between these two problems and un­
covers the deeper structure of linear programming. It is a powerful theoret­
ical tool that has numerous applications , provides new geometric insights, 
and leads to another algorithm for linear programming (the dual simplex 
method) . 

4 . 1 Motivation 

Duality theory can be motivated as an outgrowth of the Lagrange multiplier 
method, often used in calculus to minimize a function subject to equality 
constraints. For example, in order to solve the problem 

minimize x2 + y2 

subject to x + y = 1 ,  

we introduce a Lagrange multiplier p and form the Lagrangean L(x,  y , p) 
defined by 

L(x, y , p) = x2 + y2 + p(l - x - y) . 

While keeping p fixed, we minimize the Lagrangean over all x and y, subject 
to no constraints, which can be done by setting aLlax and aLlay to zero. 
The optimal solution to this unconstrained problem is 

and depends on p. The constraint x + y = 1 gives us the additional relation 
p = 1 ,  and the optimal solution to the original problem is x = y = 1/2 .  

The main idea in  the above example i s  the following. Instead of 
enforcing the hard constraint x + y = 1 ,  we allow it to be violated and 
associate a Lagrange multiplier, or price, p with the amount 1 - x - Y 
by which it is violated. This leads to the unconstrained minimization of 
x2 + y2 + p(l - x - y) . When the price is properly chosen (p = 1 ,  in our 
example) ,  the optimal solution to the constrained problem is also optimal 
for the unconstrained problem. In particular, under that specific value of p, 
the presence or absence of the hard constraint does not affect the optimal 
cost . 

The situation in linear programming is similar : we associate a price 
variable with each constraint and start searching for prices under which 
the presence or absence of the constraints does not affect the optimal cost . 
It turns out that the right prices can be found by solving a new linear 
programming problem, called the dual of the original. We now motivate 
the form of the dual problem. 
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Consider the standard form problem 

mInImIZe c'x 
subject to Ax = b 

x 2: 0 ,  
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which we call the primal problem, and let x* be an optimal solution, as­
sumed to exist . We introduce a relaxed problem in which the constraint 
Ax = b is replaced by a penalty p'(b - Ax) , where p is a price vector of 
the same dimension as b. We are then faced with the problem 

minimize c'x + p' (b - Ax) 
subject to x 2: o. 

Let g (p) be the optimal cost for the relaxed problem, as a function of the 
price vector p. The relaxed problem allows for more options than those 
present in the primal problem, and we expect g (p) to be no larger than the 
optimal primal cost c'x* . Indeed, 

g (p) = min [c'x + p' (b - Ax) ] ::::; c'x* + p' (b - Ax* ) = c'x* , x ;O: O  
where the last inequality follows from the fact that x* is  a feasible solution 
to the primal problem, and satisfies Ax* = b. Thus , each p leads to a 
lower bound g (p) for the optimal cost c'x* . The problem 

maximize g(p) 
subject to no constraints 

can be then interpreted as a search for the tightest possible lower bound 
of this type, and is known as the dual problem. The main result in du­
ality theory asserts that the optimal cost in the dual problem is equal to 
the optimal cost c'x* in the primal. In other words,  when the prices are 
chosen according to an optimal solution for the dual problem, the option 
of violating the constraints Ax = b is of no value . 

Using the definition of g (p) , we have 

Note that 

g(p) min [c'x + p' (b - Ax) ] x;O:O 
p'b + min (c' - p' A)x. x 2: 0  

min (c' - p'A)x = { O , x 2: 0  - 00 , 
if c' - p' A 2: 0' , 
otherwise .  

In maximizing g(p) , we only need to consider those values of p for which 
g(p) is not equal to - 00 . We therefore conclude that the dual problem is 
the same as the linear programming problem 

maximize p'b 
subject to p' A ::::; c'. 
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In the preceding example, we started with the equality constraint 
Ax = b and we ended up with no constraints on the sign of the price 
vector p. If the primal problem had instead inequality constraints of the 
form Ax 2: b, they could be replaced by Ax - s = b, s 2: o. The equality 
constraint can be written in the form 

[A I - I] [ : ] = 0,  

which leads to the dual constraints 

p' [A I -I] :::; [e' 1 0'] , 

or, equivalently, 
p'A :::; e

'
, p 2: o . 

Also, i f  the vector x i s  free rather than sign-constrained, we use the fact 

. ( ' 'A) 
{ 0, if e' - p' A = 0' , min e - p x =  . 

x -00,  otherWIse, 

to end up with the constraint p' A = e' in the dual problem. These consid­
erations motivate the general form of the dual problem which we introduce 
in the next section. 

In summary, the construction of the dual of a primal minimization 
problem can be viewed as follows. We have a vector of parameters (dual 
variables) p, and for every p we have a method for obtaining a lower bound 
on the optimal primal cost . The dual problem is a maximization problem 
that looks for the tightest such lower bound. For some vectors p, the 
corresponding lower bound is equal to -00,  and does not carry any useful 
information. Thus , we only need to maximize over those p that lead to 
nontrivial lower bounds , and this is what gives rise to the dual constraints. 

4 . 2  The dual problem 

Let A be a matrix with rows a� and columns Aj • Given a primal problem 
with the structure shown on the left ,  its dual is defined to be the maxi­
mization problem shown on the right : 

minimize e'x maximize 
subject to a�x 2: bi , i E MI , subject to 

a�x :::; bi , i E M2 , 
a�x = bi , i E M3 , 
Xj 2: 0 ,  j E NI , 
Xj :::; 0,  j E N2 , 
Xj free, j E N3 , 

p'b 
Pi 2: 0, 

Pi :::; 0, 

Pi free, 
p'Aj :::; Cj , 
p' Aj 2: Cj , 
p'Aj = Cj , 

i E MI , 
i E M2 , 
i E M3 , 
j E Nb 
j E N2 , 
j E N3 . 



Sec. 4.2 The dual problem 143 

Notice that for each constraint in the primal (other than the sign con­
straints) , we introduce a variable in the dual problem; for each variable in 
the primal, we introduce a constraint in the dual. Depending on whether 
the primal constraint is an equality or inequality constraint , the corre­
sponding dual variable is either free or sign-constrained, respectively. In 
addition, depending on whether a variable in the primal problem is free or 
sign-constrained, we have an equality or inequality constraint , respectively, 
in the dual problem. We summarize these relations in Table 4. 1 .  

PRIMAL minimize maximize DUAL 

"2 bi "2 0 
constraints � bi � O  variables 

= bi free 

"2 0 < c · - J 

variables � O  "2 Cj constraints 

free = Cj 

Table 4 .1 :  Relation between primal and dual variables and constraints. 

If we start with a maximization problem, we can always convert it 
into an equivalent minimization problem, and then form its dual according 
to the rules we have described. However, to avoid confusion, we will adhere 
to the convention that the primal is a minimization problem, and its dual 
is a maximization problem. Finally, we will keep referring to the objective 
function in the dual problem as a "cost" that is being maximized. 

A problem and its dual can be stated more compactly, in matrix 
notation, if a particular form is assumed for the primal. We have, for 
example, the following pairs of primal and dual problems : 

minimize c'x 
subject to Ax b 

x > 0 ,  

and 

minimize c'x 
subject to Ax "2 b,  

maximize 
subject to 

maximize 
subject to 

p'b 
p'A � c' , 

p'b 
p'A = c' 
P "2  o. 

Exrunple 4 .1  Consider the primal problem shown on the left and its dual shown 
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on the right : 

minimize 
subject to 

Xl + 2X2 + 3X3 
-Xl + 3X2 = 5 
2Xl - X2 + 3X3 � 6 

X3 :::; 4 
Xl � 0 
X2 :::; 0 
X3 free , 
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maximize 
subject to 

5Pl + 6P2 + 4P3 
Pl free 
P2 � 0 
P3 :::; 0 

-Pl + 2P2 :::; 1 
3Pl - P2 � 2 

3P2 + P3 = 3 .  

We transform the dual into an equivalent minimization problem, rename the 
variables from Pl , P2 , P3 to Xl , X2 , X3 ,  and multiply the three last constraints by 
- 1 .  The resulting problem is shown on the left . Then, on the right , we show its 
dual : 

minimize 
subject to 

-5Xl - 6X2 - 4X3 
Xl free 
X2 � 0 
X3 :::; 0 
Xl - 2X2 � - 1  

-3X l + X2 :::; -2  
- 3X2 - X3  = -3 ,  

maximize 
subject to 

-Pl - 2P2 - 3P3 
Pl - 3P2 = -5 

-2Pl + P2 - 3P3 :::; -6 

Pl � 0 
P2 :::; 0 
P3 free. 

- P3 � -4 

We observe that the latter problem is equivalent to the primal problem we started 
with. (The first three constraints in the latter problem are the same as the first 
three constraints in the original problem, multiplied by - 1 .  Also , if the maxi­
mization in the latter problem is changed to a minimization, by multiplying the 
objective function by -1 ,  we obtain the cost function in the original problem. )  

The first primal problem considered in Example 4 . 1  had all of  the 
ingredients of a general linear programming problem. This suggests that 
the conclusion reached at the end of the example should hold in general . 
Indeed, we have the following result . Its proof needs nothing more than 
the steps followed in Example 4. 1 ,  with abstract symbols replacing specific 
numbers , and will therefore be omitted. 

Theorem 4 .1  If we transform the dual into an equivalent minimiza­
tion problem and then form its dual, we obtain a problem equivalent 
to the original problem. 

A compact statement that is often used to describe Theorem 4 . 1  is 
that "the dual of the dual is the primal. "  

Any linear programming problem can be manipulated into one of 
several equivalent forms, for example, by introducing slack variables or by 
using the difference of two nonnegative variables to replace a single free 
variable. Each equivalent form leads to a somewhat different form for the 
dual problem. Nevertheless , the examples that follow indicate that the 
duals of equivalent problems are equivalent . 
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Example 4.2 Consider the primal problem shown on the left and its dual shown 
on the right : 

minimize c' x 
subject to Ax � b 

x free, 

maximize 
subject to 

p'b 
p � D  
p'A = c' . 

We transform the primal problem by introducing surplus variables and then ob­
tain its dual: 

minimize 
subject to 

c'x + D's 
Ax - s = b  
x free 
s � 0,  

maximize 
subject to 

p'b 
p free 
p'A = c' 

-p ::; D .  

Alternatively, i f  we take the original primal problem and replace x by sign­
constrained variables , we obtain the following pair of problems : 

minimize 
subject to 

c'x+ - c'x­
Ax+ - Ax- � b 
x+ � 0 
x- � 0,  

maximize 
subject to 

p'b 
p � D  
p'A ::; c' 

-p'A ::;  -c' . 

Note that we have three equivalent forms of the primal. We observe that the 
constraint p � 0 is equivalent to the constraint -p ::; D. Furthermore, the con­
straint p' A = c' is equivalent to the two constraints p' A ::; c' and -p' A ::; -c' . 
Thus, the duals of the three variants of the primal problem are also equivalent . 

The next example is in the same spirit and examines the effect of 
removing redundant equality constraints in a standard form problem. 

Example 4.3 Consider a standard form problem, assumed feasible , and its 
dual : 

minimize c' x 
subject to Ax b 

x � 0, 

maximize 
subject to 

p'b 
p'A ::; c' . 

Let a� , . . .  , a� be the rows of A and suppose that am = 2::�
1 

/'iai for some 
scalars /'1 , . . .  , /'m- l . In particular, the last equality constraint is redundant and 
can be eliminated. By considering an arbitrary feasible solution x, we obtain 

m- l m- l 
bm = a�x = L 'Yia�x = L /'ibi . 

i= 1 i= l 
(4. 1 )  

Note that the dual constraints are of  the form 2::1 Pia� ::; c' and can be  rewritten 
as 

m- l 
L (Pi + /'ipm )a� ::; c' . 
i= l 

Furthermore ,  using Eq. (4. 1 ) ,  the dual cost 2::1 Pi bi is equal to 

m- l 

i= l 
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If we now let qi = Pi + "/iP= , we see that the dual problem is equivalent to 

=- 1 
maximize L qibi 

i= 1 
=- 1 

subject to L qia� :S c' . 
i= l 

We observe that this is the exact same dual that we would have obtained if we 
had eliminated the last (and redundant) constraint in the primal problem, before 
forming the dual. 

The conclusions of the preceding two examples are summarized and gener­
alized by the following result . 

Theorem 4.2 Suppose that we have transformed a linear program­
ming problem 01 to another linear programming problem O2 , by a 
sequence of transformations of the following types: 

(a) Replace a free variable with the difference of two nonnegative 
variables. 

(b) Replace an inequality constraint by an equality constraint involv­
ing a nonnegative slack variable. 

(e) If some row of the matrix A in a feasible standard form problem 
is a linear combination of the other rows, eliminate the corre­
sponding equality constraint. 

Then, the duals of 01 and 02 are equivalent, i .e. ,  they are either both 
infeasible, or they have the same optimal cost. 

The proof of Theorem 4.2 involves a combination of the various steps 
in Examples 4.2 and 4.3 ,  and is left to the reader. 

4 . 3  The duality theorem 

We saw in Section 4.1 that for problems in standard form, the cost g(p) 
of any dual solution provides a lower bound for the optimal cost . We now 
show that this property is true in general . 

Theorem 4.3 (Weak duality) Ifx is a feasible solution to the primal 
problem and p is a feasible solution to the dual problem, then 

p'b S e'x.  
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Proof. For any vectors x and p,  we define 

Ui = Pi (a�x - bi ) ,  
Vj = (Cj - p' Aj )Xj .  

Suppose that x and p are primal and dual feasible, respectively. The def­
inition of the dual problem requires the sign of Pi to be the same as the 
sign of a�x - bi , and the sign of Cj - p' Aj to be the same as the sign of Xj . 
Thus , primal and dual feasibility imply that 

and 

Notice that 

and 

Vj � 0,  V j. 

L Ui = p' Ax - p'b ,  
i 

L Vj = c'x - p'Ax. 
j 

We add these two equalities and use the nonnegativity of Ui , Vj , to obtain 

o 
j 

The weak duality theorem is not a deep result , yet it does provide 
some useful information about the relation between the primal and the 
dual. We have, for example , the following corollary. 

Corollary 4.1  

(a)  If the optimal cost in  the primal is  - 00 ,  then the dual problem 
must be infeasible. 

(b) If the optimal cost in the dual is +00, then the primal problem 
must be infeasible. 

Proof. Suppose that the optimal cost in the primal problem is - 00  and 
that the dual problem has a feasible solution p. By weak duality, p satisfies 
p'b � c'x for every primal feasible x. Taking the minimum over all primal 
feasible x, we conclude that p'b � -00. This is impossible and shows that 
the dual cannot have a feasible solution, thus establishing part (a) . Part 
(b) follows by a symmetrical argument . 0 

Another important corollary of the weak duality theorem is the fol­
lowing. 
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Corollary 4.2 Let x and p be feasible solutions to the primal and 
the dual, respectively, and suppose that p'b = c'x. Then, x and p are 
optimal solutions to the primal and the dual, respectively. 

Proof. Let x and p be as in the statement of the corollary. For every primal 
feasible solution y, the weak duality theorem yields c'x = p'b :::; c'y ,  which 
proves that x is optimal . The proof of optimality of p is similar. 0 

The next theorem is the central result on linear programming dual-
ity. 

Theorem 4.4 (Strong duality) If a linear programming problem 
has an optimal solution, so does its dual, and the respective optimal 
costs are equal. 

Proof. Consider the standard form problem 

minimize c' x 
subject to Ax b 

x > o .  

Let us  assume temporarily that the rows of  A are linearly independent and 
that there exists an optimal solution. Let us apply the simplex method to 
this problem. As long as cycling is avoided, e .g . , by using the lexicographic 
pivoting rule , the simplex method terminates with an optimal solution x 
and an optimal basis B.  Let XB = B-1 b be the corresponding vector of 
basic variables. When the simplex method terminates ,  the reduced costs 
must be nonnegative and we obtain 

C' - c' B- 1 A > 0' B - , 

where cB is the vector with the costs of the basic variables . Let us define 
a vector p by letting p' = cBB - I . We then have p'A :::; c/ , which shows 
that p is a feasible solution to the dual problem 

In addition, 

maximize p/b 
subject to p' A :::; c/ . 

'b I B- Ib I I P = cB = cBXB = C X. 
It follows that p is an optimal solution to the dual (cf. Corollary 4.2) , and 
the optimal dual cost is equal to the optimal primal cost . 

If we are dealing with a general linear programming problem III that 
has an optimal solution, we first transform it into an equivalent standard 
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form problem II2 , with the same optimal cost , and in which the rows of the 
matrix A are linearly independent . Let Dl and D2 be the duals of III and 
II2 , respectively. By Theorem 4 .2 ,  the dual problems Dl and D2 have the 
same optimal cost . We have already proved that II2 and D2 have the same 
optimal cost . It follows that III and Dl have the same optimal cost (see 
Figure 4 . 1 ) .  D 

equivalent 

-------.. �� D2 
duality for 
standard form 
problems 

duals of equivalent 
problems are 
equivalent 

Figure 4. 1 :  Proof of the duality theorem for general linear pro­
gramming problems. 

The preceding proof shows that an optimal solution to the dual prob­
lem is obtained as a byproduct of the simplex method as applied to a primal 
problem in standard form. It is based on the fact that the simplex method 
is guaranteed to terminate and this , in turn , depends on the existence of 
pivoting rules that prevent cycling. There is an alternative derivation of the 
duality theorem, which provides a geometric , algorithm-independent view 
of the subject , and which is developed in Section 4 .7 .  At this point ,  we 
provide an illustration that conveys most of the content of the geometric 
proof. 

Example 4.4 Consider a solid ball constrained to lie in a polyhedron defined 
by inequality constraints of the form a�x 2: bi . If left under the influence of 
gravity, this ball reaches equilibrium at the lowest corner x* of the polyhedron; 
see Figure 4 .2 .  This corner is an optimal solution to the problem 

minimize c' x 
subject to a�x 2: bi , V i , 

where c is a vertical vector pointing upwards . At equilibrium, gravity is counter­
balanced by the forces exerted on the ball by the "walls" of the polyhedron. The 
latter forces are normal to the walls, that is, they are aligned with the vectors ai . 
We conclude that c = 2:i Piai , for some nonnegative coefficients Pi ; in particular , 
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the vector p is a feasible solution to the dual problem 

maximize p'h 
subject to p' A = c' 

p � O. 

Duality theory 

Given that forces can only be exerted by the walls that touch the ball, we must 
have Pi = 0, whenever a�x* > bi . Consequently, Pi (bi - a�x* ) = 0 for all i. We 
therefore have p'h = Li Pibi = Li Pi�X* = c'x* . It follows (Corollary 4.2 )  that 
p is an optimal solution to the dual, and the optimal dual cost is equal to the 
optimal primal cost . 

Figure 4.2 :  A mechanical analogy of the duality theorem. 

Recall that in a linear programming problem, exactly one of the fol­
lowing three possibilities will occur: 

(a) There is an optimal solution. 

(b) The problem is "unbounded" ; that is , the optimal cost is -00 (for 
minimization problems) , or +00 (for maximization problems) . 

(c) The problem is infeasible. 

This leads to nine possible combinations for the primal and the dual, which 
are shown in Table 4 . 2 .  By the strong duality theorem, if one problem has 
an optimal solution, so does the other . Furthermore, as discussed earlier , 
the weak duality theorem implies that if one problem is unbounded, the 
other must be infeasible. This allows us to mark some of the entries in 
Table 4 .2  as "impossible ." 
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I I Finite optimum Unbounded Infeasible I 
Finite optimum Possible Impossible Impossible 

Unbounded Impossible Impossible Possible 

Infeasible Impossible Possible Possible 

Table 4.2 :  The different possibilities for the primal and the dual. 

The case where both problems are infeasible can indeed occur, as shown by 
the following example. 

Example 4.5 Consider the infeasible primal 

minimize Xl 
subject to Xl 

2Xl 

Its dual is 
maximize Pl 
subject to Pl 

Pl 

which is also infeasible. 

+ 
+ 
+ 

+ 
+ 
+ 

2X2 
X2 

2X2 

3P2 
2P2 
2P2 

1 
3 .  

1 
2 ,  

There i s  another interesting relation between the primal and the dual 
which is known as Clark's theorem (Clark, 1961 ) .  It asserts that unless 
both problems are infeasible , at least one of them must have an unbounded 
feasible set (Exercise 4 .21 ) .  

Complementary slackness 

An important relation between primal and dual optimal solutions is pro­
vided by the complementary slackness conditions, which we present next . 

Theorem 4.5 (Complementary slackness) Let x and p be feasible 
solutions to the primal and the dual problem, respectively. The vectors 
x and p are optimal solutions for the two respective problems if and 
only if: 

Pi (a�x - bi ) = 0 ,  't/ i ,  
(Cj - p' Aj )xj = 0 ,  't/ j. 

Proof. In the proof of Theorem 4.3 ,  we defined Ui = Pi (a�x - bi ) and 
Vj = (cj - p'Aj )xj ,  and noted that for x primal feasible and p dual feasible , 
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we have Ui � 0 and Vj � 0 for all i and j .  In addition, we showed that 

c'x - p'b =  L Ui + L Vj .  
i j 

By the strong duality theorem, if x and p are optimal, then c'x = p'b, 
which implies that Ui = Vj = 0 for all i ,  j .  Conversely, if  Ui = Vj = 0 for all 
i ,  j ,  then c'x = p'b ,  and Corollary 4 .2  implies that x and p are optimal. 

o 
The first complementary slackness condition is automatically satis­

fied by every feasible solution to a problem in standard form. If the pri­
mal problem is not in standard form and has a constraint like a�x � bi ,  
the corresponding complementary slackness condition asserts that the dual 
variable Pi is zero unless the constraint is active. An intuitive explanation 
is that a constraint which is not active at an optimal solution can be re­
moved from the problem without affecting the optimal cost , and there is no 
point in associating a nonzero price with such a constraint . Note also the 
analogy with Example 4.4 ,  where "forces" were only exerted by the active 
constraints. 

If the primal problem is in standard form and a nondegenerate optimal 
basic feasible solution is known, the complementary slackness conditions 
determine a unique solution to the dual problem. We illustrate this fact in 
the next example . 

Example 4.6 Consider a problem in standard form and its dual: 

minimize 13x I + lOx2 + 6X3 maximize 8PI + 3P2 
subject to 5XI + X2 + 3X3 8 subject to 5PI + 3P2 :::; 13 

3XI + X2 3 PI + P2 :::; 10 
Xl , X2 , X3 � 0 ,  3PI :::; 6 .  

As will be verified shortly, the vector x* = ( 1 , 0 , 1 )  i s  a nondegenerate optimal 
solution to the primal problem. Assuming this to be the case, we use the comple­
mentary slackness conditions to construct the optimal solution to the dual . The 
condition Pi (a�x* - bi ) = 0 is automatically satisfied for each i, since the primal 
is in standard form. The condition (Cj - p' Aj )xj = 0 is clearly satisfied for j = 2, 
because X2 = O .  However, since xi > 0 and X3 > 0,  we obtain 

and 
3PI = 6 ,  

which we can solve to obtain PI = 2 and P2 = 1 .  Note that this is  a dual feasible 
solution whose cost is equal to 19 ,  which is the same as the cost of x* . This 
verifies that x* is indeed an optimal solution as claimed earlier . 

We now generalize the above example. Suppose that Xj is a ba­
sic variable in a nondegenerate optimal basic feasible solution to a primal 
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problem in standard form. Then, the complementary slackness condition 
(Cj _pi Aj )xj = 0 yields pi Aj = Cj for every such j. Since the basic columns 
Aj are linearly independent , we obtain a system of equations for p which 
has a unique solution, namely, pi = C�B- l . A similar conclusion can also 
be drawn for problems not in standard form (Exercise 4 . 12 ) . On the other 
hand, if we are given a degenerate optimal basic feasible solution to the 
primal, complementary slackness may be of very little help in determining 
an optimal solution to the dual problem (Exercise 4. 17) .  

We finally mention that if the primal constraints are of the form 
Ax 2 h, x 2 0 ,  and the primal problem has an optimal solution, then 
there exist optimal solutions to the primal and the dual which satisfy strict 
complementary slackness; that is , a variable in one problem is nonzero if 
and only if the corresponding constraint in the other problem is active 
(Exercise 4 .20) . This result has some interesting applications in discrete 
optimization, but these lie outside the scope of this book. 

A geometric view 

We now develop a geometric view that allows us to visualize pairs of primal 
and dual vectors without having to draw the dual feasible set . 

We consider the primal problem 

minimize c' x 
subject to a�x 2 bi , i = 1 ,  . . . , m , 

where the dimension of x is equal to n. We assume that the vectors ai span 
�n . The corresponding dual problem is 

maximize p'h 
m 

subject to L>i� = C 
i=l  
P 2 0. 

Let I be a subset of { 1 ,  . . .  , m} of cardinality n, such that the vectors 
� , i  E I, are linearly independent . The system a�x = bi , i E I, has a unique 
solution, denoted by xl , which is a basic solution to the primal problem 
(cf. Definition 2 .9  in Section 2 . 2 ) .  We assume, that xl is nondegenerate ,  
that is , a�x -=I- bi for i � I. 

Let p E �m be a dual vector (not necessarily dual feasible) ,  and let 
us consider what is required for xl and p to be optimal solutions to the 
primal and the dual problem, respectively. We need: 

(a) a�xI 2 bi , for all i ,  (primal feasibility) ,  

(b) Pi = O , for all i � I, 

(c) 

(d) P 2 0 , 

(complementary slackness) , 

(dual feasibility) ,  

(dual feasibility) .  
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c 

l 

Figure 4.3:  Consider a primal problem with two variables and 
five inequality constraints (n = 2 ,  m = 5) ,  and suppose that no 
two of the vectors ai are collinear. Every two-element subset I 
of { I ,  2 ,  3 , 4, 5} determines basic solutions xl and pI of the primal 
and the dual, respectively. 
If I = { 1 , 2} ,  Xl is primal infeasible (point A) and pI is dual in­
feasible, because c cannot be expressed as a nonnegative linear 
combination of the vectors al and a2 . 
If I = { I ,  3} ,  Xl is primal feasible (point B) and pI is dual infea­
sible . 
If I = { I ,  4} ,  xl is primal feasible (point C) and pI is dual feasible, 
because c can be expressed as a nonnegative linear combination of 
the vectors al and 8.4. In particular, xl and pI are optimal . 
If I = { 1 , 5} ,  xl is primal infeasible (point D) and pI is dual 
feasible. 

Given the complementary slackness condition (b) , condition (c) becomes 

Since the vectors ai , i E I, are linearly independent , the latter equation 
has a unique solution that we denote by pl . In fact , it is readily seen 
that the vectors ai , i E I, form a basis for the dual problem (which is in 
standard form) and pI is the associated basic solution. For the vector pI 
to be dual feasible, we also need it to be nonnegative. We conclude that 
once the complementary slackness condition (b) is enforced, feasibility of 
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Figure 4.4: The vector x* is a degenerate basic feasible solution 
of the primal. If we choose I = { 1 , 2 } ,  the corresponding dual 
basic solution pi is infeasible, because c is not a nonnegative linear 
combination of aI , a2 . On the other hand, if we choose I = { I ,  3} 
or I = {2 , 3} ,  the resulting dual basic solution pi is feasible and, 
therefore, optimal. 
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the resulting dual vector pI is equivalent to c being a nonnegative linear 
combination of the vectors ai , i E I, associated with the active primal 
constraints. This allows us to visualize dual feasibility without having to 
draw the dual feasible set ; see Figure 4 .3 .  

If  x* i s  a degenerate basic solution to the primal , there can be several 
subsets I such that xl = x* . Using different choices for I, and by solving 
the system LiEI Piai = c , we may obtain several dual basic solutions pl . It 
may then well be the case that some of them are dual feasible and some are 
not ; see Figure 4 .4 .  Still, if pI is dual feasible (Le. , all Pi are nonnegative) 
and if x* is primal feasible , then they are both optimal , because we have 
been enforcing complementary slackness and Theorem 4 .5  applies . 

4 . 4  Optimal dual variables as marginal costs 

In this section, we elaborate on the interpretation of the dual variables as 
prices. This theme will be revisited, in more depth, in Chapter 5 .  

Consider the standard form problem 

minimize c' x 
subject to Ax b 

x >  o. 

We assume that the rows of A are linearly independent and that there 
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is a nondegenerate basic feasible solution x* which is optimal. Let B be 
the corresponding basis matrix and let XB = B-1  b be the vector of basic 
variables , which is positive, by nondegeneracy. Let us now replace b by 
b + d, where d is a small perturbation vector . Since B-1  b > 0 ,  we also 
have B-1 (b + d) > 0, as long as d is small . This implies that the same 
basis leads to a basic feasible solution of the perturbed problem as well. 
Perturbing the right-hand side vector b has no effect on the reduced costs 
associated with this basis . By the optimality of x* in the original problem, 
the vector of reduced costs c' - c'aB-1  A is nonnegative and this establishes 
that the same basis is optimal for the perturbed problem as well. Thus , 
the optimal cost in the perturbed problem is 

where p' = c'aB-1  is an optimal solution to the dual problem. Therefore, a 
small change of d in the right-hand side vector b results in a change of p'd 
in the optimal cost . We conclude that each component Pi of the optimal 
dual vector can be interpreted as the marginal cost (or shadow price ) per 
unit increase of the ith requirement bi . 

We conclude with yet another interpretation of duality, for standard 
form problems . In order to develop some concrete intuition, we phrase 
our discussion in terms of the diet problem (Example 1 . 3  in Section 1 . 1 ) .  
We interpret each vector Aj as the nutritional content o f  the jth available 
food, and view b as the nutritional content of an ideal food that we wish to 
synthesize . Let us interpret Pi as the "fair" price per unit of the ith nutrient . 
A unit of the jth food has a value of Cj at the food market , but it also has 
a value of p' Aj if priced at the nutrient market . Complementary slackness 
asserts that every food which is used (at a nonzero level) to synthesize the 
ideal food, should be consistently priced at the two markets .  Thus , duality 
is concerned with two alternative ways of cost accounting. The value of the 
ideal food, as computed in the food market , is c'x* , where x* is an optimal 
solution to the primal problem; the value of the ideal food, as computed 
in the nutrient market , is p'b. The duality relation c'x* = p'b states that 
when prices are chosen appropriately, the two accounting methods should 
give the same results .  

4 . 5  Standard form problems and the dual 

simplex method 

In this section, we concentrate on the case where the primal problem is in 
standard form. We develop the dual simplex method, which is an alternative 
to the simplex method of Chapter 3. We also comment on the relation 
between the basic feasible solutions to the primal and the dual, including 
a discussion of dual degeneracy. 
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In the proof of the strong duality theorem, we considered the simplex 
method applied to a primal problem in standard form and defined a dual 
vector p by letting p' = C�B- 1 . We then noted that the primal optimality 
condition c' - C�B- 1 A 2:: 0' is the same as the dual feasibility condition 
p' A � c' .  We can thus think of the simplex method as an algorithm that 
maintains primal feasibility and works towards dual feasibility. A method 
with this property is generally called a primal algorithm. An alternative is 
to start with a dual feasible solution and work towards primal feasibility. A 
method of this type is called a dual algorithm. In this section, we present a 
dual simplex method, implemented in terms of the full tableau. We argue 
that it does indeed solve the dual problem, and we show that it moves from 
one basic feasible solution of the dual problem to another . An alternative 
implementation that only keeps track of the matrix B-l , instead of the 
entire tableau, is called a revised dual simplex method (Exercise 4 .23) . 

The dual simplex method 

Let us consider a problem in standard form, under the usual assumption 
that the rows of the matrix A are linearly independent . Let B be a basis 
matrix, consisting of m linearly independent columns of A, and consider 
the corresponding tableau 

or, in more detail, 

-C�XB C1 . . . cn 
XB( l )  I I 

B-1A1 . . .  B- 1An 
XB(m) I I 

We do not require B- 1b to be nonnegative, which means that we 
have a basic , but not necessarily feasible solution to the primal problem. 
However, we assume that c 2:: 0; equivalently, the vector p' = c�B- 1 
satisfies p' A � c' , and we have a feasible solution to the dual problem. 
The cost of this dual feasible solution is p'b = C�B- 1b = C�XB ' which 
is the negative of the entry at the upper left corner of the tableau. If 
the inequality B- 1 b 2:: 0 happens to hold, we also have a primal feasible 
solution with the same cost , and optimal solutions to both problems have 
been found. If the inequality B-1b 2:: 0 fails to hold, we perform a change 
of basis in a manner we describe next . 
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We find some £ such that XB(£) < 0 and consider the £th row of the 
tableau, called the pivot row; this row is of the form (XB(£) , V1 , " " vn ) , 
where Vi is the £th component of B- 1 Ai ' For each i with Vi < 0 (if such i 
exist) ,  we form the ratio i;/ Ivi l and let j be an index for which this ratio 
is smallest ; that is, Vj < 0 and 

C - Ci 
_J_ = min _ .  IVj l { i l v i<O} IVi l (4.2) 

(We call the corresponding entry Vj the pivot element. Note that Xj must 
be a nonbasic variable, since the jth column in the tableau contains the 
negative element Vj . ) We then perform a change of basis : column Aj 
enters the basis and column AB(£) exits .  This change of basis (or pivot) is 
effected exactly as in the primal simplex method: we add to each row of the 
tableau a multiple of the pivot row so that all entries in the pivot column 
are set to zero, with the exception of the pivot element which is set to 1 .  In 
particular, in order to set the reduced cost in the pivot column to zero, we 
multiply the pivot row by cj / lvj l and add it to the zeroth row. For every 
i ,  the new value of Ci is equal to 

_ Cj Ci + Vi � ' 

which is nonnegative because of the way that j was selected [ef. Eq. (4 .2) J .  
We conclude that the reduced costs in the new tableau will also b e  nonneg­
ative and dual feasibility has been maintained. 

Example 4.7 Consider the tableau 

Xl  X2  X3 X4 X5 

0 2 6 10 0 0 

2 -2 4 1 1 0 

- 1  4 -2* -3 0 1 

Since XB(2) < 0, we choose the second row to be the pivot row. Negative entries 
of the pivot row are found in the second and third column. We compare the 
corresponding ratios 6/ 1 - 21 and 10/ 1 - 3 1 .  The smallest ratio is 6/ 1 - 21 and, 
therefore, the second column enters the basis . (The pivot element is indicated by 
an asterisk. ) We multiply the pivot row by 3 and add it to the zeroth row. We 
multiply the pivot row by 2 and add it to the first row. We then divide the pivot 
row by -2.  The new tableau is 

Xl  X2 X3 X4 X5 

-3 14 0 1 0 3 

0 6 0 -5 1 2 

1/2 -2 1 3/2 0 -1/2 



Sec. 4. 5 Standard form problems and the dual simplex method 159 

The cost has increased to 3 . Furthermore , we now have B-1b 2': 0,  and an 
optimal solution has been found. 

Note that the pivot element Vj is always chosen to be negative, where­
as the corresponding reduced cost Cj is nonnegative. Let us temporarily 
assume that Cj is in fact positive . Then, in order to replace Cj by zero, we 
need to add a positive multiple of the pivot row to the zeroth row. Since 
XB(£) is negative, this has the effect of adding a negative quantity to the 
upper left corner . Equivalently, the dual cost increases . Thus , as long as the 
reduced cost of every nonbasic variable is nonzero, the dual cost increases 
with each basis change , and no basis will ever be repeated in the course of 
the algorithm. It follows that the algorithm must eventually terminate and 
this can happen in one of two ways: 

(a) We have B- Ib 2: 0 and an optimal solution. 

(b) All of the entries VI , . • .  , Vn in the pivot row are nonnegative and we 
are therefore unable to locate a pivot element . In full analogy with 
the primal simplex method, this implies that the optimal dual cost is 
equal to +00 and the primal problem is infeasible ; the proof is left as 
an exercise (Exercise 4 .22) . 

We now provide a summary of the algorithm. 

An iteration of the dual simplex method 
1 .  A typical iteration starts with the tableau associated with a basis 

matrix B and with all reduced costs nonnegative. 

2 .  Examine the components of  the vector B- 1 b in  the zeroth col­
umn of the tableau. If they are all nonnegative, we have an op­
timal basic feasible solution and the algorithm terminates ; else, 
choose some f! such that x B(R) < O .  

3 .  Consider the f!th row of  the tableau, with elements XB(R.) , Vb " " 
vn (the pivot row) . If Vi 2: 0 for all i ,  then the optimal dual cost 
is +00 and the algorithm terminates. 

4. For each i such that Vi < 0 ,  compute the ratio cd lvi l and let j 
be the index of a column that corresponds to the smallest ratio. 
The column AB(£) exits the basis and the column Aj takes its 
place. 

5 . Add to each row of the tableau a multiple of the f!th row (the 
pivot row) so that Vj (the pivot element) becomes 1 and all other 
entries of the pivot column become O. 

Let us now consider the possibility that the reduced cost Cj in the 
pivot column is zero. In this case, the zeroth row of the tableau does not 
change and the dual cost C�B-I  b remains the same. The proof of termina-
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tion given earlier does not apply and the algorithm can cycle . This can be 
avoided by employing a suitable anticycling rule , such as the following. 

Lexicographic pivoting rule for the dual simplex method 
1 .  Choose any row £ such that XB(C) < 0 ,  to be  the pivot row. 

2 .  Determine the index j of  the entering column as follows. For each 
column with Vi < 0, divide all entries by I Vi I , and then choose 
the lexicographically smallest column. If there is a tie between 
several lexicographically smallest columns , choose the one with 
the smallest index. 

If the dual simplex method is initialized so that every column of the 
tableau [that is, each vector (cj , B- 1Aj ) ]  is lexicographically positive , and 
if the above lexicographic pivoting rule is used, the method terminates in a 
finite number of steps . The proof is similar to the proof of the corresponding 
result for the primal simplex method (Theorem 3 .4) and is left as an exercise 
(Exercise 4. 24) . 

When should we use the dual simplex method 

At this point , it is natural to ask when the dual simplex method should 
be used . One such case arises when a basic feasible solution of the dual 
problem is readily available . Suppose, for example , that we already have an 
optimal basis for some linear programming problem, and that we wish to 
solve the same problem for a different choice of the right-hand side vector 
b. The optimal basis for the original problem may be primal infeasible 
under the new value of b. On the other hand, a change in b does not affect 
the reduced costs and we still have a dual feasible solution. Thus , instead 
of solving the new problem from scratch, it may be preferable to apply 
the dual simplex algorithm starting from the optimal basis for the original 
problem. This idea will be considered in more detail in Chapter 5 .  

The geometry of the dual simplex method 

Our development of the dual simplex method was based entirely on tableau 
manipulations and algebraic arguments. We now present an alternative 
viewpoint based on geometric considerations . 

We continue assuming that we are dealing with a problem in standard 
form and that the matrix A has linearly independent rows . Let B be a basis 
matrix with columns AB(l ) , . . .  , AB(m) . This basis matrix determines a 
basic solution to the primal problem with XB = B-lb. The same basis can 
also be used to determine a dual vector p by means of the equations 

p' AB (i) = CB (i) , i = 1 ,  ... ,m. 
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These are m equations in m unknowns; since the columns AB(l ) , . . .  , AB(m) 
are linearly independent , there is a unique solution p.  For such a vector p, 
the number of linearly independent active dual constraints is  equal to the 
dimension of the dual vector, and it follows that we have a basic solution 
to the dual problem. In matrix notation, the dual basic solution p satisfies 
p/B = c� ,  or pi = C�B- l , which was referred to as the vector of simplex 
multipliers in Chapter 3. If p is also dual feasible, that is, if pi A � c' , then 
p is a basic feasible solution of the dual problem. 

To summarize, a basis matrix B is associated with a basic solution 
to the primal problem and also with a basic solution to the dual . A basic 
solution to the primal (respectively, dual) which is primal (respectively, 
dual) feasible , is a basic feasible solution to the primal (respectively, dual) . 

We now have a geometric interpretation of the dual simplex method: 
at every iteration, we have a basic feasible solution to the dual problem. 
The basic feasible solutions obtained at any two consecutive iterations have 
m - l linearly independent active constraints in common (the reduced costs 
of the m - 1 variables that are common to both bases are zero) ; thus , 
consecutive basic feasible solutions are either adjacent or they coincide. 

Example 4.8 Consider the following standard form problem and its dual : 

minimize 
subject to 

Xl + X2 
Xl + 2X2 - X3 = 2 
Xl - X4 = 1 
XI , X2 , X3 , X4 2: 0 ,  

maximize 
subject to 

2PI + P2 
PI + P2 :S 1 
2PI :S 1 
PI , P2 2: 0. 

The feasible set of the primal problem is 4-dimensional . If we eliminate the 
variables X3 and X4 , we obtain the equivalent problem 

minimize Xl + X2 
subject to Xl + 2X2 2: 2 

Xl 2: 1 
Xl , X2 2: 0 .  

The feasible sets of the equivalent primal problem and of the dual are shown in 
Figures 4 .5 (a) and 4 .5 (b) , respectively. 

There is a total of five different bases in the standard form primal problem 
and five different basic solutions . These correspond to the points A, B, C, D,  
and E in Figure 4 .5(a) .  The same five bases also lead to five basic solutions to 
the dual problem, which are points A, B, C, D, and E in Figure 4 .5 (b) . 

For example , if we choose the columns A3 and A4 to be the basic columns , 
we have the infeasible primal basic solution x = (0, 0 ,  -2 ,  -1 )  (point A) . The 
corresponding dual basic solution is obtained by letting p' A3 = C3 = ° and 
p' A4 = C4 = 0, which yields p = (0 , 0) . This is a basic feasible solution of the 
dual problem and can be used to start the dual simplex method. The associated 
initial tableau is 
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b 

Y 

Pi 

(a) (b) 

Figure 4.5 :  The feasible sets in Example 4 .8 .  

Xl X2 X3 X4 

0 1 1 0 0 

-2 -1 -2* 1 0 

- 1  - 1 0 0 1 

We carry out two iterations of the dual simplex method to obtain the following 
two tableaux: 

Xl X2 X3 X4 

-1  1/2 0 1/2 0 

1 1/2 1 - 1 /2 0 

- 1  - 1*  0 0 1 

Xl X2 X3 X4 

-3/2 0 0 1/2 1/2 

1/2 0 1 - 1/2 1/2 

1 1 0 0 - 1  

This sequence of tableaux corresponds to the path A - B - C in either figure. In 
the primal space, the path traces a sequence of infeasible basic solutions until, at 
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optimality, it becomes feasible . In the dual space, the algorithm behaves exactly 
like the primal simplex method: it moves through a sequence of (dual) basic 
feasible solutions , while at each step improving the cost function. 

Having observed that the dual simplex method moves from one basic 
feasible solution of the dual to an adjacent one, it may be tempting to say 
that the dual simplex method is simply the primal simplex method applied 
to the dual. This is a somewhat ambiguous statement , however, because the 
dual problem is not in standard form. If we were to convert it to standard 
form and then apply the primal simplex method, the resulting method is 
not necessarily identical to the dual simplex method (Exercise 4 .25) . A 
more accurate statement is to simply say that the dual simplex method is 
a variant of the simplex method tailored to problems defined exclusively in 
terms of linear inequality constraints. 

Duality and degeneracy 

Let us keep assuming that we are dealing with a standard form problem 
in which the rows of the matrix A are linearly independent . Any basis 
matrix B leads to an associated dual basic solution given by p' = c�B- 1 .  
At this basic solution, the dual constraint p' Aj = Cj is active if and only if 
c�B -1 Aj = Cj , that is, if and only if the reduced cost Cj is zero. Since p is 
m-dimensional, dual degeneracy amounts to having more than m reduced 
costs that are zero. Given that the reduced costs of the m basic variables 
must be zero, dual degeneracy is obtained whenever there exists a nonbasic 
variable whose reduced cost is zero. 

The example that follows deals with the relation between basic solu­
tions to the primal and the dual in the face of degeneracy. 

Example 4.9 Consider the following standard from problem and its dual: 

minimize 3XI + X2 maximize 2PI 
subject to Xl  + X2 - X3 2 subject to PI + 2P2 

2XI X2 - X4 0 PI - P2 
Xl , X2 , X3 , X4 :2: 0,  PI , P2 :2: O.  

We eliminate X3 and X4 to obtain the equivalent primal problem 

minimize 
subject to 

3XI + X2 
Xl + X2 :2: 2 

2XI - X2 :2: 0 
XI , X2 :2: O.  

:S 
:S 

3 
1 

The feasible set of the equivalent primal and of the dual is shown in Figures 4 .6 (a) 
and 4 .6 (b) , respectively. 

There is a total of six different bases in the standard form primal problem, 
but only four different basic solutions [points A, B, C, D in Figure 4 .6 (a)] . In the 
dual problem, however, the six bases lead to six distinct basic solutions [points 
A, A' , A" , B, C, D in Figure 4.6(b)] . 



164 Chap. 4 Duality theory 

D 

(a) (b) 

Figure 4.6 :  The feasible sets in Example 4 .9 .  

For example, i f  we let columns A3 and A4 be basic , the primal basic solu­
tion has Xl = X2 = 0 and the corresponding dual basic solution is (Pl , P2 ) = (0 , 0) . 
Note that this is a basic feasible solution of the dual problem. If we let columns 
Al and A3 be basic , the primal basic solution has again Xl = X2 = o. For 
the dual problem, however, the equations p' Al = Cl and p' A3 = C3 yield 
(Pl , P2 ) = (0 , 3/2) , which is a basic feasible solution of the dual, namely, point 
A' in Figure 4 .6 (b) . Finally, if we let columns A2 and A3 be basic, we still have 
the same primal solution. For the dual problem, the equations p' A2 = Cl and 
p' A3 = C3 yield (Pl , P2 ) = (0 ,  - 1 ) ,  which is an infeasible basic solution to the 
dual, namely, point A" in Figure 4 .6 (b) . 

Example 4 .9 has established that different bases may lead to the same 
basic solution for the primal problem, but to different basic solutions for the 
dual. Furthermore , out of the different basic solutions to the dual problem, 
it may be that some are feasible and some are infeasible . 

We conclude with a summary of some properties of bases and basic 
solutions , for standard form problems, that were discussed in this section. 

(a) Every basis determines a basic solution to the primal , but also a 
corresponding basic solution to the dual, namely, p' = c'aB- 1 . 

(b) This dual basic solution is feasible if and only if all of the reduced 
costs are nonnegative. 

(c) Under this dual basic solution, the reduced costs that are equal to 
zero correspond to active constraints in the dual problem. 

(d) This dual basic solution is degenerate if and only if some nonbasic 
variable has zero reduced cost . 
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4 . 6  Farkas ' lemma and linear inequalities 

Suppose that we wish to determine whether a given system of linear in­
equalities is infeasible . In this section, we approach this question using 
duality theory, and we show that infeasibility of a given system of linear 
inequalities is equivalent to the feasibility of another, related, system of 
linear inequalities . Intuitively, the latter system of linear inequalities can 
be interpreted as a search for a certificate of infeasibility for the former 
system. 

To be more specific , consider a set of standard form constraints Ax = 
b and x 2: o. Suppose that there exists some vector p such that p' A 2: 0' 
and p'b < O. Then, for any x 2: 0 ,  we have p' Ax 2: 0 and since p'b < 0 ,  
i t  follows that p' Ax f=. p'b. We conclude that Ax f=. b,  for all x 2: O .  This 
argument shows that if we can find a vector p satisfying p' A 2: 0' and 
p'b < 0, the standard form constraints cannot have any feasible solution, 
and such a vector p is a certificate of infeasibility. Farkas ' lemma below 
states that whenever a standard form problem is infeasible, such a certificate 
of infeasibility p is guaranteed to exist . 

Theorem 4.6 (Farkas' lemma) Let A be a matrix of dimensions 
m X n and let b be a vector in iRm . Then, exactly one of the following 
two alternatives holds: 

(a) There exists some x 2: 0 such that Ax = b. 

(b) There exists some vector p such that p' A 2: 0' and p'b < O . 

Proof. One direction is  easy. If  there exists some x 2: 0 satisfying Ax = b, 
and if p' A 2: 0' ,  then p'b = p' Ax 2: 0 ,  which shows that the second 
alternative cannot hold. 

Let us now assume that there exists no vector x 2: 0 satisfying Ax = 
b.  Consider the pair of problems 

maximize 0' x 
subject to Ax b 

x >  0 ,  

minimize p'b 
subject to p' A 2: 0' , 

and note that the first is the dual of the second. The maximization prob­
lem is infeasible , which implies that the minimization problem is either 
unbounded (the optimal cost is -00) or infeasible . Since p = 0 is a feasi­
ble solution to the minimization problem, it follows that the minimization 
problem is unbounded. Therefore , there exists some p which is feasible , 
that is , p' A 2: 0' , and whose cost is negative, that is , p'b < O . 0 

We now provide a geometric illustration of Farkas ' lemma (see Fig­
ure 4 .7) .  Let Al , . . .  , An be the columns of the matrix A and note that 
Ax = L:�=l Aixi ' Therefore , the existence of a vector x 2: 0 satisfying 
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Ax = b is the same as requiring that b lies in the set of all nonnegative 
linear combinations of the vectors AI ' . . .  ' An , which is the shaded region 
in Figure 4 .7 .  If b does not belong to the shaded region (in which case the 
first alternative in Farkas' lemma does not hold) , we expect intuitively that 
we can find a vector p and an associated hyperplane {z I p'z = o} such 
that b lies on one side of the hyperplane while the shaded region lies on the 
other side. We then have p'b < 0 and p' Ai � 0 for all i, or, equivalently, 
p' A � 0' ,  and the second alternative holds . 

Farkas' lemma predates the development of linear programming, but 
duality theory leads to a simple proof. A different proof, based on the 
geometric argument we just gave, is provided in the next section. Finally, 
there is an equivalent statement of Farkas ' lemma which is sometimes more 
convenient . 

Corollary 4.3 Let AI ,  . . .  , An and b be given vectors and suppose 
that any vector p that satisfies p' Ai � 0, i = 1 ,  . . . , n, must also 
satisfy p'b � o. Then, b can be expressed as a nonnegative linear 
combination of the vectors AI , . . .  , An .  

Our next result is of a similar character. 

Theorem 4.7 Suppose that the system of linear inequalities Ax S b 
has at least one solution, and let d be some scalar. Then, the following 
are equivalent: 

(a) Every feasible solution to the system Ax S b satisfies c'x S d. 
(b) There exists some p � 0 such that p' A = c' and p'b S d. 

Proof. Consider the following pair of problems 

maximize 
subject to 

c'x 
Ax S b, 

minimize 
subject to 

p'b 
p'A = c' 
p � O, 

and note that the first is the dual of the second. If the system Ax S b 
has a feasible solution and if every feasible solution satisfies c'x S d, then 
the first problem has an optimal solution and the optimal cost is bounded 
above by d. By the strong duality theorem, the second problem also has 
an optimal solution p whose cost is bounded above by d. This optimal 
solution satisfies p' A = c' , p � 0, and p'b S d. 

Conversely, if some p satisfies p' A = c' , p � 0 ,  and p'b S d, then 
the weak duality theorem asserts that every feasible solution to the first 
problem must also satisfy c'x S d. 0 

Results such as Theorems 4.6 and 4 .7  are often called theorems of the 
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Figure 4.7: If the vector b does not belong to the set of all 
nonnegative linear combinations of AI , . . .  , An , then we can find a 
hyperplane {z I p'z = O} that separates it from that set . 
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alternative. There are several more results of this type; see, for example, 
Exercises 4 .26 ,  4 .27 ,  and 4 .28 .  

Applications of Farkas' lemma to asset pricing 

Consider a market that operates for a single period,  and in which n different 
assets are traded . Depending on the events during that single period, there 
are m possible states of nature at the end of the period. If we invest one 
dollar in some asset i and the state of nature turns out to be s, we receive a 
payoff of r si . Thus, each asset i is described by a payoff vector (rl i , . . .  , r mi ) . 
The following m X n payoff matrix gives the payoffs of each of the n assets 
for each of the m states of nature: 

Let Xi be the amount held of asset i .  A portfolio of assets is then a vector 
x = (Xl , . . .  , xn) . The components of a portfolio x can be either positive 
or negative. A positive value of Xi indicates that one has bought Xi units 
of asset i and is thus entitled to receive r siXi if state s materializes . A 
negative value of Xi indicates a "short" position in asset i :  this amounts to 
selling IXi I units of asset i at the beginning of the period, with a promise 
to buy them back at the end. Hence , one must pay out rsi lxi l if state s 

occurs , which is the same as receiving a payoff of rsiXi . 
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The wealth in state s that results from a portfolio x is given by 

n 

Ws = L rSixi . 
i= 1 

We introduce the vector w = (WI , . . .  , wm ) , and we obtain 

w = Rx. 

Let Pi be the price of asset i in the beginning of the period,  and let p = 
(PI , . . .  , Pn ) be the vector of asset prices . Then, the cost of acquiring a 
portfolio x is given by p'x. 

The central problem in asset pricing is to determine what the prices 
Pi should be. In order to address this question, we introduce the absence 
of arbitrage condition, which underlies much of finance theory: asset prices 
should always be such that no investor can get a guaranteed nonnegative 
payoff out of a negative investment . In other words, any portfolio that 
pays off nonnegative amounts in every state of nature, must be valuable to 
investors , so it must have nonnegative cost . Mathematically, the absence 
of arbitrage condition can be expressed as follows : 

if Rx � 0 ,  then we must have p'x � O. 

Given a particular set of assets, as described by the payoff matrix R, only 
certain prices p are consistent with the absence of arbitrage . What charac­
terizes such prices? What restrictions does the assumption of no arbitrage 
impose on asset prices? The answer is provided by Farkas' lemma. 

Theorem 4.8 The absence of arbitrage condition holds if and only if 
there exists a nonnegative vector q = (q1 , " " qm ) , such that the price 
of each asset i is given by 

m 
Pi = L qsrSi .  

8= 1 

Proof. The absence of arbitrage condition states that there exists no 
vector x such that x'R' � 0' and x'p < O. This is of the same form as 
condition (b) in the statement of Farkas ' lemma (Theorem 4.6) . (Note that 
here p plays the role of b,  and R' plays the role of A.)  Therefore, by 
Farkas ' lemma, the absence of arbitrage condition holds if and only if there 
exists some nonnegative vector q such that R' q = p, which is the same as 
the condition in the theorem's statement . D 

Theorem 4.8 asserts that whenever the market works efficiently enough 
to eliminate the possibility of arbitrage , there must exist "state prices" qs 
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that can be used to value the existing assets .  Intuitively, it establishes 
a nonnegative price qs for an elementary asset that pays one dollar if the 
state of nature is s, and nothing otherwise. It then requires that every asset 
must be consistently priced, its total value being the sum of the values of 
the elementary assets from which it is composed. There is an alternative 
interpretation of the variables qs as being (unnormalized) probabilities of 
the different states s, which, however, we will not pursue . In general, the 
state price vector q will not be unique, unless the number of assets equals 
or exceeds the number of states. 

The no arbitrage condition is very simple, and yet very powerful. It 
is the key element behind many important results in financial economics , 
but these lie beyond the scope of this text . (See, however, Exercise 4 .33 for 
an application in options pricing. )  

4 . 7  From separating hyperplanes to duality* 

Let us review the path followed in our development of duality theory. We 
started from the fact that the simplex method, in conjunction with an anti­
cycling rule , is guaranteed to terminate. We then exploited the termination 
conditions of the simplex method to derive the strong duality theorem. We 
finally used the duality theorem to derive Farkas ' lemma, which we inter­
preted in terms of a hyperplane that separates b from the columns of A. In 
this section, we show that the reverse line of argument is also possible . We 
start from first principles and prove a general result on separating hyper­
planes. We then establish Farkas ' lemma, and conclude by showing that the 
duality theorem follows from Farkas ' lemma. This line of argument is more 
elegant and fundamental because instead of relying on the rather compli­
cated development of the simplex method, it only involves a small number 
of basic geometric concepts .  Furthermore, it can be naturally generalized 
to nonlinear optimization problems . 

Closed sets and Weierstrass ' theorem 

Before we proceed any further, we need to develop some background ma­
terial. A set S c Rn is called closed if it has the following property: if 
xl , x2 , . . .  is a sequence of elements of S that converges to some x E Rn , 
then x E S. In other words , S contains the limit of any sequence of elements 
of S. Intuitively, the set S contains its boundary. 

I Theorem 4.9 Every polyhedron j, c1"wd. 

Proof. Consider the polyhedron P = {x E Rn I Ax 2: b} .  Suppose that 
Xl , x2 , . . . is a sequence of elements of P that converges to some x* . We have 
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to show that x* E P. For each k ,  we have xk E P and, therefore, Axk 2: b. 
Taking the limit , we obtain Ax* = A ( limk---+oo xk ) = limk---+oo (Axk ) 2: b, 
and x* belongs to P. D 

The following is a fundamental result from real analysis that provides 
us with conditions for the existence of an optimal solution to an optimiza­
tion problem. The proof lies beyond the scope of this book and is omitted. 

Theorem 4.10 (Weierstrass' theorem) If f : lRn 1--+ lR is a con­
tinuous function, and if S is a nonempty, closed, and bounded subset 
of lRn , then there exists some x* E S such that f(x* ) S f(x) for all 
X E S. Similarly, there exists some y* E S such that f (y* ) 2: f(x) for 
all x E S. 

Weierstrass ' theorem is not valid if the set S is not closed. Consider , 
for example, the set S = {x E lR I x > o} . This set is not closed because we 
can form a sequence of elements of S that converge to zero, but x = 0 does 
not belong to S. We then observe that the cost function f(x) = x is not 
minimized at any point in S; for every x > 0, there exists another positive 
number with smaller cost , and no feasible x can be optimal. Ultimately, 
the reason that S is not closed is that the feasible set was defined by means 
of strict inequalities . The definition of polyhedra and linear programming 
problems does not allow for strict inequalities in order to avoid situations 
of this type. 

The separating hyperplane theorem 

The result that follows is "geometrically obvious" but nevertheless ex­
tremely important in the study of convex sets and functions. It states that 
if we are given a closed and nonempty convex set S and a point x* fj. S, 
then we can find a hyperplane , called a separating hyperplane, such that S 
and x* lie in different halfspaces (Figure 4.8 ) .  

Theorem 4. 1 1  (Separating hyperplane theorem) Let S be  a non­
empty closed convex subset of lRn and let x* E �n be a vector that 
does not belong to S. Then, there exists some vector C E lRn such that 
c'x* < c'x for all x E S. 

Proof. Let I I  . I I  be the Euclidean norm defined by I lx l l  = (X'X) 1 /2 . Let us 
fix some element w of S, and let 

B = {x I l l x - x* 1 1  s I l w - x* I I } , 

and D = S n B [Figure 4 .9 (a) ] . The set D is nonempty, because w E D. 
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c 

Figure 4.8 :  A hyperplane that separates the point x* from the 
convex set S. 
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Furthermore, D is the intersection of the closed set S with the closed set 
B and is also closed. Finally, D is a bounded set because B is bounded. 
Consider the quantity I l x  - x* l l , where x ranges over the set D.  This is 
a continuous function of x. Since D is nonempty, closed, and bounded, 
Weierstrass' theorem implies that there exists some y E D such that 

I l y  - x* 1 I ::; I l x  - x* l l ,  V x E D. 

For any x E S  that does not belong to D,  we have I l x  - x* I I  > I lw - x* I I  2: 
I l y  - x* l l · We conclude that y minimizes I l x  - x* 1 1 over all x E S. 

We have so far established that there exists an element y of S which 
is closest to x* . We now show that the vector c = y - x* has the desired 
property [see Figure 4 .9 (b)] . 

Let X E S. For any A satisfying 0 < A ::; 1 ,  we have y + A(X - y) E S, 
because S is convex. Since y minimizes I lx - x* I I  over all X E S, we obtain 

I l y - x* 1 1 2 < I I Y + A(X - y) - x* 1 1 2 
I l y  - x* 1 1 2 + 2A (y - x* ) ' (x - y) + A2 1 1 x _ y 1 1 2 , 

which yields 
2A (y - x* ) ' (x - y) + A2 1 1 x - Y l 1 2 2: o. 

We divide by A and then take the limit as A decreases to zero. We obtain 

(y - x* ) ' (x - y) 2: o . 

[This inequality states that the angle () in Figure 4 .9 (b) is  no larger than 
90 degrees .] Thus, 

(y - x* ) 'x 2: (y - x* ) 'y 
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x* 

(a) (b )  

Figure 4 .9 :  Illustration of  the proof of  the separating hyperplane 
theorem. 

(y - x* ) 'x* + (y - x* ) ' (y - x* ) 
> (y - x* ) 'x* . 

Setting c = y - x* proves the theorem. 

Farkas' lemma revisited 

D 

We now show that Farkas ' lemma is a consequence of the separating hy­
perplane theorem. 

We will only be concerned with the difficult half of Farkas ' lemma. In 
particular, we will prove that if the system Ax = b,  x ?:  0 ,  does not have 
a solution, then there exists a vector p such that p' A ?: 0' and p'b < O . 

Let 

S {Ax l x ?: O} 

{y I there exists x such that y = Ax, x ?:  O} , 

and suppose that the vector b does not belong to S. The set S is clearly 
convex; it is also nonempty because 0 E S. Finally, the set S is closed; this 
may seem obvious , but is not easy to prove. For one possible proof, note 
that S is the projection of the polyhedron { (x, y) I y = Ax, x ?:  O} onto 
the y coordinates , is itself a polyhedron (see Section 2 .8) , and is therefore 
closed. An alternative proof is outlined in Exercise 4 .37 .  

We now invoke the separating hyperplane theorem to separate b from 
S and conclude that there exists a vector p such that p'b < p'y for every 
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y E S. Since 0 E S, we must have p'b < 0. Furthermore, for every column 
Ai of A and every A > 0, we have AAi E S and p'b < AP' Ai . We divide 
both sides of the latter inequality by A and then take the limit as A tends 
to infinity, to conclude that p' Ai 2: 0. Since this is true for every i ,  we 
obtain p' A 2: 0' and the proof is complete. 

The duality theorem revisited 

We will now derive the duality theorem as a corollary of Farkas' lemma. 
We only provide the proof for the case where the primal constraints are of 
the form Ax 2: b. The proof for the general case can be constructed along 
the same lines at the expense of more notation (Exercise 4.38) . We also 
note that the proof given here is very similar to the line of argument used 
in the heuristic explanation of the duality theorem in Example 4 .4 .  

We consider the following pair of primal and dual problems 

minimize 
subject to 

c'x 
Ax 2: b,  

maximize 
subject to 

p'b 
p'A = c' 
p 2: 0,  

and we assume that the primal has an optimal solution x* . We will show 
that the dual problem also has a feasible solution with the same cost . Once 
this is done, the strong duality theorem follows from weak duality (cf. Corol­
lary 4 .2) . 

Let f = { i  I a�x* = bd be the set of indices of the constraints that 
are active at x* . We will first show that any vector d that satisfies a�d 2: ° 
for every i E f ,  must also satisfy c'd 2: 0. Consider such a vector d and let 
E be a positive scalar . We then have a� (x* + Ed) 2: �x* = bi for all i E f. 
In addition , if i rJ. f and if E is sufficiently small , the inequality a�x* > bi 
implies that a� (x* + Ed) > bi . We conclude that when E is sufficiently small, 
x* + Ed is a feasible solution. By the optimality of x* , we obtain c'd 2: 0, 
which establishes our claim. By Farkas ' lemma (cf. Corollary 4.3) , c can 
be expressed as a nonnegative linear combination of the vectors ai , i E f, 
and there exist nonnegative scalars Pi , i E f,  such that 

(4.3) 

For i rJ. f ,  we define Pi = 0 .  We then have p 2: 0 and Eq. (4.3) shows that 
the vector p satisfies the dual constraint p' A = c' . In addition, 

'b " b " , * , * p = � Pi i = � Pia.;X = C X , 
iEI  iEI 

which shows that the cost of this dual feasible solution p is  the same as the 
optimal primal cost . The duality theorem now follows from Corollary 4 .2 .  
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(a) (b) 

Figure 4.10 :  Examples of cones . 

In conclusion, we have accomplished the goals that were set out in the 
beginning of this section. We proved the separating hyperplane theorem, 
which is a very intuitive and seemingly simple result , but with many im­
portant ramifications in optimization and other areas in mathematics. We 
used the separating hyperplane theorem to establish Farkas' lemma, and 
finally showed that the strong duality theorem is an easy consequence of 
Farkas' lemma. 

4 . 8  Cones and extreme rays 

We have seen in Chapter 2, that if the optimal cost in a linear programming 
problem is finite, then our search for an optimal solution can be restricted 
to finitely many points, namely, the basic feasible solutions, assuming one 
exists. In this section, we wish to develop a similar result for the case where 
the optimal cost is - 00 .  In particular , we will show that the optimal cost 
is -00 if and only if there exists a cost reducing direction along which we 
can move without ever leaving the feasible set . Furthermore, our search for 
such a direction can be restricted to a finite set of suitably defined "extreme 
rays . "  

Cones 

The first step in our development is to introduce the concept of a cone. 

Definition 4 .1  A set C c lRn is a cone if AX E C for all A � 0 and 
all x E C. 
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Notice that if C is a nonempty cone, then 0 E O. To this see, consider 
an arbitrary element x of 0 and set .>. = 0 in the definition of a cone; see 
also Figure 4 . 10 .  A polyhedron of the form P = {x E �n I Ax ;::: O} is 
easily seen to be a nonempty cone and is called a polyhedral cone. 

Let x be a nonzero element of a polyhedral cone O. We then have 
3x/2 E 0 and x/2 E O. Since x is the average of 3x/2 and x/2 , it is not 
an extreme point and, therefore, the only possible extreme point is the zero 
vector. If the zero vector is indeed an extreme point , we say that the cone 
is pointed. Whether this will be the case or not is determined by the criteria 
provided by our next result . 

Theorem 4.12 Let 0 C �n be the polyhedral cone defined by the 
constraints a�x ;::: 0, i = 1 ,  . . . ,m. Then, the following are equivalent: 

(a) The zero vector is an extreme point of O. 
(b) The cone 0 does not contain a line. 

(c) There exist n vectors out of the family al , . . .  , am , which are 
linearly independent. 

Proof. This result is a special case of Theorem 2 .6 in Section 2 .5 .  D 

Rays and recession cones 

Consider a nonempty polyhedron 

and let us fix some Y E P. We define the recession cone at y as the set of 
all directions d along which we can move indefinitely away from y, without 
leaving the set P. More formally, the recession cone is defined as the set 

{d  E �n I A(y + '>'d) ;::: b, for all .>. ;::: o } .  

It is easily seen that this set is the same as 

and is a polyhedral cone. This shows that the recession cone is independent 
of the starting point y; see Figure 4 . 1 1 .  The nonzero elements of the 
recession cone are called the rays of the polyhedron P. 

For the case of a nonempty polyhedron P = {x E �n I Ax = b, x ;::: 
O} in standard form, the recession cone is seen to be the set of all vectors 
d that satisfy 

Ad = O, d ;::: o. 
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Figure 4. 11 :  The recession cone at different elements of a polyhedron. 

Extreme rays 

We now define the extreme rays of a polyhedron. Intuitively, these are the 
directions associated with "edges" of the polyhedron that extend to infinity; 
see Figure 4 . 12  for an illustration. 

Definition 4.2 
(a) A nonzero element x of a polyhedral cone C c �n is called an 

extreme ray if there are n - 1 linearly independent constraints 
that are active at x. 

(b) An extreme ray of the recession cone associated with a nonempty 
polyhedron P is also called an extreme ray of P. 

Note that a positive multiple of  an extreme ray i s  also an extreme ray. 
We say that two extreme rays are equivalent if one is a positive multiple of 
the other. Note that for this to happen, they must correspond to the same 
n - 1 linearly independent active constraints .  Any n - 1 linearly independent 
constraints define a line and can lead to at most two nonequivalent extreme 
rays (one being the negative of the other) . Given that there is a finite 
number of ways that we can choose n - 1 constraints to become active, 
and as long as we do not distinguish between equivalent extreme rays , we 
conclude that the number of extreme rays of a polyhedron is finite .  A finite 
collection of extreme rays will be said to be a complete set of extreme rays 
if it contains exactly one representative from each equivalence class . 
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(a) (b )  

Figure 4.12: Extreme rays of polyhedral cones . (a) The vector 
y is an extreme ray because n = 2 and the constraint a� x = 0 
is active at y. (b) A polyhedral cone defined by three linearly 
independent constraints of the form a�x 2: O. The vector z is 
an extreme ray because n = 3 and the two linearly independent 
constraints a� x 2: 0 and a�x 2: 0 are active at z .  
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The definition of extreme rays mimics the definition of basic feasible 
solutions . An alternative and equivalent definition, resembling the defini­
tion of extreme points of polyhedra, is explored in Exercise 4 .39 .  

Characterization of unbounded linear programming 

problems 

We now derive conditions under which the optimal cost in a linear pro­
gramming problem is equal to -00,  first for the case where the feasible set 
is a cone, and then for the general case. 

Theorem 4.13 Consider the problem of minimizing c' x over a pointed 
polyhedral cone C = {x E �n I a�x ?: 0, i = 1 ,  . . . , m} . The optimal 
cost is equal to -00 if and only if some extreme ray d of C satisfies 
c'd < O. 

Proof. One direction of the result is  trivial because if  some extreme ray 
has negative cost , then the cost becomes arbitrarily negative by moving 
along this ray. 

For the converse, suppose that the optimal cost is -00.  In particular , 
there exists some x E C whose cost is negative and, by suitably scaling x, 
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we can assume that c'x = - 1 .  In particular, the polyhedron 

p = {x E �n I a�x 2': 0, . . .  , a�x 2': O , c'x = - I } 

is nonempty. Since C is pointed, the vectors aI , . . .  , am span �n and this 
implies that P has at least one extreme point ; let d be one of them. At d, 
we have n linearly independent active constraints, which means that n - 1 
linearly independent constraints of the form a�x 2': 0 must be active. It 
follows that d is an extreme ray of C.  0 

By exploiting duality, Theorem 4 . 13  leads to a criterion for unbound­
edness in general linear programming problems. Interestingly enough, this 
criterion does not involve the right-hand side vector h. 

Theorem 4.14 Consider the problem of minimizing c'x subject to 
Ax 2': h, and assume that the feasible set has at least one extreme 
point. The optimal cost is equal to - 00  if and only if some extreme 
ray d of the feasible set satisfies c'd < o .  

Proof. One direction of  the result i s  trivial because i f  an extreme ray has 
negative cost , then the cost becomes arbitrarily negative by starting at a 
feasible solution and moving along the direction of this ray. 

For the proof of the reverse direction, we consider the dual problem: 

maximize p'h 
subject to p' A = c' 

p 2': o. 

If the primal problem is unbounded, the dual problem is infeasible. Then, 
the related problem 

maximize p' 0 
subject to p' A = c' 

p 2': 0 ,  

i s  also infeasible. This implies that the associated primal problem 

minimize c' x 
subject to Ax 2': 0 ,  

i s  either unbounded or  infeasible . Since x = 0 is  one feasible solution, it 
must be unbounded. Since the primal feasible set has at least one extreme 
point ,  the rows of A span �n , where n is the dimension of x. It follows 
that the recession cone {x I Ax 2': O} is pointed and, by Theorem 4 . 13 ,  
there exists an extreme ray d of  the recession cone satisfying c'd < O. By 
definition, this is an extreme ray of the feasible set . 0 
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The unboundedness criterion in the simplex method 

We end this section by pointing out that if we have a standard form prob­
lem in which the optimal cost is - 00 ,  the simplex method provides us at 
termination with an extreme ray. 

Indeed, consider what happens when the simplex method terminates 
with an indication that the optimal cost is - 00 .  At that point ,  we have 
a basis matrix B,  a nonbasic variable Xj with negative reduced cost , and 
the jth column B-1  Aj of the tableau has no positive elements. Consider 
the jth basic direction d, which is the vector that satisfies dB = _B-1 Aj , 
dj = 1 ,  and di = 0 for every nonbasic index i other than j .  Then, the 
vector d satisfies Ad = 0 and d 2: 0, and belongs to the recession cone. It 
is also a direction of cost decrease, since the reduced cost Cj of the entering 
variable is negative. 

Out of the constraints defining the recession cone , the jth basic di­
rection d satisfies n - 1 linearly independent such constraints with equality: 
these are the constraints Ad = 0 (m of them) and the constraints di = 0 
for i nonbasic and different than j (n - m - 1 of them) . We conclude that 
d is an extreme ray. 

4 . 9  Representation of polyhedra 

In this section, we establish one of the fundamental results of linear pro­
gramming theory. In particular , we show that any element of a polyhedron 
that has at least one extreme point can be represented as a convex combi­
nation of extreme points plus a nonnegative linear combination of extreme 
rays . A precise statement is given by our next result . A generalization to 
the case of general polyhedra is developed in Exercise 4 .47 .  

Theorem 4.15 (Resolution theorem) Let 

be a nonempty polyhedron with at least one extreme point. Let 
Xl , . . . , xk be the extreme points, and let w 1 , . . .  , wr be a complete 
set of extreme rays of P. Let 

Then, Q = P. 



180 

Proof. We first prove that Q C P. Let 

k r 

Chap. 4 

X = L AiXi + L Bjwj 
i=l j=l 

Duality theory 

be an element of Q ,  where the coefficients Ai and Bj are nonnegative, and 
2:7=1 Ai = 1 .  The vector y = 2:7=1 AiXi is a convex combination of ele­
ments of P. It therefore belongs to P and satisfies Ay 2: b. We also have 
Awj 2: 0 for every j ,  which implies that the vector z = 2:;=1 Bjw

j satisfies 
Az 2: o. It then follows that the vector x = y + z satisfies Ax 2: b and 
belongs to P. 

For the reverse inclusion, we assume that P is not a subset of Q and 
we will derive a contradiction. Let z be an element of P that does not 
belong to Q. Consider the linear programming problem 

k r 

maximize LOAi + L OBj 
i= l j=l 

k r 

subject to LAiXi + L Bjwj = z 
i= l j=l 

k 
LAi = l 
i=l 
Ai 2: 0,  i = 1 ,  . . .  , k , 
Bj 2: 0,  j = 1 ,  . . .  , r, 

( 4.4) 

which is infeasible because z fj. Q. This problem is the dual of the problem 

minimize p' z + q 
subject to p'xi + q 2: 0, 

p'wj 2: 0, 
i = 1, . . .  , k , 
j = 1 ,  . . . , r. 

(4 .5) 

Because the latter problem has a feasible solution, namely, p = 0 and q = 0, 
the optimal cost is -00,  and there exists a feasible solution (p, q) whose 
cost p'z + q is negative . On the other hand, p'xi + q 2: ° for all i and this 
implies that p'z < p'xi for all i .  We also have p'wj 2: ° for all j .  1 

Having fixed p as above , we now consider the linear programming 
problem 

minimize p'x 
subject to Ax 2: b. 

If the optimal cost is finite, there exists an extreme point xi which is op­
timal. Since z is a feasible solution, we obtain p'xi ::; p'z , which is a 

1 For an intuitive view of this proof, the purpose of this paragraph was to construct a 
hyperplane that separates z from Q. 
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contradiction. If  the optimal cost i s  - 00 ,  Theorem 4 . 14  implies that there 
exists an extreme ray wi such that p 'wi < 0, which is again a contradiction. 

D 

Example 4. 10 Consider the unbounded polyhedron defined by the constraints 

Xl - X2 � -2  

Xl + X2 � 1 

XI , X2 � ° 
(see Figure 4. 13) .  This polyhedron has three extreme points, namely, Xl = (0, 2 ) ,  
x2 = (0, 1 ) ,  and x3 = ( 1 , 0) . The recession cone C i s  described by the inequalities 
dl - d2 � 0, dl + d2 � 0, and dl , d2 � 0. We conclude that C = { (dl , d2 ) 1 0 :::; 
d2 :::; dl } .  This cone has two extreme rays, namely, WI = ( 1 , 1 )  and w2 = ( 1 , 0) . 
The vector y = (2 , 2 )  is an element of the polyhedron and can be represented as 

However, this representation is not unique; for example, we also have 

[ 2 ] 
1
[

0
] 

1
[

1
] 

3
[

1 ] 1 2 1 3 3 I 
Y = 2 = "2 1 + "2 ° + "2 1 = "2x + "2x + "2w . 

Figure 4.13 :  The polyhedron of Example 4.10 .  

We note that the set Q in Theorem 4.15 is the image of the polyhedron 

H = { (.Al , . . .  , Ak , Ih , . . .  , Or ) I t Ai = l , Ai � O, Oi � O} , 
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under the linear mapping 
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(>\1 , . . .  , Ak ' (h , . . .  , Or ) f-+ 2: AiXi + 2: 0jWj . 
i=l j=l 

Thus, one corollary of the resolution theorem is that every polyhedron is 
the image , under a linear mapping, of a polyhedron H with this particular 
structure. 

We now specialize Theorem 4 . 15  to the case of bounded polyhedra, 
to recover a result that was also proved in Section 2 .7 ,  using a different line 
of argument. 

Corollary 4.4 A nonempty bounded polyhedron is the convex hull of 
its extreme points. 

Proof. Let P = {x I Ax 2: b} be a nonempty bounded polyhedron. If d 
is a nonzero element of the cone C = {x I Ax 2: O} and x is an element of 
P, we have x + Ad E P for all A 2: 0, contradicting the boundedness of P. 
We conclude that C consists of only the zero vector and does not have any 
extreme rays. The result then follows from Theorem 4. 15 .  D 

There is another corollary of Theorem 4 . 15  that deals with cones , ftnd 
which is proved by noting that a cone can have no extreme points other 
than the zero vector. 

Corollary 4.5 Assume that the cone C = {x I Ax 2: O} is pointed. 
Then, every element of C can be expressed as a nonnegative linear 
combination of the extreme rays of C.  

Converse to the resolution theorem 

Let us say that a set Q is finitely generated if it is specified in the form 

(4.6) 

where Xl , . . .  , xk and w1 , . . .  , wr are some given elements of �n . The res­
olution theorem states that a polyhedron with at least one extreme point 
is a finitely generated set (this is also true for general polyhedra; see Exer­
cise 4 .47) . We now discuss a converse result , which states that every finitely 
generated set is a polyhedron. 
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As observed earlier, a finitely generated set Q can be viewed as the 
image of the polyhedron 

H = { (A 1 , . . .  , Ak , (h , . . . , (q  I "t Ai = l , Ai 2: 0, {}j 2: O} 
,= 1 

under a certain linear mapping. Thus, the results of Section 2 .8  apply and 
establish that a finitely generated set is indeed a polyhedron. We record 
this result and also present a proof based on duality. 

Theorem 4.16 A finitely generated set is a polyhedron. In particular, 
the convex hull of finitely many vectors is a (bounded) polyhedron. 

Proof. Consider the linear programming problem (4.4) that was used in 
the proof of Theorem 4 . 15 .  A given vector z belongs to a finitely generated 
set Q of the form (4.6) if and only if the problem (4.4) has a feasible 
solution. Using duality, this is the case if and only if problem (4.5) has finite 
optimal cost . We convert problem (4.5) to standard form by introducing 
nonnegative variables p + , P - , q+ , q- , such that p = p + - p - ,  and q = 
q+ - q- , as well as surplus variables. Since standard form polyhedra contain 
no lines , Theorem 4 . 13  shows that the optimal cost in the standard form 
problem is finite if and only if 

(p+ ) 'z - (p- ) 'z + q+ - q- 2: 0, 
for each one of its finitely many extreme rays. Hence , z E Q if and only if 
z satisfies a finite collection of linear inequalities . This shows that Q is a 
polyhedron. D 

In conclusion, we have two ways of representing a polyhedron: 
(a) in terms of a finite set of linear constraints; 
(b) as a finitely generated set , in terms of its extreme points and extreme 

rays. 

These two descriptions are mathematically equivalent , but can be 
quite different from a practical viewpoint . For example, we may be able to 
describe a polyhedron in terms of a small number of linear constraints. If on 
the other hand, this polyhedron has many extreme points, a description as a 
finitely generated set can be much more complicated. Furthermore, passing 
from one type of description to the other is, in general , a complicated 
computational task. 

4 . 1 0  General linear programming duality* 

In the definition of the dual problem (Section 4 .2) , we associated a dual 
variable Pi with each constraint of the form a�x = bi ,  a�x 2: bi , or a�x :::; bi . 
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However, no dual variables were associated with constraints of the form 
Xi � 0 or Xi :::; O. In the same spirit , and in a more general approach 
to linear programming duality, we can choose arbitrarily which constraints 
will be associated with price variables and which ones will not . In this 
section, we develop a general duality theorem that covers such a situation. 

Consider the primal problem 

minimize c' x 
subject to Ax � b 

x E  P, 

where P is the polyhedron 

P = {x I Dx � d } .  

We associate a dual vector p with the constraint Ax � b.  The constraint 
x E P is a generalization of constraints of the form Xi � 0 or Xi :::; 0 and 
dual variables are not associated with it . 

As in Section 4. 1 ,  we define the dual objective g(p) by 

g(p) = min [c'x + p' (b - Ax)] . (4.7) xEP 
The dual problem is then defined as 

maximize g(p) 
subject to p � o.  

We first provide a generalization of the weak duality theorem. 

Theorem 4.17 (Weak duality) Ifx is primal feasible (Ax � b and 
x E P) , and p is dual feasible (p � 0) , then g(p) :::; c'x. 

Proof. If x and p are primal and dual feasible , respectively, then p' (b -
Ax) :::; 0, which implies that 

rem. 

g(p) min [c'Y + p' (b - Ay)] y E P  
< c'x + p' (b - Ax) 
< c'x. D 

We also have the following generalization of the strong duality theo-

Theorem 4.18 (Strong duality) If the primal problem has an op­
timal solution, so does the dual, and the respective optimal costs are 
equal. 
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Proof. Since P = {x I Dx � d } ,  the primal problem is of the form 

minimize c' x 
subject to Ax � b 

Dx � d, 

and we assume that it has an optimal solution. Its dual, which is 

maximize p'b + q'd 
subject to p' A + q'D = c' 

p � O  
q � O, 
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(4.8) 

must then have the same optimal cost . For any fixed p, the vector q should 
be chosen optimally in the problem (4.8) . Thus, the dual problem (4.8) can 
also be written as 

maximize p'b + f (p) 
subject to p � 0 ,  

where f(p)  i s  the optimal cost in  the problem 

maximize q'd 
subject to q'D = c' - p' A 

q � O. 
(4.9) 

[If the latter problem is infeasible , we set f(p) = - 00 . ] Using the strong 
duality theorem for problem (4.9) , we obtain 

f (p) = min (c'x - p' Ax) . Dx;2:d 

We conclude that the dual problem (4.8) has the same optimal cost as the 
problem 

maximize p'b + min (c'x - p' Ax) Dx;2:d 
subject to p � O. 

By comparing with Eq. (4 .7) , we see that this is the same as maximizing 
g(p) over all p � O .  D 

The idea of selectively assigning dual variables to some of the con­
straints is often used in order to treat "simpler" constraints differently 
than more "complex" ones , and has numerous applications in large scale 
optimization. (Applications to integer programming are discussed in Sec­
tion 1 1 .4 . )  Finally, let us point out that the approach in this section extends 
to certain nonlinear optimization problems . For example, if we replace the 
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linear cost function c'x by a general convex function c(x) , and the poly­
hedron P by a general convex set , we can again define the dual objective 
according to the formula 

g(p) = min [c(x) + p' (b - Ax)] . x E P  

It  turns out that the strong duality theorem remains valid for such nonlinear 
problems, under suitable technical conditions, but this lies beyond the scope 
of this book. 

4 . 1 1  Summary 

We summarize here the main ideas that have been developed in this chapter. 
Given a (primal) linear programming problem, we can associate with 

it another (dual) linear programming problem, by following a set of me chan­
ical rules. The definition of the dual problem is consistent , in the sense that 
the duals of equivalent primal problems are themselves equivalent . 

Each dual variable is associated with a particular primal constraint 
and can be viewed as a penalty for violating that constraint . By replacing 
the primal constraints with penalty terms , we increase the set of available 
options , and this allows us to construct primal solutions whose cost is less 
than the optimal cost . In particular , every dual feasible vector leads to a 
lower bound on the optimal cost of the primal problem (this is the essence of 
the weak duality theorem) . The maximization in the dual problem is then 
a search for the tightest such lower bound. The strong duality theorem 
asserts that the tightest such lower bound is equal to the optimal primal 
cost . 

An optimal dual variable can also be interpreted as a marginal cost , 
that is, as the rate of change of the optimal primal cost when we perform a 
small perturbation of the right-hand side vector b, assuming nondegeneracy. 

A useful relation between optimal primal and dual solutions is pro­
vided by the complementary slackness conditions . Intuitively, these con­
ditions require that any constraint that is inactive at an optimal solution 
carries a zero price , which is compatible with the interpretation of prices 
as marginal costs. 

We saw that every basis matrix in a standard form problem deter­
mines not only a primal basic solution, but also a basic dual solution. This 
observation is at the heart of the dual simplex method. This method is 
similar to the primal simplex method in that it generates a sequence of 
primal basic solutions , together with an associated sequence of dual basic 
solutions . It is different , however, in that the dual basic solutions are dual 
feasible , with ever improving costs, while the primal basic solutions are in­
feasible (except for the last one) . We developed the dual simplex method by 
simply describing its mechanics and by providing an algebraic justification. 
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Nevertheless, the dual simplex method also has a geometric interpretation. 
It keeps moving from one dual basic feasible solution to an adjacent one 
and, in this respect , it is similar to the primal simplex method applied to 
the dual problem. 

All of duality theory can be developed by exploiting the termination 
conditions of the simplex method, and this was our initial approach to the 
subject . We also pursued an alternative line of development that proceeded 
from first principles and used geometric arguments .  This is a more direct 
and more general approach, but requires more abstract reasoning. 

Duality theory provided us with some powerful tools based on which 
we were able to enhance our geometric understanding of polyhedra. We 
derived a few theorems of the alternative (like Farkas ' lemma) , which are 
surprisingly powerful and have applications in a wide variety of contexts .  
In fact , Farkas' lemma can be viewed as the core of linear programming 
duality theory. Another major result that we derived is the resolution 
theorem, which allows us to express any element of a nonempty polyhedron 
with at least one extreme point as a convex combination of its extreme 
points plus a nonnegative linear combination of its extreme rays ; in other 
words , every polyhedron is "finitely generated." The converse is also true, 
and every finitely generated set is a polyhedron (can be represented in 
terms of linear inequality constraints) . Results of this type play a key 
role in confirming our intuitive geometric understanding of polyhedra and 
linear programming. They allow us to develop alternative views of certain 
situations and lead to deeper understanding. Many such results have an 
"obvious" geometric content and are often taken for granted. Nevertheless, 
as we have seen, rigorous proofs can be quite elaborate. 

4 . 1 2  Exercises 

Exercise 4. 1 Consider the linear programming problem: 

minimize Xl X2 
subject to 2Xl + 3X2 X3 + 

3Xl + X2 + 4X3 
-Xl X2 + 2X3 + 

Xl � 0 
X2 , X3 � o .  

Write down the corresponding dual problem. 

Exercise 4.2 Consider the primal problem 

c'x minimize 
subject to Ax � b 

x � o .  

X4 
2X4 
X4 

� 0 
� 3 

6 

Form the dual problem and convert it into an equivalent minimization problem. 
Derive a set of conditions on the matrix A and the vectors b, c, under which the 
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dual is identical to the primal, and construct an example in which these conditions 
are satisfied. 

Exercise 4.3 The purpose of this exercise is to show that solving linear pro­
gramming problems is no harder than solving systems of linear inequalities . 

Suppose that we are given a subroutine which, given a system of linear in­
equality constraints, either produces a solution or decides that no solution exists .  
Construct a simple algorithm that uses a single call to this subroutine and which 
finds an optimal solution to any linear programming problem that has an optimal 
solution. 

Exercise 4.4 Let A be a symmetric square matrix. Consider the linear pro­
gramming problem 

minimize 
subject to 

c'x 
Ax :::: c 

x :::: o .  

Prove that i f  x* satisfies Ax* = c and x*  :::: 0,  then x* i s  an optimal solution. 

Exercise 4.5 Consider a linear programming problem in standard form and 
assume that the rows of A are linearly independent . For each one of the following 
statements, provide either a proof or a counterexample. 

(a) Let x* be a basic feasible solution. Suppose that for every basis correspond­
ing to x* , the associated basic solution to the dual is infeasible. Then, the 
optimal cost must be strictly less that c' x* . 

(b) The dual of the auxiliary primal problem considered in Phase I of the 
simplex method is always feasible. 

(c) Let Pi be the dual variable associated with the ith equality constraint in 
the primal. Eliminating the ith primal equality constraint is equivalent to 
introducing the additional constraint Pi = 0 in the dual problem. 

(d) If the unboundedness criterion in the primal simplex algorithm is satisfied, 
then the dual problem is infeasible. 

Exercise 4.6 * (Duality in Chebychev approximation) Let A be an m x n 
matrix and let b be a vector in Rm . We consider the problem of minimizing 
I IAx - b l loo  over all x E Rn . Here 1 1 · 1 1 00  is the vector norm defined by I I Y l loo  = 
maXi IYi l .  Let v be the value of the optimal cost . 

(a) Let p be any vector in Rm that satisfies l::l IPi l  = 1 and p' A = 0' . Show 
that p'b :::; v .  

(b) In order to obtain the best possible lower bound of the form considered in 
part (a) , we form the linear programming problem 

maximize p'b 
subject to p' A = 0' 

i= l 

Show that the optimal cost in this problem is equal to v .  
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Exercise 4.7 (Duality in piecewise linear convex optimization) Con­
sider the problem of minimizing maxi=1 , . . .  ,m (a�x - bi ) over all x E )Rn . Let v 
be the value of the optimal cost , assumed finite. Let A be the matrix with rows 
a1 , . . .  , am , and let b be the vector with components b1 , . . .  , bm . 

(a) Consider any vector p E )Rm that satisfies p' A = 0' , p 2: 0, and 2::: 1 Pi = 
1 .  Show that -p'b :s; v .  

(b)  In order to obtain the best possible lower bound of  the form considered in 
part (a) , we form the linear programming problem 

maximize -p'b 
subject to p' A 0' 

p'e 1 
p > 0,  

where e i s  the vector with all components equal to 1 .  Show that the optimal 
cost in this problem is equal to v .  

Exercise 4.8 Consider the linear programming problem of minimizing c'x sub­
ject to Ax = b, x 2: o. Let x* be an optimal solution, assumed to exist , and let 
p* be an optimal solution to the dual . 

(a) Let x be an optimal solution to the primal, when c is replaced by some C.  
Show that (c - c)' (x - x* ) :s; O. 

(b) Let the cost vector be fixed at c, but suppose that we now change b to b,  
and let x be a corresponding optimal solution to the primal. Prove that 
(p* ) ' (b - b) :s; c' (x - x* ) .  

Exercise 4.9 (Back-propagation of dual variables in a multiperiod 
problem) A company makes a product that can be either sold or stored to 
meet future demand. Let t = 1, . . .  , T  denote the periods of the planning hori­
zon. Let bt be the production volume during period t ,  which is assumed to be 
known in advance. During each period t, a quantity Xt of the product is sold , at 
a unit price of dt . Furthermore, a quantity Yt can be sent to long-term storage, at 
a unit transportation cost of c. Alternatively, a quantity Wt can be retrieved from 
storage, at zero cost . We assume that when the product is prepared for long-term 
storage, it is partly damaged, and only a fraction f of the total survives. Demand 
is assumed to be unlimited. The main question is whether it is profitable to store 
some of the production, in anticipation of higher prices in the future . This leads 
us to the following problem, where Zt stands for the amount kept in long-term 
storage , at the end of period t :  

T 
maximize :l:>�t-\dtXt - cYt ) + aT dT+1 ZT 

t= 1 
subject to Xt + Yt - Wt = bt , 

Zt + Wt - Zt- 1 - fYt = 0, 

Zo = 0, 
Xt , Yt , Wt , Zt 2: O .  

t = 1 ,  . . .  , T, 

t = 1 ,  . . .  , T, 

Here, dT+1 is the salvage prive for whatever inventory is left at the end of period 
T. Furthermore, a is a discount factor, with 0 < a < 1, reflecting the fact that 
future revenues are valued less than current ones . 
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(a) Let Pt and qt be dual variables associated with the first and second equality 
constraint , respectively. Write down the dual problem. 

(b) Assume that 0 < f < 1, bt 2: 0, and e 2: O. Show that the following 
formulae provide an optimal solution to the dual problem: 

PT 
qt 

Pt 

max {a?- l dT , fqT - aT- I e} ,  
max {qt+ l , at- Idt } ,  
max {at- I dt , fqt - at- I e} ,  

t = 1 ,  . . .  , T  - 1 , 

t = 1 ,  . . .  , T - 1 . 

( c ) Explain how the result in part (b) can be used to compute an optimal 
solution to the original problem. Primal and dual nondegeneracy can be 
assumed. 

Exercise 4.10 (Saddle points of the Lagrangean) Consider the standard 
form problem of minimizing c'x subject to Ax = b and x 2: 0. We define the 
Lagrangean by 

L(x, p) = c'x + p' (b - Ax) . 

Consider the following "game" : player 1 chooses some x 2: 0, and player 2 chooses 
some p; then, player 1 pays to player 2 the amount L(x,  p) . Player 1 would like 
to minimize L(x,  p) , while player 2 would like to maximize it . 

A pair (x* , p* ) ,  with x* 2: 0, is called an equilibrium point (or a saddle 
point, or a Nash equilibrium) if 

L(x* , p) ::; L(x* , p* ) ::;  L (x, p* ) ,  v x 2: 0 ,  V p.  

(Thus , we have an equilibrium if  no player is  able to improve her performance by 
unilaterally modifying her choice. )  

Show that a pair (x* , p* ) is an equilibrium i f  and only i f  x *  and p *  are 
optimal solutions to the standard form problem under consideration and its dual, 
respectively. 

Exercise 4. 1 1  Consider a linear programming problem in standard form which 
is infeasible , but which becomes feasible and has finite optimal cost when the last 
equality constraint is omitted . Show that the dual of the original (infeasible) 
problem is feasible and the optimal cost is infinite .  

Exercise 4.12 * (Degeneracy and uniqueness - I)  Consider a general linear 
programming problem and suppose that we have a nondegenerate basic feasible 
solution to the primal. Show that the complementary slackness conditions lead 
to a system of equations for the dual vector that has a unique solution. 

Exercise 4.13 * (Degeneracy and uniqueness - II) Consider the following 
pair of problems that are duals of each other: 

minimize 
subject to 

c'x 
Ax b 

x 2: 0,  

maximize 
subject to 

p'b 
p'A ::; c' . 
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(a)  Prove that i f  one problem has a nondegenerate and unique optimal solution, 
so does the other. 

(b) Suppose that we have a nondegenerate optimal basis for the primal and 
that the reduced cost for one of the basic variables is zero. What does the 
result of part (a) imply? Is it true that there must exist another optimal 
basis? 

Exercise 4.14 (Degeneracy and uniqueness - III) Give an example in 
which the primal problem has a degenerate optimal basic feasible solution, but 
the dual has a unique optimal solution. (The example need not be in standard 
form. ) 

Exercise 4. 15  (Degeneracy and uniqueness - IV) Consider the problem 

minimize X2 

subject to X2 = 1 

Xl ?: 0 

X2 ?: o . 

Write down its dual . For both the primal and the dual problem determine whether 
they have unique optimal solutions and whether they have nondegenerate optimal 
solutions. Is this example in agreement with the statement that nondegeneracy 
of an optimal basic feasible solution in one problem implies uniqueness of optimal 
solutions for the other? Explain. 

Exercise 4.16 Give an example of a pair (primal and dual) of linear program­
ming problems, both of which have multiple optimal solutions. 

Exercise 4. 17  This exercise is meant to demonstrate that knowledge of a pri­
mal optimal solution does not necessarily contain information that can be ex­
ploited to determine a dual optimal solution. In particular, determining an opti­
mal solution to the dual is as hard as solving a system of linear inequalities, even 
if an optimal solution to the primal is available. 

Consider the problem of minimizing c'x subject to Ax ?: 0 ,  and suppose 
that we are told that the zero vector is optimal. Let the dimensions of A be 
m x n, and suppose that we have an algorithm that determines a dual optimal 
solution and whose running time O ((m+ n) k ) ,  for some constant k. (Note that if 
x = 0 is not an optimal primal solution, the dual has no feasible solution, and we 
assume that in this case our algorithm exits with an error message. ) Assuming 
the availability of the above algorithm, construct a new algorithm that takes as 
input a system of m linear inequalities in n variables, runs for 0 ( (m + n) k ) time, 
and either finds a feasible solution or determines that no feasible solution exists .  

Exercise 4.18 Consider a problem in standard form. Suppose that the matrix 
A has dimensions m x n and its rows are linearly independent . Suppose that 
all basic solutions to the primal and to the dual are nondegenerate. Let x be a 
feasible solution to the primal and let p be a dual vector (not necessarily feasible) , 
such that the pair (x, p) satisfies complementary slackness . 

(a) Show that there exist m columns of A that are linearly independent and 
such that the corresponding components of x are all positive. 
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(b) Show that x and p are basic solutions to the primal and the dual, respec­
tively. 

(c) Show that the result of part (a) is false if the nondegeneracy assumption is 
removed. 

Exercise 4 .19 Let P = {x E Rn I Ax = b, x ::::: O} be a nonempty polyhedron, 
and let m be the dimension of the vector b. We call Xj a null variable if Xj = 0 
whenever x E P. 
(a) Suppose that there exists some p E Rm for which p' A ::::: 0' , p'b = 0,  and 

such that the jth component of p' A is positive . Prove that Xj is a null 
variable. 

(b) Prove the converse of (a) : if Xj is a null variable, then there exists some 
p E Rm with the properties stated in part (a) . 

(c) If Xj is not a null variable, then by definition, there exists some y E P  for 
which Yj > o .  Use the results in parts (a) and (b) to prove that there exist 
x E P and p E Rm such that : 

p'A ::::: O' , p'b = O, x + A'p > O. 

Exercise 4.20 * (Strict complementary slackness) 
(a) Consider the following linear programming problem and its dual 

minimize c' x 
subject to Ax b 

x ::::: 0, 

maximize 
subject to 

p'b 
p'A :S c' , 

and assume that both problems have an optimal solution. Fix some j .  
Suppose that every optimal solution t o  the primal satisfies Xj = O. Show 
that there exists an optimal solution p to the dual such that p' Aj < Cj . 
(Here, Aj is the jth column of A.)  Hint: Let d be the optimal cost . 
Consider the problem of minimizing -Xj subject to Ax = b, x ::::: 0 ,  and 
-c'x ::::: -d, and form its dual . 

(b) Show that there exist optimal solutions x and p to the primal and to the 
dual, respectively, such that for every j we have either x j > 0 or p' Aj < Cj .  
Hint: Use part (a) for each j ,  and then take the average of the vectors 
obtained. 

(c) Consider now the following linear programming problem and its dual : 

minimize c' x 
subject to Ax ::::: b 

x ::::: 0 ,  

maximize 
subject to 

p'b 
p'A < c' 
p ::::: O. 

Assume that both problems have an optimal solution. Show that there 
exist optimal solutions to the primal and to the dual, respectively, that 
satisfy strict complementary slackness, that is: 

(i) For every j we have either Xj > 0 or p' Aj < Cj . 

(ii) For every i ,  we have either a;x > bi or Pi > O. (Here, a; is the ith 
row of A.)  Hint: Convert the primal to standard form and apply 
part (b) . 
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(d) Consider the linear programming problem 

minimize 5Xl + 5X2 
subject to Xl + X2 2 2 

2Xl X2 2 0 
Xl , X2 2 O .  

Does the optimal primal solution (2/3 , 4/3) ,  together with the correspond­
ing dual optimal solution, satisfy strict complementary slackness? Deter­
mine all primal and dual optimal solutions and identify the set of all strictly 
complementary pairs . 

Exercise 4.21 * (Clark's theorem) Consider the following pair of linear pro­
gramming problems: 

minimize 
subject to 

c'x 
Ax > b 

x 2 0,  

maximize 
subject to 

p'b 
p'A < c' 
p 2 o .  

Suppose that at least one of these two problems has a feasible solution. Prove 
that the set of feasible solutions to at least one of the two problems is unbounded. 
Hint: Interpret boundedness of a set in terms of the finiteness of the optimal cost 
of some linear programming problem. 

Exercise 4.22 Consider the dual simplex method applied to a standard form 
problem with linearly independent rows. Suppose that we have a basis which is 
primal infeasible, but dual feasible, and let i be such that XB (i) < O. Suppose 
that all entries in the ith row in the tableau (other than XB (i) ) are nonnegative. 
Show that the optimal dual cost is +00.  

Exercise 4.23 Describe in  detail the mechanics o f  a revised dual simplex meth­
od that works in terms of the inverse basis matrix B- 1 instead of the full simplex 
tableau. 

Exercise 4.24 Consider the lexicographic pivoting rule for the dual simplex 
method and suppose that the algorithm is initialized with each column of the 
tableau being lexicographically positive . Prove that the dual simplex method 
does not cycle . 

Exercise 4.25 This exercise shows that if we bring the dual problem into stan­
dard form and then apply the primal simplex method, the resulting algorithm is 
not identical to the dual simplex method. 

Consider the following standard form problem and its dual . 

minimize 
subject to 

Xl + X2 
Xl = 1 
X2 = 1 
Xl , X2 2 0 

maximize 
subject to 

PI + p2 
PI ::; 1 

P2 ::; 1 .  

Here, there i s  only one possible basis and the dual simplex method must terminate 
immediately. Show that if the dual problem is converted into standard form and 
the primal simplex method is applied to it , one or more changes of basis may be 
required. 
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Exercise 4.26 Let A be a given matrix. Show that exactly one of the following 
alternatives must hold. 

(a) There exists some x =I- 0 such that Ax = 0 ,  x ?:  o. 

(b) There exists some p such that p' A > 0' . 

Exercise 4.27 Let A be a given matrix. Show that the following two state­
ments are equivalent. 

(a) Every vector such that Ax ?: 0 and x ?: 0 must satisfy Xl = O. 

(b) There exists some p such that p' A :S 0 ,  p ?: 0,  and p' A1  < 0,  where A1 
i s  the first column of A. 

Exercise 4.28 Let a and a1 , . . .  , am be given vectors in  Rn . Prove that the 
following two statements are equivalent : 

(a) For all x ?: 0 ,  we have a'x :S maXi a�x. 

(b) There exist nonnegative coefficients Ai that sum to 1 and such that a :S 
2::1 Aiai . 

Exercise 4.29 (Inconsistent systems of linear inequalities) Let a1 , . . .  , am 
be some vectors in Rn , with m > n + 1 .  Suppose that the system of inequalities 
a�x ?: bi , i = 1 ,  . . .  , m, does not have any solutions . Show that we can choose 
n + 1 of these inequalities, so that the resulting system of inequalities has no 
solutions. 

Exercise 4.30 (Helly's theorem) 

(a) Let :F be a finite family of polyhedra in Rn such that every n + 1 polyhedra 
in :F have a point in common. Prove that all polyhedra in :F have a point 
in common. Hint: Use the result in Exercise 4.29 .  

(b) For n = 2 ,  part (a) asserts that the polyhedra H , P2 , . . . , PK (K ?: 3) in 
the plane have a point in common if and only if every three of them have a 
point in common. Is the result still true with "three" replaced by "two" ? 

Exercise 4.31 (Unit eigenvectors of stochastic matrices) We say that an 
n x n matrix P,  with entries Pij , is stochastic if all of its entries are nonnegative 
and 

n 
LPij = 1 ,  V i , 

j= l 
that is, the sum of the entries of each row is equal to 1 .  

Use duality t o  show that if P is a stochastic matrix, then the system of 
equations 

p'P = p' , p ?:  0,  

has a nonzero solution. (Note that the vector p can be normalized so that its 
components sum to one. Then, the result in this exercise establishes that every 
finite state Markov chain has an invariant probability distribution. ) 
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Exercise 4.32 * (Leontief systems and Samuelson's substitution the­
orem) A Leontief matrix is an m x n matrix A in which every column has at 
most one positive element. For an interpretation, each column Aj corresponds 
to a production process. If aij is negative, l aij I represents the amount of goods 
of type i consumed by the process . If aij is positive, it represents the amount of 
goods of type i produced by the process . If Xj is the intensity with which process 
j is used, then Ax represents the net output of the different goods . The matrix 
A is called productive if there exists some x � 0 such that Ax > O .  

(a) Let A be a square productive Leontief matrix (m = n) . Show that every 
vector z that satisfies Az � 0 must be nonnegative. Hint: If z satisfies 
Az � 0 but has a negative component, consider the smallest nonnega­
tive () such that some component of x + (}z becomes zero, and derive a 
contradiction. 

(b) Show that every square productive Leontief matrix is invertible and that 
all entries of the inverse matrix are nonnegative. Hint: Use the result in 
part (a) . 

(c) We now consider the general case where n � m, and we introduce a con­
straint of the form e'x ::; 1 ,  where e = ( 1 ,  . . .  , 1 ) .  (Such a constraint could 
capture, for example , a bottleneck due to the finiteness of the labor force. )  
An  "output" vector y E )Rm i s  said to  be  achievable if y � 0 and there 
exists some x � 0 such that Ax = y and e' y ::; 1. An achievable vector y 
is said to be efficient if there exists no achievable vector z such that z � y 
and z of- y. (Intuitively, an output vector y which is not efficient can be im­
proved upon and is therefore uninteresting . )  Suppose that A is productive . 
Show that there exists a positive efficient vector y. Hint: Given a positive 
achievable vector y. , consider maximizing I::i Yi over all achievable vectors 
y that are larger than y • .  

(d) Suppose that A is productive . Show that there exists a set of m production 
processes that are capable of generating all possible efficient output vectors 
y. That is, there exist indices B(l ) ,  . . .  , B (m) , such that every efficient 
output vector y can be expressed in the form y = I:::1 AB(i) XB (i) '  for 
some nonnegative coefficients XB (i) whose sum is bounded by 1 .  Hint: 
Consider the problem of minimizing e'x subject to Ax = y, x � 0, and 
show that we can use the same optimal basis for all efficient vectors y. 

Exercise 4.33 (Options pricing) Consider a market that operates for a single 
period, and which involves three assets: a stock, a bond, and an option. Let S 
be the price of the stock, in the beginning of the period. Its price S at the end of 
the period is random and is assumed to be equal to either Su, with probability 
(3, or Sd, with probability 1 - (3. Here u and d are scalars that satisfy d < 1 < u. 
Bonds are assumed riskless. Investing one dollar in a bond results in a payoff 
of r, at the end of the period .  (Here, r is a scalar greater than 1 . )  Finally, the 
option gives us the right to purchase, at the end of the period,  one stock at a fixed 
price of K. If the realized price S of the stock is greater than K, we exercise the 
option and then immediately sell the stock in the stock market , for a payoff of 
S - K. If on the other hand we have S < K, there is no advantage in exercising 
the option, and we receive zero payoff. Thus, the value of the option at the end 
of the period is equal to max{O, S - K}.  Since the option is itself an asset , it 
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should have a value in the beginning of the time period.  Show that under the 
absence of arbitrage condition, the value of the option must be equal to 

"y max{O, Su - K} + 8 max{O, Sd - K} ,  

where "y and 8 are a solution to  the following system of  linear equations : 

u"y + d8 1 

"y + 8 
1 

r 

Hint: Write down the payoff matrix R and use Theorem 4 .8 .  

Exercise 4.34 (Finding separating hyperplanes) Consider a polyhedron 
P that has at least one extreme point . 

(a) Suppose that we are given the extreme points xi and a complete set of 
extreme rays wi of P. Create a linear programming problem whose solution 
provides us with a separating hyperplane that separates P from the origin, 
or allows us to conclude that none exists. 

(b) Suppose now that P is given to us in the form P = {x I a�x � bi , i = 
1 ,  . . .  , m} .  Suppose that 0 1- P. Explain how a separating hyperplane can 
be found. 

Exercise 4.35 (Separation of disjoint polyhedra) Consider two nonempty 
polyhedra P = {x E Rn I Ax :::; b} and Q = {x E Rn I Dx :::; d} . We are 
interested in finding out whether the two polyhedra have a point in common. 

(a) Devise a linear programming problem such that : if P n Q is nonempty, it 
returns a point in p n Q; if p n Q  is empty, the linear programming problem 
is infeasible. 

(b) Suppose that P n Q is empty. Use the dual of the problem you have 
constructed in part (a) to show that there exists a vector c such that 
c' x < c' y for all x E P and y E Q. 

Exercise 4.36 (Containment of polyhedra) 

(a) Let P and Q be two polyhedra in Rn described in terms of linear inequality 
constraints . Devise an algorithm that decides whether P is a subset of Q.  

(b )  Repeat part (a) i f  the polyhedra are described in  terms of  their extreme 
points and extreme rays . 

Exercise 4.37 (Closedness of finitely generated cones) Let AI , . . .  , An 
be given vectors in Rm . Consider the cone C = { L:�=l Aixi I Xi � O } and let 
yk , k = 1 , 2 ,  . . . , be a sequence of elements of C that converges to some y. Show 
that y E C (and hence C is closed) ,  using the following argument . With y fixed 
as above, consider the problem of minimizing I l y  - L:�=l Aixd l oo ,  subject to the 
constraints Xl , • . •  , Xn � O. Here 1 1 · 1 1 00 stands for the maximum norm, defined by 
I l x l ioo  = maxi IXi l .  Explain why the above minimization problem has an optimal 
solution, find the value of the optimal cost , and prove that y E C. 
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Exercise 4.38 (From Farkas' lemma to duality) Use Farkas' lemma to 
prove the duality theorem for a linear programming problem involving constraints 
of the form a�x = bi , a�x � bi , and nonnegativity constraints for some of the 
variables x j .  Hint: Start by deriving the form of the set of feasible directions at 
an optimal solution. 

Exercise 4.39 (Extreme rays of cones) Let us define a nonzero element d of 
a pointed polyhedral cone C to be an extreme ray if it has the following property: 
if there exist vectors f E C and g E C and some .>.. E (0, 1 )  satisfying d = f + g, 
then both f and g are scalar multiples of d. Prove that this definition of extreme 
rays is equivalent to Definition 4.2 .  

Exercise 4.40 (Extreme rays of a cone are extreme points of its sec­
tions) Consider the cone C = {x E Rn I �x � 0, i = 1, . . .  , m} and assume 
that the first n constraint vectors al , . . .  , an are linearly independent . For any 
nonnegative scalar r, we define the polyhedron Pr by 

(a) Show that the polyhedron Pr is bounded for every r � o .  

(b) Let r > O .  Show that a vector x E Pr is  an extreme point of Pr if  and only 
if x is an extreme ray of the cone C. 

Exercise 4.41 (Caratheodory's theorem) Show that every element x of a 
bounded polyhedron P C Rn can be expressed as a convex combination of at 
most n + 1 extreme points of P. Hint: Consider an extreme point of the set of 
all possible representations of x. 

Exercise 4.42 (Problems with side constraints) Consider the linear pro­
gramming problem of minimizing c'x over a bounded polyhedron P C Rn and 
subject to additional constraints �x = bi , i = 1, . . . , L . Assume that the prob­
lem has a feasible solution. Show that there exists an optimal solution which is 
a convex combination of L + 1 extreme points of P. Hint: Use the resolution 
theorem to represent P. 

Exercise 4.43 

(a) Consider the minimization of C1 Xl + C2X2 subject to the constraints 

Find necessary and sufficient conditions on (Cl ' C2 ) for the optimal cost to 
be finite. 

(b) For a general feasible linear programming problem, consider the set of all 
cost vectors for which the optimal cost is finite. Is it a polyhedron? Prove 
your answer. 
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Exercise 4.44 
(a) Let P = { (Xl , X2 ) I Xl - X2 = 0, Xl + X2 = o} . What are the extreme 

points and the extreme rays of P? 

(b) Let P = { (Xl , X2 ) I 4XI + 2X2 2: 8, 2XI + X2 :::; 8} . What are the extreme 
points and the extreme rays of P? 

(c) For the polyhedron of part (b) , is it possible to express each one of its 
elements as a convex combination of its extreme points plus a nonnega­
tive linear combination of its extreme rays? Is this compatible with the 
resolution theorem? 

Exercise 4.45 Let P be a polyhedron with at least one extreme point . Is it 
possible to express an arbitrary element of P as a convex combination of its 
extreme points plus a nonnegative multiple of a single extreme ray? 

Exercise 4.46 (Resolution theorem for polyhedral cones) Let C be a 
nonempty polyhedral cone. 

(a) Show that C can be expressed as the union of a finite number CI , . . .  , Ck 
of pointed polyhedral cones . Hint: Intersect with orthants. 

(b) Show that an extreme ray of C must be an extreme ray of one of the cones 
CI , . . . , Ck • 

(c) Show that there exists a finite number of elements WI , . . .  , wr of C such 
that 

Exercise 4.47 (Resolution theorem for general polyhedra) Let P be a 
polyhedron. Show that there exist vectors Xl , . . .  , xk and WI , . . .  , wr such that 

Hint: Generalize the steps in the preceding exercise. 

Exercise 4.48 * (Polar, finitely generated, and polyhedral cones) For 
any cone C, we define its polar CJ.. by 

CJ.. = {p I piX :::; 0, for all x E c} . 
(a) Let F be a finitely generated cone, of the form 

Show that FJ.. = {p I pi Wi :::; 0, i = 1 ,  . . . , r} ,  which is a polyhedral cone . 

(b) Show that the polar of FJ.. is F and conclude that the polar of a polyhedral 
cone is finitely generated. Hint: Use Farkas' lemma. 
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(c) Show that a finitely generated pointed cone F is a polyhedron. Hint: Con­
sider the polar of the polar. 

(d) (Polar cone theorem) Let 0 be a closed, nonempty, and convex cone. 
Show that (0.1 ) .1  = O. Hint: Mimic the derivation of Farkas ' lemma using 
the separating hyperplane theorem (Section 4 .7) . 

(e) Is the polar cone theorem true when 0 is the empty set? 

Exercise 4.49 Consider a polyhedron, and let x, y be two basic feasible solu­
tions . If we are only allowed to make moves from any basic feasible solution to 
an adjacent one, show that we can go from x to y in a finite number of steps. 
Hint: Generalize the simplex method to nonstandard form problems: starting 
from a nonoptimal basic feasible solution, move along an extreme ray of the cone 
of feasible directions . 

Exercise 4.50 We are interested in the problem of deciding whether a polyhe-
dron 

Q = {x E �n I Ax :S b, Dx 2: d, x 2: O} 
is nonempty. We assume that the polyhedron P = {x E �n I Ax :S b, x 2: O} is 
nonempty and bounded . For any vector p, of the same dimension as d, we define 

g(p) = -p'd + max p'Dx. 
x E P  

(a)  Show that i f  Q is  nonempty, then g(p) 2: 0 for all p 2: o .  

(b) Show that i f  Q is  empty, then there exists some p 2: 0,  such that g(p)  < o . 
(c) If Q is empty, what is the minimum of g(p) over all p 2: O? 

4 . 1 3  Notes and sources 

4.3.  The duality theorem is  due to von Neumann ( 1947) , and Gale, Kuhn, 
and Tucker ( 195 1 ) .  

4 .6 .  Farkas' lemma i s  due to  Farkas ( 1894) and Minkowski ( 1896) . See 
Schrijver ( 1986) for a comprehensive presentation of related results. 
The connection between duality theory and arbitrage was developed 
by Ross ( 1976, 1978) . 

4.7.  Weierstrass ' Theorem and its proof can be found in most texts on real 
analysis ;  see, for example , Rudin (1976 ) .  While the simplex method is 
only relevant to linear programming problems with a finite number of 
variables , the approach based on the separating hyperplane theorem 
leads to a generalization of duality theory that covers more general 
convex optimization problems, as well as infinite-dimensional linear 
programming problems, that is , linear programming problems with 
infinitely many variables and constraints; see, e .g . , Luenberger ( 1969) 
and Rockafellar ( 1970) . 

4 .9.  The resolution theorem and its converse are usually attributed to 
Farkas, Minkowski , and Weyl .  
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4.10.  For extensions of duality theory to problems involving general convex 
functions and constraint sets, see Rockafellar ( 1970) and Bertsekas 
( 1995b) . 

4.12 Exercises 4 .6 and 4 .7  are adapted from Boyd and Vandenberghe ( 1995) . 
The result on strict complementary slackness (Exercise 4 .20) was 
proved by 'IUcker ( 1956) . The result in Exercise 4 .21  is due to Clark 
( 1961 ) .  The result in Exercise 4.30 is due to Helly ( 1923) . Input­
output macroeconomic models of the form considered in Exercise 4 .32 ,  
have been introduced by Leontief, who was awarded the 1973 Nobel 
prize in economics . The result in Exercise 4 .41 is due to Caratheodory 
( 1907) . 
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Consider the standard form problem 

and its dual 

minimize c'x 
subject to Ax b 

x > 0 ,  

maximize p'b 
subject to p' A ::;  c' . 

Sensitivity analysis 

In this chapter , we study the dependence of the optimal cost and the opti­
mal solution on the coefficient matrix A, the requirement vector b, and the 
cost vector c. This is an important issue in practice because we often have 
incomplete knowledge of the problem data and we may wish to predict the 
effects of certain parameter changes .  

In the first section of this chapter , we develop conditions under which 
the optimal basis remains the same despite a change in the problem data, 
and we examine the consequences on the optimal cost . We also discuss 
how to obtain an optimal solution if we add or delete some constraints. In 
subsequent sections , we allow larger changes in the problem data, resulting 
in a new optimal basis, and we develop a global perspective of the depen­
dence of the optimal cost on the vectors b and c. The chapter ends with 
a brief discussion of parametric programming, which is an extension of the 
simplex method tailored to the case where there is a single scalar unknown 
parameter . 

Many of the results in this chapter can be extended to cover general 
linear programming problems . Nevertheless , and in order to simplify the 
presentation, our standing assumption throughout this chapter will be that 
we are dealing with a standard form problem and that the rows of the m x n 
matrix A are linearly independent . 

5 . 1  Local sensitivity analysis 

In this section, we develop a methodology for performing sensitivity anal­
ysis. We consider a linear programming problem, and we assume that we 
already have an optimal basis B and the associated optimal solution x* . 
We then assume that some entry of A, b, or c has been changed, or that 
a new constraint is added, or that a new variable is added. We first look 
for conditions under which the current basis is still optimal. If these con­
ditions are violated, we look for an algorithm that finds a new optimal 
solution without having to solve the new problem from scratch. We will 
see that the simplex method can be quite useful in this respect . 

Having assumed that B is an optimal basis for the original problem, 
the following two conditions are satisfied: 

(feasibility) 
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c' - c' B- 1 A > 0' B - , 
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( optimality) . 

When the problem is changed, we check to see how these conditions are 
affected. By insisting that both conditions (feasibility and optimality) hold 
for the modified problem, we obtain the conditions under which the basis 
matrix B remains optimal for the modified problem. In what follows , we 
apply this approach to several examples . 

A new variable is added 

Suppose that we introduce a new variable Xn+1 , together with a corre­
sponding column An+h and obtain the new problem 

minimize c'x + Cn+1Xn+1 
subject to Ax + An+!Xn+l b 

x 2 0 . 

We wish to determine whether the current basis B is still optimal. 
We note that (x, Xn+1 ) = (x* , 0) is a basic feasible solution to the 

new problem associated with the basis B, and we only need to examine the 
optimality conditions. For the basis B to remain optimal, it is necessary 
and sufficient that the reduced cost of Xn+1 be nonnegative, that is, 

cn+! = en+! - C�B- 1 An+1 2 o .  
If this condition is  satisfied, (x* , 0) is  an optimal solution to the new prob­
lem. If, however,  cn+! < 0, then (x* , 0) is not necessarily optimal. In 
order to find an optimal solution, we add a column to the simplex tableau, 
associated with the new variable, and apply the primal simplex algorithm 
starting from the current basis B.  Typically, an optimal solution to the new 
problem is obtained with a small number of iterations, and this approach 
is usually much faster than solving the new problem from scratch. 

Example 5 . 1  Consider the problem 

minimize 
subject to 

-5XI X2 + 12x3 
3XI + 2X2 + X3 
5XI + 3X2 + X4 
Xl , . . .  , X4 2 o. 

10 
16 

An optimal solution to this problem is given by x = (2 , 2 , 0 , 0) and the corre­
sponding simplex tableau is given by 

Xl X2 X3 X4 

12  0 0 2 7 

Xl = 2 1 0 -3 2 

X2 = 2 0 1 5 -3 
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Note that B- 1 is given by the last two columns of the tableau. 
Let us now introduce a variable X5 and consider the new problem 

minimize -5Xl X2 + 12x3 X5 
subject to 3Xl + 2X2 + X3 + X5 10 

5Xl + 3X2 + X4 + X5 16 
Xl , . . .  , X5 2: O .  

We have A5 = ( 1 , 1 ) and 

C5 = C5 - c'aB- l A5 = -1 - [ - 5 - 1] [ -� _� ] [ � ] = -4. 

Since C5 is negative, introducing the new variable to the basis can be beneficial. 
We observe that B- 1 A5 = (- 1 , 2) and augment the tableau by introducing a 
column associated with X5 : 

Xl X2 X3 X4 X5 

12 0 0 2 7 -4 

2 1 0 -3 2 -1  
2 0 1 5 -3 2 

We then bring X5 into the basis; X2 exits and we obtain the following tableau, 
which happens to be optimal: 

Xl X2 X3 X4 X5 

16 0 2 12 1 0 
3 1 0 .5 -0.5 0 .5 0 

X5 = 1 0 0 .5 2 .5 - 1 .5 1 
An optimal solution is given by x = (3 , 0 , 0, 0, 1 ) . 

A new inequality constraint is added 

Let us now introduce a new constraint a�+l x � bm+1 , where am+l and 
bm+1 are given. If the optimal solution x* to the original problem satisfies 
this constraint , then x* is an optimal solution to the new problem as well . 
If the new constraint is violated, we introduce a nonnegative slack variable 
Xn+l , and rewrite the new constraint in the form a�+1x - Xn+ l  = bm+1 . 
We obtain a problem in standard form, in which the matrix A is replaced 
by 
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Let B be an optimal basis for the original problem. We form a basis 
for the new problem by selecting the original basic variables together with 
xn+ 1 . The new basis matrix B is of the form 

- [ B 0 ] B = a' - 1  ' 

where the row vector a' contains those components of a�+ l associated with 
the original basic columns . (The determinant of this matrix is the negative 
of the determinant of B,  hence nonzero, and we therefore have a true basis 
matrix. ) The basic solution associated with this basis is (x* , a�+ 1 x* -
bm+d ,  and is infeasible because of our assumption that x* violates the 
new constraint . Note that the new inverse basis matrix is readily available 
because 

--1 [ B-1 0 ] B = a'B-1 - 1  
. 

(To see this , note that the product B- 1B is equal to the identity matrix. ) 
Let C B be the m-dimensional vector with the costs of the basic vari­

ables in the original problem. Then, the vector of reduced costs associated 
with the basis B for the new problem, is given by 

[c' 0] - [c'a 0] [ a'�= � _� ] [ at+1 _� ] = [c' - c'aB-1 A 0] , 

and is nonnegative due to the optimality of B for the original problem. 
Hence, B is a dual feasible basis and we are in a position to apply the dual 
simplex method to the new problem. Note that an initial simplex tableau 
for the new problem is readily constructed. For example, we have 

--1 [ A B , am+1 a'B- 1A - a' m+1 
where B-1 A is available from the final simplex tableau for the original 
problem. 

Example 5 .2  Consider again the problem in Example 5 . 1 :  

minimize 
subject to 

-5Xl X2 + 12x3 
3Xl + 2X2 + X3 
5Xl + 3X2 + X4 
Xl , · · ·  , X4 2: 0 ,  

and recall the optimal simplex tableau: 

Xl X2 

12  0 0 

Xl = 2 1 0 

2 0 1 

X3 X4 

2 7 

-3 2 

5 -3 

10 
16 
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We introduce the additional constraint Xl + X2 ?: 5 ,  which is violated by the 
optimal solution x· = (2 , 2 , 0, 0) . We have am+1  = ( 1 , 1 , 0 , 0) ,  bm+ 1  = 5, and 
a�+l x· < bm+l . We form the standard form problem 

minimize -5XI X2 + 12x3 
subject to 3X1 + 2X2 + X3 10 

5X1 + 3X2 + X4 16 
Xl + X2 - X5 5 
Xl , . . .  , X5 ?: o . 

Let a consist of the components of am+1 associated with the basic variables. 
We then have a = ( 1 , 1 ) and 

I - 1 I [ ]  [ 1 
a B A - am+1  = 1 1 0 o 

1 
-3 

5 
_� ] - [1 1 0 0] = [0 0 2 - 1] . 

The tableau for the new problem is of the form 

Xl X2 X3 X4 X5 

12 0 0 2 7 0 
Xl = 2 1 0 -3 2 0 
X2 = 2 0 1 5 -3 0 

-1  0 0 2 - 1  1 

We now have all the information necessary to apply the dual simplex method to 
the new problem. 

Our discussion has been focused on the case where an inequality con­
straint is added to the primal problem. Suppose now that we introduce 
a new constraint pi An+1 � en+! in the dual . This is equivalent to intro­
ducing a new variable in the primal, and we are back to the case that was 
considered in the preceding subsection. 

A new equality constraint is added 

We now consider the case where the new constraint is of the form a�+l  x = 
bm+1 ,  and we assume that this new constraint is violated by the optimal 
solution x* to the original problem. The dual of the new problem is 

maximize p/h + Pm+l bm+l 

subject to [pi Pm+l l  [ al
A 

] � c' , 
m+ l  

where Pm+l i s  a dual variable associated with the new constraint . Let p* 
be an optimal basic feasible solution to the original dual problem. Then, 
(p* , O) is a feasible solution to the new dual problem. 
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Let m be the dimension of p ,  which is the same as the original num­
ber of constraints.  Since p* is a basic feasible solution to the original dual 
problem, m of the constraints in (p* ) ' A :::; c' are linearly independent and 
active. However, there is no guarantee that at (p* , 0) we will have m+ 1 lin­
early independent active constraints of the new dual problem. In particular, 
(p* , O) need not be a basic feasible solution to the new dual problem and 
may not provide a convenient starting point for the dual simplex method 
on the new problem. While it may be possible to obtain a dual basic feasi­
ble solution by setting Pm+! to a suitably chosen nonzero value, we present 
here an alternative approach. 

Let us assume, without loss of generality, that �+ l X* > bm+1 •  We 
introduce the auxiliary primal problem 

minimize 
subject to 

c'x + MXn+1 
Ax = b 

�+1 X Xn+1 = bm+1 
x 2: 0 ,  Xn+1 2: 0 ,  

where M i s  a large positive constant . A primal feasible basis for the aux­
iliary problem is obtained by picking the basic variables of the optimal 
solution to the original problem, together with the variable Xn+! .  The re­
sulting basis matrix is the same as the matrix B of the preceding subsection. 
There is a difference, however. In the preceding subsection, B was a dual 
feasible basis , whereas here B is a primal feasible basis . For this reason, 
the primal simplex method can now be used to solve the auxiliary problem 
to optimality. 

Suppose that an optimal solution to the auxiliary problem satisfies 
Xn+1 = 0; this will be the case if the new problem is feasible and the 
coefficient M is large enough. Then, the additional constraint a�+! x = 
bm+1 has been satisfied and we have an optimal solution to the new problem. 

Changes in the requirement vector b 

Suppose that some component bi of the requirement vector b is changed 
to bi + 8. Equivalently, the vector b is changed to b + 8ei , where ei is the 
ith unit vector. We wish to determine the range of values of 8 under which 
the current basis remains optimal. Note that the optimality conditions are 
not affected by the change in b. We therefore need to examine only the 
feasibility condition 

(5 . 1 )  

Let g = (f31i , f32i , . . .  , f3mi ) be the ith column of  B- 1 . Equation ( 5 . 1 )  
becomes 

XB + 8g 2: 0 ,  

or, 
j = 1, . . .  , m. 
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Equivalently, 
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max _ __ J_ < 8 < min _ __ J_ . ( XBC O ) ) ( XBC O ) ) 
{j l,Bj i >O} (3ji - - {j l,Bj i <O} (3ji 

For 8 in this range, the optimal cost , as a function of 8, is given by 
C�B- l (b + 8ei ) = p'b + 8Pi , where p' = C�B- l is the (optimal) dual 
solution associated with the current basis B.  

If 8 is outside the allowed range, the current solution satisfies the 
optimality (or dual feasibility) conditions, but is primal infeasible . In that 
case, we can apply the dual simplex algorithm starting from the current 
basis. 

Example 5.3 Consider the optimal tableau 

Xl X2 X3 X4 

12  0 0 2 7 

2 1 0 -3 2 

2 0 1 5 -3 

from Example 5 . l .  
Let us contemplate adding 8 t o  bl . We look at the first column of B- 1 

which is ( -3 , 5) .  The basic variables under the same basis are Xl  = 2 - 38 and 
2 + 58. This basis will remain feasible as long as 2 - 38 2: 0 and 2 + 58 2: 0, that 
is, if -2/5 :S 8 :S 2/3 . The rate of change of the optimal cost per unit change of 
8 is given by c�B - Iel = (-5 ,  - 1 ) ' ( -3, 5) = 10. 

If 8 is increased beyond 2/3 , then Xl becomes negative. At this point , we 
can perform an iteration of the dual simplex method to remove Xl from the basis , 
and X3 enters the basis. 

Changes in the cost vector c 

Suppose now that some cost coefficient Cj becomes Cj + 8. The primal 
feasibility condition is not affected . We therefore need to focus on the 
optimality condition 

C�B- IA ::::: c' . 

If Cj is the cost coefficient of a nonbasic variable Xj , then CB does not 
change, and the only inequality that is affected is the one for the reduced 
cost of x j ; we need 

or 
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If this condition holds , the current basis remains optimal; otherwise, we can 
apply the primal simplex method starting from the current basic feasible 
solution. 

If Cj is the cost coefficient of the £th basic variable , that is , if j = B( £) , 
then CB becomes CB + 8el and all of the optimality conditions will be 
affected. The optimality conditions for the new problem are 

\:j i =J j. 

(Since Xj is a basic variable, its reduced cost stays at zero and need not be 
examined. )  Equivalently, 

\:j i =J j, 

where qli is the £th entry of B-1 Ai , which can be obtained from the simplex 
tableau. These inequalities determine the range of 8 for which the same 
basis remains optimal. 

Example 5.4 We consider once more the problem in Example 5 . 1  and deter­
mine the range of changes 6i of Ci , under which the same basis remains optimal. 
Since X3 and X4 are nonbasic variables , we obtain the conditions 

63 2: -C3 = -2,  

64  2: -C4 = -7. 

Consider now adding 6l to Cl . From the simplex tableau, we obtain q12 = 0 ,  
ql3 = -3,  ql4 = 2 ,  and we are led to the conditions 

6l 2: -2/3, 

6l < 7/2 .  

Changes in a nonbasic column of A 

Suppose that some entry aij in the jth column Aj of the matrix A is 
changed to aij + 8. We wish to determine the range of values of 8 for which 
the old optimal basis remains optimal. 

If the column Aj is nonbasic, the basis matrix B does not change , 
and the primal feasibility condition is unaffected. Furthermore, only the 
reduced cost of the jth column is affected, leading to the condition 

or, 
Cj - 8Pi ?: 0 ,  

where p' = C�B- l . If  this condition is  violated, the nonbasic column Aj 
can be brought into the basis , and we can continue with the primal simplex 
method. 
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Changes in a basic column of A 

If one of the entries of a basic column Aj changes , then both the feasibil­
ity and optimality conditions are affected. This case is more complicated 
and we leave the full development for the exercises. As it turns out , the 
range of values of 0 for which the same basis is optimal is again an interval 
(Exercise 5 .3) . 

Suppose that the basic column Aj is changed to Aj + oei , where ei 
is the ith unit vector . Assume that both the original problem and its dual 
have unique and nondegenerate optimal solutions x* and p, respectively. 
Let x* (0) be an optimal solution to the modified problem, as a function of 
o. It can be shown (Exercise 5 .2 )  that for small 0 we have 

c'x* (o) = c'x* - OX;Pi + 0(02 ) . 

For an intuitive interpretation of this equation, let us consider the diet 
problem and recall that aij corresponds to the amount of the ith nutrient 
in the jth food. Given an optimal solution x* to the original problem, 
an increase of aij by 0 means that we are getting "for free" an additional 
amount ox; of the ith nutrient . Since the dual variable Pi is the marginal 
cost per unit of the ith nutrient , we are getting for free something that is 
normally worth OPiX; , and this allows us to reduce our costs by that same 
amount . 

Production planning revisited 

In Section 1 . 2 ,  we introduced a production planning problem that DEC had 
faced in the end of 1988. In this section, we answer some of the questions 
that we posed. Recall that there were two important choices , whether to 
use the constrained or the unconstrained mode of production for disk drives , 
and whether to use alternative memory boards. As discussed in Section 1 .2 ,  
these four combinations of choices led to four different linear programming 
problems . We report the solution to these problems, as obtained from a 
linear programming package, in Table 5 . 1 .  

Table 5 . 1  indicates that revenues can substantially increase by using 
alternative memory boards , and the company should definitely do so. The 
decision of whether to use the constrained or the unconstrained mode of 
production for disk drives is less clear. In the constrained mode, the revenue 
is 248 million versus 213 million in the unconstrained mode. However, 
customer satisfaction and, therefore, future revenues might be affected, 
since in the constrained mode some customers will get a product different 
than the desired one. Moreover, these results are obtained assuming that 
the number of available 256K memory boards and disk drives were 8 ,000 
and 3 ,000, respectively, which is the lowest value in the range that was 
estimated. We should therefore examine the sensitivity of the solution as 
the number of available 256K memory boards and disk drives increases. 
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Alt .  boards Mode Revenue Xl X2 X3 X4 
no constr .  145 0 2 . 5  0 0 .5  

yes constr. 248 1 . 8  2 0 1 

no unconstr. 133 0 .272 1 .304 0 .3  0 .5  

yes unconstr. 213 1 .8  1 . 035 0.3 0.5 

Table 5 . 1 :  Optimal solutions to the four variants of the produc­
tion planning problem. Revenue is in millions of dollars and the 
quantities Xi are in thousands. 
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With most linear programming packages , the output includes the val­
ues of the dual variables, as well as the range of parameter variations under 
which local sensitivity analysis is valid. Table 5 . 2  presents the values of 
the dual variables associated with the constraints on available disk drives 
and 256K memory boards . In addition, it provides the range of allowed 
changes on the number of disk drives and memory boards that would leave 
the dual variables unchanged. This information is provided for the two lin­
ear programming problems corresponding to constrained and unconstrained 
mode of production for disk drives , respectively, under the assumption that 
alternative memory boards will be used. 

Mode Constrained Unconstrained 

Revenue 248 213 

Dual variable 
15 0 for 256K boards 

Range 
[- 1 . 5 , 0 . 2] [-1 .62 , 00] for 256K boards 

Dual variable 
0 23 . 52 for disk drives 

Range 
[-0 .2 , 0 . 75] [-0 .91 , 1 . 13] for disk drives 

Table 5.2 :  Dual prices and ranges for the constraints correspond­
ing to the availability of the number of 256K memory boards and 
disk drives . 
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In the constrained mode, increasing the number of available 256K 
boards by 0.2 thousand (the largest number in the allowed range) results 
in a revenue increase of 15 x 0 .2  = 3 million. In the unconstrained mode, 
increasing the number of available 256K boards has no effect on revenues, 
because the dual variable is zero and the range extends upwards to infinity. 
In the constrained mode , increasing the number of available disk drives by 
up to 0 .75 thousand (the largest number in the allowed range) has no effect 
on revenue. Finally, in the unconstrained mode, increasing the number 
of available disk drives by 1 . 13 thousand results in a revenue increase of 
23.52 x 1 . 13 = 26.57 million. 

In conclusion, in the constrained mode of production, it is important 
to aim at an increase of the number of available 256K memory boards , 
while in the unconstrained mode, increasing the number of disk drives is 
more important . 

This example demonstrates that even a small linear programming 
problem (with five variables , in this case) can have an impact on a com­
pany's planning process . Moreover, the information provided by linear pro­
gramming solvers (dual variables , ranges, etc . ) can offer significant insights 
and can be a very useful aid to decision makers . 

5 . 2  Global dependence o n  the right-hand side 

vector 

In this section, we take a global view of the dependence of the optimal cost 
on the requirement vector b. 

Let 
P(b) = {x I Ax = b, x � O}  

b e  the feasible set , and note that our notation makes the dependence on b 
explicit . Let 

S = {b I P(b) is nonempty } , 

and observe that 
S = {Ax I x � O } ;  

in particular , S is a convex set . For any b E S ,  we define 

F(b) = min e'x, XEP(b)  

which is the optimal cost as a function of b. 
Throughout this section, we assume that the dual feasible set {p I 

pi A ::::: e/ } is nonempty. Then, duality theory implies that the optimal 
primal cost F(b) is finite for every b E S. Our goal is to understand the 
structure of the function F(b) , for b E S. 
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Let us  fix a particular element b* of S. Suppose that there exists a 
nondegenerate primal optimal basic feasible solution, and let B be the cor­
responding optimal basis matrix. The vector XB of basic variables at that 
optimal solution is given by XB = B- 1 b* , and is positive by nondegeneracy. 
In addition, the vector of reduced costs is nonnegative. If we change b* to b 
and if the difference b - b* is sufficiently small, B- 1b remains positive and 
we still have a basic feasible solution. The reduced costs are not affected 
by the change from b* to b and remain nonnegative. Therefore, B is an 
optimal basis for the new problem as well. The optimal cost F(b) for the 
new problem is given by 

F(b) = e�B- 1b = p'b, for b close to b* , 

where p' = e�B- 1 is the optimal solution to the dual problem. This 
establishes that in the vicinity of b* , F(b) is a linear function of b and its 
gradient is given by p .  

We now turn to  the global properties o f  F(b) . 

Theorem 5 . 1  The optimal cost F(b) is a convex function of b on 
the set S. 

Proof. Let b1 and b2 be two elements of S. For i = 1 , 2 ,  let Xi be an 
optimal solution to the problem of minimizing e'x subject to x � 0 and 
Ax = bi . Thus, F(b1 ) = e'x1 and F(b2 ) = e'x2 . Fix a scalar >' E [0 , 1] , 
and note that the vector y = >.x1 + ( 1  - >.)x2 is nonnegative and satisfies 
Ay = >'b1 + (1 - >.)b2 . In particular , y is a feasible solution to the linear 
programming problem obtained when the requirement vector b is set to 
>'b1 + (1 - >.)b2 . Therefore, 

F(>.b1 + ( 1 - >' )b2 ) :::; e'y = >.e'x1 + ( 1 - >.)e'x2 = >.F(b1 ) + ( 1 - >.)F(b2 ) ,  

establishing the convexity of F .  D 
We now corroborate Theorem 5 . 1  by taking a different approach, 

involving the dual problem 

maximize p'b 
subject to p' A :::; e' , 

which has been assumed feasible . For any b E S, F(b) is finite and, by 
strong duality, is equal to the optimal value of the dual objective. Let 
p1 , p2 , . . .  , pN be the extreme points of the dual feasible set . (Our standing 
assumption is that the matrix A has linearly independent rows; hence its 
columns span �m . Equivalently, the rows of A' span �m and Theorem 2 .6  
in  Section 2 . 5  implies that the dual feasible set must have at  least one 
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1 ( 8 ) 

(pI )'(b * + 8d) 

I 

fJ 

Figure 5 . 1 :  The optimal cost when the vector b is a function 
of a scalar parameter. Each linear piece is of the form (pi ) ' (b* + 
(Jd) , where pi is the ith extreme point of the dual feasible set . 
In each one of the intervals (J < (JI , (JI < (J < (J2 , and (J > (J2 , 
we have different dual optimal solutions , namely, pI , p2 , and p3 , 
respectively. For (J = (JI or (J = (J2 , the dual problem has multiple 
optimal solutions . 

extreme point . )  Since the optimum of the dual must be attained at an 
extreme point , we obtain 

F(b) = . max (pi ) 'b , 
2 = 1 ,  . . .  , N  

b E  S. (5 .2)  

In particular , F is  equal to the maximum of a finite collection of linear 
functions. It is therefore a piecewise linear convex function, and we have a 
new proof of Theorem 5 . 1 .  In addition, within a region where F is linear, 
we have F(b) = (pi ) 'b , where pi is a corresponding dual optimal solution, 
in agreement with our earlier discussion. 

For those values of b for which F is not differentiable , that is , at the 
junction of two or more linear pieces, the dual problem does not have a 
unique optimal solution and this implies that every optimal basic feasible 
solution to the primal is degenerate. (This is because, as shown earlier in 
this section, the existence of a nondegenerate optimal basic feasible solution 
to the primal implies that F is locally linear. )  

We now restrict attention to  changes in  b of  a particular type, namely, 
b = b* + Od, where b* and d are fixed vectors and 0 is a scalar . Let 
1(0) = F(b* + Od) be the optimal cost as a function of the scalar parameter 
O. Using Eq. (5 .2 ) , we obtain 

1 (0) = . max (pi ) ' (b* + Od) , 
l = l ,  . . .  , N  

b* + Od E S. 
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F( b)  F( b )  

b* b b* 

Figure 5 .2 :  Illustration of subgradients of a function F at a 
point b* . A subgradient p is the gradient of a linear function 
F(b* ) + p' (b - b* ) that lies below the function F(b) and agrees 
with it for b = b* . 
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This is essentially a "section" of the function F j it is again a piecewise linear 
convex functionj see Figure 5 . 1 .  Once more , at breakpoints of this function , 
every optimal basic feasible solution to the primal must be degenerate. 

5 . 3  The set of all dual optimal solutions* 

We have seen that if the function F is defined, finite, and linear in the 
vicinity of a certain

· 
vector b* , then there is a unique optimal dual solution, 

equal to the gradient of F at that point , which leads to the interpretation 
of dual optimal solutions as marginal costs .  We would like to extend this 
interpretation so that it remains valid at the breakpoints of F. This is 
indeed possible : we will show shortly that any dual optimal solution can 
be viewed as a "generalized gradient" of F. We first need the following 
definition, which is illustrated in Figure 5 .2 .  

Definition 5 . 1  Let F be a convex function defined on a convex set S.  
Let b* be an element of  S. We say that a vector p i s  a subgradient 
of F at b* if 

F (b* ) + p' (b - b* ) s:; F (b ) , V b E  S. 

Note that if b* is a breakpoint of the function F, then there are 
several subgradients. On the other hand, if F is linear near b* , there is a 
unique subgradient , equal to the gradient of F. 
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Theorem 5 .2  Suppose that the linear programming problem of min­
imizing c'x subject to Ax = b* and x :::: ° is feasible and that the 
optimal cost is finite. Then, a vector p is an optimal solution to the 
dual problem if and only if it is a subgradient of the optimal cost 
function F at the point b* . 

Proof. Recall that the function F is defined on the set S, which is the 
set of vectors b for which the set P(b) of feasible solutions to the primal 
problem is nonempty. Suppose that p is an optimal solution to the dual 
problem. Then, strong duality implies that p'b* = F(b* ) .  Consider now 
some arbitrary b E S. For any feasible solution x E PCb) , weak duality 
yields p'b � e'x. Taking the minimum over all x E PCb) , we obtain 
p'b � F(b) . Hence, p'b - p'b* � F(b) - F(b* ) ,  and we conclude that p 
is a subgradient of F at b* . 

We now prove the converse . Let p be a subgradient of F at b* ; that 
is, 

F(b* ) + p' (b - b* ) � F(b) , V b E S. (5 .3)  

Pick some x :::: 0 ,  let b = Ax, and note that x E PCb) . In particular, 
F(b) � e'x. Using Eq. (5 .3) , we obtain 

p' Ax = p'b � F(b) - F(b* ) + p'b* � e'x - F(b* ) + p'b* . 

Since this is true for all x :::: 0, we must have p' A � e' , which shows that p 
is a dual feasible solution. Also, by letting x = 0, we obtain F(b* ) � p'b* . 
Using weak duality, every dual feasible solution q must satisfy q'b* � 
F(b* ) � p'b* , which shows that p is a dual optimal solution. D 

5 . 4  Global dependence on the cost vector 

In the last two sections, we fixed the matrix A and the vector e, and we 
considered the effect of changing the vector b. The key to our development 
was the fact that the set of dual feasible solutions remains the same as b 
varies. In this section, we study the case where A and b are fixed, but the 
vector e varies . In this case, the primal feasible set remains unaffected; our 
standing assumption will be that it is nonempty. 

We define the dual feasible set 

Q(e) = {p I p'A � e } ,  
and let 

T = {e I Q(e) is nonempty} . 

If el E T and e2 E T, then there exist pI and p2 such that (pI ) '  A � e' 
and (p2 ) '  A � e' . For any scalar ,\ E [0 , 1] , we have 

(,\(pl ) ' + ( 1 - ,\) (p2 ) ' ) A  � '\el + ( 1 - '\)e2 , 
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and this establishes that '\cl + ( 1  - '\)c2 E T. We have therefore shown 
that T is a convex set . 

If c 1'- T, the infeasibility of the dual problem implies that the optimal 
primal cost is - 00 . On the other hand, if c E T, the optimal primal cost 
must be finite. Thus, the optimal primal cost , which we will denote by 
G (c) , is finite if and only if c E T. 

Let Xl , x2 , • • •  , xN be the basic feasible solutions in the primal feasible 
set ; clearly, these do not depend on c. Since an optimal solution to a 
standard form problem can always be found at an extreme point , we have 

G (c) = . min C'xi . t= l , . . .  ,N 
Thus , G (c) is the minimum of a finite collection of linear functions and is 
a piecewise linear concave function. If for some value c* of c, the primal 
has a unique optimal solution xi , we have (C* ) 'Xi < (c* ) 'xj , for all j =I- i .  
For c very close to  c* , the inequalities c'xi < c'xj , j =I- i ,  continue to  hold, 
implying that xi is still a unique primal optimal solution with cost C'xi . 
We conclude that , locally, G (c) = C'Xi . On the other hand, at those values 
of c that lead to multiple primal optimal solutions, the function G has a 
breakpoint . 

We summarize the main points of the preceding discussion. 

Theorem 5.3 Consider a feasible linear programming problem in stan­
dard form. 

(a) The set T of all c for which the optimal cost is finite, is convex. 

(b) The optimal cost G (c) is a concave function of c on the set T. 
(c) If for some value of c the primal problem has a unique optimal 

solution x* , then G is linear in the vicinity of c and its gradient 
is equal to x* . 

5 . 5  Parametric programming 

Let us fix A, b ,  c, and a vector d of the same dimension as c. For any 
scalar () ,  we consider the problem 

minimize (c + (}d) ' x 
subject to Ax b 

x > 0,  

and let g((}) be the optimal cost as a function of () .  Naturally, we assume 
that the feasible set is nonempty. For those values of () for which the optimal 
cost is finite, we have 

g((}) = . min (c + (}d) 'Xi , t= l , . . .  ,N 
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where xl , . . .  , xN are the extreme points of the feasible set ; see Figure 5 .3 .  
In particular , g(e) is  a piecewise linear and concave function of the param­
eter e. In this section, we discuss a systematic procedure, based on the 
simplex method, for obtaining g(e) for all values of e .  We start with an 
example. 

.. 
Xl optimal x2 0ptimal x3 0ptimal x4 0ptimal 6 

Figure 5.3 :  The optimal cost g((}) as a function of () .  

Example 5 .5  Consider the problem 

minimize (-3 + 2(})XI + (3 - (})X2 + X3 
subject to Xl + 2X2 3X3 ::::: 5 

2XI + X2 4X3 < 7 
XI , X2 , X3 2': o .  

We introduce slack variables in order to bring the problem into standard form, 
and then let the slack variables be the basic variables. This determines a basic 
feasible solution and leads to the following tableau. 

X l  X2 X3 X4 X5 

0 -3 + 2() 3 - (}  1 0 0 

5 1 2 -3 1 0 

X5 = 7 2 1 -4 0 1 

If -3 + 2(} 2': 0 and 3 - () 2': 0, all reduced costs are nonnegative and we 
have an optimal basic feasible solution. In particular , 

g ((}) = 0,  if  � < () < 3 .  
2 - -
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If  8 i s  increased slightly above 3 ,  the reduced cost of  X2 becomes negative 
and we no longer have an optimal basic feasible solution. We let X2 enter the 
basis , X4 exits ,  and we obtain the new tableau: 

Xl X2 X3 X4 X5 

-7.5 + 2 . 58 -4.5 + 2 . 58 0 5 . 5  - 1 .58 -1 . 5  + 0 .58 0 

2 .5  0 .5  1 - 1 . 5  0 .5  0 

4 .5  1 .5  0 -2 .5  -0 .5  1 

We note that all reduced costs are nonnegative if and only if 3 � 8 � 5 .5/1 . 5 .  
The optimal cost for that range of  values of  8 is 

g(8) = 7.5 - 2 .58 ,  if  3 < 8 < 5 .5
. - - 1 . 5  

I f  8 i s  increased beyond 5 .5/1 . 5 ,  the reduced cost of X3 becomes negative. I f  we 
attempt to bring X3 into the basis , we cannot find a positive pivot element in the 
third column of the tableau, and the problem is unbounded, with g(8) = - 00 .  

Let us  now go back to the original tableau and suppose that 8 i s  decreased 
to a value slightly below 3/2. Then, the reduced cost of Xl becomes negative, we 
let Xl enter the basis , and X5 exits. The new tableau is: 

Xl X2 X3 X4 X5 

10 .5  - 78 0 4 .5  - 28 -5 + 48 0 1 . 5  - 8 

X4 = 1 . 5  0 1 . 5  -1  1 -0 .5 

3 .5  1 0 .5  -2 0 0 .5  

We note that all of  the reduced costs are nonnegative i f  and only i f  5/4 � 8 � 3/2. 
For these values of 8 ,  we have an optimal solution, with an optimal cost of 

g(8) = - 10.5 + 78, ' f  � < 8 < � 
1 4 - - 2 '  

Finally, for 8 < 5/4, the reduced cost of X3 is negative, but the optimal cost is 
equal to - 00 ,  because all entries in the third column of the tableau are negative. 
We plot the optimal cost in Figure 5 .4 .  

We now generalize the steps in the preceding example , in order to 
obtain a broader methodology. The key observation is that once a basis 
is fixed, the reduced costs are affine (linear plus a constant) functions of 
e. Then, if we require that all reduced costs be nonnegative , we force e to 
belong to some interval. (The interval could be empty but if it is nonempty, 
its endpoints are also included. )  We conclude that for any given basis, the 
set of () for which this basis is optimal is a closed interval. 
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g (8 )  
8 

Figure 5.4: The optimal cost g(9) as a function of 9, in Example 
5 .5 .  For 9 outside the interval [5/4, 1 1 /3] , g(9) is equal to - 00 .  

Let us now assume that we have chosen a basic feasible solution and 
an associated basis matrix B ,  and suppose that this basis is optimal for () 
satisfying ()1 � () � ()2 . Let Xj be a variable whose reduced cost becomes 
negative for () > ()2 . Since this reduced cost is nonnegative for ()1 � () � ()2 , 
it must be equal to zero when () = ()2 . We now attempt to bring Xj into 
the basis and consider separately the different cases that may arise. 

Suppose that no entry of the jth column B-1 Aj of the simplex 
tableau is positive. For () > ()2 , the reduced cost of Xj is negative, and 
this implies that the optimal cost is - 00  in that range. 

If the jth column of the tableau has at least one positive element , we 
carry out a change of basis and obtain a new basis matrix B .  For () = ()2 , 
the reduced cost of the entering variable is zero and, therefore, the cost 
associated with the new basis is the same as the cost associated with the 
old basis . Since the old basis was optimal for () = ()2 , the same must be 
true for the new basis . On the other hand, for () < ()2 , the entering variable 
Xj had a positive reduced cost . According to the pivoting mechanics, and 
for () < ()2 , a negative multiple of the pivot row is added to the pivot row, 
and this makes the reduced cost of the exiting variable negative. This 
implies that the new basis cannot be optimal for () < ()2 . We conclude that 
the range of values of () for which the new basis is optimal is of the form 
()2 � () � ()3 , for some ()3 . By continuing similarly, we obtain a sequence of 
bases , with the ith basis being optimal for ()i � () � ()Hl . 

Note that a basis which is optimal for () E [()i , ()i+ 1 ] cannot be optimal 
for values of () greater than ()Hl .  Thus , if ()i+1 > ()i for all i ,  the same basis 
cannot be encountered more than once and the entire range of values of () 
will be traced in a finite number of iterations , with each iteration leading 
to a new breakpoint of the optimal cost function g (()) . (The number of 
breakpoints may increase exponentially with the dimension of the problem.)  
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The situation is  more complicated if for some basis we have Oi  = 0Hl . 
In this case, it is possible that the algorithm keeps cycling between a finite 
number of different bases, all of which are optimal only for 0 = Oi = Oi+1 ' 
Such cycling can only happen in the presence of degeneracy in the primal 
problem (Exercise 5 . 17) ,  but can be avoided if an appropriate anticycling 
rule is followed. In conclusion, the procedure we have outlined, together 
with an anticycling rule , partitions the range of possible values of 0 into 
consecutive intervals and, for each interval, provides us with an optimal 
basis and the optimal cost function as a function of O .  

There is  another variant of parametric programming that can be used 
when c is kept fixed but b is replaced by b + Od, where d is a given vector 
and 0 is a scalar . In this case , the zeroth column of the tableau depends 
on O. Whenever 0 reaches a value at which some basic variable becomes 
negative , we apply the dual simplex method in order to recover primal 
feasibility. 

5 . 6  Summary 

In this chapter , we have studied the dependence of optimal solutions and of 
the optimal cost on the problem data, that is , on the entries of A, b, and 
c . For many of the cases that we have examined,  a common methodology 
was used. Subsequent to a change in the problem data, we first examine its 
effects on the feasibility and optimality conditions. If we wish the same basis 
to remain optimal , this leads us to certain limitations on the magnitude of 
the changes in the problem data. For larger changes ,  we no longer have 
an optimal basis and some remedial action (involving the primal or dual 
simplex method) is typically needed. 

We close with a summary of our main results. 

(a) If a new variable is added, we check its reduced cost and if it is 
negative, we add a new column to the tableau and proceed from 
there. 

(b) If a new constraint is added, we check whether it is violated and if 
so, we form an auxiliary problem and its tableau, and proceed from 
there. 

(c) If an entry of b or c is changed by 8, we obtain an interval of values 
of 8 for which the same basis remains optimal. 

(d) If an entry of A is changed by 8, a similar analysis is possible. How­
ever, this case is somewhat complicated if the change affects an entry 
of a basic column. 

(e) Assuming that the dual problem is feasible , the optimal cost is a 
piecewise linear convex function of the vector b (for those b for which 
the primal is feasible) .  Furthermore, subgradients of the optimal cost 
function correspond to optimal solutions to the dual problem. 
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(f) Assuming that the primal problem is feasible, the optimal cost is a 
piecewise linear concave function of the vector c (for those c for which 
the primal has finite cost ) . 

(g) If the cost vector is an affine function of a scalar parameter e ,  there 
is a systematic procedure (parametric programming) for solving the 
problem for all values of e. A similar procedure is possible if the 
vector b is an affine function of a scalar parameter . 

5 . 7  Exercises 

Exercise 5 . 1  Consider the same problem as in Example 5 . 1 ,  for which we al­
ready have an optimal basis . Let us introduce the additional constraint Xl + X2 = 
3. Form the auxiliary problem described in the text , and solve it using the pri­
mal simplex method. Whenever the "large" constant M is compared to another 
number , M should be treated as being the larger one. 

Exercise 5 .2  (Sensitivity with respect to changes in a basic column 
of A) In this problem (and the next two) we study the change in the value 
of the optimal cost when an entry of the matrix A is perturbed by a small 
amount . We consider a linear programming problem in standard form, under the 
usual assumption that A has linearly independent rows . Suppose that we have 
an optimal basis B that leads to a nondegenerate optimal solution x* , and a 
nondegenerate dual optimal solution p. We assume that the first column is basic . 
We will now change the first entry of Ai from an to an + 8, where 8 is a small 
scalar . Let E be a matrix of dimensions m x m (where m is the number of rows 
of A) , whose entries are all zero except for the top left entry e n , which is equal 
to 1 .  

(a) Show that i f  8 is small enough, B+8E i s  a basis matrix for the new problem. 

(b) Show that under the basis B + 8E, the vector XB of basic variables in the 
new problem is equal to (I + 8B- 1 E) - l B- l b.  

(c) Show that if 8 is  sufficiently small , B + 8E is  an optimal basis for the new 
problem. 

(d) We use the symbol ;:::, to denote equality when second order terms in 8 are ig­
nored. The following approximation is known to be true: (1 + 8B- 1 E) - 1 ;:::, 
1 - 8B - 1 E. Using this approximation, show that 

where x! (respectively, pd is the first component of the optimal solution to 
the original primal (respectively, dual) problem, and XB has been defined 
in part (b) . 

Exercise 5.3 (Sensitivity with respect to changes in a basic column 
of A) Consider a linear programming problem in standard form under the usual 
assumption that the rows of the matrix A are linearly independent . Suppose 
that the columns Ai , . . .  , Am form an optimal basis . Let Ao be some vector and 
suppose that we change Ai to Ai + 8Ao . Consider the matrix B (8) consisting of 
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the columns Ao + DAl , A2 , . . .  , Am, . Let [151 , 152 ] be a closed interval of values of 
15 that contains zero and in which the determinant of B (D) is nonzero. Show that 
the subset of [151 , 152 ] for which B (o) is an optimal basis is also a closed interval. 

Exercise 5 .4 Consider the problem in Example 5 . 1 ,  with a 1 1  changed from 
3 to 3 + o. Let us keep Xl and X2 as the basic variables and let B (o) be the 
corresponding basis matrix, as a function of o.  
(a) Compute B (O) - l b.  For which values of 0 is B (o) a feasible basis? 

(b) Compute c� B (O) - l . For which values of 0 is B (o) an optimal basis? 

(c) Determine the optimal cost , as a function of 0, when 0 is restricted to those 
values for which B (o) is an optimal basis matrix. 

Exercise 5 .5  While solving a standard form linear programming problem using 
the simplex method, we arrive at the following tableau: 

X l X2 X3 X4 X5 

0 0 C3 0 C5 

1 0 1 - 1 0 f3 
2 0 0 2 1 'Y 
3 1 0 4 0 0 

Suppose also that the last three columns of the matrix A form an identity matrix. 

(a) Give necessary and sufficient conditions for the basis described by this 
tableau to be optimal (in terms of the coefficients in the tableau) . 

(b) Assume that this basis is optimal and that C3 = O. Find an optimal basic 
feasible solution, other than the one described by this tableau. 

(c) Suppose that 'Y 2: o. Show that there exists an optimal basic feasible 
solution, regardless of the values of C3 and C5 . 

(d) Assume that the basis associated with this tableau is optimal. Suppose 
also that bl in the original problem is replaced by bl + E. Give upper and 
lower bounds on E so that this basis remains optimal. 

(e) Assume that the basis associated with this tableau is optimal. Suppose 
also that Cl in the original problem is replaced by Cl + E .  Give upper and 
lower bounds on E so that this basis remains optimal. 

Exercise 5 .6 Company A has agreed to supply the following quantities of spe­
cial lamps to Company B during the next 4 months: 

Month January February March April 

Units 150 160 225 180 

Company A can produce a maximum of 160 lamps per month at a cost of $35 
per unit . Additional lamps can be purchased from Company C at a cost of $50 
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per lamp. Company A incurs an inventory holding cost of $5 per month for each 
lamp held in inventory. 

(a) Formulate the problem that Company A is facing as a linear programming 
problem. 

(b) Solve the problem using a linear programming package . 

(c) Company A is considering some preventive maintenance during one of the 
first three months. If maintenance is scheduled for January, the company 
can manufacture only 151 units (instead of 160) ; similarly, the maximum 
possible production if maintenance is scheduled for February or March is 
153 and 155 units, respectively. What maintenance schedule would you 
recommend and why? 

(d) Company D has offered to supply up to 50 lamps (total) to Company A 
during either January, February or March. Company D charges $45 per 
lamp. Should Company A buy lamps from Company D? If yes , when and 
how many lamps should Company A purchase, and what is the impact of 
this decision on the total cost? 

(e) Company C has offered to lower the price of units supplied to Company 
A during February. What is the maximum decrease that would make this 
offer attractive to Company A? 

(f) Because of anticipated increases in interest rates, the holding cost per lamp 
is expected to increase to $8 per unit in February. How does this change 
affect the total cost and the optimal solution? 

(g) Company B has just informed Company A that it requires only 90 units in 
January (instead of 150 requested previously) . Calculate upper and lower 
bounds on the impact of this order on the optimal cost using information 
from the optimal solution to the original problem. 

Exercise 5 .7  A paper company manufactures three basic products: pads of 
paper, 5-packs of paper, and 20-packs of paper . The pad of paper consists of a 
single pad of 25 sheets of lined paper. The 5-pack consists of 5 pads of paper, 
together with a small notebook. The 20-pack of paper consists of 20 pads of 
paper, together with a large notebook. The small and large notebooks are not 
sold separately. 

Production of each pad of paper requires 1 minute of paper-machine time, 
1 minute of supervisory time, and $ . 10 in direct costs. Production of each small 
notebook takes 2 minutes of paper-machine time, 45 seconds of supervisory time, 
and $ .20 in direct cost . Production of each large notebook takes 3 minutes of 
paper machine time, 30 seconds of supervisory time and $ .30 in direct costs .  To 
package the 5-pack takes 1 minute of packager's time and 1 minute of supervisory 
time. To package the 20-pack takes 3 minutes of packager 's time and 2 minutes 
of supervisory time. The amounts of available paper-machine time, supervisory 
time, and packager's time are constants bl , b2 , b3 , respectively. Any of the three 
,Products can be sold to retailers in any quantity at the prices $ . 30 ,  $ 1 . 60 ,  and 
$7.00, respectively. 

Provide a linear programming formulation of the problem of determining 
an optimal mix of the three products. (You may ignore the constraint that only 
integer quantities can be produced. )  Try to formulate the problem in such a 
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way that the following questions can be answered by looking at a single dual 
variable or reduced cost in the final tableau. Also, for each question, give a brief 
explanation of why it can be answered by looking at just one dual price or reduced 
cost . 

(a) What is the marginal value of an extra unit of supervisory time? 

(b) What is the lowest price at which it is worthwhile to produce single pads 
of paper for sale? 

(c) Suppose that part-time supervisors can be hired at $8 per hour. Is it 
worthwhile to hire any? 

(d) Suppose that the direct cost of producing pads of paper increases from $ . 10  
to  $ . 12 .  What i s  the profit decrease? 

Exercise 5 .8  A pottery manufacturer can make four different types of dining 
room service sets: JJP English, Currier, Primrose, and Bluetail . Furthermore, 
Primrose can be made by two different methods. Each set uses clay, enamel, dry 
room time, and kiln time, and results in a profit shown in Table 5 .3 .  (Here, Ibs 
is the abbreviation for pounds) . 

Resources E C Total 

Clay (lbs) 10  15  10 10 20 130 

Enamel (lbs) 1 2 2 1 1 13 

Dry room (hours) 3 1 6 6 3 45 

Kiln (hours) 2 4 2 5 3 23 

Profit 51  102 66 66 89 

Table 5 .3 :  The rightmost column in the table gives the manufac­
turer 's resource availability for the remainder of the week. Notice 
that Primrose can be made by two different methods . They both 
use the same amount of clay (10 Ibs . )  and dry room time (6 hours) . 
But the second method uses one pound less of enamel and three 
more hours in the kiln. 

The manufacturer is currently committed to making the same amount of 
Primrose using methods 1 and 2. The formulation of the profit maximization 
problem is given below. The decision variables E, C, Pl , P2 , B are the number 
of sets of type English, Currier, Primrose Method 1, Primrose Method 2, and 
Bluetail , respectively. We assume, for the purposes of this problem, that the 
number of sets of each type can be fractional . 
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maximize 51E + 102C + 66H + 66P2 + 8gB 
subject to WE + 15C + 10Pi + 1OP2 + 20B :::; 130 

E +  2C + 2H + P2 + B < 13 
3E + C + 6H + 6P2 + 3B :::; 45 
2E + 4C + 2H + 5P2 + 3B < 23 

H P2 0 
E, C, Pi , P2 , B 2: O. 

The optimal solution to the primal and the dual, respectively, together with 
sensitivity information, is given in Tables 5 .4 and 5 .5 .  Use this information to 
answer the questions that follow. 

E 

C 

P I  

P2 
B 

Optimal Reduced Objective Allowable Allowable 
Value Cost Coefficient Increase Decrease 

0 -3 .571 51 3 .571 00 

2 0 102 16 .667 12 .5  

0 0 66 37.571 00 

0 -37.571 66 37.571 00 

5 0 89 47 12 .5  

Table 5.4: The optimal primal solution and its sensitivity with 
respect to changes in coefficients of the objective function. The 
last two columns describe the allowed changes in these coefficients 
for which the same solution remains optimal. 

(a) What is the optimal quantity of each service set , and what is the total 
profit? 

(b) Give an economic (not mathematical) interpretation of the optimal dual 
variables appearing in the sensitivity report , for each of the five constraints. 

(c) Should the manufacturer buy an additional 20 lbs . of Clay at $ 1 . 1  per 
pound? 

(d) Suppose that the number of hours available in the dry room decreases by 
30. Give a bound for the decrease in the total profit . 

(e) In the current model , the number of Primrose produced using method 1 was 
required to be the same as the number of Primrose produced by method 2 .  
Consider a revision of the model in which this constraint is  replaced by the 
constraint Pi - P2 2: o. In the reformulated problem would the amount of 
Primrose made by method 1 be positive? 

Exercise 5 .9 Using the notation of Section 5 .2 ,  show that for any positive 
scalar ,\ and any b E S, we have F('\b) = '\F(b) . Assume that the dual feasible 
set is nonempty, so that F(b) is finite .  
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Slack Dual Constr. Allowable Allowable 
Value Variable RHS Increase Decrease 

Clay 130 1 .429 130 23 .33 43 .75 

Enamel 9 0 13 00 4 

Dry Rm. 17 0 45 00 28 

Kiln 23 20. 143 23 5 .60 3 .50 

Prim. 0 1 1 .429 0 3 .50 0 

Table 5 .5 :  The optimal dual solution and its sensitivity. The 
column labeled "slack value" gives us the optimal values of the 
slack variables associated with each of the primal constraints. The 
third column simply repeats the right-hand side vector b, while the 
last two columns describe the allowed changes in the components 
of b for which the optimal dual solution remains the same. 

Exercise 5 .10  Consider the linear programming problem: 

minimize Xl + X2 

subject to Xl + 2X2 = e,  

Xl , X2 2': O. 

(a) Find (by inspection) an optimal solution, as a function of e .  

(b) Draw a graph showing the optimal cost as a function of e .  

(c) Use the picture in part (b)  to obtain the set of all dual optimal solutions , 
for every value of e.  

Exercise 5 . 1 1  Consider the function gee) , as defined in the beginning of Sec­
tion 5 .5 .  Suppose that g( e) is linear for e E [el , e2] . Is it true that there exists a 
unique optimal solution when el < e < e2 ? Prove or provide a counterexample. 

Exercise 5 . 12  Consider the parametric programming problem discussed in Sec­
tion 5 .5 .  

(a)  Suppose that for some value of  e,  there are exactly two distinct basic feasible 
solutions that are optimal. Show that they must be adjacent . 

(b) Let e* be a breakpoint of the function gee) . Let Xl , x2 , X3 be basic feasible 
solutions , all of which are optimal for e = e* . Suppose that Xl is a unique 
optimal solution for e < e* , x3 is a unique optimal solution for e > e* , and 
xl , x2 , x3 are the only optimal basic feasible solutions for e = e* . Provide 
an example to show that xl and x3 need not be adjacent . 



228 Chap. 5 Sensitivity analysis 

Exercise 5 . 13 Consider the following linear programming problem: 

minimize 4Xl + 5X3 
subject to 2Xl + X2 5X3 1 

-3Xl + 4X3 + X4 2 
Xl , X2 , X3 , X4 � 0 .  

(a) Write down a simplex tableau and find an optimal solution. I s  i t  unique? 

(b) Write down the dual problem and find an optimal solution. Is it unique? 

(c) Suppose now that we change the vector b from b = ( 1 , 2 )  to b = ( 1  -
20, 2 - 30) , where 0 is a scalar parameter. Find an optimal solution and 
the value of the optimal cost , as a function of O. (For all 0, both positive 
and negative. )  

Exercise 5 . 14 Consider the problem 

minimize 
subject to 

(c + Od) 'x 
Ax b + or 

x � 0, 

where A is an m x n matrix with linearly independent rows . We assume that the 
problem is feasible and the optimal cost 1 (0) is finite for all values of 0 in some 
interval [01 , O2 ] .  

(a) Suppose that a certain basis is optimal for 0 = -10  and for 0 = 10 .  Prove 
that the same basis is optimal for 0 = 5 .  

(b)  Show that 1(0 )  i s  a piecewise quadratic function of  O .  Give an upper bound 
on the number of "pieces ." 

(c) Let b = 0 and c = o.  Suppose that a certain basis is optimal for 0 = l .  
For what other nonnegative values of 0 is that same basis optimal? 

(d) Is 1(0) convex, concave or neither? 

Exercise 5 .15  Consider the problem 

minimize c' x 
subject to Ax b + Od 

x � 0,  

and let 1(0)  be the optimal cost , as a function of O .  

(a) Let X(O) be the set of all optimal solutions , for a given value of O .  For 
any nonnegative scalar t ,  define X(O, t )  to be the -union of the sets X (O) ,  
° s: 0 s: t .  Is  X(O ,  t )  a convex set? Provide a proof or  a counterexample. 

(b) Suppose that we remove the nonnegativity constraints x � 0 from the 
problem under consideration. Is X(O,  t) a convex set? Provide a proof or 
a counterexample. 

(c) Suppose that Xl and x2 belong to X(O, t) . Show that there is a continuous 
path from Xl to x2 that is contained within X(O,  t) . That is, there exists 
a continuous function g (>..) such that g (>.. 1 ) = Xl , g (>"2 ) = x2 , and g(>..) E 
X(O, t) for all >.. E (>"1 , >"2 ) .  
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Exercise 5 .16  Consider the parametric programming problem of Section 5 .5 .  
Suppose that some basic feasible solution i s  optimal i f  and only i f  () i s  equal to 
some ()* . 

(a) Suppose that the feasible set is unbounded. Is it true that there exist at 
least three distinct basic feasible solutions that are optimal when () = ()* ? 

(b) Answer the question in part (a) for the case where the feasible set is 
bounded. 

Exercise 5 . 17  Consider the parametric programming problem. Suppose that 
every basic solution encountered by the algorithm is nondegenerate. Prove that 
the algorithm does not cycle. 

5 . 8  Notes and sources 

The material in this chapter, with the exception of Section 5.3, is standard , 
and can be found in any text on linear programming. 

5 . 1 .  A more detailed discussion o f  the results of the production planning 
case study can be found in Freund and Shannahan (1992 ) .  

5 .3 .  The results in  this section have beautiful generalizations to  the case 
of nonlinear convex optimization; see , e .g . , Rockafellar ( 1970) . 

5 .5 .  Anticycling rules for parametric programming can be  found in Murty 
( 1983) . 
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A 

Absolute values, problems with, 17-19 ,  35 
Active constraint , 48 
Adjacent 

bases, 56 
basic solutions, 53, 56 
vertices, 78 

Affine 
function, 15 ,  34 
independence, 120 
subspace, 30-31 
transformation, 364 

Affine scaling algorithm, 394, 395-409 , 
440-441 ,  448 , 449 

initialization, 403 
long-step, 401 ,  402-403, 440, 441 
performance, 403-404 
short-step, 401 ,  404-409, 440 

Air traffic flow management , 544-551 ,  567 
Algorithm, 32-34, 40, 361 

complexity of, see running time 
efficient , 363 
polynomial time, 362, 515 

Analytic center, 422 
Anticycling 

in dual simplex, 160 
in network simplex, 357 
in parametric programming, 229 
in primal simplex, 108- 1 1 1  

Approximation algorithms, 480, 507-51 1 ,  
528-530, 558 

Arbitrage, 168, 199 
Arc 

backward, 269 
balanced, 316 
directed , 268 
endpoint of, 267 
forward, 269 
in directed graphs, 268 
in undirected graphs, 267 
incident , 267, 268 
incoming, 268 
outgoing, 268 

Arithmetic model of computation, 362 
Artificial variables, 1 12  

elimination of, 1 12- 1 13 
Asset pricing, 167- 169 
Assignment problem, 274, 320, 323, 

325-332 
with side constraint , 526-527 

Auction algorithm, 270, 325-332, 354, 358 
Augmenting path, 304 
Average computational complexity, 

127-128, 138 

B 

Ball, 364 
Barrier function, 419 
Barrier problem, 420,  422, 431 
Basic column, 55 
Basic direction, 84 
Basic feasible solution, 50, 52 

existence, 62-65 
existence of an optimum, 65-67 
finite number of, 52 
initial, s ee initialization 
magnitude bounds, 373 
to bounded variable LP, 76 
to general LP, 50 

Basic solution, 50, 52 

Index 

to network flow problems, 280-284 
to standard form LP, 53-54 
to dual, 154, 161-164 

Basic indices , 55 
Basic variable, 55 
Basis , 55 

adjacent , 56 
degenerate, 59 
optimal, 87 
relation to spanning trees , 280-284 

Basis matrix, 55, 87 
Basis of a subspace, 29, 30 
Bellman equation, 332 , 336 , 354 
Bellman-Ford algorithm, 336-339, 354-355, 

358 
Benders decomposition, 254-260, 263, 264 
Big-M method, 1 17- 1 19 ,  135-136 
Big 0 notation, 32 
Binary search, 372 
Binding constraint , 48 
Bipartite matching problem, 326, 353, 358 
Birkhoff-von Neumann theorem, 353 
Bit model of computation, 362 
Bland's rule, see smallest subscript rule 
Bounded polyhedra, representation, 67-70 
Bounded set , 43 
Branch and bound, 485-490, 524, 530, 

542-544, 560-562 
Branch and cut , 489-450, 530 
Bring into the basis, 88 

c 
Candidate list , 94 
Capacity 

of an arc, 272 
of a cut , 309 
of a node, 275 

Caratheodory's theorem, 76, 197 
Cardinality, 26 
Caterer problem, 347 
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Central path, 420, 422, 444 
Certificate of infeasibility, 165 
Changes in data, see sensitivity analysis 
Chebychev approximation, 188 
Chebychev center, 36 
Cholesky factor, 440, 537 
Clark's theorem, 151 ,  193 
Classifier, 14 
Closedness of finitely generated cones 

172, 196 
Circuits, 315  
Circulation, 278 

decomposition of, 350 
simple, 278 

Circulation problem, 275 
Clique, 484 
Closed set , 169 
Column 

of a matrix, notation, 27 
zeroth, 98 

Column generation, 236-238 
Column geometry, 1 19-123, 137 
Column space, 30 
Column vector, 26 
Combination 

convex, 44 
linear, 29 

Communication network, 12-13  
Complementary slackness, 151-155 ,  191 

economic interpretation, 329 
in assignment problem, 326-327 
in network flow problems, 314 
strict , 153 ,  192,  437 

Complexity theory, 514-523 
Computer manufacturing, 7-10 
Concave function, 15 

characterization, 503 ,  525 
Cone, 174 

containing a line, 175 
pointed, 175 
polyhedral, 175 

Connected graph 
directed, 268 
undirected, 267 

Connectivity, 352 
Convex combination, 44 
Convex function, 15, 34, 40 
Convex hull, 44, 68, 74, 183 

of integer solutions, 464 
Convex polyhedron, see polyhedron 
Convex set , 43 
Convexity constraint , 120 
Corner point , see extreme point 
Cost function, 3 
Cramer's rule, 29 
Crossover problem, 541-542 
Currency conversion, 36 

Cut ,  309 
capacity of, 309 
minimum, 310,  390 
s-t, 309 

Cutset , 467 
Cutset formulation 

581 

of  minimum spanning tree problem, 
467 

of traveling salesman problem, 470 
Cutting plane method 

for integer programming, 480-484, 530 
for linear programming, 236-239 
for mixed integer programming, 524 

Cutting stock problem, 234-236, 260, 263 
Cycle 

cost of, 278 
directed, 269 
in directed graphs, 269 
in undirected graphs, 267 
negative cost , 291 
unsaturated, 301 

Cyclic problems, 40 
Cycling, 92 

in primal simplex, 104- 105, 130, 138 
see also anticycling 

D 
DNA sequencing, 525 
Dantzig-Wolfe decomposition, 239-254, 

261-263, 264 
Data fitting, 19-20 
Decision variables, 3 
Deep cuts, 380, 388 
Degeneracy, 58-62, 536, 541 

and interior point methods, 439 
and uniqueness, 190-191  
in  assignment problems, 350 
in dual, 163-164 
in standard form, 59-60, 62 
in transportation problems, 349 

Degenerate basic solution, 58 
Degree, 267 
Delayed column generation, 236-238 
Delayed constraint generation, 236, 263 
Demand, 272 
Determinant , 29 
Devex rule, 94, 540 
Diameter of a polyhedron, 126 
Diet problem, 5 ,  40, 156,  260-261 
Dijkstra's algorithm, 340-342, 343, 358 
Dimension, 29, 30 

of a polyhedron, 68 
Disjunctive constraints, 454, 472-473 
Dual algorithm, 157 
Dual ascent 

approximate, 266 
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in network flow problems, 266, 
316-325, 357 

steepest, 354 
termination, 320 

Dual plane, 122 
Dual problem, 141,  142, 142- 146 

optimal solutions, 2 15-216 
Dual simplex method, 156- 164, 536-537, 

540-544 
for network flow problems, 266, 
323-325, 354, 358 

geometry, 160 
revised, 157 

Dual variables 
in network flow problems, 285 
interpretation, 155- 156 

Duality for general LP, 183-187 
Duality gap, 399 
Duality in integer programming, 494-507 
Duality in network flow problems, 312-316 
Duality theorem, 146-155 ,  173, 184, 197, 

199 
Dynamic programming, 490-493, 530 

integer knapsack problem, 236 
zero-one knapsack problem, 491-493 
traveling salesman problem, 490 

E 

Edge of a polyhedron, 53, 78 
Edge of an undirected graph, 267 
Efficient algorithm, see algorithm 
Electric power, 10- 1 1 ,  255-256, 564 
Elementary direction, 316 
Elementary row operation, 96 
Ellipsoid, 364, 396 
Ellipsoid method, 363-392 

complexity, 377 
for full-dimensional bounded polyhe-
dra, 371 

for optimization, 378-380 
practical performance, 380 
sliding objective, 379, 389 

Enter the basis , 88 
Epsilon-relaxation method, 266, 358 
Evaluation problem, 517 
Exponential number of constraints, 

380-387, 465-472 , 551-562 
Exponential time, 33 
Extreme point , 46, 50 

see also basic feasible solution 
Extreme ray, 67, 176- 177, 197, 525 
Euclidean norm, 27 

F 

Facility location problem, 453-454, 

462-464, 476, 518 ,  565 
Farkas' lemma, 165, 172, 197, 199 
Feasible direction, 83, 129 
Feasible set , 3 
Feasible solution, 3 
Finitely generated 

cone, 196,  198 
set , 182 

Index 

Fixed charge network design problem, 476 , 
566 

Fleet assignment problem, 537-544, 567 
Flow, 272 

feasible, 272 
Flow augmentation, 304 
Flow conservation, 272 
Flow decomposition theorem, 298-300, 351 

for circulations, 350 
Floyd-Warshall algorithm, 355-356 
Forcing constraints, 453 
Ford-Fulkerson algorithm, 305-312 ,  357 
Fourier-Motzkin elimination, 70-74, 79 
Fractional programming, 36 
Free variable, 3 

elimination of, 5 
Full-dimensional polyhedron, see polyhe­

dron 
Full rank, 30, 57 
Full tableau, 98 

G 
Gaussian elimination, 33, 363 
Global minimum, 15 
Gomory cutting plane algorithm, 482-484 
Graph, 267-272 

connected, 267, 268 
directed, 268 
undirected, 267 

Graph coloring problem, 566-567 
Graphical solution, 21-25 
Greedy algorithm 

for minimum spanning trees , 344, 356 
Groundholding, 545 

H 
Halfspace, 43 
Hamilton circuit , 521 
Held-Karp lower bound, 502 
Helly 's theorem, 194 
Heuristic algorithms, 480 
Hirsch conjecture , 126-127 
Hungarian method, 266 ,  320 ,  323 ,  358 
Hyperplane, 43 

I 

Identity matrix, 28 
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Incidence matrix, 277, 457 
truncated, 280 

Independent set problem, 484 
Initialization 

affine scaling algorithm, 403 
Dantzig-Wolfe decomposition, 250-251 
negative cost cycle algorithm, 294 
network flow problems, 352 
network simplex algorithm, 286 
potential reduction algorithm, 416-418 
primal path following algorithm, 
429-431 

primal-dual path following algorithm, 
435-437 

primal simplex method, 1 1 1- 1 19 
Inner product , 27 
Instance of a problem, 360-361 

size, 361 
Integer programming, 12 ,  452 

mixed, 452, 524 
zero-one, 452, 517, 518  

Interior , 395 
Interior point methods , 393-449 , 537 

computational aspects, 439-440, 
536-537, 540-544 

Intree, 333 
Inverse matrix, 28 
Invertible matrix, 28 

J 
Job shop scheduling problem, 476 , 

551-563, 565, 567 

K 
Karush-Kuhn-T'ucker conditions, 421 
Knapsack problem 

approximation algorithms, 507-509 , 
530 

complexity, 518 ,  522 
dynamic programming, 491-493, 530 
integer, 236 
zero-one, 453 

Konig-Egervary theorem, 352 

L 

Label correcting methods, 339-340 
Labeling algorithm, 307-309, 357 
Lagrange multiplier, 140, 494 
Lagrangean, 140, 190 
Lagrangean decomposition, 527-528 
Lagrangean dual, 495 

solution to, 502-507 
Lagrangean relaxation, 496 , 530 
Leaf, 269 
Length, of cycle , path, walk, 333 

Leontief systems, 195, 200 
Lexicographic pivoting rule, 108- 1 1 1 ,  

131-132,  137 
in revised simplex, 132 
in dual simplex, 160 

Libraries, see optimization libraries 
Line, 63 
Linear algebra, 26-31 ,  40, 137 
Linear combination, 29 
Linear inequalities , 165 

inconsistent , 194 
Linear programming, 2 ,  38 

examples, 6- 14 
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Linear programming relaxation, 12 ,  462 
Linearly dependent vectors , 28 
Linearly independent vectors, 28 
Linearly independent constraints, 49 
Local minimum, 15 ,  82, 131  
Local search, 5 1 1-512 ,  530 
Lot sizing problem, 475, 524 

M 

Marginal cost , 155-156 
Marriage problem, 352 
Matching problem, 470-472 , 477-478 

see also bipartite matching, stable 
matching 

Matrix, 26 
identity, 28 
incidence, 277 
inversion, 363 
inverse, 28 
invertible, 28 
nonsingular, 28 
positive definite, 364 
rotation, 368, 388 
square, 28 

Matrix inversion lemma, 131 ,  138 
Max-flow min-cut theorem, 310-31 1 ,  351 ,  

357 
Maximization problems, 3 
Maximum flow problem, 273, 301-312  
Maximum satisfiability, 529-530 
Min-cut problem, see cut 
Mean cycle cost minimization, 355, 358 
Minimum spanning tree problem, 343-345, 

356, 358, 466, 477 
multicut formulation, 476 

Modeling languages, 534-535, 567 
Moment problem, 35 
Multicommodity flow problem, 13 
Multiperiod problems, 10- 1 1 ,  189 

N 

NP, 518,  531 
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NP-complete, 519, 531 
NP-hard, 518 ,  531 ,  556 
NSF fellowships, 459-461 ,  477 
Nash equilibrium, 190 
Negative cost cycle algorithm, 291-301 ,  357 

largest improvement rule, 301 ,  351, 357 
mean cost rule, 301 ,  357 

Network, 272 
Network flow problem, 13, 551 

capacitated, 273 ,  291 
circulation, 275 
complementary slackness, 314 
dual, 312-313,  357 
formulation, 272-278 
integrality of optimal solutions, 
289-290, 300 

sensitivity, 313-314 
shortest paths, relation to, 334 
single source, 275 
uncapacitated, 273, 286 
with lower bounds, 276, 277 
with piecewise linear convex costs, 347 
see also primal-dual method 

Network simplex algorithm, 278-291 ,  
356-357, 536 

anticycling, 357, 358 
dual, 323-325, 354 

Newton 
direction, 424, 432 
method, 432-433, 449 
step, 422 

Node, 267, 268 
labeled, 307 
scanned, 307 
sink, 272 
source, 272 

Node-arc incidence matrix, 277 
truncated, 280 

Nonbasic variable, 55 
Nonsingular matrix, 28 
Null variable, 192 
Nullspace, 30 
Nurse scheduling, 1 1-12 ,  40 

o 
Objective function, 3 
One-tree, 501 
Operation count , 32-34 
Optimal control, 20-21 ,  40 
Optimal cost , 3 
Optimal solution, 3 

to dual,  215-216 
Optimality conditions 

for LP problems 82-87, 129, 130 
for maximum flow problems, 310 
for network flow problems, 298-300 

Karush-Kuhn-Thcker, 421 
Optimization libraries, 535-537, 567 
Optimization problem, 517 
Options pricing, 195 
Order of magnitude, 32 
Orthant , 65 
Orthogonal vectors , 27 

p 
P, 515 
Parametric programming, 2 17-22 1 ,  

227-229 
Path 

augmenting, 304 
directed, 269 
in directed graphs, 269 
in undirected graphs, 267 
shortest , 333 
unsaturated, 307 
walk, 333 

Index 

Path following algorithm, primal, 419-431 
complexity, 431 
initialization, 429-431 

Path following algorithm, primal-dual, 
431-438 

complexity, 435 
infeasible, 435-436 
performance, 437-438 
quadratic programming, 445-446 
self-dual, 436-437 

Path following algorithms, 395-396, 449, 
542 

Pattern classification, 14, 40 
Perfect matching, 326, 353 

see also matching problem 
Perturbation of constraints and degener­

acy, 60, 131-132,  541 
Piecewise linear convex optimization, 

16-17  189, 347 
Piecewise linear function, 15 ,  455 
Pivot , 90, 158 
Pivot column, 98 
Pivot element , 98, 158 
Pivot row, 98, 158 
Pivot selection, 92-94 
Pivoting rules, 92, 108- 1 1 1  
Polar cone, 198 
Polar cone theorem, 198- 199 
Polyhedron, 42 

containing a line, 63 
full-dimensional, 365, 370 ,  375-377, 

389 
in standard form, 43, 53-58 
isomorphic , 76 
see also representation 

Polynomial time, 33, 362, 515  



Index 

Potential function, 409, 448 
Potential reduction algorithm, 394, 

409-419, 445, 448 
complexity, 418, 442 
initialization, 416-418 
performance, 419 
with line searches, 419,  443-444 

Preemptive scheduling, 302, 
357 

Preflow-push methods, 266, 358 
Preprocessing, 540 
Price variable, 140 
Primal algorithm, 157, 266 
Primal problem, 141, 142 
Primal-dual method, 266, 320, 321-323, 

353, 357 
Primal-dual path following method, see 

path following algorithm 
Probability consistency problem, 384-386 
Problem, 360 
Product of matrices, 28 
Production and distribution problem, 475 
Production planning, 7- 10, 35,  40, 

210-212 ,  229 
Project management, 335-336 
Projections of polyhedra, 70-74 
Proper subset , 26 
Pushing flow, 278 

Q 

Quadratic programming, 445-446 

R 

Rank, 30 
Ray, 172 

see also extreme ray 
Recession cone, 1 75 
Recognition problem, 515 ,  517  
Reduced cost , 84 

in network flow problems, 285 
Reduction (of a problem to another) , 515 
Redundant constraints, 57-58 
Reinversion, 107 
Relaxation, see linear programming relax-

ation 
Relaxation algorithm, 266 , 321 ,  358 
Relaxed dual problem, 237 
Representation 

of bounded polyhedra, 67 
of cones, 182,  198 
of polyhedra, 179-183, 198 

Requirement line, 122 
Residual network, 295-297 
Resolution theorem, 179 ,  198, 199 
Restricted problem, 233 

Revised dual simplex method, 157 
Revised simplex method, 95-98, 

105-107 
lexicographic rule, 132 

Rocket control, 21 
Row 

space, 30 
vector, 26 
zeroth, 99 

Running time, 32, 362 

s 
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Saddle point of Lagrangean, 190 
Samuelson's substitution theorem, 195 
Scaling 

in auction algorithm, 332 
in maximum flow problem, 352 
in network flow problems, 358 

Scanning a node, 307 
Scheduling, 1 1-12 ,  302 , 357, 551-563, 567 

with precedence constraints, 556 
Schwartz inequality, 27 
Self-arc, 267 
Sensitivity analysis, 201-215 ,  216-217 

adding new equality constraint , 
206-207 

adding new inequality constraint , 
204-206 

adding new variable, 203-204 
changes in a nonbasic column, 209 
changes in a basic column, 210,  222-223 
changes in b, 207-208, 2 12-215  
changes in c ,  208-209, 216-217 
in network flow problems, 313-314 

Separating hyperplane, 170 
between disjoint polyhedra, 196 
finding, 196 

Separating hyperplane theorem, 170 
Separation problem, 237, 382, 392, 555 
Sequencing with setup times, 457-459, 518  
Set covering problem, 456-457, 518 
Set packing problem, 456-457, 518  
Set partitioning problem, 456-457, 518  
Setup times, 457-459 ,  518 
Shadow price, 156 
Shortest path problem, 273, 332-343 

all-pairs, 333, 342-343, 355-356, 358 
all-to-one, 333 
relation to network flow problem, 333 

Side constraints, 197, 526-527 
Simplex, 120, 137 
Simplex method, 90-91 

average case behavior, 127- 128, 138 
column geometry, 1 19- 123 
computational efficiency, 124-128 
dual, see dual simplex method 
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for degenerate problems, 92 
for networks, see network simplex 
full tableau implementation, 98-105,  

105- 107 
history, 38 
implementations, 94- 108 
initialization, 1 1 1- 1 19  
naive implementation, 94-95 
performance, 536-537, 54-541 
revised, see revised simplex method 
termination, 9 1 ,  1 10 
two-phase, 1 16- 1 17  
unbounded problems, 179 
with upper bound constraints, 135 

Simplex multipliers, 94, 161 
Simplex tableau, 98 
Simulated annealing, 512-514,  531 
Size of an instance, 361 
Slack variable, 6 ,  76 
Sliding objective ellipsoid method, 379, 389 
Smallest subscript rule, 94, 1 1 1 ,  137 
Span, of a set of vectors, 29 
Spanning path, 124 
Spanning tree, 271-272 

see also minimum spanning trees 
Sparsity, 107, 108, 440, 536, 537 
Square matrix, 28 
Stable matching problem, 563, 567 
Standard form, 4-5 

reduction to, 5-6 
visualization, 25 

Steepest edge rule, 94, 540-543 
Steiner tree problem, 391 
Stochastic matrices , 194 
Stochastic programming, 254-260, 264, 

564 
Strong duality, 148, 184 
Strong formulations, 461-465 
Strongly polynomial, 357 
Subdifferential, 503 
Subgradient , 215, 503, 504, 526 
Subgradient algorithm, 505-506, 530 
Submodular function minimization, 

391-392 
Subspace, 29 
Subtour elimination 

in the minimum spanning tree problem, 
466 

in the traveling salesman problem, 470 
Supply, 272 
Surplus variable, 6 
Survivable network design problem, 391 ,  

528-529 

T 

Theorems of the alternative, 166, 194 

Total unimodularity, 357 
Tour, 383, 469 
Tournament problem, 347 

Index 

Transformation (of a problem to another) , 
516 

Transportation problem, 273 ,  274-275, 358 
degeneracy, 349 

Transpose, 27 
Transshipment problem, 266 
Traveling salesman problem, directed, 

478, 518  
branch and bound, 488-489 
dynamic programming, 490 
integer programming formulation, 477 

Traveling salesman problem, undirected, 
478, 565, 518 ,  526 

approximation algorithm, 509-510 ,  528 
integer programming formulation, 
469-470, 476 

local search, 5 1 1-512 ,  530 
lower bound, 383-384, 501-502 
with triangle inequality, 509-510 ,  521 ,  

528 
Tree, 269 

of shortest paths, 333 
see also spanning tree 

Tree solution, 280 
feasible , 280 

Typography, 524 

u 
Unbounded cost , 3 
Unbounded problem, 3 

characterization, 177- 179 
Unique solution, 129,  130 

to dual , 152,  190-191  
Unit vector, 27  
Unrestricted variable, see  free variable 

v 
Vector, 26 
Vehicle routing problem, 475 
Vertex, 47, 50 

see also basic feasible solution 
Volume, 364 

of a simplex, 390 
von Neumann algorithm, 446-448 , 449 
Vulnerability, 352 

w 
Walk 

directed, 269 
in directed graphs, 268 
in undirected graphs, 267 

Weak duality, 146, 184, 495 
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Weierstrass' theorem, 170, 199 
Worst-case running time, 362 

z 
Zeroth column, 98 
Zeroth row, 99 
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