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Preface
This book is aimed at postgraduates, undergraduates and workers in industry
who require an introduction to geostatistics. It is based on seven years of
courses to undergraduates, M.Sc. students and short courses to industry, and
re°ects the problems which have been encountered in presenting this material
to mining engineers and geologists over a wide age range, and with an equally
wide range of numerical ability. The book would provide the foundation of
a course of about 20 to 30 hours, or of a ¯ve-day short course.

The level of mathematical and statistical ability required is fairly rudimen-
tary; it is su±cient to be able to cope with concepts like mean, variance,
standard error of the mean, normal and log-normal distributions, and to have
some notion of the background to solving sets of simultaneous equations.

As an introduction to a subject which is commonly presented as rather com-
plex, the book will familiarise the reader with the concepts and techniques of
geostatistics, providing the necessary foundation to enable him or her to eval-
uate basic idealised examples. It also gives an indication of how to employ
the techniques in more complex and realistic situations.

Geostatistics is used throughout this book in its European sense of the
`Theory of Regionalised Variables', developed by Georges Matheron and co-
workers at the Centre du Morphologie Math¶ematique at Fontainebleau. Al-
though most of the examples are drawn frommining, this re°ects the distribu-
tion of practitioners rather than the potential of the techniques. Practically
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any problem which involves the distribution of some variable in one dimen-
sion (e.g. time series), two dimensions (e.g. rainfall), or three dimensions
(e.g. disseminated ore deposits) can be solved using such a technique.

The units of measurement used in the book also re°ect the state of the
mining industry. No attempt has been made to standardise to SI units. The
examples are real examples, and it seems absurd to turn, for example, 5-ft
cores into 1.52-m cores. The one case where this seems to have been done
is an actual example where the mine involved had adopted SI units, but
continued to use its pre-metric 5-ft core boxes.

In the presentation of the material I have tried to show how the basic ideas
may be developed intuitively, and I have tended to avoid supporting the ideas
with a rigorous mathematical derivation, since there are numerous existing
publications which use this latter approach almost exclusively. While many
computational di±culties can be eased by use of computer programs, such
assistance should not be needed within the scope of this text. None of the
examples is too unwieldy for pencil and paper, far less for a calculator. Where
formulae are too complex (or tedious) to calculate by hand, tables have been
provided. One example has been included (the simulated iron ore body) so
that some experience may be gained at tackling a fairly realistic example, to
see whether the reader can reproduce the author's result.

Acknowledgements are due to Richard Durham, who provided some of the
examples and the simulated iron ore body; Reg Puddy who produced the
splendid drawings; Dr. C. G. Down who created the situation which forced
me to write the book; Malcolm Clark who baby-sat and produced some of
the prettier tables; and ¯nally to Andr¶e Journel and others at Fontainebleau
who taught me all I know about the theory of the Theory of Regionalised
Variables. Any shortcomings and inaccuracies in the text lie with me.

ISOBEL CLARK
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CHAPTER 1
Introduction

Perhaps it would be useful here at the very beginning to clear up any pos-
sible ambiguity which arises because of the use of the title Geostatistics.
In the early 1960s, after much empirical work by authors in South Africa,
Georges Matheron, now Head of the Centre de Morphologie Math¶ematique
in Fontainebleau, France, published his treatise on the Theory of Region-
alised Variables. The application of this theory to problems in geology and
mining has led to the more popular name Geostatistics. The contents of this
book are con¯ned to the simplest application of the Theory of Regionalised
Variables, that of producing the `best' estimation of the unknown value at
some location within an ore deposit. This technique is known as kriging. The
purpose of this text is to provide a simple treatment of Geostatistics for the
reader unfamiliar with the ¯eld. The subject may be discussed at a number
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of levels of mathematical complexity, and it is the intention here to keep the
mathematics to a necessary minimum. Some previous knowledge must be
assumed on the reader's part of basic concepts of ordinary statistics such as
mean, variance and standard deviation, con¯dence intervals and probability
distributions. Readers without this background are referred to any one of a
large number of excellent basic texts.

The application of Geostatistics to the estimation of ore reserves in mining
is probably its most well known use. However, it has been emphasised time
and again that the estimation techniques can be used wherever a continu-
ous measure is made on a sample at a particular location is space (or time),
i.e., where a sample value is expected to be a®ected by its position and its
relationships with its neighbours. Since most applications { and most of the
author's experience { are con¯ned to the mining ¯eld, so will most of the ex-
amples in this book. Also, there will be a tendency to talk of `grades' rather
than `sample values', for brevity if nothing else. If the reader is interested in
other ¯elds, it su±ces to replace `grade' by porosity, permeability, thickness,
elevation, population density, rainfall, temperature, fracture length, abun-
dance or whatever.

The application of statistical methods to ore reserve problems was ¯rst at-
tempted some 30 years ago in South Africa. The problem was that of pre-
dicting the grades within an area to be mined from a limited number of
peripheral samples in development drives in the gold mines. Gold values
are notoriously erratic, and when plotted in the form of a histogram show a
highly skewed distribution with a very long tail into the rich grades. Nor-
mal (Gaussian) statistical theory will not handle such distributions unless a
transformation is applied ¯rst. H. S. Sichel applied a log-normal distribu-
tion to the gold grades and achieved encouraging results. He then published
formulae and tables to enable accurate calculation of local averages for log-
normal variables, and also con¯dence limits on those local averages. Three
major drawbacks exist in the application of Sichel's `t' estimator. The `back-
ground' probability distribution must be log-normal. The samples must be
independent. There is no consideration taken of the position of the samples
{ all are equally important. However, the technique proved very useful in the
gold mines, especially since some measure of the reliability of the estimator
was provided. It also laid the base for further statistical work by providing
the conceptual framework necessary, i.e., by assuming that the sample values
came from some probability distribution. At this stage, it was assumed that
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all the samples (in a given area) came from the same probability distribution
{ a log-normal one { and this assumption is known in ordinary statistics as
`stationarity'.

Subsequent to this work attempts were made to incorporate position and
spatial relationships into the estimation procedure. Two things seemed sen-
sible: there should be `rich' areas and `poor' areas within a deposit; and there
should be some sort of relationship between one area and the next. These
were tackled in the 1950s and early 1960s by the introduction of Trend Sur-
face Analysis. In South Africa, trends were picked out by forming a `rolling
mean' which produced a smoothed map so that high and low areas could
be distinguished. In the United States a `Polynomial Trend Surface' analy-
sis was propounded which used a statistical technique to ¯t a mathematical
equation to describe the trend. Both methods have one thing in common
{ the basic assumptions about the statistical characteristics of the deposit.
These assumptions have been extended from the `stationarity' one, by stating
that the sample value is expected to vary from area to area in the deposit.
Some areas are expected to be rich, some to be poor. This expectation can
be expressed as a reasonably smooth variation, either by a smoothed map
or a relatively simple equation. Round about this trend there is expected
to be random variation. That is, the value at any point in the deposit is
supposed to comprise (i) a `¯xed' component of the trend (which is proba-
bly unknown), and (ii) a random variable following one speci¯c distribution.
Thus the stationarity has been shifted one step; the expected grade may vary
slowly, but the random component is `stationary'. We have also dropped the
log-normality assumption. This approach is quite useful for an overview of
the deposit, but, except in heavily sampled areas like the gold mines, is not
really useful for local estimation.
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Fig 1.1 Hypothetical sampling and estimation situation

Let us consider the problem of local estimation, e.g. of trying to estimate the
value at, say, point A in Fig 1.1, given the samples at the various locations
shown. It seems reasonable to evolve an estimation procedure which gives
more importance to sample 1 than to sample 5. A whole range of methods
have been produced to decide on the `weight' accorded to each sample, mostly
based on the distance of the sample from the point being estimated. Sample
values may be weighted by inverse-distance, inverse-distance squared, or by
some arbitrary constant (e.g. range of in°uence) minus the distance. All
of these involve the same basic assumption { that the relationship between
the value at point A and any sample value depends on the distance (and
possibly direction) between the two positions, and on nothing else. It does
not depend on whether one is in a rich or poor zone, or on the actual sample
values, but only on the geometric placing of the samples. In fact, it does not
even depend on the mineral in the deposit!

There are some problems with this approach. Which weighting factors are the
best to choose? How far do you go in including samples { if there is a sample
6 which is twice as far away as sample 5, should it be included? How reliable
is the estimate when we get it? Can we seriously expect the same estimation
method to be equally valid on all types of deposits? On the other hand,
the idea of weighting samples by some measure of their similarity to what is
being estimated is intuitively appealing. It also seems to avoid those crippling
restrictions on what distribution of values you can handle, which so limit the
other methods of estimation. `Similarity' can be measured statistically by
the covariance between samples or by their correlation. However, to calculate
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either of these we have to go back to `stationarity' type assumptions. Let us
look instead at the di®erence between the samples.

In Fig 1.1 is seems sound to expect that the value at position 5 will be `very
di®erent' from that at A, whilst sample 1, say, will have a value `not very
di®erent' from that at A. Let us make an assumption that the di®erence in
value between two positions in the deposit depends only on the distance be-
tween them and their relative orientation. Suppose we took a pair of samples
50ft apart on a north-south line in one part of the deposit, and measured
the di®erence between the two values. Now, suppose we did the same, say,
200ft away. And again in yet another position, and so on. The value ob-
tained (di®erence in grade) would be di®erent for each pair of samples, but
under our assumptions all of these values would be from the same probability
distribution. Thus, if we could take enough such pairs, we could build up
a histogram of the di®erences and investigate the distribution from which
they were drawn. We would expect that distribution to be governed by the
distance between the pair and the relative orientation, i.e. 50ft, north-south.
E®ectively, we have worked the implicit assumptions of the distance weight-
ing techniques into a statistical form.

However, we will have one histogram for every di®erent distance and direction
in the deposit. To build up any useful picture of the deposit we need as many
di®erent distances and directions as possible. To investigate a histogram
for each would be tedious and would overwhelm us with not terribly useful
information. Let us resort to the usual trick of summarising the histogram
in a couple of simple parameters. The usual ones are the arithmetic mean
(average) and the variance, or equivalently the standard deviation. Suppose,
for shorthand, we describe the distance between the samples and the relative
orientation as h. We have said that the di®erence in grade between the
two samples depends only on h. In statistical terms, the distribution of the
di®erences depends only on h. If this is true of the whole distribution, it
is also true of its mean and variance. That is, we can describe the mean
di®erence in grade as m (h) and the variance of these di®erences as 2° (h). If
we had a set of pairs of samples for a speci¯c h (say 50ft, north-south) then
we could calculate an `experimental' value for m (h) :

m¤ (h) =
1

n

X
[g (x)¡ g (x+ h)]

where g stands for grade, x denotes the position of one sample in the pair
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and x + h the position of the other, and n is the number of pairs which we
have. You will have noticed the introduction of the `¤' to show that this is
something we have calculated rather than something `theoretical'. Unfortu-
nately, it can be shown that this is not a very good way of estimating m (h),
and that to get a good way involves intense mathematical complications. Let
us look closer at m (h) itself. It represents an average di®erence in grades
between two samples { in other words, an `expected' di®erence. If m (h) is
zero, this implies that we `expect' no di®erence between grades a distance h
apart. Put another way, we `expect' the same sort of grades over an area of
the deposit which is at least as large as h. In jargon terms, locally (within
h) there is no trend. It is a convenient assumption to make for our purposes,
so we will assume that there is no trend within the scale in which we are
interested. We will see later what happens if this is not true.

Having rid ourselves of m (h), let us turn to the variance of the di®erences.
This has been called 2° (h) and is usually known as the variogram, since
it varies with the distance (and direction) h. In practice, having made our
no-trend assumption, we can calculate:

2°¤ (h) =
1

n

X
[g (x)¡ g (x+ h)]2

The `2' in front of the ° is there for mathematical convenience. The term
° (h) is called the semi-variogram (although some authors sloppily call it the
variogram), and °¤ (h) is the experimental semi-variogram; °¤ bears the same
relationship to ° that a histogram does to a probability distribution.

Having de¯ned a semi-variogram, what sort of behaviour do we expect it to
have. We have a measure of the di®erence between the grades a distance (and
direction) h apart. The measure which we have is in units of grade squared,
e.g. (% by weight)2,(p.p.m.)2 and so on, and we calculate a value for the
experimental semi-variogram for as many di®erent values of h as possible.
The easiest way to display these ¯gures is in a graph { hence the name semi-
variogram. It is usual to plot the graph as in Fig 1.2. That is, the distance
between the pairs of samples is plotted along the horizontal axis and the
value of the semi-variogram along the vertical. By de¯nition h starts at zero,
since it is impossible to take two samples closer than no distance apart. The
° axis also starts at zero, since it is an average of squared values.
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Fig 1.2: Usual method of plotting a semi-variogram on a graph

Consider the case when h is equal to zero. We take two samples at exactly
the same position and measure their values. The di®erence between the two
must be zero, so that ° and °¤ must always pass through the origin of the
graph. Now suppose we let the two samples move a little distance apart.
We would now expect some di®erence between the two values, so that the
semi-variogram will have some small positive value. As the samples move
further apart the di®erences should rise. In the ideal case when the distance
becomes very large the sample values will become independent of one another.
The semi-variogram value will then become more or less constant, since it
will be calculating the di®erence between sets of independent samples. This
so-called `ideal shape' for the semi-variogram is shown in Fig 1.3, and is
to Geostatistics as the Normal distribution is to statistics. It is a `model'
semi-variogram and is usually called the spherical or Matheron model. The
distance at which samples become independent of one another is denoted by
a and is called the range of in°uence of a sample. The value of ° at which the
graph levels o® is denoted by C and is called the sill of the semi-variogram.
The spherical model is given mathematically as:

° (h) = C

µ
3

2

h

a
¡ 1

2

h3

a3

¶
where h � a

= C where h ¸ a

This model was originally derived on theoretical grounds (as was the Normal
distribution) but has been found to be widely applicable in practice.

10



Fig 1.3: The `ideal' shape for a semi-variogram { the spherical model.

There are many other possible models of semi-variograms, but only a few
are commonly used. One other model with a sill which seems to have found
some application is the exponential model. This is described by:

° (h) = C [1¡ exp (¡h=a)]

This model rises more slowly from the origin than the spherical and never
quite reaches its sill. Figure 1.4 shows the spherical and exponential with
the same range and sill. Figure. 1.5 shows the two with the same sill and
the same initial slope for comparison. The reason for this will become clear
in the next chapter.

One of the interesting properties of models with a sill { both mathematically
and for the applications { is that the sill value, C, is equal to the ordinary
sample variance of the grades. If you could take a set of random independent
observations from the deposit and calculate the sample variance:

s2 =
1

n¡ 1
X

(gi ¡ ¹g)2 where ¹g =
1

n

X
gi

then s2 and C will both be estimates of the same `true' sample variance.
The relationship between s2 and C will be seen later to have wide-ranging
consequences.
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There are also models which have no sill. The simplest of these is the linear
model:

° (h) = ph

Fig 1.4: Comparison of the exponential and spherical models with the same
range and sill
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Fig. 1.5: Comparison of the exponential and spherical models with the
same initial slope and sill.

where p is the slope of the line. An extension of this model is the `generalised
linear':

° (h) = ph®

where ® lies between 0 and 2 (but must not equal 2). This model is shown
in Fig 1.6 for various values of ®. Another model without a sill is the de
Wijsian model:

° (h) = 3® loge (h)

in which the semi-variogram is linear if plotted against the logarithm of the
distance.
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Fig 1.6. The linear and the generalised linear model ° (h) = ph¸.

One other model exists, to describe the semi-variogram of a purely random
phenomenon. E®ectively, it is a spherical model with a very small range of
in°uence. The `nugget e®ect' as it is called, is given by:

° (0) = 0

° (h) = C0 when h > 0

Note that even with completely random phenomena the semi-variogram must
be zero at distance zero. Two samples measured at exactly the same position
must have the same value.

In practice, many semi-variograms comprise a mixture of two or more of
these models and we shall see some of these in Chapter 2. To summarise our
introduction to Geostatistics, here are the basic assumptions necessary for
their application:

1. Di®erences between the values of samples are determined only by the
relative spatial orientation of those samples.

14



2. We are really interested only in the mean and variance of the di®erences,
so our real contention is that these two parameters depend only on the
relative orientation. This is known as the `Intrinsic Hypothesis'.

3. For convenience we have assumed that there is no trend on the deposit
which is likely to a®ect values within the scale of interest. Thus we are
only interested in the variance of the di®erence in value between the
samples.

From these assumptions we have produced the notion of a semi-variogram,
and we have discussed the sort of shape which we expect a semi-variogram to
take. In the next chapter we will look at the process of actually calculating an
experimental semi-variogram and trying to relate it to the models discussed.

CHAPTER 2
The Semi-Variogram

We have seen in Chapter 1 how the de¯nition of a semi-variogram arises
out of the notions of `continuity' and `relationship due to position within
the deposit'. The semi-variogram, °, is a graph (and/or formula) describing
the expected di®erence in value between pairs of samples with a given rel-
ative orientation. We also discussed the ideal forms which semi-variograms
might take. We are now going to discuss calculated or `experimental' semi-
variograms.

Consider the data shown in Fig 2.1. We have here a stratiform iron orebody,
through which a set of drill-holes have been bored, perpendicular to the dip
of the ore. The value given at each location is the average value of Fe (%
by weight) over the intersection of the borehole with the ore (see Fig 2.2).
Essentially this is a two-dimensional problem, so that the h in our de¯nition
of the semi-variogram depends on the distance between the pair of samples,
and their relative orientation in a two-dimensional plane.
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Fig 2.1. Example of data on a grid for the calculation of an experimental
semi-variogram { iron ore.

Fig 2.2. Cross-section through the iron ore deposit.

16



Let us consider the east-west direction, and try to construct an experimental
semi-variogram for this relative orientation. The grid on which the holes
have been so conveniently placed is 100ft by 100ft, so that we can only
calculate values of the experimental semi-variogram, °¤, for distances which
are multiples of this. At zero we know that °¤(0) is equal to zero. At 100ft
we need to ¯nd all pairs of samples at a separation of 100ft in the east-west
direction. These are shown in Fig 2.3. The calculation as de¯ned says: take
each pair; measure the di®erence in value between the two samples; square
it; add up all the squares; divide this sum by twice the number of pairs. In
our example:

Fig 2.3. Identifying all the pairs at 100ft apart in the east-west direction.
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°¤(100) = [(40¡ 42)2+ (42¡ 40)2+ (40¡ 39)2+ (39¡ 37)2
+(37¡ 36)2+ (43¡ 42)2+ (42¡ 39)2+ (39¡ 39)2
+(39¡ 41)2+ (41¡ 40)2+ (40¡ 38)2+ (37¡ 37)2
+(37¡ 37)2+ (37¡ 35)2+ (35¡ 38)2+ (38¡ 37)2
+(37¡ 37)2+ (37¡ 33)2+ (33¡ 34)2+ (35¡ 38)2
+(35¡ 37)2+ (37¡ 36)2+ (36¡ 36)2+ (36¡ 35)2
+(36¡ 35)2+ (35¡ 36)2+ (36¡ 35)2+ (35¡ 34)2
+(34¡ 33)2+ (33¡ 32)2+ (32¡ 29)2+ (29¡ 28)2
+(38¡ 37)2+ (37¡ 35)2+ (29¡ 30)2
+(30¡ 32)2] ¥(2£ 36)

°¤(100) = 1:46(%)2

This gives us one point which we can plot on a graph of the experimental
semi-variogram (°¤) versus the distance between the samples (h), that is
[100ft; 1:46(%)2]. Now let us consider a distance between samples of 200ft.
Figure 2.4 shows the pairs which lie at this distance in the east-west direction,
and the calculation becomes:

°¤(200) = [(44¡ 40)2+ (40¡ 40)2+ (42¡ 39)2+ (40¡ 37)2
+(39¡ 36)2+ (42¡ 43)2+ (43¡ 39)2+ (42¡ 39)2
+(39¡ 41)2+ (39¡ 40)2+ (41¡ 38)2+ (37¡ 37)2
+(37¡ 35)2+ (37¡ 38)2+ (35¡ 37)2+ (38¡ 37)2
+(37¡ 33)2+ (37¡ 34)2+ (38¡ 35)2+ (35¡ 36)2
+(37¡ 36)2+ (36¡ 35)2+ (36¡ 36)2+ (35¡ 35)2
+(36¡ 34)2+ (35¡ 33)2+ (34¡ 32)2+ (33¡ 29)2
+(32¡ 28)2+ (38¡ 35)2+ (35¡ 30)2+ (30¡ 29)2
+(29¡ 32)2] ¥(2£ 33)

°¤(200) = 3:30(%)2

which we can plot on the graph versus 200ft.
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Fig 2.4. Identifying all the pairs 200ft apart in the east-west direction.

The question now arises of where to stop. We could obviously continue up to
distances of 800ft, for which we would have 7 pairs. In practice, we rarely go
past about half the total sampled extent { in this case, say, 400ft. Table 2.1
shows the calculated points for the experimental semi-variograms in the east-
west and in the north-south direction, and Fig 2.5 shows a plot of the two °¤s.
There seems to be a distinct di®erence in the structure in the two directions.
The north-south semi-variogram rises much more sharply than the east-west,
suggesting a greater continuity in the east-west direction. To verify this, we
should then calculate the semi-variogram in at least one `diagonal' direction,
e.g. northwest-southeast. These ¯gures are shown in Table 2.2, and Fig 2.6
shows the three experimental semi-variograms plotted on the same graph.
Of course, the intervals at which the diagonal semi-variogram values are
calculated are now multiples of 100X2 = 141 ft. The new °¤ seems to verify
the di®erence between the other two, since it lies between them { although it
seems to be closer to the north-south than to the east-west. The conclusion
which must be drawn is that more information is needed to determine the
`true' axis of the anisotropy. It would be rather optimistic to suppose that
our drill grid was laid down in the exactly correct direction for the di®erent
structures. Secondly, we must decide whether, say, the last point on the
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diagonal semi-variogram is reliable. This was calculated on only 13 pairs,
as opposed to the next lowest of 21. Does this mean we should place only
two-thirds as much con¯dence on it? Some theoretical work on simple cases
has been done at Fontainebleau, but in practice the only rule is: the fewer
pairs, the less reliable.

Table 2.1. Calculation of experimental semi-variogram values in two major
directions for iron ore example on square grid

Direction Distance between Experimental Number of
samples (ft) semi-variogram pairs

East-west 100 1:46 36
200 3:30 33
300 4:31 27
400 6:70 23

North-south 100 5:35 36
200 9:87 27
300 18:88 21
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Fig 2.5. Experimental semi-variograms in the two major directions for the
iron ore example.

Table 2.2. Calculation of semi-variogram in diagonal direction for iron ore

Direction Distance between Experimental Number of
samples (ft) semi-variogram pairs

North-west 141 7:06 32
South-east 282 12:95 21
diagonal 424 30:85 13

Fig 2.6. Experimental semi-variograms including a diagonal for the iron ore
example.
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The east-west semi-variogram seems to be reasonably consistent, and sug-
gests a straight line with slope 6:5(%)2 ¥ 400ft= 0:01625(%)2=ft. Thus for
the east-west direction:

°(h) = 0:01625h(%)2

For the north-south direction, the following seems reasonable:

°(h) = 0:05h(%)2

Table 2.3. Hypothetical borehole log from lead/zinc deposit | Zinc values
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Depth below Zn(%) Depth below Zn(%)
collar(m) collar (m)
(top of core) (top of core)

45:40 8:44 98:60 2:56
46:92 6:21 100:12 4:48
48:44 4:01 101:64 8:73
49:96 3:23 103:16 9:64
51:48 2:62 104:68 15:28
53:00 1:20 106:20 core lost
54:52 1:02 107:72 core lost
56:04 0:62 109:24 core lost
57:56 0:20 110:76 core lost
59:08 0:14 112:28 7:56
60:60 0:13 113:80 6:78
62:12 0:24 115:32 7:16
63:64 0:22 116:84 5:51
65:16 0:24 118:36 2:61
66:68 0:22 119:88 3:34
68:20 0:35 121:40 6:80
69:72 0:35 122:92 3:84
71:24 0:34 124:44 3:21
72:76 0:39 125:96 3:90
74:28 0:66 127:48 3:58
75:80 1:40 129:00 4:32
77:32 4:35 130:52 6:00
78:84 7:74 132:04 2:70
80:36 7:06 133:56 3:72
81:88 4:93 135:08 4:80
83:40 3:05 136:60 6:31
84:92 2:42 138:12 7:05
86:44 1:34 139:64 7:24
87:96 0:56 141:16 8:19
89:48 0:53
91:00 0:70
92:52 1:01
94:04 0:95
95:56 1:20
97:08 1:87
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That is, in the east-west direction, we `expect' a squared di®erence of 0:01625(%)2

for each foot between the samples. Put another way, a di®erence in grade of
X0:01625 = 0:1275%Fe is expected for two samples 1ft apart, with a rela-
tive orientation of east-west. In the north-south direction the corresponding
¯gure is 0:2236%Fe. For samples 100ft apart, we would expect di®erences of
1:275%Fe (east-west) and 2:236%Fe (north-south) and so on. Thus we have
built up a picture of the grade °uctuations within this section of the deposit,
and have a fairly simple model to describe the di®erences in grade.

Now let us turn to another example. Table 2.3 shows a borehole `log' for
one drill hole through a lead/zinc mineralisation which is disseminated in
limestone. The ¯rst 45:40m go through barren rock, and the rest of the core
has been divided into regular sections 1:52m (5ft) long. At one point, the core
has been lost { perhaps due to a solution cavity in the limestone. As is the
case in most three-dimensional deposits, there is very detailed information
`down' the borehole, but the boreholes are widely scattered over the deposit.
The usual practice is to make `down-the-hole' semi-variograms, and then
to look at the horizontal directions as we did in the ¯rst example. So, for
practice, let us calculate the experimental semi-variogram down this one
borehole. E®ectively the problem is simpler than the ¯rst one since we have
one long line of regularly spaced samples with a single gap of 6:08m. Table
2.4 shows the calculated °¤, and Fig 2.7 the plot of this experimental semi-
variogram versus the distance between the pairs. In this case the number of
pairs of points decreases steadily as the distance increases, from 58 pairs at
h = 1:52m to 28 pairs at h = 48:64m. Thus the most `reliable' points on the
graph are those for small distances, and the reliability drops o® slowly and
regularly. The semi-variogram seems to follow approximately the ideal shape
discussed in Chapter 1. It rises from the origin, seems to more or less level
o® at about 15m, and continues with some variation around the value, say,
of 10:5(%)2. We could probably ¯t a spherical model to this semi-variogram
without further ado. However, let us look at the supposed variation around
the sill. There is a dip in the curve at 25m, and another at about 35m. There
is less di®erence between samples 25m apart than there is at 15m. If we go
back to the drill log we ¯nd that the grade values seem to rise and fall quite
regularly. There is a `rich' patch centred at about 47m below collar, another
at 81m and a possible third at 106m, where the core has been lost. The
distances between these rich patches are 34m and 25m respectively. Thus
the experimental semi-variogram is drawing our attention to the presence of
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localised rich areas down the borehole. The implications of this would need
to be viewed in the light of other boreholes and/or information about the
deposit. If the same sort of pattern occurs on many of the other boreholes
then we would suspect some sort of lenticular (or strati¯ed) structure. If the
other boreholes do not re°ect this regular rise and fall, this is probably just
local °uctuation. This particular set of data was taken from a deposit with
a marked (geologically) lenticular structure which had already been mapped
on-site. This is one manifestation of what happens to the semi-variogram if
`trends' { in this case periodic trends { are present within the deposit and
are ignored. On the other hand, for small scale estimation, say up to 20m in
the vertical direction, a spherical model would be quite adequate.

Fig 2.7. Experimental semi-variogram calculated on one `borehole' through
a hypothetical lead/zinc ore-body.

Table 2.4. Calculated experimental semi-variogram from Lead/Zinc deposit
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Distance between Experimental Number of
samples (m) semi-variogram pairs

(%)2

1:52 1:33 58
3:04 3:09 56
4:56 5:03 54
6:08 6:70 52
7:60 8:26 51
9:12 9:00 50
10:64 9:67 49
12:16 10:46 48
13:68 11:44 47
15:20 11:87 46
16:72 11:39 45
18:24 11:33 44
19:76 10:93 43
21:28 10:48 42
22:80 9:76 41
24:32 9:21 40
25:84 9:27 39
27:36 11:09 38
28:88 11:70 37
30:40 11:25 36
31:92 9:68 36
33:44 8:60 36
34:96 8:45 36
36:48 9:15 36
38:00 10:15 35
39:52 11:70 34
41:04 13:04 33
42:56 14:03 32
44:08 14:98 31
45:60 15:70 30
47:12 15:94 29
48:64 15:81 28

Both of these illustrative examples have been carried out on small sets of
data, so that the reader can check his understanding of the calculation by
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trying to reproduce the answers. The interpretation of an experimental semi-
variogram is another matter, and is something that becomes easier with
practice. I should like, therefore, to give a few examples of semi-variograms
from my own experience.

Table 2.5 shows an experimental semi-variogram which was calculated on
silver values from samples taken in a tabular, heavily-disseminated base-
metal sulphide deposit. An access adit has been driven into the deposit and
a vertical channel sample taken every metre along one wall of the tunnel.

Table 2.5. Experimental semi-variogram from 400m adit | silver values

Distance between Experimental Distance between Experimental
samples (m) semi-variogram samples (m) semi-variogram

1 0:42 51 10:22
2 0:72 52 9:96
3 0:92 53 11:64
4 1:36 54 11:93
5 1:69 55 12:62
6 2:03 56 11:35
7 1:95 57 10:18
8 2:75 58 10:69
9 3:65 59 10:03
10 4:05 60 9:81
11 3:44 61 10:23
12 3:55 62 11:85
13 3:24 63 11:27
14 3:07 64 13:01
15 4:52 65 13:61
16 5:23 66 14:17
17 6:53 67 11:75
18 6:41 68 9:91
19 5:98 69 10:12
20 5:72 70 9:56
21 5:26 71 10:91
22 6:46 72 11:98
23 7:01 73 12:13

Table 2.5 { contd.
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Distance between Experimental Distance between Experimental
samples (m) semi-variogram samples (m) semi-variogram

24 7:55 74 11:45
25 8:06 75 12:14
26 8:94 76 12:26
27 8:48 77 11:69
28 7:65 78 12:30
29 7:04 79 11:63
30 6:49 80 12:98
31 7:26 81 15:78
32 7:47 82 17:42
33 7:66 83 16:72
34 9:54 84 17:20
35 10:98 85 17:16
36 10:82 86 14:67
37 10:58 87 14:12
38 10:21 88 14:56
39 10:08 89 16:04
40 8:28 90 17:81
41 8:08 91 20:96
42 9:34 92 22:70
43 9:55 93 23:20
44 9:87 94 24:37
45 10:45 95 23:67
46 10:23 96 21:66
47 8:87 97 21:44
48 9:19 98 22:94
49 10:19 99 22:29
50 10:73 100 22:16

Since the width of the ore is variable, the accumulation (grade times width)
was calculated for each sample. 400m of the adit was sampled in this way,
giving an unbroken succession of values. The units of accumulation are
metres-per-cent(m%), so that the units of the experimental semi-variogram
are (m%)2. Figure 2.8 shows the graph of this semi-variogram versus dis-
tance. Near the origin, the points form an almost straight line. This is a
characteristic of most of the common semi-variogram models.
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Fig 2.8. Experimental semi-variogram constructed on the silver values from
a complex sulphide deposit.

The curve rises, °attens o® at about 11(m%)2, and then rises again more and
more rapidly. In fact, after a distance of about 75m, the curve is virtually
parabolic. This is an indication of the presence of a polynomial-type trend
within the deposit. There appears to be a smoothly varying large scale trend
in operation here. If we wished to consider points more than, say, 75m apart
in any estimation procedure, then we should have to take account of that
trend (see Chapter 6). However, if we restrict consideration to areas within
the deposit of no more than 75m in radius, the problem may be safely ignored.
Let us, then, look at the semi-variogram only up to distances of 75m (see Fig
2.9). A `sill' appears to exist at C = 11(m%)2. A horizontal line has been
drawn onto the graph at this level.
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Fig 2.9. First estimation of model and parameters for the silver
semi-variogram.

A more di±cult parameter to `eyeball' is the range of in°uence a. It can be
shown that if a spherical model is to be used { as seems to be indicated by
the °at nature of the sill { then a line drawn through the ¯rst few points
of the experimental semi-variogram will intersect the sill at a distance equal
to two-thirds of a. Doing this on Fig 2.9 produces a value of 33m for the
intersection, giving a range of in°uence of approximately 50m. Indications
are that we need a spherical model with a range of in°uence of 50m and a sill
of 11(m%)2. Since there is no objective (statistical) way of deciding whether
a model ¯ts an experimental semi-variogram, the only simple method is to
draw the model curve onto the same graph as the experimental one. The
equation for this model is:

°(h) = 11(
3h

100
)¡ h3

2£ 503 when h � 50m

= 11when h ¸ 50m

This curve has been drawn onto the same graph as the experimental points,
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and the result is shown in Fig 2.10. The numerical values for various points
on the model curve are given in Table 2.6.

Fig 2.10. Fitted spherical model to silver semi-variogram.

This seems to give a fairly good ¯t. It is di±cult to see how it might be
improved. Sometimes the two parameters require adjustment before an ade-
quate ¯t is found. Note that the model has only been ¯tted for distances up
to 75m. Beyond this the trend must be taken into account. In this case we
were very lucky, in that the trend does not `interfere' until after the range
of in°uence is passed. This is not always so, and the closer the parabolic
behaviour is to the origin the more heed must be paid to the trend. It might

be argued that a more suitable model for this semi-variogram would be the
exponential model.

Table 2.6. Spherical semi-variogram model for silver values up to h = 75m
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Distance between Theoretical
samples (m) semi-variogram

0 0:00
5 1:64
10 3:26
15 4:80
20 6:25
25 7:56
30 8:71
35 9:66
40 10:38
45 10:84
50 11:00
> 50 11:00

Fig 2.11. Exponential model with same parameters as ¯tted spherical (for
silver semi-variogram).

For interest, let us take the sill again at 11(m%)2. For an exponential model
the straight line through the origin intersects the sill at a distance equal to

32



the range of in°uence. That is, if we try an exponential model the range will
be 33m. Figure 2.11 shows the model,

°(h) = 11[[1¡ exp(¡h=33)]

alongside the data points. The slope at the origin is correct but the rest of
the curve is far too low. We can increase the sill to bring up the values,
but we also need to increase the value of the range of in°uence, so that the
behaviour near the origin is still correct. Table 2.7 shows the `model' values
given by various sets of parameters { sill and range of in°uence.

Table 2.7 Attempts to ¯t exponential models to silver semi-variogram

Distance between Theoretical semi-variograms
samples (m) a = 33; C = 14 a = 50; C = 14 a = 50; C = 15 a = 50; C = 16

5 1:97 1:33 1:43 1:52
10 3:66 2:54 2:72 2:90
15 5:11 3:63 3:89 4:15
20 6:36 4:62 4:95 5:27
25 7:44 5:51 5:90 6:30
30 8:36 6:32 6:77 7:22
35 9:15 7:05 7:55 8:05
40 9:83 7:71 8:26 8:81
45 10:42 8:31 8:90 9:49
50 10:92 8:85 9:48 10:11
55 11:36 9:34 10:01 10:67
60 11:73 9:78 10:48 11:18
65 12:05 10:18 10:91 11:64
70 12:32 10:55 11:30 12:05

Round ¯gures have been used for simplicity, but the `best' exponential ¯t
seems to be the last one, with a = 50m and C = 16(m%)2. Figure 2.12
compares the ¯t of this curve with the previous spherical model, and with the
experimental semi-variogram. I prefer the spherical model because it seems to
¯t the data between 15 and 40m better than the exponential. Only a minority
of the observed points fall below the exponential curve. A shortening of the
range of in°uence to compensate for this results in a marked change in slope
at the begining of the curve.
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Fig 2.12. Comparison of ¯nal models { exponential and spherical { for
silver semi-variogram.

COMPLEX MODELS

Now let us try some real semi-variograms, rather than these hand-picked
simple ones. Figure 2.13 shows the experimental semi-variograms for three
metals in another complex base-metal sulphide. The metal of economic im-
portance is the copper, but the other two metals are of su±cient value to
warrant investigation. The semi-variograms are `down-the-hole' in direction,
and contain information from about 50 boreholes perpendicular to the plane
of the ore-body. My interpretation of the lead and zinc semi-variograms is
pure nugget e®ect. That is, the `model' is a horizontal line at a value equal
to the sample variance. There appears to be very little relationship even
between neighbouring cores! On the other hand, the copper semi-variogram
appears to be a combination of a nugget e®ect (constant) and a parabola.
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As in the previous example, the parabola implies a polynomial trend, in this
case acting on pairs of samples even at 1m spacing. The nugget e®ect implies
completely random behaviour. So we have a trend with random variation; an
ideal case for Trend Surface Analysis. The next example concerns a nickel

ore-body disseminated in peridotite, which has been `proved' by means of
about 45 vertical boreholes. The average spacing between the boreholes was
about 60m and they were not regularly spaced, so that only the `down-the-
hole' experimental semi-variograms were calculated.

Fig 2.13. Experimental semi-variograms for a complex base-metal sulphide
deposit.
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Fig 2.14. Experimental semi-variogram for a nickel deposit { logarithms of
grade values.

Altogether approximately 4000m of core was recovered and assayed in 2m
core sections. In this case the logarithm of the grades was used, rather than
the grades; the reason for this has no relevance here. The experimental semi-
variogram is shown in Fig 2.14, and the numerical values are given in Table
2.8. There appears to be a de¯nite °at sill at about 2:55(log%)2. However,
drawing a straight line through the ¯rst two points, as we did in the silver
semi-variogram produces two odd results. First, the line intersects the semi-
variogram axis at 0:40(log%)2 not at zero. This suggests that there is a
component of each value which is `random' or unpredictable. Samples very
close together still have a reasonably large di®erence in value. Remembering
that the sill (if it exists) is equal to the sample variance, we can see that
0:40 ¥ 2:55 = 0:156 suggests that about 16% of the variation in the sample
values is random and unpredictable. Thus, no matter how closely we sample,
this unpredictability will still exist. The semi-variogram model will need to
be of the form:

°(0) = 0
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°(h) = C0 + °(h) when h > 0

where °0(h) is the usual sort of model (e.g. linear). In e®ect, the nugget
e®ect is a simple constant raising the whole theoretical semi-variogram 0.4
units. Thus we now seek a model with a sill of 2:15(log%)2. Now, we saw in
the silver example that extending the initial straight line slope up to the sill
gave a value of two-thirds of the range of in°uence, when using a spherical
model. In this case the intersection produces a value of 13m implying a
range of in°uence of about 20m. On the other hand, the curve does not
even approach the sill until some distance past 45m. Clearly neither of our
ideal models will cope with this sort of situation. Let us look again at the
experimental curve. There seems to be an `intermediate' sill, reached at
about 14m and a value on the °-axis of 1:95 ¡ 0:40 = 1:55 (to allow for
nugget e®ect). We seem to have a mixture of two spherical type models, one
with a shortish range and one with a range of about 50m. Let us try out
this tentative model and see how it ¯ts the experimental semi-variogram. We
have a fairly complex model:

C0 = 0:40(log%)2

a1 = 14m C1 = 1:55(log %)
2

a2 = 50m C2 = 0:60(log %)
2

Table 2.8 Experimental semi-variogram from a disseminated nickel deposit
(logarithm of grade)
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Distance between Experimental Number of
samples (m) semi-variogram pairs

2 0:74 1222
4 1:10 1194
6 1:34 1186
8 1:58 1152
10 1:72 1137
12 1:81 1120
14 1:87 1095
16 1:90 1077
18 1:93 1055
20 1:92 1026
22 1:95 1011
24 2:01 990
26 2:09 969
28 2:16 950
30 2:25 919
32 2:29 899
34 2:38 886
36 2:35 860
38 2:36 848
40 2:39 825
42 2:48 814
44 2:52 787
46 2:56 779
48 2:55 767
50 2:49 750
52 2:59 736
54 2:61 722
56 2:64 705
58 2:68 689
60 2:62 675
62 2:52 657
64 2:59 639
66 2:53 628
68 2:47 612
70 2:56 597
72 2:62 582
74 2:64 563
76 2:75 552
78 2:93 539
80 3:06 514
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Putting these values into the proposed model produces the following:

°(h) = 0:40 + 1:55[
3

2

h

14
¡ 1

2
(
h

14
)3] + 0:60[

3

2

h

50
¡ 1

2
(
h

50
)3] for h � 14m

For distances (h) between 14 and 50m, the model is given by:

°(h) = 0:40 + 1:55 + 0:60[[
3

2

h

50
¡ 1

2
(
h

50
)3]

and when the distance between the two samples is greater than 50m, the

model semi-variogram takes the form:

°(h) = 0:40 + 1:55 + 0:60 = 2:55

Table 2.9 First attempt to ¯t a mixture of Spherical models to the
experimental nickel semi-variogram (parameters in text)

Distance between Theoretical
samples (m) semi-variogram

0 0:00
2 0:77
4 1:12
6 1:44
8 1:73
10 1:96
12 2:12
14 2:20
16 2:23
18 2:26
20 2:29
25 2:36
30 2:42
35 2:48
40 2:52
45 2:54
50 2:55
55 2:55
60 2:55
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In order to compare the theoretical model with the experimental points we
must evaluate the model at various distances, and draw the resulting curve
onto the same graph. For example, for distance h equal to 2m:

°(h) = 0:40 + 1:55[[
3

2

2

14
¡ 1

2
(
2

14
)3] + 0:60[[

3

2

2

50
¡ 1

2
(
2

50
)3] = 0:766

and for a distance h equal to 40m:

°(h) = 0:40 + 1:55 + 0:60[[
3

2

40

50
¡ 1

2
(
40

50
)3] = 2:516

A set of values was selected for h and the theoretical curve constructed. The

values are shown in Table 2.9, and the resulting model has been plotted
in Fig 2.15. The experimental points are also shown for comparison. The

`model' curve ¯ts fairly well to the beginning and end of the experimental
semi-variogram, but does not seem too good in the middle. The kink in the
curve is at far too high a level { it needs to occur at ° = 1:95.
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Fig 2.15. First attempt to ¯t a mixture of spherical models to the nickel
semi-variogram.

We assumed that this level was equal to C0+C1. What was forgotten is that,
even at short distances, the second spherical component still contributes some
value to the model, so that the value 1:95 should actually be equal to:

C0 + C1 + C2[[
3

2

14

50
¡ 1

2
(
14

50
)3]

In other words, we need to lower the value of C1 and raise the value of C2,

and then try the ¯t again. After a few tries, I got the following model:

C0 = 0:40(log%)2

a1 = 12m C1 = 1:15(log %)
2

a2 = 60m C2 = 1:00(log %)
2

This model is shown in Fig 2.16 alongside the experimental semi-variogram,

and seems to be a relatively good ¯t. Perhaps the reader would like to try
to improve upon it? Table 2.10 gives the corresponding numerical values for
the model curve.
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Fig 2.16. Final attempt to ¯t a mixture of spherical models to the nickel
semi-variogram.

Table 2.10 Final attempt to ¯t a mixture of Spherical models to the
experimental Nickel semi-variogram (parameters in text)

Distance between Theoretical
samples (m) semi-variogram

0 0:00
2 0:74
4 1:05
6 1:34
8 1:58
10 1:75
12 1:85
14 1:89
16 1:94
18 1:99
20 2:03
25 2:14
30 2:24
35 2:33
40 2:40
45 2:46
50 2:51
55 2:54
60 2:55

Examples of semi-variogram models which are mixtures of spherical compo-
nents abound in the geostatistical literature, and seem to be about the most
common type encountered, especially in low concentration minerals such as
cassiterite, copper veins, uranium and so on.

LOG-NORMALITY
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I should like, now, to turn to another problem which is often discussed in
the literature when samples are expected to follow a log-normal distribu-
tion. Whilst the construction of the experimental semi-variogram and the
estimation procedures produced by geostatistics do not depend on what dis-
tribution the samples follow, there are one or two `side-e®ects' which become
apparent when dealing with log-normal samples. As every schoolboy knows,
the standard deviation of a log-normal distribution is directly proportional
to its mean. Consequently the sample variance { and hence the sill of the
semi-variogram { is proportional to the square of the mean of the samples.
If experimental semi-variograms are constructed on di®erent sets of samples
within a deposit, this `proportional e®ect' can have a radical e®ect on the
individual experimental semi-variograms. Examples in the literature usually
concern cases where, in order to construct experimental semi-variograms in
di®erent directions, it has been necessary to use di®erent sets of, e.g. borehole
data in each. As an example of `proportional e®ect' consider the following
situation. In Cornish tin lodes the assay values are usually assumed to follow
a log-normal distribution. Such veins are developed by means of horizontal
drives approximately 100ft apart. These drives are sampled every 10ft by
taking chip samples from the roof. In the example under consideration, nine
levels have been developed, from 600ft below surface to 1400ft (6-14 levels).
Semi-variograms were calculated for each level separately. For simplicity,
Fig 2.17 shows only three of these experimental semi-variograms, for levels
6, 10 and 12. The other six lie scattered between levels 6 and 12. Figure
2.18 shows a graph of the average assay value along each drive versus the
standard deviation of the samples along that drive.
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Fig 2.17. Example of supposed zonal anisotropy { cassiterite vein.
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Fig 2.18. Illustration of the proportional e®ect { cassiterite.

The averages vary between 35lb/ton (pounds of SnO2 per ton of ore) and
80lb/ton, and the standard deviations vary between 35 and 110lb/ton. The
relationship is virtually perfect between the two, with a calculated correlation
coe±cient of over 0.85. Since the sill of the semi-variogram is roughly equal
to the calculated sample variance, it is easy to see that the experimental
semi-variogram for level 6 will be (and is) the lowest, with a sill of about
1200(lb/ton)2 ; level 10 will be in the middle with a sill of about 5000; and 12
will be the highest with a sill of 12000(lb/ton)2. The question is, can we make
an overall semi-variogram for this deposit when the individual experimental
semi-variograms vary by an order of magnitude from area to area.

The published authorities state that the valid way to combine these semi-
variograms is to `correct' each one for the proportional e®ect. That is, to
divide the individual experimental semi-variograms by the square of the av-
erage of the samples which went into its calculation. This produces a `relative
semi-variogram' { implying that all values given by the semi-variogram are
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now `relative to the local mean'. Applying this method to the above example
results in nine experimental relative semi-variograms which vary in sill be-
tween about 1.00 and 1.80. Notice that these values now have no units. To
be converted into meaningful ¯gures they must be multiplied by the square
of the local mean. We can now (supposedly) combine these semi-variograms
into one for the deposit as a whole, and ¯t a model to it. If we do so we
must remember that in all our estimation procedures etc. we have to `uncor-
rect' the values calculated from the semi-variogram { estimation variances,
standard errors and so on.

This process of correcting experimental semi-variograms for the proportional
e®ect is widely advocated as the `right thing to do'. No one seems to have
bothered to test whether it actually works in practice. In the one case, that
described above, where I have been able to investigate in depth and compare
what happens if you use the `relative' semi-variogram, I found that correction
by the local mean gave completely erroneous results. Therefore, I would not
recommend this procedure, but rather that you should combine the original
experimental semi-variograms and try to ¯t a model to the `uncorrected'
data. In the study mentioned above this was found to give the correct values
at all times.

OTHER VARIABLES

It has been said time and again that geostatistics { Kriging and so on { can
be applied equally well to other variables which are spatially or temporally
distributed. This book has been more or less devoted to mining applications,
because this is still the major ¯eld. However, many other variables can be
handled, and I should like to give one or two examples here. Even in mining
applications, grade or economic value of the mineral is not always the sole
variable of interest. In many deposits the `thickness' of the deposit is as
important as the grade, and in many sedimentary deposits this factor is far
more important. In the Cornish tin example described above, the width of the
vein is fully as important a variable as the cassiterite content. Both variables
are required to assess the economic viability of the lode or portions of it.
Figure 2.19 shows the overall experimental semi-variogram calculated for the
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nine levels, 6-14. To this semi-variogram I ¯tted a model which consisted of:
a small nugget e®ect, which was slightly surprising; one spherical component
with a range of in°uence of about 30ft and another with a range of 150ft.

As an example of other types of spatially distributed data which might be
considered, Fig 20 shows an experimental semi-variogram which was pro-
duced during a study of the rainfall characteristics and runo® in a catchment
area in the Pennines in England.

Fig 2.19. Experimental semi-variogram constructed on the lode widths in
the cassiterite vein.

The data observations are the recorded monthly rainfall ¯gures at rain gauges
scattered over the catchment area. The semi-variogram has been constructed
without regard to the direction of the pair of samples. That is, the author
has assumed that his variable shows the same continuity down the long axis
(direction of °ow of the major river) as it does across the valley. The er-
roneous nature of this assumption is immediately apparent when given the
information that the catchment area measures about 30km across the valley
(short axis). The marked discontinuity in the experimental curve suggests
that there is a de¯nite di®erence between the two major directions. Semi-
variograms ought to be constructed for at least two di®erent directions to
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check for this. The second conclusion which can be drawn from this ex-
perimental semi-variogram is that if the same shape is shown by the new
individual strong trend is in evidence which must be taken into considera-
tion. When considering the nature of rainfall it does seem sensible to expect
di®erent amounts of rain to fall on the tops of mountains than lower down
in the valleys. This is a good example of when the `trend' cannot be ignored
in the geostatistical estimation procedure.

Fig 2.20. Experimental semi-variogram constructed on the measured
rainfall at rain gauge sites.

And now for a completely di®erent type of application we can take a time
series example, rather than one which is spatially distributed. A series of
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readings have been taken at the same site in a large river, of various di®er-
ent variables of interest. This is a `one-dimensional' situation, in which the
dimension is time rather than space. Instead of distance between samples,
we now have time between samples, so that the horizontal axis of the ex-
perimental semi-variogram will now read `time between observations'. The
estimation procedure will be used to predict values of these variables forward
into the future, or to ¯ll in gaps in the records caused by machine failure.
Figure 2.21 shows two experimental semi-variograms calculated in one case
for the temperature of the water, and in the other for the amount of sus-
pended solids contained in the water. The latter looks like an ideal case for
a spherical type of model, with a suggestion of a `trend' at the weekly scale
i.e., fairly homogeneous within any speci¯ed week, but varying in level from
week to week. The experimental semi-variogram for the temperature shows
a perfect daily cycle in temperature, with a little drift coming in after 3 or 4
days.

Fig 2.21. Experimental semi-variograms calculated on water quality
variables measured over time.

49



CONCLUSION

To summarise this chapter, we have seen how to calculate an experimental
semi-variogram in one and two dimensions, and how to relate this `practical'
semi-variogram to the `ideal' models which exist. We have seen that, whilst
some deposits may follow fairly simple behaviour, many others require a fairly
complex mixture of models to describe the experimental semi-variogram. I
have brie°y pointed out some problem areas such as strong trends, random
phenomena and proportional e®ect, and tried to indicate how these might
be tackled. There are those in authority who say that the ¯tting of a semi-
variogram model is out-moded and unnecessary. To counter this I should like
to give an analogy with ordinary statistics. If you take a limited number of
samples from an exceedingly large population and construct a histogram, are
you prepared to assume that that sample histogram describes exactly the
behaviour of the whole population? The process of inference { drawing con-
clusions about the population from a few samples { demands the construction
of some sort of model for the behaviour of the whole deposit.

CHAPTER 3
The Volume { Variance Relationship

In the previous chapters we have discussed semi-variograms, calculated ex-
perimental semi-variograms and ¯tted models to these as if the samples had
no characteristics other than `position'. We have ignored the size and shape
of the sample, the way in which it may have been taken and/or measured,
and so on. We have e®ectively assumed that the sample values were located
at `points' within the deposit. In this chapter we will see what e®ect those
other characteristics { collectively called `support' { have on the sample value
itself, and hence on the semi-variogram.

Let us consider the lead/zinc example which was discussed in Chapter 2.
Although the cores were actually 1.52m long, we ignored this fact and calcu-
lated the experimental semi-variogram as before. Suppose, however, that the
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cores had been sectioned into 3.04m lengths instead of 1.52m { what e®ect
would this have on the sample values and on the semi-variogram? Table 3.1
shows the `borehole log' for 1.52 and for 3.04m samples. The experimen-
tal semi-variogram was also calculated for the 3.04m cores, with the results
shown in Table 3.2. Figure 3.1 shows the `new' experimental semi-variogram
alongside the 1.52m one for comparison. For good measure, both tables and
the ¯gure also show the resulting values for cores of 4.56m. It can be seen
immediately that the 3.04m semi-variogram is always lower than the 1.52m,
and the 4.56m one is considerably lower than both. Let us return to the
basic assumptions of Geostatistics and try to explain this behaviour. We
must recall two facts from Chapter 1. The ¯rst is the basic de¯nition of the
semi-variogram: it is the average square of the di®erence in grade between
two samples a given distance apart. If those samples were `points' then the
grade is assumed to be measured `at a point'; if they are cores then the grade
measured is the average grade over the core length. Thus we are not com-
paring two individual grades, e.g. g1 and g2, we are comparing two average
grades ¹g1 and ¹g2. We cannot reasonably expect the average grade over 1.52m
of core to have the same behaviour as the grade of a `teaspoonful' of ore.
Similarly, if we take the grade and average it over 3.04m we would expect
di®erent behaviour again. The question is how to characterise this di®erence
in behaviour.

Table 3.1 Hypothetical borehole log fom Lead/Zinc deposit | core has
been sectioned in three alternative ways, 1.52m, 3.04m and 4.56m
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Depth below
collar (m) 1.52m 3.04m 4.56m
(top of core)

45:40 8:44 7:32 6:22
46:92 6:21
48:44 4:01 3:62
49:96 3:23 2:35
51:48 2:62 1:91
53:00 1:20
54:52 1:02 0:82 0:61
56:04 0:62
57:56 0:20 0:17
59:08 0:14 0:17
60:60 0:13 0:18
62:12 0:24
63:64 0:22 0:23 0:23
65:16 0:24
66:68 0:22 0:28
68:20 0:35 0:35
69:72 0:35 0:34
71:24 0:34
72:76 0:39 0:52 0:82
74:28 0:66
75:80 1:40 2:87
77:32 4:35 6:38
78:84 7:74 7:40
80:36 7:06
81:88 4:93 3:99 3:47
83:40 3:05
84:92 2:42 1:88
86:44 1:34 0:81
87:96 0:56 0:54
89:48 0:53
91:00 0:70 0:85 0:89
92:52 1:01
94:04 0:95 1:07
95:56 1:20 1:88
97:08 1:87 2:21
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Table 3.1. { contd.
Depth below
collar (m) 1.52m 3.04m 4.56m
(top of core)

98:60 2:56
100:12 4:48 6:60 7:62
101:64 8:73
103:16 9:64 12:46
104:68 15:28 |
106:20 core lost |
107:72 core lost
109:24 core lost | |
110:76 core lost
112:28 7:56 7:17
113:80 6:78 6:48
115:32 7:16 6:33
116:84 5:51
118:36 2:61 2:97 4:25
119:88 3:34
121:40 6:80 5:32
122:92 3:84 3:65
124:44 3:21 3:55
125:96 3:90
127:48 3:58 3:95 4:63
129:00 4:32
130:52 6:00 4:35
132:04 2:70 3:74
133:56 3:72 4:26
135:08 4:80
136:60 6:31 6:68 6:87
138:12 7:05
139:64 7:24 7:71
141:16 8:19

The second fact to recall from Chapter 1 is that the sill of the semi-variogram
| if one exists | is equal to the ordinary sample variance. If we are dealing
with `point' samples, then we can estimate the sill of the semi-variogram,
and compare this value with the sill. That is, C = s2 (ideally).
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Table 3.2 Experimental semi-variogram values calculated from the three
di®erent core section lengths

Distance between Experimental semi-variograms
samples (m) 1:52m 3:04m 4:56m

1:52 1:33
3:04 3:09 2:67
4:56 5:03 3:40
6:08 6:70 6:08
7:60 8:26
9:12 9:00 8:32 5:91
10:64 9:67
12:16 10:46 9:50
13:68 11:44 6:55
15:20 11:87 11:01
16:72 11:39
18:24 11:33 10:32 6:68
19:76 10:93
21:28 10:48 9:18
22:80 9:76 5:71
24:31 9:21 8:75
25:84 9:27
27:36 11:09 10:62 7:21
28:88 11:70
30:40 11:25 10:10
31:92 9:68 4:93
33:44 8:60 7:80
34:96 8:45
36:48 9:15 8:12 4:28
38:00 10:15
39:52 11:70 11:55
41:04 13:04 8:64
42:56 14:03 13:18
44:08 14:98
45:60 15:70 14:18 10:01
47:12 15:94
48:64 15:81 14:20
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Fig. 3.1. Experimental semi-variograms constructed on various lengths of
core | lead/zinc example.

Fig. 3.2. Regularisation of a linear semi-variogram by core lengths.
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Now, if the samples are cores of a certain length l (e.g. 1.52m) and we
measure the average grade over that length, then we have smoothed out
some of the `point' variation. We have replaced a large number of individual
`points' with one average value. The variance of the averages will therefore
be less than the variance of the `points', so that

cl = s
2
l < C = s

2

In a similar way C3:04 will be less than C1:52 and so on. If we have a model for
the semi-variogram for the point samples we could produce the model for any
other size of sample, by employing the mathematical relationship between the
point model (°)and the model for samples of length l(°l). Since we are only
using a limited number of simple models for the point semi-variogram, it is
not too di±cult to state this relationship.

If we have a linear model for the point samples, °(h) = ph, where p is
the slope of the semi-variogram line, then the semi-variogram for samples of
length l is given by: °l(h) =

ph2

3l2
(3l ¡ h) when h � l

°l (h) =
ph2

3l2
(3l¡ h) when h � l

= p(h¡ l

3
) when h ¸ l

This is illustrated in Fig. 3.2, with the point model for comparison. In
practice, we generally have an experimental semi-variogram for samples of
length l, that is °¤l , and we need to ¯nd the model for the point samples (°)
for use in the later chapters. Since the slope, p, of the core model is the same
as that of the point model, simply measuring the slope of our experimental °¤l
will give a value for p, and hence the point model, °. One complication arises
if the point model is actually a linear model plus a nugget e®ect. Taking core
samples lowers the line, but a nugget e®ect will raise it again. From the above
formula, if no nugget e®ect is present, extending the line of the core model
back until it intersects the semi-variogram axis should produce an intercept
of ¡pl=3. Once an estimate of p has been made this can easily be checked,
and if necessary a nugget e®ect C0 added to the model.

Now suppose our deposit followed an exponential model, with sillC for `point'
samples, i.e.,

°(h) = C [1¡ exp(¡h=a)] when h ¸ 0

56



For cores of length l, the theoretical model becomes:

°l (h) = C

½
2
a

l
+
a2

l2
[1¡ exp(¡l=a)] fexp(¡h=a) [1¡ exp(l=a)¡ 2]g

¾
when h ¸ l

with a rather more complex form for distances less than the length of the
core (h < l). Since we are unlikely to have values of an experimental semi-
variogram for distances less than the sample length, the form of it seems
rather academic. Figure 3.3 shows a point exponential model and the corre-
sponding `regularised' curve for a sample of length l. It can easily be seen
that Cl is lower than C. In fact:

Cl = 2C

½
a

l
¡ a2

l2
[1¡ exp(¡l=a)]

¾

so that a sample which was, say, one-¯fth of the range of in°uence, would
produce a sill:

Cl = 2C
£
5¡ 25(1¡ e¡0:2)

¤
= 0:94C

That is, the new sill will only be 94% as high as that of the point model. It
will also be noticed from Fig. 3.3 that extending the `linear' part of the core
model (close to the origin) until it intersects the sill produces an estimate
of the range of in°uence for the cores al , which is longer than that of the
points, a.
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Fig. 3.3. Regularisation of an exponential semi-variogram by core lengths.

In fact, al = a+ l. This seems quite sensible if you remember that cores will
have to be just that bit further apart before they become independent.

The above arguments and formulae apply to the situation where you know
the `point' model and you wish to ¯nd the `regularised' model. In practice
the situation is generally reversed. We usually have an experimental semi-
variogram which has been calculated on cores of a given length, and we need
to ¯nd the point model for use in the estimation techniques. Suppose, then,
that we have a graph of the experimental semi-variogram °¤l , and we have
decided that our deposit follows an exponential model. The ¯rst step is to
guess the two parameters Cl and al . Since the model is exponential, the sill
Cl will be greater than most of the experimental points on the graph. Having
guessed Cl, produce a line up through the ¯rst two or three points on the
graph until it cuts the sill. This will give a ¯rst guess at al. We know that
a = al ¡l, so we have a ¯rst estimate of a. Using this in the above formula for
Cl, we can reverse the equation and produce a value for C, the point sill. We
now have guesses at the values of a and C which govern the point model. The
next question is whether these are `good' guesses. We have already stated
that if we know the point model, we can produce the corresponding model for
cores of any given length, i.e. °l (h). If our guesses are good ones then this
theoretical model for °l (h) should match the experimental semi-variogram,
°¤l (h). Substituting values for h; l; a and C produces a smooth curve like the
lower one in Fig. 3.3, and this can be compared to the data. If necessary, a
and C can be altered until the `model' values become a good ¯t to the `data'
values. In e®ect, this is the same procedure as was used in Chapter 2, but
with an additional consideration of the sample length.

Let us now turn to the most common model | the spherical model. This
will be in°uenced in the same sort of way as the exponential. The sill for the
cores will be lower than that for the `points', and:

Cl =
C

:20
(20¡ 10 l

a
+
l3

a3
) for l � a

and

Cl =
C

20

a

l
(15¡ 4a

l
) for l ¸ a

The formula for the semi-variogram of the cores is extremely complex because
of the `discontinuity' in the model but an example is shown in Fig. 3.4. A
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subroutine to evaluate the formula has been published. If the calculations
are to be done by hand (or hand calculator) then it is easier to use tables
such as Table 3.3.

Fig. 3.4. Regularisation of a spherical semi-variogram by core lengths.

This table shows the form of the `regularised' semi-variogram for a core of
length l if the original point semi-variogram had a range of in°uence a, and
a sill of 1. The use of this table is best illustrated by an example. We can
now return to the example shown in Fig. 3.1 of the zinc values measured
over core lengths of 1.52m. In Chapter 2 we guessed that the sill lay at about
10:5(%)2. This is our ¯rst approximation of Cl. Producing the line through
the ¯rst two points on the experimental semi-variogram gives 2al =3 = 9:6m
(approximately). That is, al = 14:4m, and hence a = 12:9m. Using the
formula:

Cl =
C

20
(20¡ 10 l

a
+
l3

a3
)

10:5 =
C

20
(20¡ 101:52

12:9
+
1:523

12:93
)
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10:5 = 0:9412C

C = 11:2(%)2

The ¯rst estimates, then, for the parameters of the point model are a = 12:9m
and C = 11:2(%)2. We must ¯nd the row in the Table 3.3 which corresponds
to our value of a=l , i.e. 8:5. The entries along this line correspond to
multiples of the sample length l. That is, h=l = 1 means h = 1:52m, h=l = 2
means h = 3:04m and so on. We see that at h=l = 1 the table gives a value
of 0:116. This would be for a semi-variogram with a sill of 1. Since we have
a sill of 11:2(%)2, the value we require is 0:116 £ 11:2 = 1:30(%)2. This is
now a `model' value for the semi-variogram of cores of length 1:52m and can
be plotted on the graph next to the `observed' value of 1:33(%)2.

Table 3.3 Regularised semi-variogram °l(h) for Spherical model with range
a and sill 1.0 for various distances h

h=L
a=L 1:0 2:0 3:0 4:0 5:0 6:0 7:0 8:0 9:0 10:0
:50 :300 :325 :325 :325 :325 :325 :325 :325 :325 :325
1:00 :450 :550 :550 :550 :550 :550 :550 :550 :550 :550
1:50 :463 :678 :681 :681 :681 :681 :681 :681 :681 :681
2:00 :412 :728 :756 :756 :756 :756 :756 :756 :756 :756
2:50 :355 :717 :802 :803 :803 :803 :803 :803 :803 :803
3:00 :307 :669 :822 :835 :835 :835 :835 :835 :835 :835
3:50 :269 :610 :812 :858 858 :858 :858 :858 :858 :858
4:00 :239 :555 :778 :868 :876 :876 :876 :876 :876 :876
4:50 :215 :507 :733 :861 :889 :889 :889 :889 :889 :889
5:00 :194 :464 :686 :836 :896 :900 :900 :900 :900 :900
5:50 :178 :428 :642 :802 :890 :909 :909 :909 :909 :909
6:00 :163 :396 :601 :764 :872 :914 :917 :917 :917 :917
6:50 :151 :368 :564 :726 :845 :909 :923 :923 :923 :923
7:00 :141 :344 :530 :690 :814 :895 :926 :929 :929 :929
7:50 :132 :323 :500 :655 :782 :874 :923 :933 :933 :933
8:00 :124 :304 :472 :623 :751 :849 :912 :936 :938 :938
8:50 :117 :287 :447 :593 :720 :822 :894 :933 :941 :941
9:00 :110 :272 :425 :566 :690 :794 :874 :924 :943 :945
9:50 :104 :258 :404 :541 :663 :767 :851 :910 :941 :947
10:00 :099 :246 :386 :517 :636 :741 :827 :892 :933 :949
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A second point on the model would be at h = 3:04m, i.e. h=l = 2. The table
gives a value of 0:288 for C = 1, so that our model value is 0:288£ 11:2 =
3:23(%)2. This can be compared with the experimental value of 3:09(%)2.
This process is repeated until we have a model value to compare with each
observed value. The resulting model curve has been plotted in Fig. 3.5.
This seems to be rather a good ¯t to the experimental semi-variogram, if we
accept the sill at 10:5(%)2.

Fig. 3.5. Fitted regularised model to the lead/zinc example | 1.52m cores.

Adjustments could be made if the sill was thought to be too low, by rais-
ing C and a. Suppose we accept this `point' model with a = 12:9m and
C = 11:2(%)2. We can run a secondary check by comparing the models for
core lengths 3:04m and 4:56m. For the former, a=l = 4:25 so that we must
interpolate in the table between a=l = 4:00 and a=l = 4:50. Linear interpo-
lation is generally su±cient for this sort of exercise. Figure 3.6 shows the
experimental and model curves for each sample length, and the point model
for comparison.
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Fig. 3.6. Fitted models to the lead/zinc example | 3.04m and 4.56m cores
and the `point' model.

The model seems to be a good ¯t to the 3:04m semi-variogram, especially
to the ¯rst four points. However, after the ¯rst point on the 4:56m semi-
variogram the model here is consistently considerably higher than the experi-
mental semi-variogram until h is about 41m. This could perhaps be neglected
in view of the fact that each of these experimental values is calculated on
15 or fewer pairs. All in all, the spherical model as estimated seems to be a
pretty good ¯t.

VOLUME{VARIANCE
CALCULATIONS

This process of the semi-variogram changing with di®erent `support' is usu-
ally known in the literature as `regularisation' | on the basis that the sam-
ples get more regular as the sample size increases. We have seen that we can
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handle experimental semi-variograms for core samples, and still derive the
supposed point model. However, this leads us on to another problem of the
`volume{variance' relationship and the in°uence of sample size on the sort of
distribution encountered. Suppose at the pre-feasibility stage of investigating
a deposit the management requests a grade/tonnage calculation.

Fig. 3.7. Typical sampling situation in Cornish tin example.

That is, given an economic cuto® grade (or list thereof) can we evaluate (i)
the tonnage of ore in the deposit which is above cuto® and (ii) the average
grade of that ore. Suppose we take an example to illustrate the problem
which arises. A hydrothermal tin vein has been sampled by means of nine
development drives approximately 100ft apart in the plane of the lode. Chip
samples are taken every 10ft along these drives. The sampling setup is shown
in Fig. 3.7. These chip samples may be considered as `points' since they have
a very small volume. Figure 3.8 shows a histogram of the 2730 chip samples
taken from the development drives in this lode. Suppose we now specify a
`cuto® grade' of 25lb/ton for this lode. The histogram shows that about
44% of the chip samples lie below 25lb/ton. We could (possibly) make the
statement that we therefore believe that 44% of the ore in the lode lies below
25lb/ton.
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Fig. 3.8. Histogram of chip samples taken from the drives in the cassiterite
vein.

Now, the usual method of estimating the value in the stopes is to delineate
a block (say 125ft long) between the drives and allocate to that block the
average of all the peripheral development samples. It is this estimate which
determines whether a stope block enters `reserves' or not. Figure 3.9 shows
the corresponding histogram of the estimates of 125ft by 100ft stoping blocks,
i.e. the averages of the drive samples over two lengths of 125ft each. We have
seen from the previous

Fig. 3.9. Histogram of estimates of stope values in the cassiterite vein.
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exercise that we expect averages over lengths to be somewhat less variable
than `point' samples. This is adequately borne out by the behaviour of these
estimates. Whereas the point values range up to 300lb/ton or more, the drive
averages seldom exceed about 150lb/ton. Whilst 44% of the point samples
lie below 25lb/ton something less than 8.5% of the `block estimates' do so.
Should we now say that 8.5% of the ore lies below 25lb/ton? What we really
need to do is to rede¯ne the phrase `of the ore'. In the ¯rst case what we
meant was that if the deposit were divided into chip samples, we could reject
44% of these as being below cuto®. In the second it was 8.5% of the drive
averages below cuto®. That is, if the deposit were divided into pairs of 125-ft
strips 100ft apart, 8.5% of these would be below cuto®. Or alternatively, by
my estimate 8.5% of the stope blocks would be below cuto®. In other words,
we cannot de¯ne how much ore we have after selection unless we de¯ne a
unit of selection in terms of size and shape. The real question is `how many
125 by 100ft stope panels are below cuto®?' To answer this question we
must determine what sort of distribution these panels would follow. The full
answer will depend on (i) the distribution of the original samples and (ii) the
semi-variogram of the deposit.

Let us make a general statement of the problem and see how it leads to a
solution. The original sample data has a `support' of, say, l; it has a semi-
variogram °l (h) with a sill Cl ; it has a distribution of grades which can to
some extent be characterised by the histogram and which has a mean ¹gl and
variance Cl. The panels or blocks being estimated will have a support of,
say, v; a semi-variogram °v(h) with sill Cv; a distribution with mean ¹gv and
variance Cv. The ¯rst thing we can say is that ¹gl and ¹gv should be the same,
since both describe the average grade of ore over the whole deposit. Thus
we can replace them both by ¹g, the average of `point' samples. The second
thing we can say is that if we have a model for the point semi-variogram we
can state the relationship between the point sill C and the `core' sill Cl , and
between C and Cv for any de¯ned volume v. Suppose we take the simple
example of a core of length l which can be represented as a straight line (since
the diameter is very much smaller than the length).
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Fig. 3.10. Derivation of the variance of grades within a `line' segment.

This is illustrated in Fig. 3.10. Consider two points on this line, M and
M 0. We could calculate from the model semi-variogram the `di®erence' be-
tween the grades at these two points. Now suppose we took all possible
pairs(M;M 0) which exist within the line | including the case whenM =M 0.
In this way we could get a measure of the `variability' of the grades within
the line. If we take the average of the semi-variogram values °(M¡M 0) over
all possible pairs, then we obtain the variance of the grades within the length
l.

Fig. 3.11. Derivation of the variance of grades within a panel.

This is the variance which is removed from the system if we only consider
the average grade over the length l, i.e. the di®erence between the point sill
and the regularised sill, C ¡ C

l . Mathematically:

F (l) =
1

l2

Z l

0

Z l

0

°(M ¡M 0)dMdM 0

where F (l) de¯nes the variance of grades within the length l. Although this
looks fearsome, it reduces to:

F (l) =
pl

3
for the linear semi-variogram
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= C

½
1¡ 2a

l
+
a2

l2
[1¡ exp(¡1=a)]

¾
for the exponential semi-variogram

and for the spherical model:

F (l) =
C

20

l

a
(10¡ l2

a2
) when l � a

=
C

20
(20¡ 15a

l
+ 4

a2

l2
) when l ¸ a

These, of course, correspond exactly with the di®erence between the point
and regularised semi-variograms. Now suppose we want to consider a two-
dimensional panel such as that shown in Fig. 3.11. The F function now
becomes F (d; b) to show that it has two dimensions. This would be a quadru-
ple integral, since the pointsM andM 0 can now move throughout the whole
panel. The formulae get complicated, but not impossible, and for example
of the type of values encountered, Table 3.4 has been produced. This table
shows the F (d; b) function for a spherical model with range equal to 1 and
sill of 1. This is a `standardised' spherical model | in the same sense as
a `Standard' Normal distribution. This table can be used to produce the
corresponding value of the F function for any spherical model, as follows:

(i) divide the lengths of the sides of the panel by the range of in°uence a;

(ii) read o® the corresponding entry in the table;

(iii) multiply this value by C.

Table 3.4 Auxiliary function F (L;B) for Spherical model with range 1.0
and sill 1.0
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B
L :1 :2 :3 :4 :5 :6 :7 :8 :9 1:0
:10 :078 :120 :165 :211 :256 :300 :342 :383 :422 :457
:20 :120 :155 :196 :237 :280 :321 :362 :401 :438 :473
:30 :165 :196 :231 :270 :309 :349 :387 :424 :460 :493
:40 :211 :237 :270 :305 :342 :379 :415 :451 :484 :516
:50 :256 :280 :309 :342 :376 :411 :445 :479 :511 :541
:60 :300 :321 :349 :379 :411 443 :476 :507 :538 :566
:70 :342 :362 :387 :415 :445 :476 :506 :536 :565 :591
:80 :383 :401 :424 :451 :479 :507 :536 :564 :591 :616
:90 :422 :438 :460 :484 :511 :538 :565 :591 :616 :640
1:00 :457 :473 :493 :516 :541 :566 :591 :616 :640 :662
1:20 :520 :534 :551 :572 :593 :616 :638 :660 :682 :701
1:40 :572 :584 :600 :618 :637 :657 :677 :697 :716 :733
1:60 :614 :625 :639 :655 :673 :691 :709 :727 :744 :760
1:80 :650 :659 :672 :687 :703 :719 :736 :752 :767 :782
2:00 :679 :688 :700 :713 :728 :743 :758 :773 :787 :800
2:50 :735 :743 :752 :763 :775 :788 :800 :813 :824 :835
3:00 :775 :781 :789 :799 :809 :820 :830 :841 :851 :860
3:50 :804 :810 :817 :825 :834 :843 :852 :861 :870 :878
4:00 :827 :832 :838 :845 :853 :861 :870 :878 :885 :892
5:00 :860 :864 :869 :874 :881 :887 :894 :901 :907 :913
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L 1:2 1:4 1:6 1:8 2:0 2:5 3:0 3:5 4:0 5:0
:10 :520 :572 :614 :650 :679 :735 :775 :804 :827 :860
:20 :534 :584 :625 :659 :688 :743 :781 :810 :832 :864
:30 :551 :600 :639 :672 :700 :752 :789 :817 :838 :869
:40 :572 :618 :655 :687 :713 :763 :799 :825 :845 :874
:50 :593 :637 :673 :703 :728 :775 :809 :834 :853 :881
:60 :616 :657 :691 :719 :743 :788 :820 :843 :861 :887
:70 :638 :677 :709 :736 :758 :800 :830 :852 :870 :894
:80 :660 :697 :727 :752 :773 :813 :841 :861 :878 :901
:90 :682 :716 :744 :767 :787 :824 :851 :870 :885 :907
1:00 :701 :733 :760 :782 :800 :835 :860 :878 :892 :913
1:20 :736 :764 :788 :807 :823 :854 :876 :892 :905 :923
1:40 :764 :790 :811 :828 :842 :870 :890 :904 :915 :931
1:60 :788 :811 :829 :845 :858 :883 :901 :914 :924 :938
1:80 :807 :828 :845 :859 :871 :894 :910 :921 :931 :944
2:00 :823 :842 :858 :871 :882 :903 :917 :928 :936 :948
2:50 :854 :870 :883 :894 :903 :920 :932 :941 :948 :957
3:00 :876 :890 :901 :910 :917 :932 942 :950 :955 :964
3:50 :892 :904 :914 :921 :928 :941 :950 :956 :961 :969
4:00 :905 :915 :924 :931 :936 :948 :955 :961 :966 :972
5:00 :923 :931 :938 :944 :948 :957 :964 :969 :972 :977

Table 3.5 Auxiliary function F (L;L;B) for Spherical model with range 1.0
and sill 1.0

69



B
L .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
.10 .099 .136 .178 .222 .266 .309 .350 .390 .428 .464
.20 .168 .196 .231 .269 .308 .347 .385 .423 .458 .491
.30 .239 .262 .291 .324 .358 .394 .429 .463 .496 .527
.40 .311 .329 .353 .382 .413 .445 .476 .508 .538 .566
.50 .380 .395 .416 .441 .468 .497 .526 .554 .581 .607
.60 .445 .459 .477 .499 .523 .549 .574 .600 .624 .648
.70 .507 .519 .535 .554 .576 .598 .622 .644 .666 .687
.80 .565 .574 .588 .606 .625 .645 .666 .686 .705 .724
.90 .616 .625 .637 .652 .669 .687 .706 .724 .741 .757
1.00 .662 .669 .680 .694 .709 .725 .741 .757 .772 .786
1.20 .735 .741 .750 .760 .772 .785 .797 .810 .822 .833
1.40 .789 .794 .800 .809 .818 .828 .839 .849 .858 .867
1.60 .828 .832 .838 .845 .852 .861 .869 .877 .885 .892
1.80 .858 .861 .866 .872 .878 .885 .892 .899 .905 .911
2.00 .880 .883 .887 .892 .897 .903 .909 .915 .920 .925
2.50 .918 .920 .923 .926 .930 .934 .938 .942 .946 .949
3.00 .940 .941 .944 .946 .949 .952 .955 .958 .960 .963
3.50 .954 .955 .957 .959 .961 .963 .966 .968 .970 .972
4.00 .963 .964 .965 .967 .969 .970 .972 .974 .976 .977
5.00 .974 .975 .976 .978 .979 .980 .981 .983 .984 .985
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L 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 5.0
.10 .526 .577 .619 .653 .683 .738 .777 .807 .829 .861
.20 .550 .598 .638 .671 .699 .751 .789 .816 .837 .868
.30 .581 .626 .663 .693 .719 .768 .803 .829 .849 .877
.40 .616 .657 .691 .719 .742 .787 .819 .843 .861 .887
.50 .652 .689 .720 .745 .767 .808 .836 .858 .874 .898
.60 .688 .722 .749 .772 .791 .828 .854 .873 .887 .909
.70 .723 .753 .777 .798 .815 .847 .870 .887 .900 .919
.80 .756 .782 .804 .822 .837 .865 .886 .901 .912 .929
.90 .785 .809 .828 .843 .857 .882 .900 .913 .923 .937
1.00 .811 .832 .849 .862 .874 .896 .912 .923 .932 .945
1.20 .853 .869 .882 .893 .902 .919 .931 .940 .947 .957
1.40 .883 .896 .906 .915 .922 .936 .945 .952 .958 .966
1.60 .905 .915 .924 .931 .937 .948 .956 .961 .966 .972
1.80 .922 .930 .937 .943 .948 .957 .963 .968 .972 .977
2.00 .934 .941 .947 .952 .956 .964 .969 .973 .976 .981
2.50 .955 .960 .964 .967 .970 .975 .979 .982 .984 .987
3.00 .967 .971 .974 .976 .978 .982 .985 .987 .988 .991
3.50 .975 .978 .980 .982 .983 .986 .988 .990 .991 .993
4.00 .980 .982 .984 .986 .987 .989 .991 .992 .993 .994
5.00 .987 .988 .989 .990 .991 .993 .994 .995 .995 .996

Examples of such calculations are given later in this chapter. Similar tables
may be produced for the linear and exponential models.

In three dimensions the problem of calculating the F (l; b; d) function analyt-
ically appears to be insurmountable. It is necessary to resort to a numerical
approximation using a computer. The easiest way to do this is to go back to
the de¯nition of the F function: we take pairs of points (M;M 0) within the
block; consider all such pairs; calculate the semi-variogram value between
M and M 0; sum all these values and average them | this gives the F value.
Now, suppose we do not take all of the pairs but only a few `representative'
ones. That is, instead of considering the block as an in¯nite number of points
we consider it to be a `grid' containing a ¯nite number of points, say on a 5
by 5 by 5 grid. Some authors suggest taking `randomly' distributed points,
but there seems little sense in that. Using such a method, Table 3.5 was
produced for the `standardised' spherical model. In order to produce only
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one table, it has been necessary to insist that two sides of the block have the
same length. This table is used in the same way as the two-dimensional one.

GRADE/TONNAGE CURVES

So, we now know how to calculate the function F for one, two and three
dimensions, and hence can state the di®erence between the `point' variance
and the `regularised' variance of regular shaped areas and volumes. This will
give us a numerical quantity for the reduction in the variance, but unless
we make some assumptions about the distribution of the samples, we cannot
actually quantify the change in the `tonnage above cuto®' and so on. There
are two ways to approach the problem:

(i) Assume that the histogram of the samples represents the whole deposit
accurately.

(ii) Assume that the histogram represents a set of samples from the whole
deposit, and as such contains some random variation from the `popu-
lation' distribution.

The ¯rst approach declares that the samples are `typical' of the whole deposit,
and leads to graphical anamorphisms and transfer functions. The second
approach declares the belief that if we could measure the grade at every
point in the deposit we would end up with a smooth curve of a fairly simple
form. This is a much simpler approach, and generally seems to be su±cient
for most deposits.

To start with a simple example, let us consider an iron ore deposit which is
known to follow a Normal distribution with a mean of 48%Fe and a standard
deviation of 5%Fe. This distribution has been established on samples small
enough to be called `points'. We also know that the deposit follows a point
semi-variogram model which is spherical with a range of in°uence of 400ft.
Now, suppose that the mine plan is to be constructed on blocks which are
100ft by 100ft by 50ft. What will the distribution of these blocks look like.
The ¯rst thing we can say is that it will probably be Normally distributed.
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It will certainly have the same mean (48%Fe) as the `points'. The only
change will be in the standard deviation of the distribution. We need to
evaluate the function F (100; 100; 50) for a spherical model with a = 400 and
C = 25. To use Table 3.5 we must `standardise' the situation so that the
range of in°uence becomes 1. That is, F (100; 100; 50) for a = 400 is the same
as F (0:25; 0:25; 0:125) for a = 1. Table 3.5 gives a value of 0:209 for these
arguments, but this is for a model whose sill is 1. For our model the required
value is 0:209£ 25 = 5:225(%Fe)2. This is the di®erence between the point
variance and the block variance. Therefore the variance of the block values
will be 25¡ 5:225 = 19:775(%)2 leading to a block standard deviation, sv, of
4:45%Fe. This is slightly over 10% less than the point standard deviation, as
would be expected with such a `small' block. Thus we have two distributions
to be considered, both Normal, as follows:

(i) point distribution: ¹g = 48%Fe; s = 5%Fe

(ii) block distribution: ¹g = 48%Fe; sv = 4:45%Fe

These two distributions are shown in Fig. 3.12, and the reduction in spread
for the block distribution can be clearly seen. To see how the di®erence in
the distributions will a®ect the grade{tonnage calculations, let us take as an
example a cuto® grade of 44%Fe.

Fig. 3.12. Comparison of the distributions of points and blocks within a
hypothetical iron ore deposit.
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The proportion (P ) of the distribution which is above cuto® is given by:

P = Pr fg > cg

where g denotes the grade in general, and c the cuto® grade. Tables are
widely available for the Standard Normal distribution, which tabulate the
proportion of the Standard Normal distribution which lies below a given
value z. For any other Normal distribution the z value is determined by
taking the value of interest, subtracting the mean of the distribution, and
dividing by the standard deviation. In our example, we are considering the
cuto® grade, c, so that

z =
c¡ ¹g

s

The Normal table will give us ©(z), which is the probability of lying below
the cuto®, so that

P = 1¡ ©(z)

Thus, if we consider the distribution of the `point' values, we obtain the
following:

c = 44%Fe

¹g = 48%Fe s = 5%Fe

z =
c¡ ¹g

s
=
44¡ 48
5

= ¡0:80

Consulting a Standard Normal table gives ©(z) = 0:212 so that P = 0:788.
That is, about 79% of the deposit will lie above a cuto® of 44%Fe. The second
question is the average grade of this ore. For the Normal distribution, the
grade above cuto® is given by:

¹gc = ¹g +
s

P
Á(z)

where ¹gc denotes the grade above cuto®, and Á(z) is the height of the standard
normal curve at the value z, i.e.

Á(z) =
1

X2¼ exp(¡z
2=2)
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For our example, then, Á(z) = 0:290 so that:

¹gc = ¹g +
s

P
Á(z) = 48 +

5

0:788
0:290 = 49:84%Fe

To summarise, 78:8% of the ore lies above a cuto® of 44%Fe, and this ore
has an average grade of 49:8%Fe.

Let us repeat this exercise, but now taking into account the `selective mining
unit' of 100ft x 100ft x 50ft. We have:

c = 44%Fe

¹g = 48%Fe sv = 4:45%Fe

zv =
c¡ ¹g

sv
=
44¡ 48
4:45

= ¡0:899

The Standard Normal table gives Á(zv) = 0:184 so that P is now 0:816, and
the average grade above cuto® is

¹gc = ¹g +
sv
P
Á(zv) = 48 +

4:45

0:816
0:267 = 49:45%Fe

Although the di®erences in this example are not substantial, it can clearly
be seen that if the selection is applied to the average grade of 100ft by 100ft
by 50ft blocks, then the tonnage mined (the proportion of the deposit) is
larger and the grade of the ore is lower than would be expected from the
original samples. If the cuto® grade chosen were above the mean grade of
the deposit, the position would be reversed. This is not merely an academic
observation, but is borne out by experience on many mines in existence.

Now let us turn to a much more common situation, in which the grade
distribution is log-normal. Take as an example a lead/zinc deposit, where
the `combined metal' percentage is the economic variable. The samples are
known to be log-normally distributed, and the mean and standard deviation
of the `point' samples are 12% and 8% combined metal respectively. The
semi-variogram is spherical with a range of 15m. The `selective mining unit'
is a block 10 by 10 by 5m. Using Table 3.5, we can ¯nd that F (10; 10; 5)
when a = 15 and C = 64 is given by 0:516 £ 64 = 33:034. This produces
a block standard deviation of 5:56% combined metal. The two distributions
are compared in Fig. 3.13.
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Fig. 3.13. Comparison of the distributions of combined metal percentages
within a hypothetical lead/zinc deposit.

To calculate the proportion above cuto® and the average grade of the ore
for a log-normal distribution requires an extra step in the proceedings. By
de¯nition, if a variable has a log-normal distribution, then the logarithm of
that variable has a Normal distribution. It is necessary to calculate the

mean and standard deviation of this Normal distribution before we can per-
form any calculations. If we write y for the logarithm of the grade, then the
mean and standard deviation of the y values are given by:

s2y = loge(
s2

¹g2
+ 1)

¹y = loge ¹g ¡ 0:5s2y

Once these parameters have been calculated, then the following may be eval-
uated:

z =
loge c¡ ¹y

sy
P = 1¡ ©(z)
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where P is again the proportion of the ore above cuto®. The average grade
is found by the following process:

¹gc =
Q

P
¹g

where Q = 1¡ ©(z ¡ sy).

In the lead/zinc example above, 4% combined metal is a feasible cuto® grade.
Considering the `point' distribution then:

¹g = 12 s = 8

¹y = 2:30 sy = 0:61

z =
loge c¡ ¹y

sy
=
1:39¡ 2:30
0:61

= ¡1:508

P = 1¡ ©(¡1:508) = 0:934
Q = 1¡ ©(¡1:508¡ 0:61) = 0:983
¹gc =

Q

P
¹g =

0:983

0:934
£ 12 = 12:62%(Pb+ Zn)

The original sample data informs us that 93:4% of the deposit lies above
4%(Pb + Zn) and that this ore has an average value of 12:62% combined
metal. Now, considering the distribution of 10 by 10 by 5m blocks, the
following results are found:

¹g = 12 sv = 5:56

¹y = 2:39 sy = 0:44

z =
loge c¡ ¹y

sy
= ¡2:271

P = 1¡ ©(¡2:271) = 0:988
Q = 1¡ ©(¡2:271¡ 0:44) = 0:997
¹gc =

Q

P
¹g =

0:997

0:988
£ 12 = 12:10%(Pb+ Zn)

Once again, selection made on a mining block unit, this time of size 10 by 10
by 5m, produces a larger tonnage and a lower grade than the small samples
would suggest. Table 3.6 shows the resulting values when a set of possible
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cuto® values is chosen. Figure 3.14 shows the resulting grade/tonnage curves
in the normal manner employed in mining reports. The one minor di®erence
here is that `proportion' above cuto® is given rather than tonnage, to keep
the example general. The `bias' introduced by considering `point' samples
rather than the true selective mining unit can clearly be seen on this graph.

Table 3.6 Comparison of grade/tonnage calculations for point and block
values for combined metal (Lead/Zinc) deposit

POINTS BLOCKS
proportion average grade proportion average grade

Cuto® above cuto® above cuto®
4 0.934 12.62 0.988 12.10
6 0.800 13.90 0.912 12.68
8 0.643 15.58 0.758 13.82
10 0.499 17.48 0.576 15.34

Here is a very brief example with which to ¯nish o®. A low grade uranium
deposit has a log-normal distribution with mean 0:30%U3O8 and a standard
deviation of 1:05%U3O8. The spherical semi-variogram has a range of 40m,
and the selective mining unit has a size of 25 by 25 by 10m. Using Table 3.5
gives an F function of 0:477£1:1025 = 0:526, producing a standard deviation
for the blocks of 0:76%U3O8. Table 3.7 shows the results of applying cuto®s
of 0:05, 0:10, 0:15 and 0:20%U3O8 to (i) the `point' samples and (ii) the block
distribution. Figures 3.15 and 3.16 illustrate these results. Notice how the
skewed nature of the original distribution, and the relatively large size of the
block combine to produce an ever widening gap between the point curve and
the block curve.
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Fig. 3.14. Comparison of grade/tonnage curves in the lead/zinc deposit.
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Fig. 3.15. Comparison of point and block grade/tonnage curves in a
uranium deposit | cuto® grade versus proportion above cuto®.

Fig. 3.16. Comparison of point and block grade/tonnage curve in a
uranium deposit | cuto® grade versus average grade.

Table 3.7. Comparison of grade/tonnage calculations for point and block
values for uranium deposit

POINTS BLOCKS
proportion average grade proportion average grade

Cuto® above cuto® above cuto®
0.05 0.622 0.47 0.712 0.41
0.10 0.452 0.62 0.527 0.53
0.15 0.355 0.75 0.414 0.64
0.20 0.291 0.88 0.337 0.75

CONCLUSION
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In this chapter we have considered the problems introduced by the volume,
size, shape etc. of both samples and selective mining units. We have seen
how the `point' semi-variogram model may be derived, even though the ex-
perimental semi-variogram may have been constructed on samples with a
de¯nite support. We have also seen how, for certain regular shapes, the dis-
tribution of values changes according to the support of the selective mining
unit. The construction of `theoretical' grade/tonnage curves can be achieved
providing the following information is available:

(i) the distribution of the `point' values;

(ii) the semi-variogram of the `point' values;

(iii) the size and shape of the selective mining unit.

In this way more `realistic' ¯rst estimates of the grade/tonnage calculations
may be produced at a very early stage in any study.

CHAPTER 4
Estimation

So far we have used the basic concepts and assumptions of Geostatistics to
build ourselves a `model' of the structure and continuity within the deposit.
We have also (in Chapter 3) seen how this can lead to the production of
`theoretical' grade/tonnage curves and the study of how mining block size
can in°uence ¯nal production Figures. It is now time we returned to our
original problem of the estimation of ore reserves. The discussion in this
(and the next) chapter will be con¯ned to `local' estimation, i.e. interest is
con¯ned to one portion of the deposit at a time. However, it should be borne
in mind that the same techniques can be applied on a global scale, i.e. to the
whole deposit at once. It should also be remembered that block-by-block or
stope-by-stope estimates will lead inevitably to global estimates.

Let us, then, de¯ne the situation which is of interest to us. There is a point
or an area or a volume of ground over which we do not know the grade
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(or value), but we wish to estimate it. Let us call this `unknown' grade
T , and the area (or point, or volume) of interest A. In order to produce an
estimator we must have some information, usually in the form of samples. To
be completely general, let us suppose n samples with values of g1; g2; g3:::gn.
This set of samples is generally denoted by S. From these samples we can
form a `linear' type of estimator | that is, a weighted average. We must
restrict ourselves to this type of estimator at this stage. The estimator is
denoted by T ¤ and is equal to:

T ¤ = w1g1 + w2g2 + w3g3 + :::+ wngn

where the w1, w2, w3:::wn are the weights assigned to each sample. Most
currently used local estimation techniques use a weighted average approach
| inverse distance techniques and so on. The simplest case of all is when all
of the weights are the same, and T ¤ is just the arithmetic mean of the sample
values.

Fig 4.1. Hypothetical sampling and estimation situation | a uranium
deposit.

Now consider the setup of samples and `unknown' which we originally dis-
cussed in the ¯rst chapter. Figure 4.1 shows the point of interest which lies
at position A, and we have ¯ve `point' samples lying around this position.
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The co-ordinates of these six points and the values of the samples are given
in Table 4.1. The hypothetical deposit is a low-grade, large-tonnage uranium
one, which is assumed to be isotropic. The semi-variogram model ¯tted to
this deposit is a spherical one with a range of in°uence of 100 ft, a sill value
(C) of 700 (p.p.m.)2 and a nugget e®ect of 100 (p.p.m.)2: Let us take the
simplest possible estimation procedure. Take the value at the closest sample
position (1) and `extend' this to the unknown point. In doing so we incur an
estimation error, ", which will be equal to the di®erence between the actual
value T and the estimated value T ¤, which in this case equals g1. That is:

T ¤ = g1

" = T ¡ T ¤

It is not too di±cult to show that if there is no trend (at least locally), this
estimator is unbiased. That is, if we make lots of similar estimations the
average error will be zero.

¹" = 0

The `reliability' of the estimation can be measured by looking at the spread
of the errors. If the errors take values consistently close to zero, then the
estimator is a `good' one. If the spread of values is large, then the estimator
will be unreliable. The simplest stable measure of spread (statistically) is
the standard deviation. The standard deviation of an estimation error |
or standard error as it is referred to in ordinary statistics | will therefore
measure the reliability of that estimator.

Table 4.1 Positions and values on hypothetical Uranium estimation problem

Easting Northing Grade
Point (ft) (ft) U3O8
A 4150 2340
1 4170 2332 400
2 4200 2340 380
3 4160 2370 450
4 4150 2310 280
5 4080 2340 320
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No matter how many estimations we perform, we cannot calculate the stan-
dard deviation of the errors since we do not know the value of the error
made. Therefore we must look at the `theoretical' form of the variance of the
estimation error, i.e. the estimation variance:

" = T ¡ T ¤

variance of the errors = ¾2"
= average squared deviation from the mean error

= average of ("¡ ¹")2
= average of "2 since ¹" = 0

= average of (T ¡ T ¤)2

The average would be made (theoretically) over the whole deposit. That is,
the same estimation situation would be repeated over the whole deposit and
the variance found. This cannot be done in practice, of course, so let us
look closer at the form of this variance. It is found by taking the grade at
point A, subtracting the grade at point 1, squaring the result, repeating the
process over all possible pairs of such points and then averaging the values.
This sounds exactly like the de¯nition of a variogram. In fact, it is the
variogram between the two points A and (1). Given the distance between
them (h) we can evaluate this estimation variance simply by reading a value
from the semi-variogram model (°) and multiplying it by 2. This is one of
the reasons why it is good policy to avoid confusing the variogram and the
semi-variogram. Thus:

¾2" = 2°(h)

In the case of our particular example given in Fig. 4.1:

T ¤ = 400 p.p.m.

h = 21:54 ft

°(h) = 322:7(p.p.m.)2

¾2" = 2£ 322:7 = 645:4(p.p.m.)2
¾" = 25:4 p.p.m.
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Given our knowledge about this deposit, i.e. the semi-variogram model, we
can state (without too much fear of error) that the estimator used has a
standard error of 25.4 p.p.m. Turning this standard error into a con¯dence
interval, however, requires the assumption of some kind of probability dis-
tribution for the deposit. For instance if we hope that the Central Limit
Theorem holds, we can say that a 95% con¯dence interval for T would be
given by T ¤ § 1:96¾", i.e. (350 p.p.m., 450 p.p.m.). On the other hand, if we
were to assume a log-normal distribution for the errors, the 95% con¯dence
interval would be given by (354 p.p.m., 453 p.p.m.).

Now, let us complicate the procedure a little. Instead of estimating the value
at the point A, in a more realistic situation (at least in mining) we would be
interested in the average grade over an area or block or some mining unit.
In Fig. 4.2, a `panel' 60 ft by 30 ft has been centred on the original point A.
The estimation procedure then becomes:

T = average grade over panel

A = panel 60£ 30 ft
T ¤ = g1

" = T ¡ T ¤

The same arguments as previously still hold. The average error can be shown
to be zero if there is no local trend. The estimation variance is still a vari-
ogram, but it is now the variogram between the grade at sample point (1) and
the average grade over the panel A. We saw in Chapter 3 that we could cope
with average grades over samples if we wanted the semi-variogram between
samples of the same size, but so far we have not considered the possibility
of having two di®erent sizes to compare. The model semi-variogram supplies
us with the di®erence in grades between two points. We could ¯nd the value
of the semi-variogram between the sample point and every point within the
panel A, and we could average those values. Let us de¯ne this quantity
as ¹°(S;A), read as `gamma-bar between the sample and every point in the
panel'. The `bar' notation is the standard one for arithmetic mean. This
gamma-bar term will take the place of the °(h) in our previous relationship.
However, what we really need is the semi-variogram between the average
grade of panel and the sample, not between all the individual points within
the panel and the sample. 2¹°(S;A) would be the variance of the error made
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if we tried to estimate every point within the panel. To correct for this dif-
ference in emphasis we need to take into account the variation of the grades
at points within the panel.

Fig. 4.2. More realistic estimation | the value of the block is required
(uranium deposit).

This was discussed in Chapter 3, and we evaluated it using the auxiliary
function F (l; b). This was the average semi-variogram between all possible
pairs of points within the panel. We can rewrite this in a more general way
using the gamma-bar notation. That is, ¹°(A;A) will be the average semi-
variogram value between every point in the panel and every point in the
panel. In the case shown in Fig. 4.2, then, when using the value at sample
point (1) to estimate the average grade of the panel, the estimation variance
becomes:

¾2" = 2¹°(S;A)¡ ¹°(A;A)

The calculation of these gamma-bar terms will be discussed more fully later.

Now, let us complicate the mathematics still further. We actually have more
than one sample available to us, so why not use them in the estimation
procedure. Suppose we use the arithmetic mean of the samples as our T ¤.
This gives us the simplest form of the weighted average type of estimator.
That is:
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T = average grade of the panel

A = panel 60 ft£ 30 ft
S = 5 point-samples at speci¯ed locations

T ¤ =
1

5
(g1 + g2 + g3 + g4 + g5)

In this case the term ¹°(S;A) is the average semi-variogram value between
each point in the `sample set' S and each point in the panel A. The term
¹°(A;A) is still the average semi-variogram between each point in the panel
and each point in the panel. However, now we have yet another source of
spurious variation. We only consider the average grade of the samples as
the estimator, but ¹°(S;A) takes the individual grades into account. Thus
we have also to subtract a ¹°(S;S) term from the variance, where this is the
average semi-variogram value between each point in the sample set and each
point in the sample set (i.e. 25 `pairs' of samples). The ¯nal version of the
estimation variance then becomes:

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)

The arithmetic mean is often known in Geostatistics as an extension esti-
mator, and the above variance is referred to as the extension variance. To
distinguish this variance from the more general estimation variance for a
weighted average, the subscript e is used rather than the general ":

CALCULATION OF GAMMA-BAR
TERMS

Having produced a formula for the extension variance, it only remains to
explain how to calculate such terms as ¹°(S;A) in practice. For the sake of
our (too) simplistic approach, we will consider for the moment only simple
idealistic cases, and these only in one or two dimensions. Generalisation will
be discussed later. Consider, as an example, the setup in Fig. 4.3. There is
a length of, say, drive, l m long, whose grade is unknown.
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Fig.4.3. Example of using a peripheral point to estimate the average value
of the

line segment.

We have at our disposal a single sample, perhaps at a development heading,
whose value is known. In our previous notation T is the average grade over
l; T ¤ is the grade at the sample position, A is the length and S is the single
sample point. The reliability of this estimator is given by:

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)

¹°(S; S) is the semi-variogram between the sample point and itself, which is
zero because the sample is a `point'. ¹°(A;A) is none other than the F (l)
function encountered in Chapter 3. Our problem arises with ¹°(S;A) which
has been de¯ned as the average semi-variogram between the sample point
and every point in the line. That is, we take M as a ¯xed point (the sample)
and M' can be anywhere on the line. We take all such pairs that are possible,
calculate the value of the semi-variogram for each pair, sum these (using an
integration), and average this sum. Because the `sum' is being performed
over a continuous length, we cannot divide it by the `number of points' in
the sum. Instead we divide by the length of the line itself, l. This produces
another auxiliary function which is called Â(l) and deals with the speci¯c
case of points on the end of lines. Thus our extension variance becomes:

¾2e = 2Â(l)¡ F (l)

It remains only to determine the function Â(l) for the particular model in
use and the standard error is immediately available. The one-dimensional
auxiliary functions are given below for the three `common' models. Semi-
variograms comprising more than one component model are easily handled.
The auxiliary function for each component is evaluated and then the com-
ponent auxiliary functions added together.
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Auxiliary functions

Linear model for the semi-variogram;

°(h) = ph

Â(l) = p
l

2

F (l) = p
l

3

Exponential model for the semi-variogram;

°(h) = C[1¡ exp(¡h=a)]
Â(l) = C

n
1¡ a

l
[1¡ exp(¡l=a)]

o

F (l) = C

½
1¡ a

l
+
a2

l2
[1¡ exp(¡l=a)]

¾

Spherical model for the semi-variogram:

°(h) = C(
3

2

h

a
¡ 1

2

h3

a3
) when h � a

= C when h ¸ a

Â(l) =
C

8

l

a
(6¡ l2

a2
) when l � a

=
C

8
(8¡ 3a

l
) when l ¸ a

F (l) =
C

20

l

a
(10¡ l2

a2
) when l � a

=
C

20
(20¡ 15a

l
+ 4

a2

l2
) when l ¸ a

Thus in our example above, if we have a linear semi-variogram, the extension
variance for the setup in Fig. 4.3 becomes:

¾2e = 2p
l

2
¡ p l

3
=
2

3
pl
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For any speci¯c problem, we need specify only the length of the line l and
the slope of the semi-variogram, p.

Let us now consider a slightly more interesting example, such as that shown
in Fig. 4.4. Here the point sample is in the middle of the line, but otherwise
the situation remains the same. In:

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)

only the ¯rst term ¹°(S;A) has changed. Rather than invent a new auxiliary
function, or have to do the integration all over again, we can use the existing
Â(l) function to produce the required term.

Fig 4.4. Example of using a central point to estimate the average value of
the line
segment.

The term we require is as follows:

¹°(S;A) = the average semi-variogram value between the sample point

and every point along the line.

= (sum of all the semi-variogram values

between the sample point and every point along the line)/l.

= (sum of all the semi-variogram values between the sample point

and every point in the left hand half of the line + sum of all the

values between the sample and the right hand half of the line)/l.

Figure 4.5 illustrates the `splitting' of the line so as to put the sample point
at the end of two shorter lines. Now, Â(l=2) would give us the average of all
the semi-variogram values between M (the sample point) and the M' on the
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left hand half of the line. Returning to the de¯nition of the Â function, it can
easily be seen that the sum of all the semi-variogram values between M and
M' will be the average multiplied by the length of line under consideration.

Fig 4.5. Simplifying the central point problem to allow the use of auxiliary
functions.

Thus:

¹°(S;A) =
1

l
[
l

2
Â(l=2) +

l

2
Â(l=2)] = Â(l=2)

so that

¾2e = 2Â(l=2)¡ F (l)

In a particular case the user may substitute his own model for the semi-
variogram, and hence the appropriate auxiliary functions. Before moving on
let us compare this result with the previous situation, where the sample lay
at the end of the line. In the former case the extension variance was:

¾2e = 2Â(l)¡ F (l)

By de¯nition Â(l) must be greater than (or at least equal to) Â(l=2). The
conclusion? If you can only take one sample, it is better to take it in the
middle of what you are trying to estimate. It is reassuring to ¯nd that
so-called common sense has a sound mathematical background.
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Fig. 4.6 Generalisation of the `central' point problem.

Using the same sort of logic on Fig. 4.6, you should be able to deduce that:

¹°(S;A) =
1

l
[bÂ(b) + (l ¡ b)Â(l ¡ b)]

so that

¾2e =
2

l
[bÂ(b) + (l ¡ b)Â(l ¡ b)]¡ F (l)

Figure 4.7 at ¯rst sight seems to be a di®erent kettle of ¯sh. However, let us
follow the same procedure and see where it leads.

¹°(S;A) = average semi-variogram value between the point and all the

points in the length l:

= (sum of the semi-variogram values between the point and

all the points in the length l)/l:

Fig. 4.7. Extrapolation of the peripheral point problem.

The point lies on the end of a `line' of length l+b. The expression (l+b)Â(l+b)
would give us the sum of all the semi-variogram values between the sample
and the length l+ b. However we do not require the points corresponding to
M' within the length b, so we may subtract those in the form bÂ(b). That is,
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¹°(S;A) =
1

l
[(l + b)Â(l + b)¡ bÂ(b)]

so that

¾2e =
2

l
[(l + b)Â(l + b)¡ bÂ(b)]¡ F (l)

For the linear model, for example, this would be:

¾2e =
2

l
[(l + b)p

(l + b)

2
¡ bpb

2
]¡ p l

3

=
p

l
(l2 + 2lb+ b2 ¡ b2) ¡ p l

3

= p(l + 2b)¡ p l
3
=
2

3
pl + 2pb

This is obviously larger than the expression when the point was on the end
of the line, as would be expected.

One last example before we abandon one-dimensional examples: Fig. 4.8
shows the `same' line, which now contains three samples.

Fig. 4.8. More complex problem when three samples are available to
estimate.

the line segment.

We shall use the arithmetic mean of the three grades to estimate the length,
i.e. T ¤ = 1

3
(g1 + g2 + g3). Then our extension variance is

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)
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where S is now a set of three points. ¹°(A;A) remains unchanged, equal to
F (l) since we have not changed the length to be estimated at all. However,
¹°(S;A) is now the average semi-variogram value between each of the three
points and the line, so that

¹°(S;A) =
1

3
[¹°(S1; A) + ¹°(S2; A) + ¹°(S3; A)]

where S1 represents sample 1 and so on. Now ¹°(S1;A) is simply Â(l), as is
¹°(S3;A): The term ¹°(S2; A) is the same situation as that in Fig. 4.4, so this
equals Â(l=2). Thus,

¹°(S;A) =
1

3
(2Â(l) + Â(l=2))

The middle term of the variance ¹°(S; S) requires us to take each point in the
sample set with each point in the sample set. Since there are three points in
the set, there are nine such pairs of points:

¹°(S; S) =
1

9
[°(S1; S1) + °(S1; S2) + °(S1; S3)

°(S2; S1) + °(S2; S2) + °(S2; S3)

°(S3; S1) + °(S3; S2) + °(S3; S3)]

Each of the individual terms is simply the semi-variogram between a pair
of points. Three of the terms, °(S1; S1), °(S2; S2) and °(S3; S3) are auto-
matically zero since the samples are points. The terms °(S1; S2), °(S2; S1),
°(S2; S3) and °(S3; S2) are all equal to °(l=2), whilst °(S1; S3) and °(S3; S1)
are equal to °(l). Thus:

¹°(S; S) =
1

9
[4°(l=2) + 2°(l)]

so that

¾2e =
2

3
[2Â(l) + Â(l=2)]¡ 1

9
[4°(l=2) + 2°(l)]¡ F (l)

For our linear example, this reduces to:
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¾2e =
2

3
(2p

l

2
+ p

l=2

2
)¡ 1

9
(4p

l

2
+ 2pl)¡ p l

3

=
2

3
pl + p

l

6
¡ 2

9
pl ¡ 2

9
pl ¡ 1

3
pl

=
pl

18

This is considerably less than the other evaluations, as seems only sensible
with three times as many samples.

TWO-DIMENSIONAL EXAMPLES

In two dimensions we have again a set of auxiliary functions which are mostly
generalisations of the one-dimensional ones. These are shown in Fig. 4.9.
°(l; b) is the two-dimensional analogue of °(l) | sometimes read as `°(l)
stretched through length b'. It is the average semi-variogram value between
all points on one length, b, and all points on another parallel to it and
of the same length. This function is useful for parallel boreholes, channel
samples, drives, raises and so on. The generalisation of Â(l) becomes Â(l; b)
and is the average semi-variogram between a length b (drive, raise, core etc.)
and an adjacent panel l by b. The function F (l; b) has been introduced
in Chapter 3 for such terms as ¹°(A;A) for rectangular panels. We also
introduce a `new' function H(l; b) which does duty for two rather di®erent
situations. It represents the average semi-variogram value between a panel
and a point on one corner of it; it also represents the average semi-variogram
value between two lengths l and b at right angles to one another. This is
simply a mathematical accident.

A few examples will be given here to show how to `manoeuvre' situations
into the required form. Figure 4.10 shows a stoping panel in a cassiterite
vein, 100 ft by 125 ft, with a development drive passing through it parallel
to the sides. The drive is 25 ft from the `bottom' of the panel. The drive is
so closely sampled that we can assume we know its average grade. We wish
to use that average grade as an estimate of the average grade of the panel,
so that:
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T = average grade of the panel

A = panel 100 ft by 125 ft

T ¤ = average grade of the interior drive

S = 125 ft long drive

¾2e = 2¹°(S;A)¡ ¹°(S; S)¡ ¹°(A;A)
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Fig. 4.9. The two-dimensional auxiliary functions.

97



Fig. 4.10. Estimation of the panel average from the drive average.

¹°(A;A) is the average semi-variogram value between every point in A and ev-
ery point in A, which is the de¯nition of the two-dimensional function F (l; b).
Thus if we have a model for the semi-variogram we can evaluate this. Let us
suppose that in the above example the semi-variogram is a spherical model
with a range of in°uence of 80 ft and a sill of 450 (lb/ton)2. The table given in
Chapter 3 for the F (l; b) function (Table 3.4) is for the `standardised' spheri-
cal model with a = 1 and C = 1. We require F (125; 100) for a model in which
a = 80 and C = 450. To convert to a = 1 we divide the measurements l and
b by the range a (80 ft). Thus we require F (125=80; 100=80) = F (1:54; 1:20)
for a = 1 and C = 450: From the table (interpolating linearly) we ¯nd that
F (1:54; 1:20) = 0:7807 when C = 1. Therefore, if C = 450, our F value must
be 0.7807 £ 450 = 351:3 (lb/ton)2. This ¯nally is ¹°(A;A).
Now let us consider the term ¹°(S; S). Our sample is a `line' of length 125

ft, and the ¹°(S;S) is the average semi-variogram value between every point
in the line and every point in the line, i.e. the one-dimensional function F (l).
For a spherical semi-variogram model, where the length is greater than the
range of in°uence, we know that:

F (l) =
C

20
(20¡ 15a

l
+ 4

a2

l2
)
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Substituting the values l = 125 ft, a = 80 ft and C = 450 (lb/ton)2, gives
F (125) = 270:9 (lb/ton)2, and this is the value used for ¹°(S; S).
Finally, we must turn to ¹°(S;A) which presents a problem, since the

auxiliary function Â(l; b) is only for situations where the `line' is on one side
of the panel. We must employ the same sort of manoeuvre as before:

¹°(S;A) = average semi-variogram value between the line and a panel

125 ft £ 100 ft.

= (sum of the semi-variogram values between the line and the

panel)/(100£ 125)
= (sum of the semi-variogram values between the line and the

points in the `upper' panel + sum of the semi-variogram values

between the line and the points in the lower panel)/(100£ 125).

However, the average semi-variogram value between the line and the `upper'
panel (125 £ 75 ft) is given by Â(75; 125), so that the sum of the semi-
variogram values between the line and every point in the upper panel will
be 75 £ 125 £ Â(75; 125). Similarly, the sum of the semi-variogram values
between the line and every point in the `lower' panel (125 ft £ 25 ft) will be
given by 25£ 125£ Â(25; 125). This gives:

¹°(S;A) = [75£ 125£ Â(75; 125)
+25£ 125£ Â(25; 125)]=(100£ 125)

=
3

4
Â(75; 125) +

1

4
Â(25; 125)

Table 4.2 shows the values of the Â(l; b) function for the `standardised' spher-
ical model with a = 1 and C = 1. This table is used in the same way as
the F (l; b) table. It should be noted that the order of the arguments is
important. The value of Â(25; 125) is obviously di®erent from the value of
Â(125; 25). Standardising the measurements of the panel in the same way as
before, we require the values of Â(0:94; 1:54) and Â(0:31; 1:54) from the table.
Interpolating linearly gives the values 0.8196 and 0.6538 respectively. Mul-
tiplying by the sill of 450 (lb/ton)2 gives 368.8 (lb/ton)2 and 294.2 (lb/ton)2
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respectively. Putting these together in the expression for ¹°(S;A) gives a
value of 350.2(lb/ton)2.
Having evaluated all of the individual terms, we can now calculate the

extension variance for the setup in Fig. 4.10, so that:

¾2e = (2£ 350:2)¡ 351:3¡ 270:9 = 78:2 (lb/ton)2

This gives an estimation standard deviation or `standard error' of 8.8 lb/ton
for the estimation of the panel grade. If we are willing to assume Normality
for the errors (sic) we could be 95% certain that the `true' grade of the panel

lay between T ¤ § 2¾e equal to T ¤ § 16:6 lb/ton. This standard error would
be correct for any panel having the same sampling setup, anywhere within
this deposit, since the estimation variance depends not on the actual grades
involved but on the geometric positioning of the sample and the panel.

Table 4.2 Auxiliary function Â(L;B) for Spherical model with range 1.0
and sill 1.0
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B
L .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
.10 .098 .136 .178 .222 .266 .309 .350 .390 .428 .464
.20 .164 .194 .229 .268 .307 .346 .385 .422 .458 .491
.30 .233 .257 .288 .321 .356 .392 .427 .462 .495 .526
.40 .302 .322 .348 .378 .409 .441 .474 .505 .535 .564
.50 .368 .385 .408 .434 .462 .492 .521 .550 .577 .603
.60 .430 .445 .466 .489 .515 .541 .568 .594 .619 .642
.70 .488 .502 .520 .541 .564 .588 .612 .636 .658 .680
.80 .542 .554 .570 .589 .610 .631 .653 .674 .695 .714
.90 .589 .600 .614 .632 .650 .670 .689 .708 .727 .744
1.00 .629 .639 .653 .668 .685 .703 .720 .737 .754 .769
1.20 .691 .699 .711 .723 .737 .752 .767 .781 .795 .808
1.40 .735 .742 .752 .763 .775 .788 .800 .812 .824 .835
1.60 .768 .775 .783 .793 .803 .814 .825 .836 .846 .856
1.80 .794 .800 .807 .816 .825 .835 .845 .854 .863 .872
2.00 .815 .820 .826 .834 .842 .851 .860 .869 .877 .885
2.50 .852 .856 .861 .867 .874 .881 .888 .895 .902 .908
3.00 .876 .880 .884 .889 .895 .901 .907 .912 .918 .923
3.50 .894 .897 .901 .905 .910 .915 .920 .925 .930 .934
4.00 .907 .910 .913 .917 .921 .926 .930 .934 .938 .942
5.00 .926 .928 .931 .934 .937 .941 .944 .947 .951 .954
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B
L 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 5.0
.10 .526 .577 .619 .653 .683 .738 .777 .807 .829 .861
.20 .550 .598 .638 .671 .698 .751 .788 .816 .837 .868
.30 .580 .625 .662 .693 .719 .768 .803 .828 .848 .877
.40 .614 .655 .689 .718 .741 .787 .819 .842 .861 .887
.50 .649 .687 .718 .743 .765 .806 .835 .857 .873 .897
.60 .684 .718 .746 .769 .788 .825 .852 .871 .886 .907
.70 .717 .747 .772 .793 .811 .844 .867 .885 .898 .917
.80 .747 .774 .797 .815 .831 .861 .881 .897 .909 .926
.90 .774 .798 .818 .835 .849 .875 .894 .908 .919 .934
1.00 .796 .818 .836 .851 .864 .888 .905 .917 .927 .941
1.20 .830 .848 .864 .876 .886 .906 .920 .931 .939 .950
1.40 .854 .870 .883 .894 .903 .920 .932 .941 .948 .958
1.60 .873 .886 .898 .907 .915 .930 .940 .948 .954 .963
1.80 .887 .899 .909 .917 .924 .938 .947 .954 .959 .967
2.00 .898 .909 .918 .926 .932 .944 .952 .959 .963 .970
2.50 .918 .927 .934 .940 .946 .955 .962 .967 .971 .976
3.00 .932 .939 .945 .950 .955 .963 .968 .972 .976 .980
3.50 .942 .948 .953 .957 .961 .968 .973 .976 .979 .983
4.00 .949 .955 .959 .963 .966 .972 .976 .979 .982 .985
5.00 .959 .964 .967 .970 .973 .978 .981 .983 .985 .988

As a second example, consider a disseminated nickel deposit in the late stages
of development. On a particular underground level, we have a stoping block
40m by 30m to be estimated. If we consider only the one level we can
treat the problem as a two-dimensional one. Suppose this `panel' has been
developed along two sides, and the information available consists of (i) the
average grade along the 40m drive, g1 and (ii) the average grade along the
30m drive, g2. Suppose we use the average of these two grades to estimate
the value inside the panel. Then:

T = average grade of the panel

A = panel 30m£ 40m
T ¤ =

1

2
(g1 + g2)

S = 40m drive, 30m drive
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For this particular deposit we have a spherical semi-variogram with a range
of in°uence of 60m, a sill of 0.75(%)2 and a nugget e®ect of 0.10(%)2. This
implies a standard deviation for the `point' sample values of 0.92%. The
extension variance, as always, is given by:

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)

¹°(A;A) is, as before, the two-dimensional function F (l; b), but now we have
two components to the evaluation of this term. We can calculate the F (40; 30)
for the spherical part of the model, with a = 60m and C = 0:75(%)2. This
turns out to be 0.4336 £ 0.75=0.325(%)2. To this we must add the nugget
e®ect of 0.10(%)2, so that ¹°(A;A) = 0:425(%)2.

The average semi-variogram value between each sample and each sample now
contains four terms which have to be averaged, i.e.:

¹°(S;S) =
1

4
[¹°(drive1, drive1) + ¹°(drive1, drive2)

+¹°(drive2, drive1) + ¹°(drive2, drive2)]

It is generally easier to look at each term separately and then to combine
them to produce the ¯nal answer. The ¯rst term ¹°(drive1, drive1) is the
average semi-variogram between all points within a length of 40m. That is,
F (40).

Table 4.3. Auxiliary function H(L,B) for Spherical model with range 1.0
and sill 1.0
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B
L .1 .2 .3 .4 .5 .6 .7 .8 .9 .10
.10 .114 .177 .243 .310 .374 .436 .494 .546 .593 .633
.20 .177 .227 .285 .346 .406 .464 .518 .568 .613 .651
.30 .243 .285 .336 .390 .445 .499 .550 .597 .639 .674
.40 .310 .346 .390 .439 .489 .539 .586 .629 .668 .701
.50 .374 .406 .445 .489 .535 .580 .623 .663 .698 .728
.60 .436 .464 .499 .539 .580 .621 .660 .697 .728 .755
.70 .494 .518 .550 .586 .623 .660 .696 .729 .757 .781
.80 .546 .568 .597 .629 .663 .697 .729 .758 .783 .805
.90 .593 .613 .639 .668 .698 .728 .757 .783 .806 .826
1.00 .633 .651 .674 .701 .728 .755 .781 .805 .826 .843
1.20 .694 .709 .729 .751 .774 .796 .818 .837 .855 .869
1.40 .738 .751 .767 .786 .806 .825 .844 .861 .875 .888
1.60 .771 .782 .797 .813 .830 .847 .863 .878 .891 .902
1.80 .796 .806 .819 .834 .849 .864 .879 .892 .903 .913
2.00 .817 .826 .837 .850 .864 .878 .891 .902 .913 .921
2.50 .853 .860 .870 .880 .891 .902 .913 .922 .930 .937
3.00 .878 .884 .891 .900 .909 .918 .927 .935 .942 .948
3.50 .895 .900 .907 .914 .922 .930 .938 .944 .950 .955
4.00 .908 .913 .919 .925 .932 .939 .945 .951 .956 .961
5.00 .927 .930 .935 .940 .946 .951 .956 .961 .965 .969
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B
L 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 5.0
.10 .694 .738 .771 .796 .817 .853 .878 .895 .908 .927
.20 .709 .751 .782 .806 .826 .860 .884 .900 .913 .930
.30 .729 .767 .797 .819 .837 .870 .891 .907 .919 .935
.40 .751 .786 .813 .834 .850 .880 .900 .914 .925 .940
.50 .774 .806 .830 .849 .864 .891 .909 .922 .932 .946
.60 .796 .825 .847 .864 .878 .902 .918 .930 .939 .951
.70 .818 .844 .863 .879 .891 .913 .927 .938 .945 .956
.80 .837 .861 .878 .892 .902 .922 .935 .944 .951 .961
.90 .855 .875 .891 .903 .913 .930 .942 .950 .956 .965
1.00 .869 .888 .902 .913 .921 .937 .948 .955 .961 .969
1.20 .891 .907 .918 .927 .935 .948 .956 .963 .967 .974
1.40 .907 .920 .930 .938 .944 .955 .963 .968 .972 .978
1.60 .918 .930 .939 .945 .951 .961 .967 .972 .975 .980
1.80 .927 .938 .945 .952 .956 .965 .971 .975 .978 .983
2.00 .935 .944 .951 .956 .961 .969 .974 .978 .980 .984
2.50 .948 .955 .961 .965 .969 .975 .979 .982 .984 .987
3.00 .956 .963 .967 .971 .974 .979 .983 .985 .987 .990
3.50 .963 .968 .972 .975 .978 .982 .985 .987 .989 .991
4.00 .967 .972 .975 .978 .980 .984 .987 .989 .990 .992
5.00 .974 .978 .980 .983 .984 .987 .990 .991 .992 .994

For a spherical model, when the length of the `line' is shorter than the range
of in°uence, F (l) is given by:

F (l) =
C

20

l

a
(10¡ l2

a2
)

Substituting l = 40 and a = 60; C = 0:75(%)2 gives a value of 0.239 (%)2.
Adding on the nugget e®ect produces ¹°(drive1,drive1) = 0:339(%)2. Sim-
ilarly, ¹°(drive2,drive2) = 0:283(%)2. The two terms ¹°(drive1,drive2) and
¹°(drive2,drive1) are identical and have been de¯ned as the auxiliary function
H(l; b). Using Table 4.3 for the H(l; b) function in the same way as the other
tables and adding in the nugget e®ect gives:

¹°(drive1,drive2) = 0:6086£ 0:75 + 0:10(%)2 = 0:556(%)2
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Putting all the individual terms together, we ¯nd that ¹°(S; S) = 0:428(%)2.

Finally, to calculate the estimation variance, we also require the term ¹°(S;A).
This is the average semi-variogram value between each sample and the panel,
so that:

¹°(S;A) =
1

2
[¹°(drive1; A) + ¹°(drive2; A)]

=
1

2
[Â(30; 40) + Â(40; 30)]

=
1

2
[(0:5112£ 0:75 + 0:10) + (0:5447£ 0:75 + 0:10)]

= 0:497(%)2

The extension variance for the problem illustrated in Fig. 4.11 is thus:

¾2e = (2£ 0:497) ¡ 0:428¡ 0:425 = 0:141(%)2

giving a standard error for the prediction of the panel average of 0.376%
nickel.

Fig. 4.11. Estimation of the panel average from two drive averages.
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Fig. 4.12. Estimation of the panel average from two raise averages.

A third example is shown in Fig. 4.12. This time the metal is zinc, the
semi-variogram is spherical with a range of 20m and a sill of 49(%)2. The
value to be estimated is the average over the 30m by 15m panel, and the
information available is the average grade of each of the two raises through
the `stope panel'. In the idealised situation chosen, the raises are both 7.5m
from the edges of the panel. Very brie°y, the extension variance is produced
as follows:

T = average grade of the panel

A = panel 30m £ 15m

T ¤ =
1

2
(g1 + g2)

S = raise1,raise2

¾2e = 2¹°(S;A)¡ ¹°(S; S)¡ ¹°(A;A)

The term ¹°(A;A) = F (30; 15) when a = 20 and C = 49(%)2, which is 0.7021
£ 49 = 34.4(%)2.

¹°(S; S) =
1

4
[¹°(raise1; raise1) + ¹°(raise1; raise2)

+¹°(raise2; raise1) + ¹°(raise2; raise2)]

=
1

4
[F (15) + °(15; 15) + °(15; 15) + F (15)]
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=
1

4
(17:34 + 46:02 + 46:02 + 17:34)

= 31:7(%)2

The °(l; b) function is given for the `standardised' spherical model in Table
4.4. The last term to be evaluated is:

¹°(S;A) =
1

2
[¹°(raise1; A) + ¹°(raise2; A)]

Table 4.4. Auxiliary function °(L,B) for Spherical model with range 1.0
and sill 1.0

B
L .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
.05 .094 .132 .175 .219 .263 .306 .348 .388 .426 .461
.10 .161 .188 .223 .261 .300 .340 .379 .416 .452 .486
.15 .231 .252 .280 .312 .347 .383 .419 .453 .486 .518
.20 .302 .318 .341 .369 .400 .432 .464 .495 .526 .555
.25 .372 .385 .404 .428 .455 .483 .512 .541 .568 .594
.30 .440 .451 .467 .488 .511 .536 .562 .588 .613 .636
.35 .507 .516 .529 .547 .568 .590 .612 .635 .657 .678
.40 .571 .578 .590 .605 .623 .642 .662 .683 .702 .721
.45 .632 .638 .648 .661 .677 .693 .711 .729 .746 .762
.50 .689 .695 .703 .715 .728 .742 .758 .773 .787 .801
.55 .743 .748 .755 .765 .776 .789 .802 .814 .827 .838
.60 .793 .797 .803 .811 .821 .831 .842 .853 .863 .872
.65 .839 .842 .847 .854 .862 .870 .879 .888 .896 .903
.70 .879 .882 .886 .892 .898 .905 .912 .919 .925 .930
.75 .915 .917 .920 .925 .930 .935 .940 .945 .949 .953
.80 .945 .946 .949 .952 .956 .960 .963 .966 .969 .971
.85 .968 .970 .971 .974 .976 .978 .981 .982 .984 .985
.90 .986 .987 .988 .989 .990 .991 .992 .993 .994 .994
.95 .996 .997 .997 .998 .998 .998 .998 .999 .999 .999
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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B
L 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 5.0
.05 .524 .575 .617 .652 .681 .737 .777 .806 .828 .861
.10 .545 .594 .634 .667 .695 .748 .786 .814 .836 .867
.15 .573 .619 .656 .687 .714 .764 .799 .825 .846 .875
.20 .605 .648 .682 .711 .735 .782 .814 .838 .857 .884
.25 .641 .679 .711 .737 .759 .801 .831 .853 .870 .894
.30 .678 .712 .741 .764 .784 .822 .848 .868 .883 .905
.35 .715 .746 .771 .792 .809 .843 .866 .884 .897 .917
.40 .753 .780 .801 .820 .835 .864 .884 .899 .911 .928
.45 .790 .812 .831 .847 .860 .884 .902 .915 .924 .939
.50 .825 .844 .860 .872 .883 .904 .918 .929 .937 .949
.55 .858 .873 .886 .897 .906 .922 .934 .943 .949 .959
.60 .888 .901 .911 .919 .926 .939 .948 .955 .960 .968
.65 .915 .925 .933 .939 .944 .954 .961 .966 .970 .976
.70 .939 .946 .952 .956 .960 .967 .972 .976 .979 .983
.75 .959 .964 .968 .971 .974 .978 .982 .984 .986 .989
.80 .975 .978 .981 .983 .984 .987 .989 .991 .992 .993
.85 .987 .989 .990 .991 .992 .993 .994 .995 .996 .997
.90 .995 .996 .996 .997 .997 .997 .998 .998 .998 .999
.95 .999 .999 .999 .999 .999 1.000 1.000 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Since the setup is symmetrical, ¹°(raise1; A) = ¹°(raise2;A), so that

¹°(S;A) = ¹°(raise1; A)

= 1=(30£ 15)[7:5£ 15£ Â(7:5; 15) + 22:5£ 15£ Â(22:5; 15)]
=

1

4
Â(7:5; 15) +

3

4
Â(22:5; 15)

=
1

4
£ 23:4 + 3

4
£ 37:1

= 33:7(%)2

This gives an extension variance of:

¾2e = (2£ 33:7)¡ 31:7¡ 34:4 = 1:3(%)2
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This gives a standard error for the estimation of the panel average of 1.14%
Zn. Thus although the original sample standard deviation for `point' samples
was 7% Zn, two `samples' within the panel produce a standard error one-sixth
of this Figure.

Fig. 4.13. Estimation of panel average from one `point' sample.

One last brief example: a porphyry copper deposit has been explored by
means of vertical boreholes. To simplify the problem, each `bench' in the
deposit is considered separately as a plane, and the borehole intersections
as points within the plane. Take a typical small block, 25m by 25m, with a
borehole passing through it as shown in Fig. 13. Suppose we `extend' the
value of the core intersecting the block to the whole block. Then:

T = average grade of the block

A = 25 metre square panel

T ¤ = grade of borehole intersection

S = borehole intersection with this bench

Then

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)

From previous investigation we know that the semi-variogram has a spherical
form with a range of in°uence of 90m and a sill of 0.6(%)2 Cu. ¹°(A;A) is
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yet another F (25; 25) function, whose value can be calculated to be 0.2145
£ 0.6 = 0.129(%)2 Cu. ¹°(S; S) = 0 since the sample is supposed to be a
point. ¹°(S;A) must be calculated with the now familiar (?) manoeuvring,
as follows:

¹°(S;A) = ¹°(point, panel)

= (sum of all semi-variogram values between the sample

and all points within the panel)/(25£ 25)
= (sum of all semi-variogram values between the sample

and all points in panel A1

+the sample and all points in panel A2

+the sample and all points in panel A3

+the sample and all points in panel A4)/(25£ 25)
= [8£ 10£H(8; 10) + 17£ 10£H(17; 10)

+8£ 15£H(8; 15) + 17£ 15£H(17; 15)]=(25£ 25)
= (80£ 0:0703 + 170£ 0:1053

+120£ 0:0915 + 255£ 0:1248)=(25£ 25)
= 0:106 (%Cu)2

So, ¯nally, the extension variance becomes:

¾2e = (2£ 0:106)¡ 0:000¡ 0:129 = 0:083(%Cu)2

so that the standard error for the estimation is 0.288 %Cu. The same exercise
can be repeated for a sample outside the panel, using the same logic as that
applied to the one-dimensional problem in Fig. 4.7.

SUMMARY OF MAJOR POINTS

1. When an estimation is performed, an error is made in the prediction.
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2. The magnitude of that error is dictated by the structure and type of the
deposit, and by the mineral itself. Di®erent minerals within the same deposit
may have di®erent structures.

3. The structure can (probably) be described by a semi-variogram model, in
the absence of signi¯cant trend on the local level.

4. The estimation error variance can be calculated if the semi-variogram
model is known. Tables for the spherical model have been supplied. These
may also be used as approximations for the linear model.

5. If we use the extension type of estimator, i.e. the arithmetic mean of the
samples, then the extension variance may be written:

¾2e = 2¹°(S;A) ¡ ¹°(S;S)¡ ¹°(A;A)

That is, the `reliability' of the estimator depends on three quantities:
the relationship of the samples to the area to be estimated; the relation-
ship amongst the samples; and the variation of grades within the area being
estimated.

SOME MORE COMPLEX
PROBLEMS

Let us return to the original problem posed in Figs. 4.1 and 4.2. We showed
that if we used the grade of sample 1 to estimate the point A, we obtained a
standard error of 25.4 p.p.m. We then introduced the problem of estimating
a 60 ft by 30 ft block centred at A. After the examples above, it should
be easy enough to calculate that the extension standard error will now be
19.2 p.p.m. [¹°(S;A) = 356; ¹°(A;A) = 344; ¹°(S; S) = 0], when estimating the
average grade of the panel from the single sample point 1. This is over 20%
lower than when trying to estimate the central point. The real conclusion is
simply that it is easier to estimate the average grade over a block than to
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specify the grade at a single point. Now, if we consider the arithmetic mean
of the 5 point-samples, we obtain the following:

T = panel average grade

A = panel 30 £ 60 ft

T ¤ = average of the 5 samples = 366 p.p.m.

S = 5 point-samples at speci¯ed locations.

If we use this estimator to predict the central point of the block, the extension
standard deviation is 21.8 p.p.m. However, if we estimate the panel, the
extension standard deviation reduces to 12.8 p.p.m. Notice that both of these
Figures are lower than when only considering sample 1. It would appear that,
even though the other samples are a lot further away from the centre of the
block, they are contributing a fair amount of information about the block
grade.

To conclude this chapter, an example on a slightly grander scale, on which the
reader can exercise his new-found knowledge. For this deposit a simulation
has been used, since in that case we know the semi-variogram and the value
at every point within the deposit. This enables us to compare estimates with
`actual values | a situation which is rare to the point of extinction in the
real world. It also enables us to produce a set of samples on
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Fig 4.14. A set of random samples taken from a simulated iron ore deposit

any given sampling scheme proposed. The simulated deposit is a low grade
sedimentary iron ore, with an overall average of about 35% Fe, a standard
deviation of 5% Fe, a range of in°uence of 100m and a sill of 25(%)2 Fe|
obviously. The semi variogram is spherical (yet again) with no nugget e®ect.
An area 400 metres square has been simulated and a set of 50 samples taken
from it at random. The positions and values of these are shown in Fig.
4.14 and Table 4.5. The initial estimation, at the pre-feasibility stage, is
to be done on 50m by 50m blocks. For this ¯rst example, each block has
been allocated the average grade of all interior samples. Where a sample falls
on the edge it has been allocated to both blocks. Figure 4.15 shows the
estimated value for each block.

Table 4.5 Random samples taken from a simulated iron ore example
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Easting Northing %Fe Easting Northing %Fe

0 170 34.3 5 195 33.9
10 40 35.5 20 105 32.5
15 135 28.6 25 155 29.6
55 145 29.4 50 40 30.6
125 20 41.5 155 15 40.4
175 50 36.8 145 125 30.1
120 180 33.4 130 185 35.3
160 175 36.0 175 185 41.4
240 185 30.2 220 90 28.5
260 115 33.2 205 0 40.1
235 15 33.7 265 65 24.4
365 60 34.3 390 65 31.6
285 110 35.3 325 105 39.5
345 115 31.0 310 150 34.8
335 170 27.4 385 165 29.9
325 195 33.9 325 220 37.8
350 235 37.6 375 215 29.8
290 230 39.9 200 230 37.4
10 390 27.2 55 375 27.4
85 380 34.2 395 245 36.5
50 270 30.2 165 355 40.8
200 280 30.4 270 285 32.9
400 355 39.9 365 340 40.0
360 335 40.0 330 320 44.1
335 310 40.6 330 290 41.4

Blocks without internal sampling have been shaded in. The upper Figure
shown in each block is the estimator T ¤, and the lower is the extension stan-
dard deviation. Since this deposit is actually Normally distributed, 95%
con¯dence limits would be given (approximately) by T ¤ § 2¾e. For compar-
ison, the `true average grade for each block is shown in Fig. 4.16. It can
be seen that in most of the 37 estimated blocks, the true value is within the
95% con¯dence interval. Four or ¯ve blocks lie just outside the interval, and
three or four are considerably outside. This is a little higher than would be
expected, since we would only expect about two blocks to lie outside a 95%
interval. However, if we consider the 99% con¯dence interval (3 standard
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deviations) only one block is signi¯cantly outside the interval, i.e. the lower
left-hand block of the area (south-west corner).

Fig 4.15. Estimates of block values formed by averaging all interior samples
in the iron ore deposit, and the corresponding extension standard

deviations.
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Fig 4.16.`Actual' average values within each block in the simulated iron ore
deposit.
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Fig 4.17. A set of samples taken on a regular grid from the simulated iron
ore deposit.
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Fig 4.18 Estimated block values from regular samples.

For comparison, Fig. 4.17 shows a set of samples taken on a regular grid
from the same `deposit'. In this case, each 50m block has two samples in
opposing corners. Using the average of these two samples to estimate the
block results in an extension standard deviation of 2.5% Fe, Fig. 4.18 shows
the estimated values in each block. It can be seen that although ¯ve or six
blocks lie outside the 95% con¯dence interval, not one lies more than 2.25
standard deviations from the true value.

Having exhausted the possibilities of extension in idealised circumstances, let
us move on to some more interesting situations.
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CHAPTER 5
Kriging

Let us turn, now, to a much more common, and probably more realistic,
approach to the estimation of `local' values. Until now we have considered
only the operation of averaging all the local samples and applying this value
as the estimate of the area under consideration. There are cases in which it
would not seem sensible to weight all the samples equally, since some will
be a great distance from the `unknown' area A, whilst others will be much
closer to it | if not inside. It would seem more sensible to use a weighted
average of the sample values, with the `closer' samples having more weight.
The new estimator will be of the form:

T ¤ = w1g1 + w2g2 + w3g3 + :::+ wngn

where the weightings sum to 1. If this condition is met, and there is no
trend (locally) then T ¤ is an unbiased estimator. This means that over a lot
of estimations the average error will be zero. This type of estimator is called
a `linear' estimator because it is a linear combination of the sample values.
The arithmetic mean is simply a special case where all of the weights are
equal. It can be shown that the estimation variance for the general `unbiased
linear' estimator is:

¾2² = 2
nX

i=1

wi¹° (Si; A)¡
nX

i=1

nX

j=1

wiwj¹° (Si; Sj)¡ ¹° (A;A)

Where we previously calculated ¹° (S;A) which was the average semi-variogram
between each sample and the unknown area, we now form a weighted average
for each individual sample with the area A; ¹° (Si; A), in the same way as the
actual estimator. For example, if we have n samples taken around the area
A, the ¯rst term in the variance becomes:

nX

i=1

wi¹° (Si; A) = w1¹° (point1;A) + w2¹° (point2;A) + w3¹° (point3; A) ...etc.
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The last term in the variance, ¹° (A;A), does not change its form, since we
have only changed the form of the estimator, not the area being estimated.
The term ¹° (S; S) which previously measured the variation in values between
the samples, must now take into account the di®erent weights associated with
each sample. Thus, if we take, e.g., sample 4 we must remember that it has
a weight w4. If we take sample 4 with, say, sample 2, then we must include
both weights w2 and w4, so that the term becomes

w2w4¹° (S2; S4)

To form the equivalent ¹° (S; S), then, each ¹° (Si; Sj) is multiplied by the
corresponding wiwj before being added into the sum.

Fig. 5.1. Three samples to be used to estimate the line segment.

As a simple example, let us consider the setup in Fig. 5.1. We calculated the
extension variance for this setup in Chapter 4. The arithmetic mean gave an
extension variance of pl=18 when we used a linear semi-variogram with the
form ° (h) = ph. Now suppose we allocate a set of weights to these three
samples instead of treating them all the same. Let us, for this example, put
three-quarters of the `weight' at the central point, and an eighth on each end
point. The `new' estimator is therefore:

T ¤ = w1g1 + w2g2 + w3g3 =
1

8
g1 +

3

4
g2 +

1

8
g3

A = the length l

S = 3 point-samples.

The reliability of this estimator will be given by the general form of ¾2² . The
term ¹° (A;A) is given by the function F (l), by de¯nition, which for the linear
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semi-variogram takes the form pl=3. The central term | the `within samples'
term | is:
XX

wiwj¹° (Si; Sj) = w1 [w1¹° (S1; S1) + w2¹° (S1; S2) + w3¹° (S1; S3)]

+w2 [w1¹° (S2; S1) + w2¹° (S2; S2) + w3¹° (S2; S3)]

+w3 [w1¹° (S3; S1) + w2¹° (S3; S2) + w3¹° (S3; S3)]

where each sample is taken with each sample in turn | including itself |
and the combination is multiplied by both weights. Since the samples in this
case are all points, all the ¹° (Si; Sj) terms can be found directly from the
semi-variogram ° (h). This gives:
XX

wiwj¹° (Si; Sj) = w1 [w1° (0) + w2° (l=2) + w3° (l)] + w2 [w1° (l=2)

+w2° (0) + w3° (l=2)] + w3 [w1° (l) + w2° (l=2) + w3° (0)]

Since the semi-variogram model is linear, this becomes:

XX
wiwj¹° (Si; Sj) =

1

8

µ
3

4
p
l

2
+
1

8
pl

¶
+
3

4

µ
1

8
p
l

2
+
1

8
p
l

2

¶
+
1

8

µ
1

8
pl +

3

4
p
l

2

¶

= pl
1

8

µ
3

8
+
1

8
+
3

8
+
3

8
+
1

8
+
3

8

¶

=
7

32
pl

This leaves only the ¯rst term | the between sample and area term | to
be evaluated. This is:

X
wi¹° (Si;A) = w1¹° (S1; A) + w2¹° (S2; A) + w3¹° (S3; A)

Sample 1 is at one end of the length l, so that ¹° (S1;A) = Â (l). Similarly
¹° (S3; A) = Â (l). Sample 2 is the central point of the length l, so that
¹° (S2; A) = Â (l=2). For the linear model Â (l) = pl=2, so that

X
wi¹° (Si; A) = w1Â (l) + w2Â (l=2) + w3Â (l)

=
1

8
p
l

2
+
3

4
p
l

4
+
1

8
p
l

2

=
5

16
pl
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Putting all these together, gives an estimation variance of:

¾2² = 2
5

16
pl¡ 7

32
pl ¡ 1

3
pl

=
pl

96
(60¡ 21¡ 32) = 7

96
pl = 0:0729pl

The speci¯ed set of weights,
¡
1
8
,3
4
, 1
8

¢
when used with a linear semi-variogram

model give an estimation variance of 0:0729pl. The arithmetic mean of the
samples gave an extension variance of pl=18 = 0:0556pl, which is three-
quarters of the size of the estimation variance above. It is fairly obvious in
this case that the speci¯ed weighted average gives a worse estimator than
simply using the arithmetic mean.

Fig. 5.2. Estimation of the block value is required from the ¯ve scattered
samples | uranium example.

As a two-dimensional example, let us return to the ubiquitous uranium ex-
ample as illustrated in Fig. 5.2. We shall allocate weights to each sample
according to its distance from the centre of the block A. Table 5.1 shows the
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`inverse distance' calculation for the weights in this example. The estimator
T ¤ becomes:

T ¤ = w1g1 + w2g2 + w3g3 + w4g4 + w5g5

= 0:319£ 400 + 0:137£ 380 + 0:217£ 450 + 0:229£ 280
+0:098£ 320

= 372:8 p.p.m. U3O8

Table 5.1. Calculation of Inverse Distance weightings for hypothetical
Uranium estimation problem

Sample Distance from Inverse Corrected
number centre (ft) distance weight
1 21.54 0.0464 0.319
2 50.00 0.0200 0.137
3 31.62 0.0316 0.217
4 30.00 0.0333 0.229
5 70.00 0.0143 0.098

Total 0.1457 1.000

The three terms which go into the variance are:

X
wi¹° (Si; A) = 0:319¹° (S1; A) + 0:137¹° (S2; A) + 0:217¹° (S3;A)

+0:229¹° (S4; A) + 0:098¹° (S5; A)

The individual values of ¹° (S1; A) and so on are the same as those evaluated
when considering the extension variance, and are equal to 356.7, 572.4, 456.9,
446.8 and 696.1 respectively. Thus the ¯rst term in the variance is equal to
461.9 (p.p.m.)2| as opposed to 505.8 (p.p.m.)2 in the extension variance.
The second term in the variance of the weighted mean turns out to be 441.2
(p.p.m.)2. In the extension case it was 504.7 (p.p.m.)2. The ¯nal term in
both variances is 344.0 (p.p.m.)2 as given by the auxiliary function F (l; b).
Putting these Figures together gives us an estimation variance for the inverse
distance estimator of 138.6 (p.p.m.)2. This is equivalent to a `standard error'
of 11.8 p.p.m. Thus, using the inverse distance weights we obtain an estimate
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of 372.8 p.p.m. U3O8 for the panel, and we can say that this has a standard
error of 11.8 p.p.m., which has been derived from our knowledge of the semi-
variogram of this deposit. If we are willing to make the additional assumption
of Normality of the errors, we could say that a 95% con¯dence interval for
the `true' value of the panel is (349 p.p.m., 396 p.p.m.). This should be
compared to the extension estimate of 366 p.p.m., with a standard error of
12.8 p.p.m., and a 95% con¯dence interval of (340 p.p.m., 392 p.p.m.). It
can quickly be seen that the inverse distance estimation produces a (slightly)
more accurate result than the arithmetic mean | this seems quite sensible.

Suppose we change the situation slightly. Suppose that sample 3 was not
north of the block but south, i.e. northing 2310, as in Fig. 5.3. The in-
verse distance weights are unchanged, because they depend on the distance
between the sample and the block centre.

Fig. 5.3. Sample 3 is now located South of the block to be estimated.

However, the estimation standard error rises sharply to 14.3 p.p.m., indi-
cating a loss in accuracy. The change in the estimation variance is caused
solely by a decrease in the size of the `within samples' term | the amount of
information contained in the sample set | since the other two terms remain
the same as before. In actual Figures the term falls from 441.2(p.p.m.)2 to
376.2(p.p.m.)2. It does not really seem very sensible to use the same weights
for Fig. 5.3 as we did for Fig. 5.2, since sample 3 now gives us a lot less
`information' than it did previously. We could suggest a new set of weights
and calculate the estimation variance. If this were smaller than the `inverse
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distance' set, we could say our `new' estimator was (in some sense) better
than the inverse distance one. Alternatively, we could use a di®erent method
to produce the weights | inverse distance squared, for example. It would
seem a lot more desirable to ¯nd a direct method of producing the `best'
estimate, given our knowledge of the deposit.

We have decided to use a `linear' type of estimator | a weighted average of
the sample values. We know that it is an unbiased estimator if the weights
add up to 1. There is an in¯nite number of such linear unbiased estimators,
so we will search for the `best' one, and we will de¯ne `best' as `having the
smallest estimation variance'. The expression for the estimation variance
depends on three things: the basic geometry of samples and unknown area,
the form of the semi-variogram, and the weighting allocated to each sample.
For any given setup the variance can only be changed by altering the values of
the weights. Thus we wish to minimise the estimation variance with respect
to the weights. The variance is a simple (?) function of the weights, so to
minimise it we must di®erentiate and set the di®erential equal to zero:

i.e.
@¾2²
@wi

= 0 i = 1; 2; 3; 4:::n

This will provide n equations in n unknowns (w1; w2; w3; w4:::wn). These
weights will provide an estimator which has the minimum value of the esti-
mation variance. However, they will not necessarily add up to one. There
is nothing in the above system of equations that constrains the weights in
this way. E®ectively, we also need to satisfy the equation

P
wi = 1. Thus,

to obtain the `Best Linear Unbiased Estimator' we actually have to satisfy
(n+ 1) equations. However, we only have n unknowns, so far, which is not a
very desirable condition. To rectify this we must introduce another unknown,
in the form of a Lagrangian Multiplier, to balance up the system. Therefore,
instead of minimising the estimation variance, we actually minimise:

¾2² ¡ ¸
³X

wi ¡ 1
´

with respect to w1,w2,w3,w4...wn, and ¸. This last produces the equation:

X
wi ¡ 1 = 0
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as is required.

After the di®erentiation has been performed and the equations tidied up, the
following system results:

w1¹° (S1; S1) + w2¹° (S1; S2) + w3¹° (S1; S3) + :::+ wn¹° (S1; Sn) + ¸ = ¹° (S1; A)

w1¹° (S2; S1) + w2¹° (S2; S2) + w3¹° (S2; S3) + :::+ wn¹° (S2; Sn) + ¸ = ¹° (S2; A)

w1¹° (S3; S1) + w2¹° (S3; S2) + ::: ::: ::: + wn¹° (S3; Sn) + ¸ = ¹° (S3; A)

::: ::: ::: = :::

::: ::: ::: = :::

w1¹° (Sn; S1) + w2¹° (Sn; S2) + w3¹° (Sn; S3) + +wn¹° (Sn; Sn) + ¸ = ¹° (Sn; A)

w1 + w2 + w3 + + wn = 1

Although this looks slightly fearsome in its complexity, if you look a little
closer, you will ¯nd that most of the elements are (I hope) by now familiar
to you. Consider the ¯rst equation. The right hand side merely requires the
average semi-variogram value between sample 1 and the unknown area. The
left hand side contains the n+1 unknowns, wi and ¸, and the average semi-
variogram value between sample 1 and each of the other samples in turn.
All of these ¹° terms are identical to those which we would work out for an
extension or an estimation variance.

The second equation is identical to the ¯rst except that it is sample 2 which
is present right along the equation. The third has sample 3 all the way
along, and so on until the nth equation with Sn all the way along. Finally,
we have the necessary condition for the sum of the weights. The solution
to this set of equations will produce a set of weights giving the `Best Linear
Unbiased Estimator' | sometimes referred to as BLUE. This process was
named Kriging by Georges Matheron after Danie Krige, who has done a
tremendous amount of empirical work on weighted averages. Pronunciation
of the word is a controversial topic | I personally prefer `kridging' (as in
bridging). The system of equations is generally referred to as the kriging
system, and the estimator produced is the kriging estimator. The variance
of the kriging estimator could be found by substitution of the weights into
the general estimation variance equation. However, it can be shown that the
kriging variance can be written as:

¾2k =
X

wi¹° (Si; A) + ¸¡ ¹° (A;A)
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KRIGING EXAMPLES

Earlier in this chapter we took the setup in Fig.5.1, a semi-variogram of the
form ° (h) = ph, and allocated a set of weights to each of the three samples.
We showed that in that case the estimation variance was 0.0729pl. Now let
us see if we can ¯nd the `best' set of weights using the kriging system. Since
we have three weights, there are four equations which in the general form
are:

w1¹° (S1; S1) + w2¹° (S1; S2) + w3¹° (S1; S3) + ¸ = ¹° (S1; A)

w1¹° (S2; S1) + w2¹° (S2; S2) + w3¹° (S2; S3) + ¸ = ¹° (S2; A)

w1¹° (S3; S1) + w2¹° (S3; S2) + w3¹° (S3; Sn) + ¸ = ¹° (S3; A)

w1 + w2 + w3 = 1

and the kriging variance would be:

¾2k = w1¹° (S1; A) + w2¹° (S2; A) + w3¹° (S3; A) + ¸¡ ¹° (A;A)

The right hand side of the equations are ¹° (S1; A) ; ¹° (S2; A) and ¹° (S3; A).
¹° (S1; A) is the average semi-variogram value between a line of length l and
a point on the end of it. This is the de¯nition of Â (l). So is ¹° (S3; A).
¹° (S2; A) is the average semi-variogram between the line and a central point.
This example was tackled in Chapter 4 and found to be Â (l=2). Thus we
have the right hand side of the equations and most of the variance. The left
hand side of the equations is made up of the individual sample-with-sample
terms. Since all of the samples in this case are supposed to be points, all of
these `left hand side' relationships are given by the semi-variogram model. It
remains only to calculate the distances between the pairs and use the model
to produce the terms. The diagonal terms, ¹° (S1; S1), ¹° (S2; S2) and ¹° (S3; S3)
are all zero, since ° (0) = 0 by de¯nition, ¹° (S1; S2) is equal to ¹° (S2; S1), and
is ° (l=2). So is ¹° (S2; S3) and ¹° (S3; S2). ¹° (S1; S3) is ° (l) as is ¹° (S3; S1).
Finally, ¹° (A;A) is F (l) by de¯nition. Putting these together gives:

w2° (l=2) +w3° (l) +¸ = Â (l)
w1° (l=2) +w3° (l=2) +¸ = Â (l=2)
w1° (l) +w2° (l=2) +¸ = Â (l)
w1 +w2 +w3 = 1
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and the kriging variance is

¾2k = w1Â (l) + w2Â (l=2) + w3Â (l) + ¸¡ F (l)

Up until this point the system does not depend on the actual model for the
semi-variogram. Our model was ° (h) = ph and for this example we will take
p = 4. For the linear semi-variogram, Â (l) = pl=2, so in this case Â (l) = 2l.
Similarly, F (l) = 4l=3. Substituting in the above system:

2lw2 +4lw3 +¸ = 2l (1)
2lw1 +2lw3 +¸ = l (2)
4lw1 +2lw2 +¸ = 2l (3)
w1 +w2 +w3 = 1 (4)

and

¾2k = 2lw1 + lw2 + 2lw3 + ¸¡ 4

3
l

Adding equations (1) and (3) gives

4lw1 + 4lw2 + 4lw3 + ¸ = 4l

whilst equation (4) gives

w1 + w2 + w3 = 1

These two together show that in this case ¸ = 0. Thus we can eliminate
¸ from the ¯rst three equations, and divide all of them through by l. This
suggests that the results | the ¯nal values of the weights | do not rely on
the length being estimated. We have then:

2w2 +4w3 = 2 (5)
2w1 +2w3 = 1 (6)
4w1 +2w2 = 2 (7)

Subtracting equation (5) from equation (7) gives:
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4w1 ¡ 4w3 = 0 i.e. w1 = w3

so that equation (6) gives:

4w1 = 1 i.e. w1 =
1
4

Therefore, w3 =
1
4
and w2 =

1
2
. The `optimal' set of weights for the problem

in Fig. 5.1 is therefore
¡
1
4
; 1
2
; 1
4

¢
and this estimator gives a kriging variance

of:

¾2k = 2
1

4
l +

1

2
l + 2

1

4
l + 0¡ 4

3
l =

l

6

The ¯nal result is therefore that:

the BLUE has weights of
¡
1
4
; 1
2
; 1
4

¢
and a kriging variance of l=6.

In our previous studies of this particular setup, we found that the arithmetic
mean gave an extension variance of pl=18 and that the set of weights

¡
1
8
; 3
4
; 1
8

¢

gave 7pl=96. To match the example above we should set p = 4, so that the
variances become 2l=9 and 7l=24 respectively. The kriging procedure has
improved over the arithmetic mean by about 25%, this being the di®erence
in magnitude between the extension variance and the kriging variance. The
spurious set of weights which we tried earlier in this chapter give a variance
almost twice that of the optimal estimator. Note that in this case, since we
have used a linear semi-variogram model, the set of weights is independent
of the length being estimated, but the variance is directly proportional to it.
For an exercise, see if you can show that the set of weights is also independent
of the slope of the semi-variogram, p. Show also that the kriging variance is
directly proportional to p, which seems only sensible.

TWO-DIMENSIONAL EXAMPLE
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Now let us return to the familiar uranium example shown in Fig. 5.2. The
data | position co-ordinates and grade values | were given in Table 4.1.
We have ¯ve samples, so there will be six equations in the kriging system.
The ¹° (Si; Sj) terms on the left hand side of the equations are all `point-with-
point' relationships, and can be evaluated directly from the semi-variogram
model. The model was spherical, with a range of in°uence of 100ft, a sill of
700 (p.p.m.)2 and a nugget e®ect of 100 (p.p.m.)2. The ¹° (Si; A) terms are
all `point-with-panel' relationships and hence are simple combinations of the
H (l; b) auxiliary function. The ¹° (A;A) term is, of course, F (l; b).

The kriging system turns out to be:

415:5w2 +491:4w3 +403:0w4 +790:5w5 +¸ = 356:7
415:5w1 +581:3w3 +642:9w4 +800:0w5 +¸ = 572:4
491:4w1 +581:3w2 +659:9w4 +778:8w5 +¸ = 456:9
403:0w1 +642:9w2 +659:9w3 +745:1w5 +¸ = 446:8
790:5w1 +800:0w2 +778:8w3 +745:1w4 +¸ = 696:1
w1 +w2 +w3 +w4 +w5 = 1

and the kriging variance would be:

¾2k = 356:7w1 + 572:4w2 + 456:9w3 + 446:8w4 + 696:1w5 + ¸¡ 344:0

Solving this system of equations (by computer) gives:

w1 = 0:346
w2 = 0:023
w3 = 0:269
w4 = 0:234
w5 = 0:127
¸ = 19:72

T ¤ = 376:5 p:p:m:
¾k = 11:3 p:p:m:

This kriging standard deviation compares favourably with the standard error
of the `inverse distance' weights. The main di®erence in the weighting is
perhaps a surprising one at ¯rst sight. Sample 2 is allocated an almost
zero weight. In fact, it receives only 20% of the weight on sample 5, which
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is considerably farther from the block centre. This is because the kriging
system automatically takes account of the relationship amongst the samples.
Sample 2 provides little extra information about the block in the presence
of sample 1, and to a lesser extent samples 3 and 4. To illustrate this point
further, let us consider the situation in Fig. 5.3, where sample 3 was moved
to the south of the block. The kriging system now becomes:

415:5w2 +348:8w3 +403:0w4 +790:5w5 +¸ = 356:7
415:5w1 +581:3w3 +642:9w4 +800:0w5 +¸ = 572:4
348:8w1 +581:3w2 +204:6w4 +778:8w5 +¸ = 456:9
403:0w1 +642:9w2 +204:6w3 +745:1w5 +¸ = 446:8
790:5w1 +800:0w2 +778:8w3 +745:1w4 +¸ = 696:1
w1 +w2 +w3 +w4 +w5 = 1

Note that the only di®erence between this and the previous system is in row
3 and column 3 on the left hand side. The right hand side is unchanged since
we have not changed the relationship of each individual sample to the panel.
The new weights are:

w1 = 0:440
w2 = 0:089
w3 = 0:062
w4 = 0:224
w5 = 0:185 ¸ = 61:58p:p:m:2

T ¤ = 359:6 p:p:m: ¾k = 13:5 p:p:m:

The weight on the third sample is now less than that of sample 2. The main
movement in weight has been towards the `northern' samples, 1, 2 and 5,
although the largest increase is, naturally, in sample 1. The really striking
change is in the value of the estimator which has dropped by 17 p.p.m.
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Fig. 5.4. Block to be estimated is rotated through 90±.

As a third example let us consider the same sampling situation as before, but
now with the block rotated through 90 degrees, as in Fig. 5.4. The kriging
system for this setup has the same left hand side as the ¯rst situation in Fig.
5.2. However, all of the terms on the right hand side have changed, to:

377:6 599:7 430:2 414:0 720:3

The weights allocated to the samples change drastically:

w1 = 0:275
w2 = 0:006
w3 = 0:324
w4 = 0:306
w5 = 0:089
¸ = 20:29

The estimator T ¤ takes the value 371.9 p.p.m., and has a standard error of
10.7 p.p.m. Sample 2 has been completely screened out by sample 1, and
the in°uence of sample 5 has also declined somewhat. The biggest surprise,
perhaps, is that sample 1 no longer has anything like the importance it had in
the previous two examples. There is no method other than kriging in which
this shift in `information value' can be quanti¯ed and utilised.
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SUMMARY OF MAJOR POINTS

1. We can evaluate the accuracy of any linear estimator if we have a model
for the semi-variogram.

2. We can produce the minimum variance unbiased linear estimator using
the kriging technique, if we have a model for the semi-variogram.

The standard litany of the advantages of kriging can be found in numerous
publications. The points of major importance are:

(a) Given the basic assumptions, no trend, and a model for the semi-variogram,
kriging always produces the Best Linear Unbiased Estimator.

(b) If the proper models are used for the semi-variogram, and the system is
set up correctly, there is always a unique solution to the kriging system.

(c) If you try to `estimate' the value at a location which has been sampled,
the kriging system will return the sample value as the estimator, and a
kriging variance of zero. In other words, you already know that value.
This is usually referred to as an `exact interpolator'.

(d) If you have regular sampling, and hence the same sampling/block setup
at many di®erent positions within the deposit, it is not necessary to
recalculate the kriging system each time.

SIMULATED IRON ORE EXAMPLE

To round out this chapter, let us return to the simulated iron ore deposit
mentioned at the end of Chapter 4. Two sets of samples had been taken.
The 50 `random' samples were shown in Fig. 4.14 and the regular grid in
Fig. 4.17.
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Fig. 5.5. Simulated iron ore deposit | block averages kriged from the set
of random samples and the corresponding kriging standard deviations | 50

metre blocks.

The regular grid actually comprises 41 samples. As before, the 400-metre-
square area was divided into 50-metre-square blocks. However, this time the
block values were estimated by the method of kriging. The range of in°uence
of the semi-variogram model for this deposit was 100m, so all samples within
this distance of a block were included in its estimation. The results are shown
in Fig. 5.5, and once again the upper Figure in each block is the estimated
value, whilst the lower is the kriging standard deviation, or standard error.
For comparison, Fig. 5.6 shows the kriging solution for the case where the
area is divided into 100-metre-square blocks. Notice that the kriging standard
deviations in all cases are much lower than for the 50-metre blocks.
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Fig. 5.6. Simulated iron ore deposit | block averages kriged from the set
of random samples and the corresponding kriging standard deviations |

100 metre blocks.

This once again bears out the principle that it is `easier' to estimate large
areas rather than small ones. Figure 5.7 shows the estimated values for the
blocks when using the sample values from the regular grid. The kriging
standard deviation for all of these blocks is 2.4%Fe. This is not markedly
di®erent from the extension standard deviation of 2.5%Fe. Perhaps our con-
clusion here must be that with a regular grid of this particular size, the
arithmetic mean of the two `corner' samples is as good an estimator as a
weighted average of all samples within 100m of the block. The exterior sam-
ples would seem to be super°uous in the circumstances. This conclusion does
not hold for the irregular sampling, for which some great improvements in
accuracy result from the application of kriging.
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Fig. 5.7. Simulated iron ore deposit | block averages kriged from the set
of regular samples | 50 metre blocks.

The usual requirement in ore reserve estimation is the production of block
values. However, in many other possible applications of kriging | such as
geochemistry or hydrology | the estimation desired is in the form of `point'
values, or a contour map of the variable of interest. Kriging can be used to
produce the close grid of values necessary to the plotting of contour maps. In
fact, the procedure is very much easier than `area' estimation, since all the
`average semi-variogram values' reduce to simple values of the semi-variogram
model itself. Since all of the observations are made at speci¯ed points, the left
hand side of the kriging system is `point-with-point' semi-variogram values.
Since the value to be estimated is also at a point, the right hand side is also
`point-with-point' semi-variogram values. Figure 5.8 shows the contour map
produced using the 50 randomly chosen samples. The blacked-out area at
the top of the map is outside the range of in°uence of any sample, and hence
cannot be estimated.
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Fig. 5.8. Simulated iron ore deposit | contour map kriged from random
samples.
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Fig. 5.9. Simulated iron ore deposit | kriged standard deviation map for
the kriged contour map from random samples.

One of the advantages of kriging as an interpolation technique is that ev-
ery estimate is accompanied by a corresponding kriging standard deviation.
Thus, for any contour map of values, a companion map of `reliability' can be
produced. This is shown in Fig. 5.9. The location of the sample points can
easily be seen by the concentration of the low value contours in Fig. 5.9 |
the 1%Fe and 2%Fe contours. The highest possible contour value would be
5X2 = 7:07%Fe, which is the boundary around the blacked out area. This
corresponds to trying to estimate the value at a point which is just on the
range of in°uence away from the nearest sample.

Fig. 5.10. Simulated iron ore deposit | contour map kriged from regular
samples.

The `unreliable' areas are quite clearly outlined by the 5%Fe contour (the
sample standard deviation). A standard error which is larger than the origi-
nal sample standard deviation denotes a rather unreliable prediction.
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Figure 5.10 shows the interpolated contour map using the regular samples,
and Fig. 5.11 the corresponding map of the kriged standard deviation. Note
that, even though only 41 samples are available, and even though these are
on a very large grid (71m), the highest contour value in Fig. 5.11 is only
4%Fe.

Fig. 5.11. Simulated iron ore deposit | map of kriging standard deviations
for map kriged from regular samples.

An additional advantage of kriging as an estimation technique is that the
maps and/or calculations of the `standard errors' can be produced without
actually taking the samples. For example, if in¯ll drilling were proposed on
the regular grid, it is fairly obvious from Fig. 5.11 where the new samples
should be taken. If a decision was taken to reduce the grid to 50m, i.e. put a
hole in the centre of each 4%Fe contour, a complete new map of the resulting
standard error could be drawn before setting foot in the ¯eld.
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CHAPTER 6
Practice

Because this text was intended to be a `¯rst introduction' to the subject
of Geostatistics, the examples and situations discussed have tended to be
rather simplistic. There are many ore deposits | and other applications |
which can be tackled with the methods described. However, there are at
least as many others which cannot because of the presence of one or more
complicating factors. In this chapter, I should like to mention brie°y some of
these problems, and perhaps indicate how they might be tackled. The order
in which the problems are presented bears no relationship to their relative
importance.

1. CONSTRUCTION OF
SEMI-VARIOGRAMS USING

IRREGULAR DATA

All the discussion on the construction of experimental semi-variograms in
Chapter 2 was based on samples which were spaced more or less regularly
within the deposit. Some grids had missing samples, but this presents no
problems. In a situation where the samples are not regularly spaced, ap-
proximations must be introduced into the calculation. Suppose we wish to
calculate the experimental semi-variogram value for a distance h in a spec-
i¯ed direction (say, north-east). The chance of ¯nding any pairs at exactly
this separation with irregular sampling is quite small. We therefore place
a `tolerance' on each speci¯cation. We look for samples more-or-less dis-
tance h apart (within ±h) and more-or-less north-east (within §±0) | see
Fig. 6.1 for illustration. The size of the tolerances depends greatly on the
structure of the deposit. This is rather a circular argument, since we do not
know the structure until we construct the semi-variogram. If the deposit is
anisotropic, the semi-variogram will be more sensitive to the tolerance placed
on the search angle. A good practice is to try several ±0 values, and a narrow
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range of ±h values. ±h should always be small relative to the sample spacing.
As a rule of thumb, you could try ±0 = 5; 10; 20; 45 degrees and ±h equal to
10% of the average sample spacing.

Fig. 6.1. Search area de¯ned by tolerances on angle and distance between
pair in experimental semi-variogram.

2. SAMPLING ERRORS

This is a ¯eld which is skated over in most geostatistical treatises, and I
intend to emulate my predecessors in this. Random errors introduced dur-
ing sampling will contribute to the nugget e®ect in the semi-variogram, i.e.
they will show as an increase in the `unpredictable' component of the value.
Similarly, core loss will also contribute to the nugget e®ect. Other possible
contributions of `error' | apart from the mineralisation itself | are analyti-
cal errors in valuation, subsampling and so on. However, the contribution of
these errors should not be over-emphasised. In my Cornish tin example, we
carried out a special sampling scheme to determine the `size' of the operator
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error in the vanning assay. This turned out to be 3% of the total nugget
e®ect. The other 97% was due to the random nature of the mineralisation.

Systematic errors, be they sampling, analytical or whatever, will not be
picked up by Geostatistics and will be transferred to any estimates produced.

3. TRENDS

We have seen in Chapter 2 how to detect the presence of a signi¯cant trend
within the deposit. If we construct the experimental semi-variogram assum-
ing no trend, then the neglected component will show in the graph. If it is a
periodic trend, it will show as a regular rise and fall in the semi-variogram.
If it is a polynomial type of trend, it will show in the addition of a parabolic
component to the `true' semi-variogram. There are cases where a trend may
exist but can be safely ignored, as in the silver example in Chapter 2. How-
ever, there are others in which this is not the case, e.g. the rainfall example.
Kriging, as such, cannot be used in the presence of a strong trend. It will give
erroneous and biased results. Some technique such as Universal Kriging, or
the newer Generalised Covariances must be applied if the user is determined
to use Geostatistics. My experience in the application of Geostatistics in the
presence of trend is voluntarily non-existent.

4. ANISOTROPY

This is perhaps the easiest `problem' to tackle. Most frequently, the form
of the anisotropy is di®erent ranges of in°uence in di®erent directions. For
example, a porphyry molybdenum may have a range of in°uence of 70m
vertically through the deposit, and one of 350m in all horizontal directions.
This is very simply tackled by changing the units of measurement in one
direction so that the ranges appear to be equal. In the example cited, we
might change all horizontal measurements to multiples of 5m instead of 1.
This gives a horizontal range of 70 units. Then, when estimating block values,
it must be remembered that all horizontal distances must be expressed in
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units of 5m. Diagonal distances must be corrected accordingly. For example,
a block de¯ned as 50 by 50 by 20m, will be estimated as if it were 10 units
by 10 units by 20 units. Similarly, the distance between samples must be
corrected to this new `co-ordinate' system. The simplest way to tackle this
(inside a computer) is to correct all measurements before embarking on the
estimation. The ¯nal estimates and standard errors will be as they should
be, and need no `uncorrection'.

5. IRREGULAR SHAPED STOPES
OR BLOCKS

In the estimation problems discussed, all panels and blocks were rectangular
in shape. The auxiliary functions are only relevant to such panels, and so
cannot be used with, say, stope panels such as that shown in Fig. 6.2. These
shapes can only be tackled using numerical approximations and a computer.
The principle of the approximation is the same as that applied in calculating
the three-dimensional F function in Chapter 3. Instead of considering all of
the in¯nite number of points within the stope, we use a ¯nite grid of points
to represent it. The number of points is in

question, but general agreement seems to lie in the range 64 to 100. This
then means that values such as ¹° (S;A) are average semi-variograms between
`the sample and each point on the grid in the stope'. A computer program
will evaluate the model semi-variogram value between each pair of points and
then produce the average semi-variogram value required. This principle also
applies to irregular shapes in three dimensions.
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Fig. 6.2. Estimation of irregularly shaped stope.

6. THREE-DIMENSIONAL
KRIGING

This leads us on nicely to one of my hobby horses | the performance of
kriging estimation in three dimensions. This problem is most often encoun-
tered in the planning of open pits from borehole results. The `standard'
technique is to make an approximation such as described in Section 5 above.
A suggested alternative, which uses less computer time, is as follows:

(i) slice the deposit into benches;

(ii) represent each block as a panel at a level midway up the bench;

(iii) approximate this block by a grid of points in two dimensions;

(iv) take each borehole intersection with the bench and call this a `point'
midway up the bench;

(v) put all the slices back and krige.

The semi-variogram supposedly used in the kriging is that of `bench compos-
ites', i.e. sections of length equal to the height of the bench. This technique
is adequate if all boreholes are complete, and if they start and stop at more
or less the same level. However, there are other situations which it does not
represent adequately. Figure 6.3 illustrates some of these. All of these bore-
holes would be averaged over the bench, positioned halfway up the bench
and allocated a length equal to the height of the bench.
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Fig. 6.3. Some problems with the simplistic approach to three-dimensional
kriging procedures.

Borehole A has core loss part way down the bench; borehole B is inclined
so that the composite may be substantially longer than supposed; borehole
C stops before it reaches the bottom of the bench and borehole D does not
start until halfway through. All of these situations can be tackled by taking
a truly three-dimensional approach to the problem. Computer packages are
now available on the market for the above described method, the point ap-
proximation method, and the three-dimensional approach advocated in my
own papers.

7. BIAS ON THE
GRADE/TONNAGE CURVE

After a mine has been estimated on a block-by-block basis, it is usual to
construct the so-called `production' grade/tonnage curve. Unfortunately,
even with the best estimates possible (kriging) this grade/tonnage curve will
still be biased. There are two contributory factors to this bias. The ¯rst
factor is that the selection criterion (cuto® value) is being applied to the
estimate of the block grade. No matter how accurate that estimate, it will
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not exactly equal the true value of the block. Thus, if a block is estimated
to be just below the cuto® value, there is a ¯nite probability that the true
value is above cuto®. However, this block will be sent as waste. On the
other hand there will be blocks estimated as being above cuto® which are
actually below cuto®. These will be sent as ore. Thus, we will have payable
blocks sent to waste and unpayable ore sent to the mill. This will result
in production ¯gures which will di®er from those predicted by the supposed
grade/tonnage curve calculated on the block estimates. The major di®erence
will be a lowering in the grade of ore milled.

The second bias in the grade/tonnage curve is one introduced by the volume-
variance relationship. The estimates of the block values will not necessarily
have the same variance as the actual block values. You may remember we
discussed this matter in connection with the Cornish tin example in Chapter
3. There the estimator was the average grade of two 125-ft strips of ground,
whilst the panel was 125 by 100ft. The variance of these two quantities
will not be the same. In most situations | except for point kriging |
the variance of the estimator will be larger than that of the actual blocks.
Thus the grade/tonnage curve based on the block estimates will be biased
towards lower tonnage and an over-optimistic average grade. This problem
is currently being investigated by the sta® at Fountainebleau under the title
`Disjunctive Kriging'. A simple, empirically justi¯ed technique to correct
this bias is currently under investigation at the Royal School of Mines.

SUMMARY

This summary is more for the book as a whole than for this chapter partic-
ularly. I have endeavoured to give a perhaps over-simplistic presentation of
the theory and practice of the estimation technique known as kriging. Read-
ers who ¯nd this approach tedious are referred to the de¯nitive (and more
mathematical) works mentioned in the bibliography. I have also endeavoured
to detail the practical di±culties which arise in applying the technique and
to suggest some ways of overcoming them.
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