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Basics of image classification

Image classification example

Problem — given two classes of images:
class 1: desert,
class 2: beach,

and also a set of 9 images taken from each class, develop a program able
to classify a new, and unseen image, into one of those two classes.

Object: image
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Basics of image classification

Image classification example

Feature: set of values extracted from images that can be used to
measure the (dis)similarity between images Any suggestion?

Requantize the image to obtain only 64 colours per image, use the two
most frequent colours as features!
Each image is represented by 2 values: 2D feature space.
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Basics of image classification

Image classification example
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Basics of image classification

Image classification example

Classifier: a model build using labeled examples (images for which
the classes are known). This model must be able to predict the class
of a new image. Any suggestion?

To find a partition of the space, using the data distribution.
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Basics of image classification

Image classification example

Examples used to build the classifier : training set.
Training data is seldom linearly separable
Therefore there is a training error
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Basics of image classification

Image classification example

The model, or classifier, can then be used to predict/infer the class of
a new example.
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Basics of image classification

Image classification example

Now we want to test, for future data (not used in training), the
classifier error rate (or alternatively, its accuracy)
The examples used in this stage is known as test set.
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Basics of image classification

Terminology

Class: label/category, Ω = {ω1, ω2, ..., ωc}

Dataset: X = {x1, x2, ..., xN}, for xi ∈ RM

xi ∈ RM example (object) in the feature space: the feature vector

l(xi ) = yi ∈ Ω labels assigned to the each example

matrix N examples × M features:

X =


x1,1 x1,2 · · · x1,M

x2,1 x2,2 · · · x2,M

· · · · · · · · ·
xN,1 xN,2 · · · xN,M

 , labels = Y =


l(x1) = y1

l(x2) = y2

· · ·
l(xN) = yN
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Image classification method that beats humans

Agenda
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Image classification method that beats humans

Introduction

Recent history that tries to solve the problem of image classification:
Color, shape and texture descriptors (1970-2000)
SIFT (1999)
Histogram of Gradients (2005)
Spatial Pyramid Matching (2006),
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Image classification method that beats humans

Pipeline

1 Descriptor grid: HoG, LBP, SIFT, SURF
2 Fisher Vectors
3 Spatial Pyramid Matching
4 Classifier
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Image classification method that beats humans

Image Net/ Large Scale Visual Recognition Challenge

ImageNet: 22000 categories, 14 million images
ImageNet Challenge: ∼ 1.4 million images, 1000 classes.
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Image classification method that beats humans

Architectures and number of layers

AlexNet (9) GoogLeNet (22) VGG (16/19) ResNet (34+)
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Image classification method that beats humans

CNNs were not invented in 2012...

Fukushima’s Neocognitron (1989)

LeCun’s LeNet (1998)
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Neural networks Linear function, loss function, optimization

Agenda
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Neural networks Linear function, loss function, optimization

A linear classifier

Input → x

f (W , x) =

weight
matrix

W

image

x +

bias
term

b
= scores for possible classes of x
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Neural networks Linear function, loss function, optimization

Linear classifier for image classification

Input: image (with N × M × 3 numbers) vectorized into column x
Classes: cat, turtle, owl
Output: class scores

= x = [1, 73, 227, 82]

f (x,W ) = s → 3 numbers with class scores

W x + b 0.1 −0.25 0.1 2.5
0 0.5 0.2 −0.6
2 0.8 1.8 −0.1

×


1
73
227
82

+

 −2.0
1.7
−0.5

 =

 −337.3
−38.6
460.30
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Neural networks Linear function, loss function, optimization

Linear classifier for image classification

cat -337.3 380.3 8.6

owl 460.3 160.3 26.3

turtle 38.6 17.6 21.8

We need:
a loss function that quantifies undesired scenarios in the training set
an optimization algorithm to find W so that the loss function is
minimized!
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Neural networks Linear function, loss function, optimization

Linear classifier for image classification

We want to optimize some function to produce the best classifier
This function is often called loss function,

Let (X ,Y ) be the training set: X are the features, Y are the class labels,
and f (.) a classifier that maps any value in X into a class:

ℓ (f (W , xi , yi ) = (

predicted
label

f (W , xi ) −

true
label

yi )2 (1)
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Neural networks Linear function, loss function, optimization

A linear classifier we would like

cat classifier

owl classifier

turtle classifier
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Neural networks Linear function, loss function, optimization

Minimizing the loss function

Use the slope of the loss function over the space of parameters!
For each dimension j :

df (x)
dx

= lim
δ→0

f (x + δ)− f (x)
δ

dℓ (f (wj , xi ))

dwj
= lim

δ→0

f (wj + δ, xi )− f (wj , xi )

δ

We have multiple dimensions, therefore a gradient (vector of derivatives).

We may use:
1 Numerical gradient: approximate
2 Analytic gradient: exact

Gradient descent — search for the valley of the function, moving in the
direction of the negative gradient.
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Neural networks Linear function, loss function, optimization

Gradient descent

Changes in a parameter affects the loss (ideal example)

−1.5 −1.0 −0.5 0.0 0.5 1.0

6
8

1
0

1
2

w

S
q
u
a
re

d
 E

rr
o
r 

L
o
s
s

Moacir Ponti (ICMC–USP) Convolutional Neural Networks 2017 24 / 1



Neural networks Linear function, loss function, optimization

Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W )) = 2.31298

wi + δ

0.1 + 0.001,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W ′)) = 2.31201

dwi

?,
,
,
,
,
...,


(f (wi + δ)− f (wi ))/δ
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Neural networks Linear function, loss function, optimization

Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W )) = 2.31298

wi + δ

0.1 + 0.001,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W ′)) = 2.31201

dwi

−0.97,
,
,
,
,
...,


(f (wi + δ)− f (wi ))/δ
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Neural networks Linear function, loss function, optimization

Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W )) = 2.31298

wi + δ

0.1,
−0.25 + 0.001,

0.1,
2.5,
0,
...,
−0.1


ℓ (f (W ′)) = 2.31298

dwi

−0.97,
0.0,
,
,
,
...,


(f (wi + δ)− f (wi ))/δ
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Neural networks Linear function, loss function, optimization

Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W )) = 2.31298

wi + δ

0.1,
−0.25,

0.1 + 0.001,
2.5,
0,
...,
−0.1


ℓ (f (W 1)) = 2.31459

dwi

−0.97,
0.0,

+1.61,
−,
−,
...,
−


(f (wi + δ)− f (wi ))/δ
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Neural networks Linear function, loss function, optimization

Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W )) = 2.31298

wi + δ

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


ℓ (f (W ′)) = 2.08720

dwi

−0.93,
0.0,

−1.61,
+0.02,
+0.5,
...,
−3.7


(f (wi + δ)− f (wi ))/δ
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Neural networks Linear function, loss function, optimization

Regularization

ℓ(W ) =
1
N

N∑
i=1

ℓi (xi , y + i ,W )+

regularization

λR(W )

∇W ℓ(W ) =
1
N

N∑
i=1

∇W ℓi (xi , y + i ,W ) + λ∇W R(W )

Regularization will help the model to keep it simple. Possible methods
L2 : R(W ) =

∑
i
∑

j W 2
i ,j

L1 : R(W ) =
∑

i
∑

j |Wi ,j |
others (dropout, batch normalization)
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Neural networks Linear function, loss function, optimization

Stochastic Gradient Descent (SGD)

It is hard to compute the gradient, when N is large.

SGD:
Approximate the sum using a minibatch (random sample) of instances:
something between 32 and 512.
Because it uses only a fraction of the data:

fast
often gives bad estimates on each iteration, needing more iterations
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Neural networks Linear function, loss function, optimization

Stochastic Gradient Descent (SGD)

Naïve approach (α is the learning rate):

repeat until convergence (or a fixed number of iterations) {
sample a minibatch of examples
for each w(i) {

tmp(i) = w(i) - alpha (d / d theta(i)) l(theta)
}
for each w(i) {

w(i) = tmp(i)
}

}
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Neural networks Simple Neural Network

Neuron

input: 1+ values
output: 1 value
each connection associated with a weight w (connection strength)
often there is a bias value b (intercept)
to learn is to adapt the parameters: weights w and b
function f (.) is called activation function (transforms output)

i1

i0

in

wk,0

wk,1

wk,n
xk=fk(netk)

netk=Σjwk,j ij+bk
xk

bk
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Neural networks Simple Neural Network

Neuron

input: 1+ values
output 1 value
each connection associated with a weight w (connection strength)
often there is a bias value b
to learn is to adapt the parameters: weights w and b

i1

i0

in

wk,0

wk,1

wk,n
xk=fk(netk)

netk=Σjwk,j ij+bk
xk

bk
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Neural networks Simple Neural Network

Some activation functions

Sigmoid Hiperbolic Tangent
f (x) = 1

1+e−x f (x) = tanh(x)

ReLU Leaky ReLU
f (x) = max(0, x) f (x) = max(0.1x , x)

Moacir Ponti (ICMC–USP) Convolutional Neural Networks 2017 35 / 1



Neural networks Simple Neural Network

Backpropagation

Algorithm that recursively apply chain rule to compute weight
adaptation for all parameters.
Forward: compute result of the operation in some input over all
neurons, up to the loss function
Backward: apply chain rule to compute the gradient of the loss
function, propagating through all layers of the network, in a graph
structure
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Neural networks Simple Neural Network

Simple NN with two layers

The linear classifier was defined as f (W , x) = W x

A two-layer neural network could be seen as: f (W2 max(0,W1x))
input: image 32 × 32 × 3
hidden layer: 256 neurons
output: vector with 3 scores
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Neural networks Simple Neural Network

Simple NN with two layers

30
72

25
6

3

x h o

W1

W2

3072x256 256x3
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Convolutional Neural Networks

Agenda
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Convolutional Neural Networks

Architecture LeNet

New terminology:
Convolutions / convolutional layer
Subsampling / pooling
Feature maps
Full connection
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Convolutional Neural Networks

Convolutional layer

Input (N × M × L) e.g. 32 × 32 × 3

Filter (neuron) w with P × Q × D, e.g. 5 × 5 × 3 (keeps depth)
Each neuron/filter performs a convolution with the input image

Centred at a specific pixel, we have, mathematically

wT x + b
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Convolutional Neural Networks

Convolutional layer: input x filter x stride

The convolutional layer must take into account
input size
filter size
convolution stride

An input with size NI × NI , filter size P × P and stride s will produce an
output with size:

NO =
(NI − P)

s
+ 1

Examples:
(7 − 3)/1 + 1 = 5
(7 − 3)/2 + 1 = 3
(7 − 3)/3 + 1 = 2.3333
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Convolutional Neural Networks

Convolutional layer

Feature maps are stacked images generated after convolution with
filters followed by an activation function (e.g. ReLU)

(32 × 32 × 3)

convolution layer
10 filters of 5 × 5 × 3

→

01

02
...

10

size

(28 × 28 × 10)
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Convolutional Neural Networks

Convolutional layer: zero padding

In practice, zero padding is used to avoid losing borders. Example:
input size: 10 × 10
filter size: 5 × 5
convolution stride: 1
zero padding: 1
output: 10 × 10

General rule: zero padding size to preserve image size: (P − 1)/2

Example: 32 × 32 × 3 input with P = 5, s = 1 and zero padding z = 2

Output size: (NI + (2 · z)− P)/s + 1 = (32 + (2 · 2)− 5)/1 + 1 = 32
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Convolutional Neural Networks

Convolutional layer: number of parameters

Parameters in a convolutional layer is [(P × P × d) + 1]× K :
filter weights: P × P × d , d is given by input depth

number of filters/neurons: K (each processes input in a different way)

+1 is the bias term

Example, with an image input 32 × 32 × 3:
Conv Layer 1: P = 5, K = 8
Conv Layer 2: P = 5, k = 16
Conv Layer 3: P = 1, k = 32
# parameters Conv layer 1: [(5 × 5 × 3) + 1]× 8 = 608
# parameters Conv layer 2: [(5 × 5 × 8) + 1]× 16 = 3216
# parameters Conv layer 3: [(1 × 1 × 16) + 1]× 32 = 544
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Convolutional Neural Networks

Convolutional layer: pooling

Operates over each feature map, to make the data smaller
Example: max pooling with downsampling factor 2 and stride 2.
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Convolutional Neural Networks

Convolutional layer: convolution + activation + pooling

Convolution: as seen before
Activation: ReLU
Pooling: maxpooling
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Convolutional Neural Networks

Fully connected layer + Output layer

Fully connected (FC) layer:
FC layers work as in a regular Multilayer Perceptron
A given neuron operates over all values of previous layer

Output layer:
each neuron represents a class of the problem
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Convolutional Neural Networks

Visualization

figs/single_layer.png

Donglai et al. Understanding Intra-Class Knowledge Inside CNN, 2015, Tech Report
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Convolutional Neural Networks Current Architectures

Agenda
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Convolutional Neural Networks Current Architectures

AlexNet (Krizhevsky, 2012)

60 million parameters.
input 224 × 224
conv1: K = 96 filters with 11 × 11 × 3, stride 4,
conv2: K = 256 filters with 5 × 5 × 48,
conv3: K = 384 filters with 3 × 3 × 256,
conv4: K = 384 filters with 3 × 3 × 192,
conv5: K = 256 filters with 3 × 3 × 192,
fc1, fc2: K = 4096.
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Convolutional Neural Networks Current Architectures

VGG 19 (Simonyan, 2014)

+layers, −filter size = less parameters
input 224 × 224,
filters: all 3 × 3,
conv 1-2: K = 64 + maxpool
conv 3-4: K = 128 + maxpool
conv 5-6-7-8: K = 256 + maxpool
conv 9-10-11-12: K = 512 + maxpool
conv 13-14-15-16: K = 512 + maxpool
fc1, fc2: K = 4096
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Convolutional Neural Networks Current Architectures

GoogLeNet (Szegedy, 2014)

22 layers
Starts with two convolutional layers
Inception layer (“filter bank”):

filters 1 × 1, 3 × 3, 5 × 5 + max pooling 3 × 3;
reduce dimensionality using 1 × 1 filters.
3 classifiers in different parts

Blue = convolution,
Red = pooling,
Yellow = Softmax loss fully connected layers
Green = normalization or concatenation
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Convolutional Neural Networks Current Architectures

GoogLeNet: inception module

1 × 1 convolution reduces the depth of previous layers by half
this is needed to reduce complexity (e.g. from 256 to 128 d)
concatenates 3 filters plus an extra max pooling filter (because).
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Convolutional Neural Networks Current Architectures

Inception modules (V2 and V3)

multiple 3 × 3 convs. flattened conv. decrease size
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Convolutional Neural Networks Current Architectures

VGG19 vs “VGG34” vs ResNet34
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Convolutional Neural Networks Current Architectures

Residual Network — ResNet (He et al, 2015)

Reduces number of filters, increases number of layers (34-1000).
Residual architecture: add identity before activation of next layer.
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Convolutional Neural Networks Current Architectures

Comparison

Thanks to Qingping Shan www.qingpingshan.com
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Convolutional Neural Networks Current Architectures

Xception
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Convolutional Neural Networks Current Architectures

Xception
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Convolutional Neural Networks Guidelines for training

Agenda
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Convolutional Neural Networks Guidelines for training

Tricks

Batch
Mini-batch: in order to make it easier to process, on SGD use several
images at the same time,
Mini-batch size: 128 or 256, if not enough memory, 64 or 32,
Batch normalization: when using ReLU, normalize the batch.

Convergence and training set
Learning rate: in SGD apply a decaying learning rate, a fixed
momentum,
Clean data: cleaniness of the data is very important,
Data augmentation: generate new images by perturbation of
existing ones,
Loss, validation and training error: plot values for each epoch.
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Convolutional Neural Networks Guidelines for training

Guidelines for new data

Classification (finetuning)
Data similar to ImageNet: fix all Conv Layers, train FC layers

Data not similar to ImageNet: fix lower Conv Layers, train others
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Convolutional Neural Networks Guidelines for training

Guidelines for new data

Feature extraction for image classification and retrieval
Perform forward, get activation values of higher Conv and/or FC layers
Apply some dimensionality reduction: e.g. PCA, Product
Quantization, etc.
Use external classifier: e.g. SVM, k-NN, etc.

Moacir Ponti (ICMC–USP) Convolutional Neural Networks 2017 64 / 1



Convolutional Neural Networks Guidelines for training
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