

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

PQI 3301 - FENÔMENOS DE TRANSPORTE II

APOSTILA 5 – <u>Transferência de Calor por Radiação</u>

Prof. José Luís de Paiva

Prof. Jorge A. W. Gut

Versão 2022

Conteúdo

1. RA	DIÇÃO TÉRMICA	
1.1	Conceitos básicos	
1.2	Emissão do Corpo Negro	
1.3	Superfícies reais	
1.4	Fator de Vista	16
1.5	Troca de radiação entre superfícies (meios não participantes)	23
1.6	Meio Participante	27
2. EXI	ERCÍCIOS	34
3. LIS	TA DE SÍMBOLOS	42
4. BIE	BLIOGRAFIA	42

Produção 2013: Caio Luca Joppert, bolsista do Programa de Estímulo ao Ensino de Graduação (PEEG) da Pró-Reitoria de Graduação da USP.

Revisão 2015: Yuri Nascimento Nariyoshi, bolsista do Programa de Aperfeiçoamento de Ensino (PAE) da CAPES.

1. RADIÇÃO TÉRMICA

1.1 Conceitos básicos

- Radiação: transmissão de energia por meio de ondas eletromagnéticas.
- Espectro Eletromagnético: classificação das ondas de acordo com seu comprimento de onda λ ou sua frequência f (**Figura 1**).
- Radiação térmica: radiação emitida em consequência da temperatura de um corpo (ou superfície) compreendendo comprimentos de onda entre 0,1 a 100 μm . Engloba parte do espectro Ultravioleta (UV, 0,01 a 0,4 μm), todo o espectro visível (0,4 a 0,7 μm) e quase todo o espectro infravermelho (IV, 0,7 a 1000 μm).

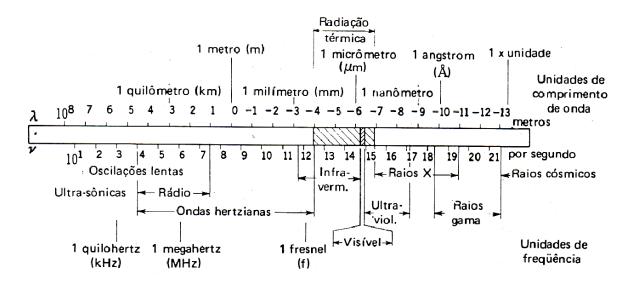


Figura 1: Espectro eletromagnético.

(fonte: KREITH, 3ª edição)

Terminologia utilizada no estudo da radiação:

- Interações de radiação com uma superfície: de uma radiação incidente parte pode ser refletida, parte absorvida e parte transmitida; um corpo pode, ainda emitir radiação (Figura 2);
- Irradiação (G): toda a radiação que chega a uma superfície (ou seja, toda a radiação incidente);
- Radiosidade (*J*): toda a radiação que deixa uma superfície (ou seja, a emissão de uma superfície somada à reflexão da radiação incidente);

- Poder Emissivo Espectral (E_{λ}): distribuição de energia emitida por um corpo com temperatura acima de 0 K, em função do comprimento de onda e da temperatura;
- Intensidade Espectral de Radiação (I_{λ}): fluxo de energia que passa por um ângulo sólido para um dado comprimento de onda;
- Radiação difusa: a emissão espectral que independe das direções de propagação (emite radiação igualmente em todas as direções);
- Espectral x global: uma grandeza espectral depende do comprimento de onda; uma grandeza global contempla todos os comprimentos de onda (uma grandeza global é a integral da grandeza espectral quanto aos comprimentos de onda);

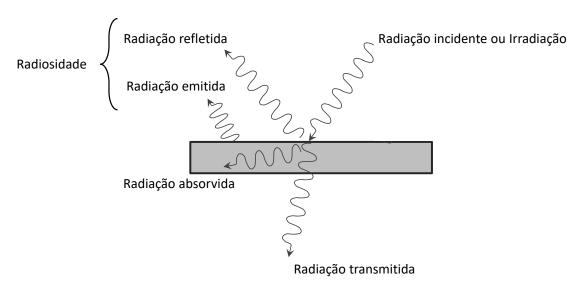


Figura 2: Interações da radiação com uma superfície.

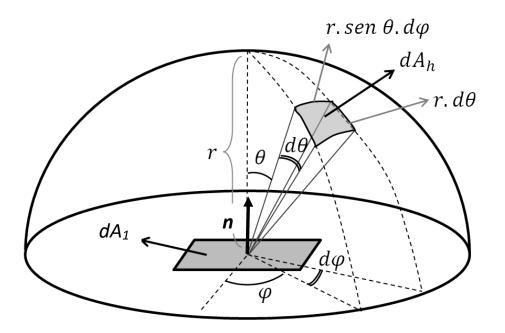


Figura 3: Radiação emitida pela superfície dA1 para um elemento dAh.

• Definição de ângulo sólido (Figura 3):

$$d\omega = \frac{dA_h}{r^2} = \frac{(r.sen \, \theta. d\varphi). (r. d\theta)}{r^2} = sen \, \theta. d\varphi. d\theta$$

- Relações importantes (Figuras 2 e 3):
 - Intensidade

$$\begin{split} I_{\lambda} &= \frac{[Energia\ da\ radia \varsigma \~ao]}{[tempo]. \begin{bmatrix} \'area \\ normal \end{bmatrix}. \begin{bmatrix} \rangulo \\ s\'olido \end{bmatrix}. \begin{bmatrix} comprimento \\ de\ onda \end{bmatrix}} \\ & \therefore I_{\lambda} = \frac{dq}{dA_{1}.\cos\theta.d\omega.d\lambda} = \frac{dq''_{\lambda}}{\cos\theta.d\omega} \\ & dq''_{\lambda} = I_{\lambda}.\cos\theta.d\omega \end{split}$$

Integrando a expressão acima em um hemisfério ($0<\varphi<2\pi$; $0<\theta<\pi/2$), tem-se o Poder Emissivo Espectral E_{λ} :

$$E_{\lambda} = \int I_{\lambda}.(\theta, \varphi).\cos\theta.d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}.\sin\theta.\cos\theta.d\theta.d\varphi$$
$$\therefore E_{\lambda} = \pi.I_{\lambda}$$

De forma geral, pode-se dizer que a mesma relação existe quando se trata tanto de Irradiação, decorrente da intensidade de radiação incidente, I_{λ} , quanto de Radiosidade, decorrente da soma das intensidades de radiação refletida, $I_{\lambda,ref}$, e emitida, $I_{\lambda.ems}$:

$$G_{\lambda} = \pi . I_{\lambda i}$$

$$J_{\lambda} = \pi . \left(I_{\lambda,ems} + I_{\lambda,ref} \right)$$

 Poder de emissão global (contribuição de todos os comprimentos de onda).

$$E = \int E_{\lambda}. d\lambda = \pi \int I_{\lambda}. d\lambda$$

De forma análoga:

$$G=\pi\int I_{\lambda i}.\,d\lambda$$

• Absortividade, refletividade e transmitância

$$G_{\lambda} = G_{\lambda,abs} + G_{\lambda,ref} + G_{\lambda,trs}$$

 $G_{\lambda,abs}$, $G_{\lambda,ref}$, $G_{\lambda,trs}$ indicam as frações da radiação incidente absorvidas, refletidas e transmitidas, respectivamente. Definem-se, então os termos adimensionais de absortividade, refletividade e transmitância espectrais $(\alpha_{\lambda}, \rho_{\lambda}, \tau_{\lambda})$:

$$\alpha_{\lambda} = \frac{G_{\lambda,abs}}{G_{\lambda}}; \ \rho_{\lambda} = \frac{G_{\lambda,ref}}{G_{\lambda}}; \ \tau_{\lambda} = \frac{G_{\lambda,trs}}{G_{\lambda}};$$

Sendo:

$$\alpha_{\lambda} + \rho_{\lambda} + \tau_{\lambda} = 1$$
;

1.2 Emissão do Corpo Negro

Corpo Negro: caso ideal de emissão de radiação de um corpo com temperatura absoluta não nula.

Um corpo negro é aquele que:

- Absorve toda a radiação nele incidente, independendo do comprimento de onda ou da direção desta radiação;
- Emite radiação em todas as direções (é um emissor difuso);

Emite a máxima energia de um corpo numa dada temperatura.

A emissão espectral de um corpo negro é expressa pela Distribuição de Planck:

$$I_{\lambda} = \frac{2h{c_0}^2 \lambda^{-5}}{n^2 \left(e^{\frac{hc_0}{n\lambda kT}} - 1\right)}$$

Sendo: $h=6,626.\,10^{-34}\,J.\,s$, a constante de Planck, $k=1,381.\,10^{-23}\,J/K$, a constante de Boltzmann, $c_0=2,988.\,10^8\,m/s$, a velocidade da luz no vácuo e n , índice de refração do meio (*Tabela 1*). Observe que para o vácuo , n=1.

O poder emissivo espectral de um corpo negro é dado por:

$$E_{\lambda} = \pi. I_{\lambda} = \pi \cdot \left[\frac{2hc_0^2 \lambda^{-5}}{n^2 \left(e^{\frac{hc_0}{n\lambda kT}} - 1 \right)} \right]$$

A distribuição espectral de um corpo negro no vácuo está representada nas *Figuras 4 e 5*. Para visualizar temperaturas menores, a escala logarítmica é recomendada.

Tabela 1: índice de refração (n) médio de alguns meios.

Meio	Índice de refração
Vácuo	1,00
Ar seco	1,0003
Água Líquida	1,311 – 1,395
Vidro	1,55 – 1,65

Obs: o índice de refração depende da temperatura do corpo e do comprimento de onda que nele incide.

Os valores tabelados são valores médios.

(Fonte: CRC Hanbook of Chemistry and Physics, 85ª edição)

Poder emissivo espectral de um Corpo Negro

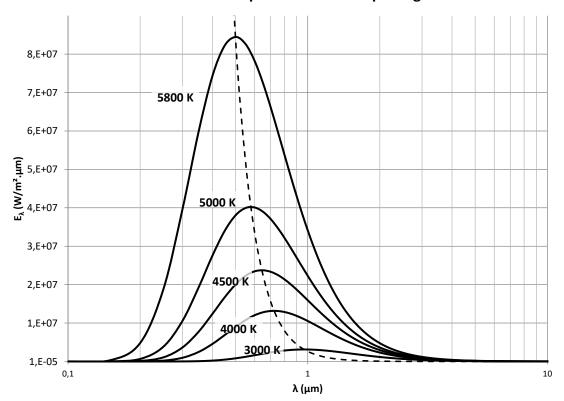
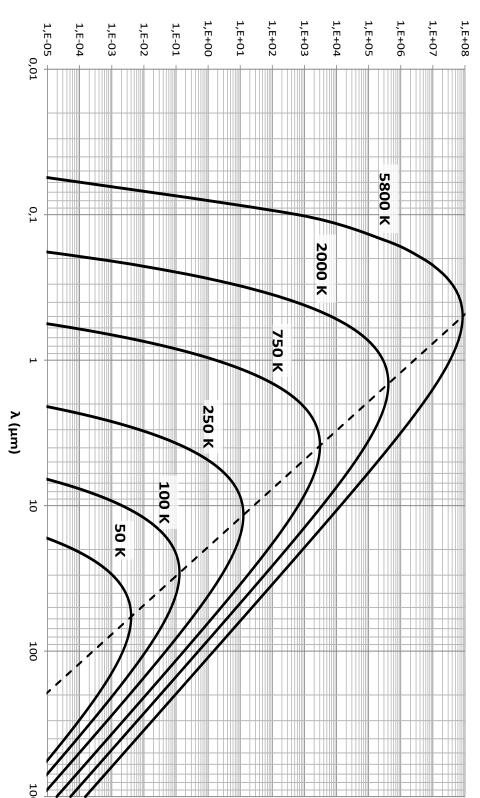



Figura 4: Poder emissivo espectral de um Corpo Negro no vácuo (escala monolog).

 E_{λ} (W/m². μ m)

Poder emissivo espectral de um Corpo Negro

Figura 5: Poder emissivo espectral de um Corpo Negro (escala dilog).

• Lei de Deslocamento de Wien

Os comprimentos de onda correspondentes à máxima emissão de um corpo negro podem ser determinados a partir da distribuição espectral, resultando na chamada Lei de Wien (n=1):

$$\frac{d}{d\lambda} \left(\frac{C_1 \lambda^{-5}}{\frac{C_2}{e^{\lambda T}} - 1} \right) = (C_1 \lambda^{-5}) \cdot \frac{d}{d\lambda} \left(\frac{1}{\frac{C_2}{e^{\lambda T}} - 1} \right) + \left(\frac{1}{\frac{C_2}{e^{\lambda T}} - 1} \right) \cdot \frac{d}{d\lambda} \left(C_1 \lambda^{-5} \right) = 0$$

Sendo:

$$C_1 = 2\pi h c_0^2$$
 ; $C_2 = \frac{h c_0}{k}$

Desenvolvendo a expressão acima, vem:

$$\frac{C_2}{\lambda T} \cdot e^{\frac{C_2}{\lambda T}} - 5 \cdot \left(e^{\frac{C_2}{\lambda T}} - 1\right) = 0$$

$$\therefore \frac{C_2}{\lambda T} = 4,965$$

$$\lambda T = C_2/4,965 = 2897,77$$

$$\therefore \lambda T \approx 2898 \ \mu m, K$$

Este resultado mostra a relação entre o comprimento de onda na qual o corpo negro emite com maior intensidade e a temperatura (linha tracejada nas *Figuras 4 e 5*).

• Lei de Stefan-Boltzmann

Energia emitida por um corpo negro (integral da distribuição de Planck):

$$E_{CN} = \int_0^\infty \frac{C_1 \lambda^{-5}}{e^{\frac{C_2}{\lambda T}} - 1} d\lambda$$

Fazendo-se a seguinte substituição:

$$u = \frac{C_2}{\lambda T} \Rightarrow \lambda = \frac{C_2}{Tu}$$

$$du=-\frac{C_2}{\lambda^2 T}d\lambda=-\frac{Tu^2}{C_2}d\lambda$$

Chega-se em:

$$E_{CN} = -\frac{C_1 T^4}{C_2^4} \int_{\infty}^0 \frac{u^3}{e^u - 1} du$$

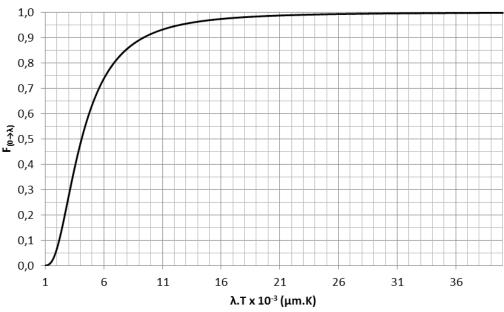
A integral acima tem resolução complicada. Pode-se demonstrar que seu resultado exato é $-\pi^4/15$. Então:

$$E_{CN} = \frac{\pi^4 C_1 T^4}{15. C_2^4} = \sigma T^4$$

Em que $\sigma = \pi^4 C_1 / 15$. $C_2^4 = 5,67$. $10^{-8} W / (m^2 K^4)$ é a constante de Stefan-Boltzmann.

No caso geral: $E_{CN} = n^2 \sigma T^4$

Fração de emissão


Fração de emissão $F_{(0\to\lambda)}$: Fração da energia emitida pelo Corpo Negro entre o comprimento de onda nulo e a com valor λ (banda entre 0 e λ). Para uma banda que esteja situada entre comprimentos de onda λ_1 e λ_2 , basta tomar integral entre λ_1 e λ_2 , que é igual à diferença entre a integral de 0 ate λ_2 e a integral de 0 ate λ_1 , ou seja:

$$F_{(\lambda_1 \to \lambda_2)} = F_{(0 \to \lambda_2)} - F_{(0 \to \lambda_1)}$$

A **Figura 6** e a **Tabela 2** mostram a fração acumulada entre o comprimento de onda nulo e um dado comprimento λ .

Para uma dada temperatura, pode perceber pela **Figura 6** que as emissões de um corpo negro concentram-se entre uma dada faixa de comprimento de onda. Entre λ . T igual a 1495 e 23912, cerca de 97,85% da radiação emitida pelo corpo negro é encontrada. Ou seja, para qualquer temperatura, a radiação emitida pelo corpo negro se concentra entre $\lambda_{max}/2$ e $8.\lambda_{max}$ (λ_{max} sendo aquele determinado pelo Lei de Wien).

Figura 6: Fração acumulada de emissão do corpo negro na banda de comprimento de onda de até λ .

Tabela 2: Fração acumulada de emissão do corpo negro na banda de comprimento de onda de 0 até λ .

λΤ (μm.K)	F (0→λ)	λΤ (μm.K)	F _(0→λ)	λΤ (μm.K)	F _(0→λ)	λT (μm.K)	F _(0→λ)
200	0,00000	3200	0,31832	6200	0,75419	11000	0,93186
400	0,00000	3400	0,36194	6400	0,76927	11500	0,93893
600	0,00000	3600	0,40380	6600	0,78323	12000	0,94506
800	0,00002	3800	0,44356	6800	0,79616	13000	0,95510
1000	0,00032	4000	0,48104	7000	0,80813	14000	0,96285
1200	0,00215	4200	0,51617	7200	0,81923	15000	0,96894
1400	0,00783	4400	0,54894	7400	0,82954	16000	0,97377
1600	0,01980	4600	0,57941	7600	0,83911	18000	0,98081
1800	0,03946	4800	0,60767	7800	0,84801	20000	0,98555
2000	0,06688	5000	0,63385	8000	0,85629	25000	0,99216
2200	0,10107	5200	0,65806	8500	0,87460	30000	0,99529
2400	0,14046	5400	0,68044	9000	0,89001	40000	0,99791
2600	0,18334	5600	0,70112	9500	0,90307	50000	0,99890
2800	0,22812	5800	0,72022	10000	0,91417	75000	0,99966
3000	0,27345	6000	0,73787	10500	0,92368	100000	0,99985

Exemplo de uma boa aproximação de um corpo negro: o Sol se comporta quase como um corpo negro a 5800 K. A radiação solar que chega à atmosfera terrestre é atenuada pela atmosfera, que interage com a radiação (*Figura 7*).

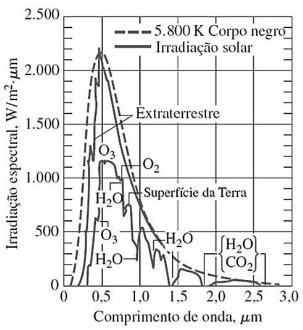
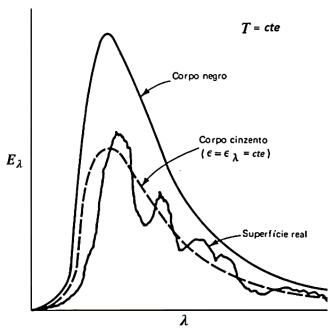


Figura 7: Distribuição espectral da radiação solar. (fonte: ÇENGEL & GHAJAR, 4ª edição)

1.3 Superfícies reais

Superfícies reais: emitem radiação com poder emissivo menor do que aquele de um corpo negro e a emissão depende da direção θ .


Emissividade (ε): razão entre a emissão de uma superfície real e a de um corpo negro na mesma temperatura.

$$\varepsilon_{\lambda,\theta} = \frac{E_{\lambda,\theta}}{E_{\lambda,CN}}$$

Geralmente se encontram dados de emissividade média quanto à direção (emissividade espectral, ε_{λ}) na literatura, assim como, dados de emissividade total (emissividade hemisférica total, ε):

$$\varepsilon_{\lambda} = \frac{E_{\lambda}}{E_{\lambda,CN}} \quad ; \quad \varepsilon = \frac{E}{E_{CN}}$$

Superfície cinza: a emissividade espectral não depende do comprimento de onda considerado (a razão $E_{\lambda}/E_{\lambda,CN}$ é constante, **Figura 8**).

Figura 8: Emissões de um corpo negro, de uma superfície cinza e de uma superfície real. (Adaptado de KREITH, 3ª edição)

De maneira semelhante, geralmente são encontrados valores espectrais para absortividade, refletividade e transmitância. Também de maneira análoga, definem-se absortividade, refletividade e transmitância hemisféricas globais:

$$\alpha = \frac{G_{abs}}{G}$$
; $\rho = \frac{G_{ref}}{G}$; $\tau = \frac{G_{trs}}{G}$

<u>Lei de Kirchoff:</u> Suponha um recipiente oco, extenso, com interior em vácuo, isolado externamente e cuja superfície interna se porte como um corpo negro à temperatura T_s . Suponha também que há n corpos pequenos dentro deste recipiente, cada um com uma temperatura inicial T_i , $i=0,1,\dots,n$. No equilíbrio, todos os corpos atingem temperatura T_s e o balanço de energia mostra que a energia absorvida por cada um dos corpos é igual àquela que é emitida por ele. Sendo G a radiação incidente em cada um dos corpos e E_{CN} a radiação emitida por um corpo negro, admitindo-se que não há interferência de natureza geométrica entre a superfície do recipiente e os corpos e, tem-se para cada corpo:

$$A_i \alpha_i G = A_i \varepsilon_i E_{CN}$$

Mas a radiação incidente G é aquela enviada pela superfície que engloba todos os n corpos, ou seja, $G=E_{CN,S}$. Então, tem-se:

$$G = \frac{\varepsilon_i E_{CN,i}}{\alpha_i} = E_{CN,s}$$

Como $T_i = T_s$, $E_{CN,i} = E_{CN,s}$. Portanto, tem-se o seguinte resultado:

$$\alpha_i = \varepsilon_i$$

Este resultado vale se a superfície que emite radiação se porte como um corpo negro ou se a superfície que recebe radiação for cinza. O resultado da Lei de Kirchoff não pode ser estendido para absortividades e emissividades totais, uma vez que elas dependem da distribuição espectral do corpo.

A seguir, nas *Figuras 9 a 14*, encontram-se diagramas de emissividade, absorbância, refletividade e transmitância para alguns materiais:

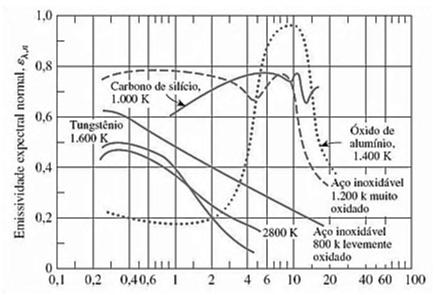
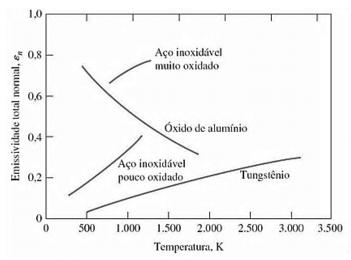



Figura 9: Emissividades espectrais de alguns materiais. (fonte: ÇENGEL & GHAJAR, 4ª edição)

Figura 10: Emissividades totais de alguns materiais. (fonte: ÇENGEL & GHAJAR, 4ª edição)

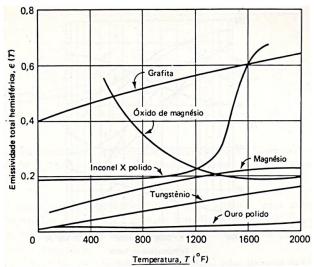
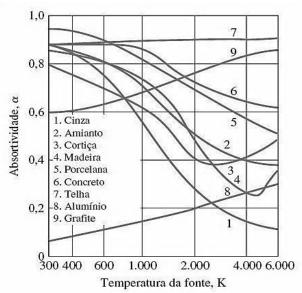
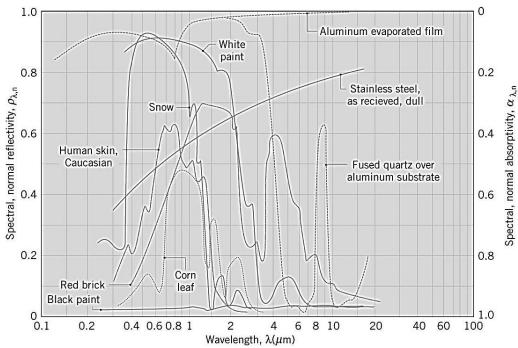




Figura 11: Emissividades totais de alguns materiais. (fonte: KREITH, 3ª edição)

Figura 12: Absortividades totais de alguns materiais. (fonte: ÇENGEL & GHAJAR, 4ª edição)

Figura 13: Refletividade e absortividade espectrais de alguns materiais opacos (τ =0) (fonte: INCROPERA et al., 6º edição)

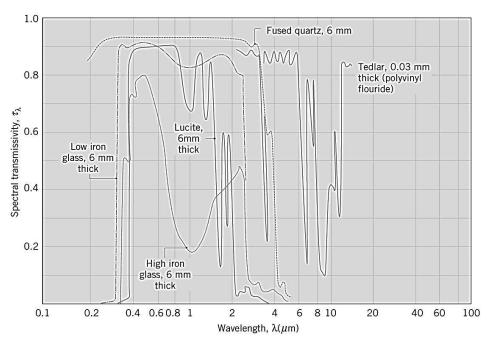


Figura 14: Transmitância de alguns materiais semitransparentes. (fonte: INCROPERA et al., 6ª edição)

1.4 Fator de Vista

Fator de Vista ou Fator de Forma (F_{ij}) é fração da radiação que deixa superfície i e que é interceptada pela superfície j.

:

$$q_{i\to j}=F_{ij}\,A_i\,J_i$$

O cálculo da radiação que deixa a superfície i (radiosidade uniforme J_i) e atinge a superfície j é dado por (**Figura 15**):

$$\begin{split} dq_{i\to j} &= \frac{J_i}{\pi}.\cos\theta_i \,.\, dA_i.\, d\omega_{j\to i} \qquad \text{sendo} \qquad d\omega_{j\to i} = \cos\theta_j \,.\, dA_j/R^2 \\ dq_{i\to j} &= \frac{J_i}{\pi}.\cos\theta_i \,.\, dA_i.\cos\theta_j \,.\, dA_j/R^2 \end{split}$$

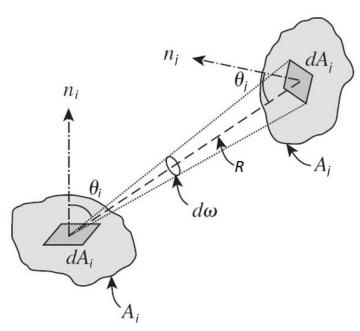


Figura 15: Determinação do fator de vista. (Adaptado de ÇENGEL & GHAJAR, 4º edição)

Integrando-se, resulta: $q_{i \rightarrow j} = F_{ij} A_i J_i$

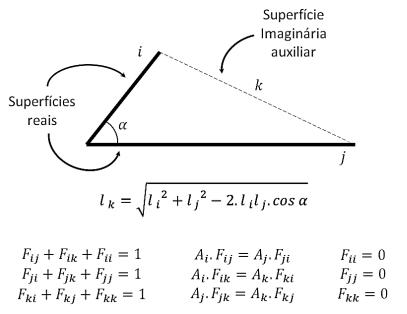
Sendo: $F_{ij} = \frac{1}{A_i} \cdot \int_{A_i} \int_{A_j} \frac{\cos \theta_i \cdot \cos \theta_j}{\pi R^2} \ dA_i \cdot dA_j$

Face à dificuldade de se utilizar a expressão geral para se calcular fatores de vista. Há três regras úteis para se determinar estes fatores:

Regra da reciprocidade: correlaciona o fator de vista de i para j e de j para i.
 Geralmente, F_{ij} ≠ F_{ji}. A relação correta entre estes dois fatores de vista é a relação de reciprocidade:

$$A_i.F_{ij} = A_i.F_{ji}$$

• Regra da somatória: para um invólucro composto de N superfícies adjacentes:

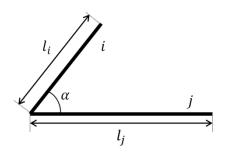

$$\sum_{i=1}^{N} F_{ij} = 1$$

Obs: $F_{ii}=0$ se a superfície i for convexa; $F_{ii}\neq 0$ se a superfície i for côncava.

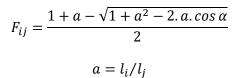
• Regra da composição de áreas: se uma superfície (j) é composta de n superfícies menores, a radiação que deixa (i) e que chega em j é da por:

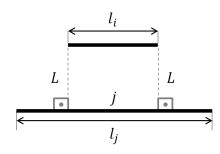
$$F_{i(j)} = \sum_{k=1}^{n} F_{ik}$$

Uma prática comum na determinação de fator de vista é o uso de superfícies imaginárias auxiliares, cujas dimensões podem ser determinadas por relações geométricas simples. Como pode ser visto no exemplo da *Figura 16*.


Figura 16: Exemplo de determinação de fatores de vista num problema simples usando superfícies imaginárias e relações trigonométricas.

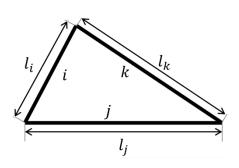
A *Tabela 3* mostra algumas expressões para a fatores de vista de geometrias simples.


Tabela 3: Resultados de fatores de vista para geometrias simples.


Caso

Fator de vista

Placas planas infinitas com aresta comum e ângulo α entre si



Placas infinitas, paralelas e alinhadas

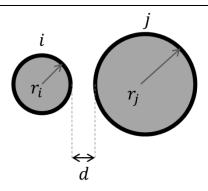
$$F_{ij} = \frac{\sqrt{(b+a)^2 + 4} - \sqrt{(b-a)^2 + 4}}{2.a}$$

$$a = \frac{l_i}{L} \qquad b = \frac{l_j}{L}$$

Tubo infinito de seção triangular

$$F_{ij} = \frac{l_i + l_j - l_k}{2.\,l_i}$$

Tabela 3 (cont.): Resultados de fatores de vista para geometrias simples.

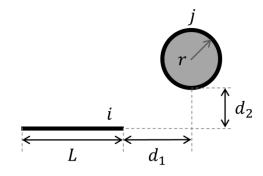


Calha com sessão de segmento de círculo

$$F_{ij} = \frac{a}{asen(a)}$$

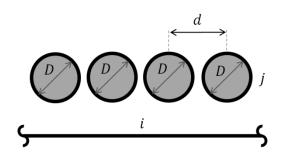
$$F_{ii} = 1 - \frac{a}{asen(a)}$$

$$a = \frac{d}{D}$$


Dois cilindros alinhados

$$F_{ij} = \frac{1}{2\pi} (\pi + A + B)$$

$$A = \sqrt{c^2 - (r+1)^2} - \sqrt{c^2 - (r-1)^2}$$


$$B = (r-1) \cdot a\cos\left(\frac{r-1}{c}\right) - (r+1) \cdot a\cos\left(\frac{r+1}{c}\right)$$

$$r = \frac{r_j}{r_i} \quad s = \frac{d}{r_i} \quad c = 1 + r + s$$

Clindro e placa infinita

$$F_{ij} = \frac{r}{L} \left(\operatorname{atan} \left(\frac{L + d_1}{r + d_2} \right) - \operatorname{atan} \left(\frac{d_1}{r + d_2} \right) \right)$$

Placa infinita, de largura infinita e cilindros alinhados

$$F_{ij} = 1 + A + B$$

$$A = -\sqrt{1 + a^2}$$

$$B = a \cdot \arctan\left(\sqrt{\frac{1 - a^2}{a^2}}\right)$$

$$a = D/d$$

As *Figuras 17, 18 e 19* mostram três casos simples de geometrias tridimensionais. As expressões analíticas são encontradas abaixo da figura correspondente.

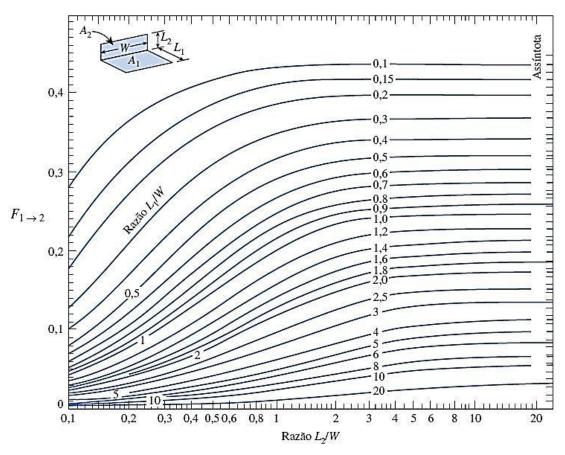
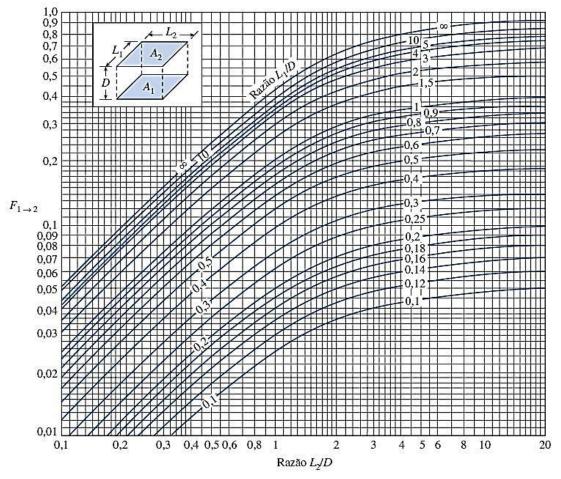


Figura 17: Fator de vista para duas placas dispostas perpendicularmente. (fonte: ÇENGEL & GHAJAR, 4ª edição)


$$F_{12} = \frac{1}{\pi \cdot L} (A + B + C)$$

$$A = L \cdot \text{atan}(1/L) + H \cdot \text{atan}(1/H)$$

$$B = a^{0.5} \cdot \text{atan}(a^{-0.5})$$

$$C = \frac{1}{4} \ln \left[\left(\frac{(1+a+b)}{1+a} \right) \cdot \left(\frac{L^2(1+a)}{L^4+a+b} \right)^{L^2} \cdot \left(\frac{H^2(1+a)}{H^4+a+b} \right)^{H^2} \right]$$

$$L = \frac{L_1}{W} \quad L = \frac{L_2}{W} \quad a = L^2 + H^2 \quad b = (L \cdot H)^2$$

Figura 18: Fator de vista para duas placas paralelas e alinhadas. (fonte: ÇENGEL & GHAJAR, 4ª edição)

$$F_{12} = \frac{1}{\pi \cdot X \cdot Y} \cdot \ln(A + B + C)$$

$$A = \sqrt{\frac{a+b}{a+b-1}}$$

$$B = X.\sqrt{b}. \operatorname{atan}\left(\frac{X}{\sqrt{b}}\right) + Y.\sqrt{a}. \operatorname{atan}\left(\frac{Y}{\sqrt{a}}\right)$$

$$C = -(X. \operatorname{atan}(X) + Y. \operatorname{atan}(Y))$$

$$X = \frac{L_1}{D} \quad Y = \frac{L_2}{D} \quad a = 1 + X^2 \quad a = 1 + Y^2$$

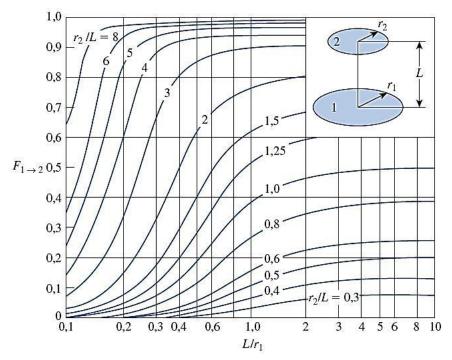


Figura 19: Fator de vista para dois discos alinhados. (fonte: ÇENGEL & GHAJAR, 4ª edição)

$$F_{12} = \frac{1}{2} \cdot \left(S - \sqrt{S^2 - 4 \cdot (r_2/r_1)^2} \right)$$

$$R_1 = \frac{r_1}{L}$$
 $R_2 = \frac{r_2}{L}$ $S = \frac{1 + R_1^2 + R_2^2}{R_1^2}$

1.5 Troca de radiação entre superfícies (meios não participantes)

Troca de radiação entre superfícies: uma dada superfície recebe radiação de outra superfície, mas também emite radiação, além de refletir a radiação incidente. Portanto, existe um valor "líquido" na troca de radiação entre as duas superfícies.

Hipóteses:

- Superfícies isotérmicas, opacas (só ocorre absorção e reflexão, $\rho=1-\alpha$, sem transmissão) que se portam ou como corpos negros ou como superfícies cinzas ($\alpha=\varepsilon$);
- Radiação difusa, Radiosidade e Irradiação uniformes;
- Meio não influencia a troca de radiação (não participante);
- Regime permanente.

Troca líquida de radiação entre duas superfícies i e j:

$$q_{ij} = A_i F_{ij} J_i - A_j F_{ji} J_j$$

Pela relação de reciprocidade: $A_i F_{ij} = A_j F_{ji}$, então:

$$q_{ij} = A_i F_{ij} (J_i - J_j)$$

Para uma superfície, o balanço de radiação resulta no aporte de calor que deve ser suprido para manter a superfície com temperatura constante:

$$q_i = A_i(J_i - G_i)$$

• Pela definição de radiosidade e considerando-se superfícies cinzentas:

$$J_i = E_i + \rho_i G_i = \varepsilon_i E_{CN} + (1 - \alpha_i) G_i$$

$$G_i = \frac{J_i - \varepsilon_i E_{CN}}{(1 - \varepsilon_i)}$$

$$\therefore q_i = A_i \left(J_i + \frac{\varepsilon_i E_{CN} - J_i}{(1 - \varepsilon_i)} \right) = \frac{A_i \cdot \varepsilon_i}{1 - \varepsilon_i} \cdot (E_{CN} - J_i)$$

• Radiação que chega à superfície *i* por meio de superfícies em seu entorno (inclusive dela mesma):

$$A_iG_i = \sum_j F_{ji}.A_j.J_j = \sum_j F_{ij}.A_i.J_j$$

$$G_i = \sum_{i} F_{ij}.J_j$$

$$\therefore q_i = A_i \left(J_i - \sum_j F_{ij} . J_j \right)$$

Pela regra da soma: $J_i = \sum_j F_{ij}.J_j$. Então:

$$q_{i} = A_{i} \left(\sum_{j} F_{ij} J_{i} - \sum_{j} F_{ij} J_{j} \right) = \sum_{j} F_{ij} A_{i} (J_{i} - J_{j})$$

Portanto:

$$\frac{A_i \cdot \varepsilon_i}{1 - \varepsilon_i} \cdot (E_{CN} - J_i) = \sum_j F_{ij} \cdot A_i \cdot (J_i - J_j)$$
$$q_i = \sum_j q_{ij}$$

No caso de superfícies negras ($\varepsilon_i=1, \rho_i=0$), $J_i=E_{CN,i}=\sigma T_i^4$ e:

$$q_i = \sum F_{ij}.A_i.\sigma.(T_i^4 - T_j^4)$$

Caso particular: duas superfícies dispostas formando um invólucro fechado (caso mais simples de troca de radiação entre duas superfícies).

$$q_{12} = q_1 = -q_2$$

• Radiação líquida, para a superfície 1:

$$q_1 = \frac{A_1 \cdot \varepsilon_1}{1 - \varepsilon_1} \cdot \left(\sigma T_1^4 - J_1\right)$$

• Radiação líquida, para a superfície 2:

$$q_2 = \frac{A_2 \cdot \varepsilon_2}{1 - \varepsilon_2} \cdot \left(\sigma T_2^4 - J_2\right)$$

• Troca de calor líquida entre as duas superfícies:

$$q_{12} = A_1.F_{12}.(J_1 - J_2)$$

Resolvendo as equações para J_1 e J_2 :

$$q_{12} = q_1 = -q_2 = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{A_1, \varepsilon_1} + \frac{1}{A_1, F_{12}} + \frac{1 - \varepsilon_2}{A_2, \varepsilon_2}}$$

O resultado se assemelha a uma definição de resistência ao transporte de calor. Obviamente, cada geometria de superfícies fechadas irá ter um resultado específico.

A equação acima pode ser expressa por:

$$q_{12} = A_1 \Im_{12} \sigma (T_1^4 - T_2^4)$$

Sendo:

$$\frac{1}{A_1 \Im_{12}} = \frac{1 - \varepsilon_1}{A_1 \cdot \varepsilon_1} + \frac{1}{A_1 \cdot F_{12}} + \frac{1 - \varepsilon_2}{A_2 \cdot \varepsilon_2}$$

Alguns resultados para geometrias simples são descritos na **Tabela 4**. Cada um dos casos descritos pode ter um das superfícies como sendo um corpo negro num caso particular (ε =1). Os casos descritos podem ser estendidos para o uso de um escudo de radiação entre as duas superfícies.

Tabela 4: Troca líquida de radiação entre duas superfícies para várias geometrias.

Geometria	Parâmetros Geométricos	Troca Líquida
Placas planas infinitas paralelas	$A = A_1 = A_2$ $F_{12} = 1$	$q_{12} = \frac{A. \sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$
Cilindros infinitos Concêntricos	$A_1 = 2\pi \cdot r_1 L$ $A_2 = 2\pi \cdot r_2 L$ $F_{12} = 1$	$q_{12} = \frac{2\pi \cdot L \cdot \sigma(T_1^4 - T_2^4)}{\frac{1}{r_1 \cdot \varepsilon_1} + \frac{1}{r_2 \cdot \varepsilon_2} - \frac{1}{r_2}}$
Esferas concêntricas	$A_1 = 4\pi \cdot r_1^2$ $A_2 = 4\pi \cdot r_2^2$ $F_{12} = 1$	$q_{12} = \frac{4\pi \cdot \sigma(T_1^4 - T_2^4)}{\frac{1}{r_1^2 \cdot \varepsilon_1} + \frac{1}{r_2^2 \cdot \varepsilon_2} - \frac{1}{r_2^2}}$
Pequeno objeto convexo	$A_1 = A$	
em uma grande	$A_2 \rightarrow \infty$	$q_{12} = A. \sigma. \varepsilon_1. (T_1^4 - T_2^4)$
superfície fechada	$F_{12} = 1$	

Considerando-se o caso de três superfícies, sendo uma refratária (R), tem-se a seguinte expressão para a troca líquida entre as outras duas (1 e 2):

$$q_{12} = q_1 = -q_2 = \frac{\sigma \left({T_1}^4 - {T_2}^4\right)}{\frac{1 - \varepsilon_1}{A_1.\,\varepsilon_1} + \frac{1}{A_1.\,F_{12} + \left[\left(\frac{1}{A_1F_{1R}}\right) + \left(\frac{1}{A_1F_{2R}}\right)\right]^{-1}} + \frac{1 - \varepsilon_2}{A_2.\,\varepsilon_2}}$$

1.6 Meio Participante

Meio participante: quando a meio interfere na troca de radiação. Particulados em suspensão (sólidos, gotículas, névoas) e moléculas como CO, CO_2 , NH_3 , SO_2 , H_2S e H_2O agem como meio participante. Gases simples (moléculas pouco polares), como N_2 , H_2 e O_2 , são praticamente transparentes, e, assim, não interferem na troca de radiação.

Lei de Beer: uma radiação de intensidade $I_{\lambda,0}$ incide em uma camada fixa de gás, deixando a região com intensidade $I_{\lambda,L}$, menor que a inicial (**Figura 20**). Por hipótese, a região apenas absorve e transmite a radiação, de forma que $\alpha_{\lambda} + \tau_{\lambda} = 1$.

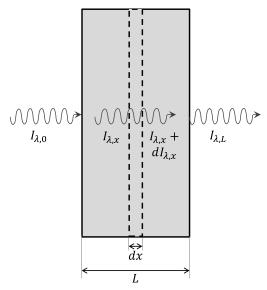


Figura 20: Interação do gás reduzindo a intensidade da radiação incidente.

Experimentalmente, constata-se que:

$$dI_{\lambda,x} = -K_{\lambda}.I_{\lambda,x}dx$$

 K_{λ} é o coeficiente de extinção molar ou de aborção (m⁻¹) e depende da composição do gás, da temperatura deste e do comprimento de onda. Integrando-se a expressão acima entre a (x=0) e (x=L) tem-se:

$$I_{\lambda,L} = I_{\lambda,0}. e^{-K_{\lambda}.L}$$

A transmissividade é dada por: $I_{\lambda,L}/I_{\lambda,0}=\tau_{\lambda}=1-\alpha_{\lambda}$. Daí, vem a forma clássica da Lei de Beer ou Lei da Absorção Volumétrica. Esta lei também é válida para líquidos e meios semitransparentes.

$$au_{\lambda} = e^{-K_{\lambda}.L}$$

Da Lei de Kirchoff, tem-se:

$$\varepsilon_{\lambda} = \alpha_{\lambda} = 1 - e^{-K_{\lambda}.L}$$

<u>Método de Hottel</u>: considera a troca de radiação entre uma massa gasosa hemisférica à temperatura T_g e uma pequena superfície negra em seu centro (*Figura 21*).

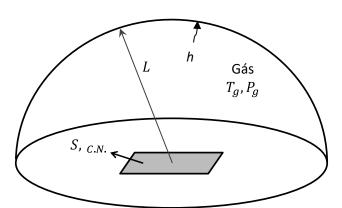


Figura 21: Método de Hottel para definição da emissividade de um gás e interação com uma superfície S.

Hottel define a emissividade do gás como a razão entre a radiação emitida do gás para a superfície $(q_{g \to s})$ e a radiação emitida para uma casca hemisférica (negra e com temperatura T_g) $(q_{h \to s})$:

$$q_{g\to s}=\varepsilon_g.A_s.\sigma.T_g^4$$

 $q_{h o s} = A_h.F_{hs}.\,\sigma.\,T_g^{\ 4} = A_s.\,\sigma.\,T_g^{\ 4}$ pela regra da reciprocidade, $F_{sh} = 1$

$$\therefore \frac{q_{g \to s}}{q_{h \to s}} = \frac{\varepsilon_g. A_s. \sigma. T_g^4}{A_s. \sigma. T_g^4} = \varepsilon_g$$

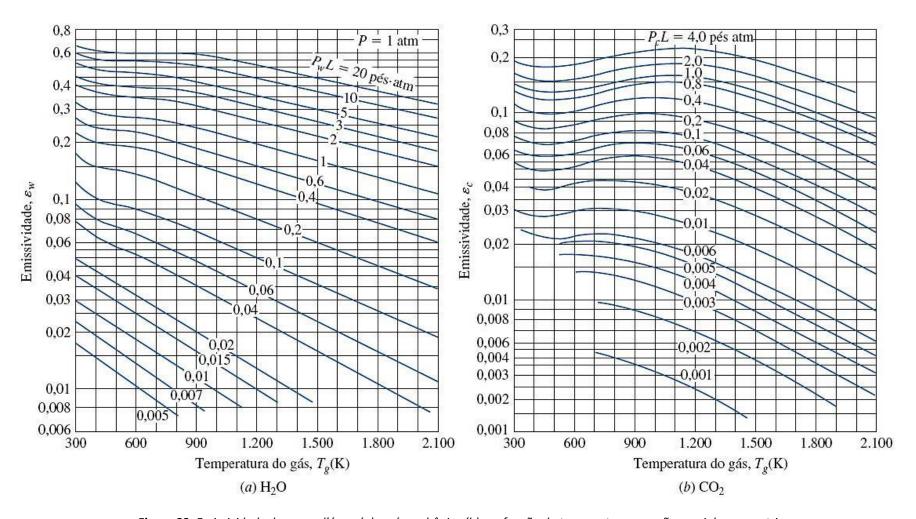
A emissividade ε_g corresponde à emissão de um volume de gás hemisférico de raio L. Este resultado pode ser estendido para outros volumes de gases, definindo-se , assim, o comprimento médio de feixe radiante.

A troca líquida de radiação entre o gás e uma superfície S, negra com temperatura T_S , é dada por:

$$q = q_{g \to s} - q_{s \to g} = \sigma. A_s. (\varepsilon_g. T_g^4 - \alpha_g. T_s^4)$$

Como $T_g \neq T_s$, não se aplica a Lei de Kirchoff (as radiações emitida e absorvida são de "qualidades" diferentes). A determinação de ε_g e α_g depende de alguns fatores, como a temperatura do gás, a sua pressão parcial, a sua composição e a geometria do problema, que nem sempre é esférica.

O valor de ε_q é calculado pela seguinte equação:


$$\varepsilon_g = \sum C_i.\,\varepsilon_i - \Delta\varepsilon$$

Em que ε_i é a emissividade de cada componente i da mistura gasosa, C_i é um fator de correção para pressões totais acima de 1 atm e $\Delta\varepsilon$ é a variação da emissividade devido à presença de diferentes gases. Todos estes valores são encontrados por meio de correlações gráficas. As **Figuras 22, 23 e 24** mostram, respectivamente, o valor de ε_i para vapor d'água e dióxido de carbono, os fatores de correção de pressão para vapor d'água e dióxido de carbono e os desvios de emissividade por efeito devido à presença de diferentes gases.

A **Tabela 5** apresenta o comprimento médio de feixe radiante para diferentes geometrias.

Tabela 5 Comprimento médio de feixe radiante para diferentes geometrias.

Geometria	Comprimento característico	L _e
Esfera	Diâmetro D	0,65 D
Cilindro infinito	Diâmetro D	0,95 D
Espaço entre planos paralelos infinitos	Distância entre os planos L	1,80 L
Cilindro de altura igual ao diâmetro	Diâmetro D	0,60 D
Cubo	Lado L	0,66L
Forma genérica de volume V irradiando para área A	V/A	3,6 V/A

Figura 22: Emissividade de vapor d'água (a) e gás carbônico (b) em função da temperatura, pressão parcial e geometria.

(Fonte: ÇENGEL, Y.A., GHAJAR, A. F. 4ª edição).

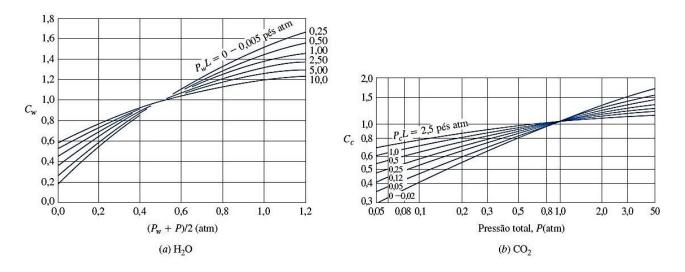


Figura 23: Fator de correção da emissividade em função da pressão para o vapor d'água (a) e gás carbônico (b).

(Fonte: ÇENGEL, Y.A., GHAJAR, A. F. 4ª edição)

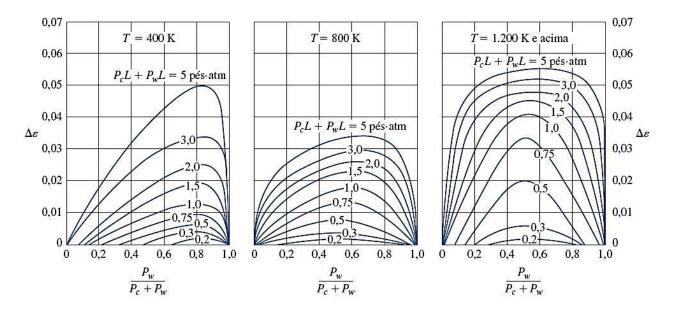


Figura 24: Fator de correção da emissividade pela mistura de vapor d'água e de gás carbônico.

(Fonte: ÇENGEL, Y.A., GHAJAR, A. F. 4º edição)

Quanto à absortividade do gás, pode-se utilizar uma expressão semelhante à do cálculo da emissividade:

$$\alpha_g = \sum \alpha_i - \Delta \alpha$$

onde cada α_i é dado pela expressão abaixo e $\Delta \alpha = \Delta \varepsilon$ para uma mesma mistura de gases.

$$\alpha_i = C_i \cdot \varepsilon'_i \left(\frac{T_g}{T_s}\right)^n$$

onde C_i é o coeficiente de correção pro pressão da **Figura 23** e ε'_i é a emissividade lida na **Figura 22**, mas com o parâmetro P_i . L. $\left(\frac{T_s}{T_g}\right)$ ao invés do parâmetro P_i . L. Para água. n=0,45 e, para o dióxido de carbono, n=0,65.

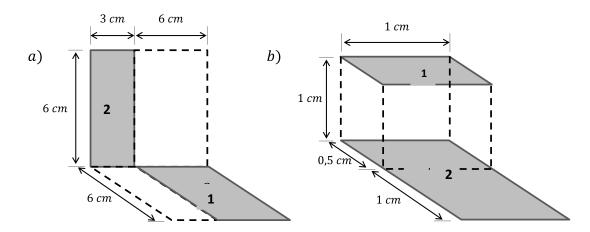
Anexo:

Tabela 6: Propriedades de materiais: absortividade (radiação solar) e emissividade (300 K).

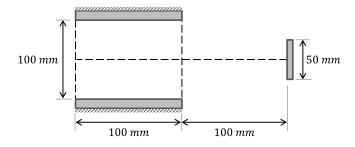
Materiais	αs	Езоок	αs/ε _{300K}
Alumínio			
Polido	0,09	0,03	3,0
Anodizado	0,14	0,84	0,17
Revestido com sílica	0,11	0,37	0,30
Folha	0,15	0,05	3,0
Concreto	0,60	0,88	0,68
Metal galvanizado			
Novo	0,65	0,13	5,0
Oxidado	0,80	0,28	2,9
Metal revestido			
Sulfeto negro	0,92	0,10	9,2
Óxido de cobalto negro	0,93	0,30	3,1
Óxido de níquel negro	0,92	0,08	11,0
Cromo negro	0,87	0,09	9,7
Neve			
Partículas finas	0,13	0,82	0,16
Grânulos de gelo	0,33	0,89	0,37
Tijolo vermelho	0,63	0,93	0,68
Tintas			
Negra ("Parsons")	0,98	0,98	1,0
Branca (acrílica)	0,26	0,90	0,29
Branca (óxido de zinco)	0,16	0,93	0,17

2. EXERCÍCIOS

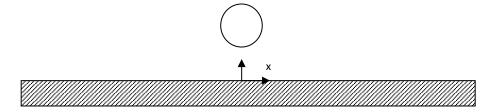
1) As transmissividades espectrais de vidros fabricados num dado processo são dadas pelas funções (do tipo degrau) abaixo. Compare a fração de energia que seria transmitida por cada um dos dois vidros caso eles fossem irradiados com radiação solar. Compare a fração de energia radiante que seria transmitida apenas na faixa do visível, para cada um dos vidros.


```
Vidro simples: \tau = 0.9 se 0.3 \le \lambda \le 2.5 \ \mu m; \tau = 0 \ c. \ c.
Vidro colorido: \tau = 0.9 se 0.5 \le \lambda \le 1.5 \ \mu m; \tau = 0 \ c. \ c.
```

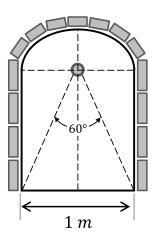
- 2) Ao escolher o revestimento para o telhado de sua casa, um especialista em radiação solar consultou dados sobre a absortividade espectral de dois materiais, A e B. Para comprimentos de onde entre 0 e 20 μm , o material A tem absortividade de 0,8. O material B tem absortividade 0,6 para comprimentos de onda entre 0 e 4 μm e 0,2 para comprimentos de onda entre 4 e 20 μm . Após a consulta, o especialista indicou quais os melhores materiais a serem utilizados no inverno e no verão. Quais foram as escolhas do especialista?
- 3) O Sol pode ser considerado, para efeitos de radiação térmica, como um corpo negro esférico de diâmetro de 1,393. 10^9 m com temperatura de 5778 K. A Terra encontra-se a uma distância de 1.496. 10^{11} m do Sol, e o fluxo de radiação na superfície logo acima da atmosfera terrestre é denominada constante solar, S_c . Estime esta constante, nos seguintes casos:
 - a) Incidência de radiação normal à superfície da atmosfera terrestre.
 - b) Incidência de radiação com um ângulo de 25°, com a normal ao solo.
 - c) A potência que é fornecida à região iluminada da terra, considerando que a Terra tem 6,371.10⁶ m de raio.
- 4) Um grupo de alunos, interessados em estudar a transferência de calor por radiação solar, subiu ao topo do edifício Semi-Industrial e deixou um balão de vidro, cheio de água sob a luz solar, entre 11h da manhã e o meio-dia, acompanhando a evolução da temperatura da água com um termômetro e sempre agitando o conteúdo do balão. Utilizando dados de radiação solar de um medidor que se encontra no topo do mesmo edifício, os alunos determinaram que o fluxo de radiação que chegava no local era 79,5% da constante solar e que ele podia ser considerado mais ou menos constante ao longo do tempo. A tabela dos dados obtidos pelos alunos é apresentada abaixo. Considere os seguintes dados: volume do balão = 1 L, temperatura ambiente = 28 °C e coeficiente global de troca térmica externo = 54,5 W/m².K devido ao vento durante o experimento. Ainda, segundo dados da literatura, a absortividade da água é 75%.


Hora	T (°C)	11:20	26
11:00	20	11:30	27,2
11:05	23,2	11:40	28,7
11:10	24,2	11:50	30
11:15	25	12:00	30,5

- a) Desenvolva um modelo para predizer a temperatura da água ao longo do tempo e verifique se este condiz com os dados obtidos pelos alunos. Explicite as simplificações realizadas.
- Qual o valor da temperatura que a água do balão atingiria se fosse deixada no sol com a mesma intensidade de radiação e mesmas condições de vento por muito tempo.
- c) Caso o experimento tivesse sido realizado em horários do dia diferentes, a hipótese de irradiação constante poderia ser considerada válida? Que outros fatores poderiam influenciar nesta hipótese?
- 5) Num dia com céu limpo, irradiação solar de 1100 W/m² incide sobre um telhado metálico horizontal e plano, cuja face inferior é isolada termicamente e a face superior tem absortividade de 0,6 e emissividade de 0,2 (valores válidos para o espectro solar). O vento causa um coeficiente de troca por convecção de 25 W/m².K e sua temperatura é de 27 °C. Pede-se estimar a temperatura do telhado em condições de regime permanente.
- 6) O teto de um compartimento de um caminhão frigorífico é constituído de uma fina placa metálica de 5 m de comprimento e 2 m de largura acoplada a uma espuma isolante de 25 mm de espessura e k=0.05 W/m.K, de forma a manter a temperatura no interior do caminhão em -13 °C. Um engenheiro previu que, durante a operação, o movimento da caminhão causava um coeficiente de transferência de calor por convecção de 68,3 W/m².K com o ar a 27 °C e uma irradiação solar de 900 W/m² . Perguntado sobre qual tinta utilizar para pintar a face externa da chapa metálica (Preta, Branca acrílica ou Branca de ZnO), o engenheiro tomou sua decisão com base nas absortividades (solar) e emissividades e estimou a temperatura da face externa caso a sua tinta escolhida fosse utilizada. De modo a minimizar a carga térmica do sistema de refrigeração, determine: a tinta que o engenheiro deve ter escolhido, a temperatura da face externa e a carga térmica.
- 7) Um conceito por muitas vezes utilizado é o de *temperatura do céu*, que seria a temperatura que o céu teria caso ele fosse uma superfície infinita que engloba o planeta e que se porta como um corpo negro de forma que a energia trocada por radiação ambiental possa ser estimada. A temperatura do céu é mais elevada quando o dia está fechado, pois a radiação é "retida" pelas nuvens mas, numa noite de céu limpo, a superfície terrestre literalmente perde calor para o céu por radiação, de forma que a temperatura do céu pode atingir valor de até -40 °C. Nesta situação, com ar ambiente a 20 °C e estagnado ($h \approx 5 \text{ W/m}^2$.K), é possível que a água em regiões superficiais ou de orvalho congele (fenômeno da geada)? Se sim, qual deveria ser o valor limite de h para que isto não ocorresse?


8) Determine os fatores de forma F₁₂ para os casos abaixo.

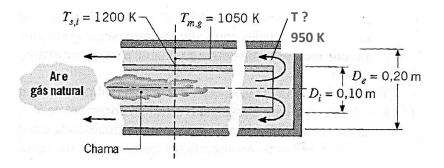
9) Um aquecedor tubular tem temperatura de sua superfície interna de 1000 K e pode ser considerada como um corpo negro, sendo a superfície externa isolada termicamente. Esse tubo irradia energia para um disco que se localiza coaxialmente ao tubo. Determine esta irradiação sobre o disco. (Vide figura abaixo).


10) Um elemento aquecedor cilíndrico longo com 20 mm de diâmetro e a 700 K está no vácuo. Ele está posicionado a 40 mm de uma superfície perfeitamente isolada na sua face inferior. Considerando-se que o cilindro e a superfície são negras e admitindo-se que a vizinhança (vácuo) encontra-se a 300 K, deduza o perfil de temperatura ao longo do comprimento x da superfície e calcule a temperatura máxima que esta irá atingir.

11) A fim de mitigar a perda de calor de um duto que transporta um fluido de processo quente, colocou-se uma blindagem de radiação concentricamente ao duto, fazendo-se vácuo no espaço anular. A blindagem tem 60 mm de diâmetro e espessura deseprezível e o tubo tem 20 mm de diâmetro. As emissividades interna e externa da blindagem são, respectivamente, 0,01 e 0,1, sendo que a parede externa da blindagem está exposta a um ambiente cujos entornos estão à 17 °C e tem-se transferência de calor por convecção

com coeficiente de 10 W/m².K com ar à 27 °C. Determine a temperatura da superfície externa do tubo (corpo negro) de forma que a blindagem seja mantida a 42 °C.

- 12) Utiliza-se um aquecedor com formato de disco de 200 mm de diâmetro para aquecer um recipiente, na forma cilíndrica e diâmetro 200 mm, com água, de forma que o recipiente fica suspenso a 100 mm do aquecedor, que se encontra a 1000 °C. Considere a água em ebulição a 100 °C. De quanto se aumentaria a produção de vapor de água se o espaço cilíndrico entre o aquecedor e base do recipiente fosse isolado ao invés de estarem expostos a uma vizinhança mantida a 27 °C? Considere que as superfícies se portam como corpos negros.
- 13) A figura abaixo mostra a secção transversal de um forno longo, cujo teto tem formato de uma calha cilíndrica. As paredes internas são construídas de tijolo refratário (agindo como uma superfície cinzenta com emissividade 0,9) e o elemento aquecedor é um bastão de 10 mm de diâmetro que pode ser considerado como um corpo negro cuja temperatura é mantida em 1500 K. A base do forno mede 1m e sua superfície é cinzenta, com emissividade de 0,6 e temperatura mantida em 500 K. Considerando que não há ar dentro do forno, calcule a potência por unidade de comprimento que deve ser suprida ao elemento aquecedor. Calcule também a temperatura da parede interna do forno, considerando-a isotérmica.

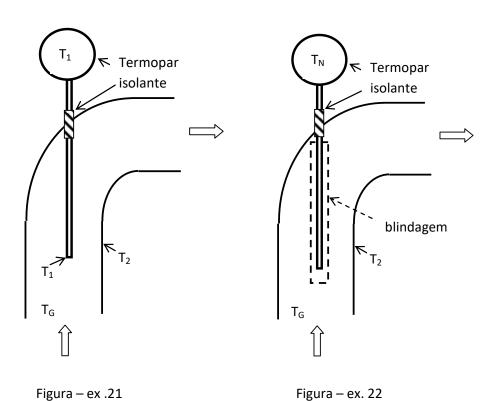


14) Obtenha uma expressão para o poder emissivo espectral de um corpo negro, E_{ν} , expresso em função da frequência ν . Dados: poder emissivo espectral de um corpo negro, E_{λ} , expresso em função comprimento de onda λ e relação frequência e comprimento de onda.

$$E_{\lambda} = \frac{2\pi h c_0^2 \lambda^{-5}}{n^2 \left(e^{\frac{h c_0}{n \lambda k T}} - 1\right)} \qquad ; \qquad \lambda \nu = \frac{c_0}{n}$$

- 15) Duas placas planas infinitas paralelas trocam radiação. As suas superfícies internas são cinzentas com $\varepsilon=0,5$. A placa superior é mantida a 400 K. Na placa inferior a face interna tem transferência de calor por convecção com ar a 300 K e h=50 W/m².K e a face externa é isolada termicamente. Pede-se:
 - a) A temperatura da placa inferior.
 - b) Estimar o fluxo de energia radiante que chega à superfície interna da placa superior.

- 16) Uma garrafa térmica cilíndrica possui 30 cm de altura. A garrafa interna tem 7 cm de diâmetro e encontra-se acoplada concentricamente a uma superfície que age como uma blindagem de radiação de 8 cm de diâmetro, havendo ar no espaço entre as duas superfícies. Tanto a superfície interna da garrafa quanto a interna da blindagem são revestidas com prata, de forma que ambas as emissividades são de 0,25. Se a superfície interna da blindagem encontra-se a 35 °C e a superfície interna da garrafa encontra-se a 75 °C, qual a perda térmica por radiação da garrafa de café?
- 17) Uma parede plana que pode ser considerada como um corpo negro a 400 K encontrase voltada para uma barreira de radiação com refletividade de 0,95. Fixada atrás da barreira, há uma parede de material isolante ($k=0,016~\rm W.m/K$) com 25 mm de espessura. Na outra face da parede de isolante, ar ambiente e uma vizinhança a 300 K produzem um coeficiente global de troca térmica (que inclui radiação e convecção) de $10~\rm W/m^2$.K. Determine a perda de calor por unidade de área da parede quente.
- 18) A figura abaixo mostra um tubo radiante de gás do tipo recuperativo de extremidade única. Uma mistura de ar e gás natural é injetada na extremidade esquerda do tubo central e a combustão completa-se enquanto os gases ainda encontram-se no tubo interno. Os gases de combustão são descarregados na região anular. Medições realizadas com termopares em uma posição axial particular indicam que a temperatura da parede do tubo interno é de 1200 K e que a temperatura da região anular é de 1050 K. O Tubo radiante está localizado no interior de um forno, cujas paredes internas encontram-se a 950 K. O ar no interior do forno está relativamente estagnado, podendo-se considerar um coeficiente de troca por convecção de 3,8 W/m².K e sua temperatura também é de 950 K. Os tubos possuem paredes finas com emissividade de 0,6. Calcule a temperatura da parede do tubo radiante admitindo que os gases de combustão não interferem na troca de calor por radiação e que dentro do tubo $h=28,9 \text{ W/m}^2$.K.



- 19) Considere um forno cúbico de aresta 2 m, cujo teto é mantido a 1000 K e o piso a 500 K, sendo as demais paredes refratárias. Assumindo-se que o teto e o chão são superfícies negras, determine a troca líquida de radiação entre o teto e o chão.
- 20) Repita o exercício anterior, considerando-se:

a)
$$\varepsilon_{\text{teto}} = 1.0 \text{ e } \varepsilon_{\text{piso}} = 0.8$$

b)
$$\varepsilon_{\text{teto}} = 0.8 \text{ e } \varepsilon_{\text{piso}} = 0.8$$

- 21) Em uma tubulação escoa gás quente (figura anexa), cuja temperatura é medida por meio de um termopar. A indicação do termopar é T₁ = 800 K. Sabe-se que a temperatura da parede da tubulação é T₂ = 500 K. O coeficiente convectivo de transferência de calor entre o gás e a superfície do termopar é h= 120 W/(m². ºC). As emissividades da superfície do termopar e da tubulação são, respectivamente, 0,8 e 0,565. Considere o gás como meio não participante (transparente à radiação) e condição de regime permanente. O termopar é cilíndrico, longo, de diâmetro = 5 mm e não conduz calor para fora (isolado). A tubulação tem diâmetro interno = 100 mm e é longa. Calcule a temperatura real do gás T₆. Calcule o "erro" do termopar (diferença entre T₆ e T₁).
- 22) Considere o mesmo problema do exercício anterior. Para minimizar o "erro" do termopar, instala-se uma blindagem, na forma de um longo e fino tubo metálico de diâmetro 20 mm e emissividade ε_{blindagem} = 0,3 (superfícies interna e externa). Considere a indicação do termopar T₁ = 800 K e a temperatura da parede da tubulação T₂ = 500 K. Os coeficientes convectivos de transferência de calor entre o gás e a superfície do termopar e entre o gás e a blindagem podem ser considerados iguais a h= 100 W/(m². ^QC). O coeficiente convectivo de transferência de calor entre o gás e a superfície do termopar é h= 120 W/(m². ^QC). As emissividades da superfície do termopar e da tubulação são, respectivamente, 0,8 e 0,565. Calcule: a) temperatura real do gás T_G, b) o "erro" do termopar (diferença entre T_G e T₁) e c) a temperatura da blindagem.

23) Um forno consiste de em duas placas grandes paralelas separadas por uma distância de 0,75 m. Uma mistura composta de O_2 , N_2 , CO_2 e H_2O , com frações molares de 0,20, 0,50, 0,15 e 0,15, respectivamente, escoa entre as placas a uma pressão total de 2 atm e

- temperatura de 1300 K. As placas são superfícies negras e mantidas a 500 K. Estime o fluxo de radiação entre o gás e uma das placas.
- 24) Produtos de combustão, a 2000 K e 1 atm, escoam em um tubo metálico muito fino de 0,25 m de diâmetro, cuja superfície interna é negra. O gás é composto de 10% molar de CO_2 e 10% molar de H_2O . O coeficiente de convecção interno é de 29 $W/(m^2.9C)$. Externamente ao tubo tem-se o escoamento de água líquida a 300 K, com coeficiente de convecção 1130 $W/(m^2.9C)$. Estime a temperatura do tubo e fluxo de calor.

RESPOSTAS

Questão	Respostas		
1	Todo o espectro - simples: 84%, colorido: 57%		
1	Espectro visível - simples: 37%, colorido: 58%		
2	Verão: A; Inverno: B		
3	a) $S_c \approx 1356 \text{ W/m}^2$; b) 1229 W/m ² ; c) 4,323.10 ¹⁶ W		
4	a) $S_c \approx 1356 \text{ W/m}^2$; b) 1229 W/m^2 ; c) $4{,}323.10^{16} \text{ W}$ a) $T(t) = T_0 e^{-\frac{6Ut}{\rho c_p D}} + \left(\frac{\alpha G_{rad}}{4U} + T_\infty\right) \left(1 - e^{-\frac{6Ut}{\rho c_p D}}\right)$		
	b) 31,7 °C		
5	48,35 °C		
6	Tinta de ZnO (menor α); 22 °C; 704 W		
7	Sim, pois a temperatura da água atingiria -4,7°C; 7,2 W/m².K		
8	a) 0,038; b) 0,23		
9	6825 W/m ²		
10	439 K		
11	745 K		
12	83%		
13	8518 W/m ; 733 K		
14	$E_{\lambda} = \frac{2\pi h v^3 n^2}{c_0^2 \left(\frac{hv}{e^{kT}} - 1\right)}$		
15	a) 306 K; b) 816 W/m ²		
16	3,2 W		
17	30 W/m²		
18	1040 K		
19	128 kW		
20	a) 21,6 kW; b) 21,0 kW		
21	931 K e 131 K		
22	808,3 K, 8,3 K e 783,7 K		
23	63780 W/m ²		
24	380 K, 90 kW/m ²		

3. LISTA DE SÍMBOLOS

Símbolo	Nome	Modificador	Unidade (SI)	
		h– do hemisfério		
A	Área	s – da superfície	m²	
		t – que emite radiação		
C_1 , C_2 , C_i	Constantes	-	-	
c_p	Calor específico à pressão constante	-	J/kg.K	
c_0	Velocidade da luz no vácuo	-	m/s	
		CN – corpo negro		
		i, j – da superfície i ou j		
E	Poder emissivo	s – da superfície	W/m ²	
		λ – espectral		
		heta — não-difusa		
F	Fração de emissão	$(\lambda_1 o \lambda_2)$ – da banda entre λ_1 e λ_2	Adim.	
	Fator de vista ou de forma	ij – entre as superfície i e j	Adim.	
f	Frequência	λ – espectral	Hz	
,	,	λ – espectral		
		abs - absorvida		
\boldsymbol{G}	Irradiação	ref - refletida	- refletida W/m² - transmitida	
ū	adiação		┤ '''	
		i, j - da superfície i ou j	1	
	Coeficiente convectivo de trace	i, j - da superficie i od j		
h	Coeficiente convectivo de troca térmica	-	W/m².K	
	Constante de Planck	-	J.s	
		λ – espectral		
I	Intensidade de radiação	0 – sem interação	W/m²	
		L,x – com interação	7 ,	
i,j,k,n	Índice em geral	-	-	
J	Radiosidade	i, j - da superfície i ou j	W/m²	
K	Coeficiente de absorção	λ – espectral	m ⁻¹	
,	Condutividade térmica	-	J/m.K	
k	Constante de Boltzmann	-	J/K	
L,x,D	Comprimento ou diâmetro	-	m	
n	Índice de refração	-	Adim.	
Р	Presssão	g – do gás	Pa	
		i, j - da superfície i ou j		
		ij – de troca líquida entre i e j		
q	Calor	$i \rightarrow j$ – da superfície i para a	- W	
		superfície j		
q''	Fluve de caler		W/m²	
•	Fluxo de calor	λ – espectral		
R,r	Raio, coordenada radial	. ,	m	
_		g – do gás	_	
T	Temperatura	i, j - da superfície i ou j	K	
		s - da superfície		
V	Volume	g – ocupado com gás	m³	
	A le continui de de	g – do gás	ممانيم	
α	Absortividade	λ – espectral	Adim.	
Δ	Variação	-	-	
	,	g – do gás		
ε	Emissividade	λ – espectral	Adim.	
С	Emissividade	θ – não-difusa		
1	Comprimento de onda	max – valor da Lei de Wien		
λ	•		M	
ρ	Refletividade	λ – espectral	Adim.	
σ	Constante de Stefan-Boltzmann	-	W/m².K ⁴	
τ	Transmitância	λ – espectral	Adim.	
θ	Coordenada de altitude		rad	
φ	Coordenada de azimute		rad	
Ψ				

4. BIBLIOGRAFIA

- 1. INCROPERA, F.P et al − Fundamentos de Transferência de Calor e Massa − 6ª Edição − 2008 − LTC − Rio de Janeiro, Brasil.
- 2. KREITH, F. Princípios de Transmissão de Calor Tradução da 3ª edição americana 1977 Edgard Blücher São Paulo, Brasil.
- 3. ÇENGEL, Y.A., GHAJAR, A. F. − Transferência de calor e massa − 4ª edição − 2011 McGraw-Hill.
- 4. Lide, D.R. *CRC Handbook of Chemistry and Physics* 85ª edição CRC Press Boca Ratón, USA, 2005.