Convolutional Neural Networks Image Processing — scc0251/scc5830

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

ICMC/USP — São Carlos, SP, Brazil

Problem — given two classes of images:

- class 1: desert,
- class 2: beach,

and also a set of 9 images taken from each class, develop a program able to classify a new, and unseen image, into one of those two classes.

• Object: image

- Feature: set of values extracted from images that can be used to measure the (dis)similarity between images Any suggestion?
 - Requantize the image to obtain only 64 colours per image, use the two most frequent colours as features!
 - Each image is represented by 2 values: 2D feature space.

- **Classifier**: a model build using labeled examples (images for which the classes are known). This model must be able to predict the class of a new image. **Any suggestion**?
 - To find a partition of the space, using the data distribution.

- Examples used to build the classifier : training set.
- Training data is seldom linearly separable
- Therefore there is a training error

• The model, or **classifier**, can then be used to predict/infer the class of a new **example**.

- Now we want to test, for future data (not used in training), the classifier error rate (or alternatively, its accuracy)
- The examples used in this stage is known as test set.

Terminology

Class: label/category, $\Omega = \{\omega_1, \omega_2, ..., \omega_c\}$

Dataset: $X = \{x_1, x_2, ..., x_N\}$, for $x_i \in \mathbb{R}^M$

 $x_i \in \mathbb{R}^M$ example (object) in the feature space: the *feature vector* $l(x_i) = y_i \in \Omega$ labels assigned to the each example

matrix N examples $\times M$ features:

$$X = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,M} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,M} \\ \cdots & \cdots & & \cdots \\ x_{N,1} & x_{N,2} & \cdots & x_{N,M} \end{bmatrix}, \text{ labels} = Y = \begin{bmatrix} l(x_1) = y_1 \\ l(x_2) = y_2 \\ \cdots \\ l(x_N) = y_N \end{bmatrix}$$

Agenda

Introduction

Recent history that tries to solve the problem of image classification:

- Color, shape and texture descriptors (1970-2000)
- SIFT (1999)
- Histogram of Gradients (2005)
- Spatial Pyramid Matching (2006),

Pipeline

- Descriptor grid: HoG, LBP, SIFT, SURF
- Pisher Vectors
- Spatial Pyramid Matching
- Olassifier

Moacir Ponti (ICMC-USP)

Image Net/ Large Scale Visual Recognition Challenge

ImageNet: 22000 categories, 14 million images ImageNet Challenge: \sim 1.4 million images, 1000 classes.

		IN		GI		ET				
Num the si	bers in brackets: (the number of synsets	Treemap V	isualization	Images of	the Synset	Download	s			
Im	ageNet 2011 Fall Release (32326)	🖌 👌 Image	Net 2011 Fall F	telease > F > N	> Woody plant	, ligneous plant	Tree			
 Integerver 2011 Fail (Verause (02020) Integerver 2011 Fail (Verause (02020)) 		Calabash	Aroeira	Breakax	Gutta-perci	a Spanish	Msasa	Indian	Lanseh	
	- phytoplankton (2)				0.0		AND KA			
1	- microflora (0)			STAT.			the survey			
	- crop (9)		- Y.			2.2		100		
T.	- endemic (0)			19540			-		8028	
	- holophyte (0)	Bonduc	Nitta	Manila	Obeche	Dhawa	Cocobolo	Guinea	Chaulmoogr	
	- non-flowering plant (0)					Red of the local division of the local divis	2	1		
	- plantlet (0)	STATE STATE	-			25		15 10 10 10 10 10 10 10 10 10 10 10 10 10		
1	- wilding (141)	10 A		Sand Sand			and the second	1 NO 1965	1 MC 1 MC	
	- ornamental (1)		Comment	Granadilla	Marblewood	Satinwood	Montezuma	Quandong	Millettie	
1	- pot plant (0)	Souari	Canwood				Conth MS		EM KER	
	- acrogen (0)	C.		Sec. 121			SECOND S MANUAL		CORE CONTRACTO	
1	- apomict (0)			10 M	100	* * **			20 34	
	- aguatic (0)					10.000	States and		1.20701	
1	cryptogam (1)	Gutta-	Jamaica	Keurboom	Fever	Puka	Ketembilla	Kino	Ice-cream	
	- annual (0)	percha	ALC: NOT	Sala Cardi	10		Profile And	1000		
1	- biennial (0)	Sin	A COLOR	ICTIVITE INTERIO	THE REAL	and second		TRACE OF LAN	and a summary	
	- perennial (1)	20 2 X				San Later	7.5		Harding Street	
	- escape (0)		Sector Sector	Participal Statistics	REAL POINT	Constraint of the second se			and the second	
	- hygrophyte (0)	Treelet	Dagame	Kingwood_	Quandong	Scarlet	Sliver	Button	Bloodwood	
1	- neophyte (0)	10 M	11 mar 10 mar		N. 74 .					
	embryo (0)	100 100	12.000 00000		Children and the second		2 3 9 2		88 A 660	
	- monocarp, monocarpic plant, m	新日子 4655	and the second		100					
	- sporophyte (0)	1758 8625				Decision of the second	Maria 🔄 T	olu	Pepper	
	- gametophyte (2)	Carib	Tipu	Christmas	Aam	PrinceWood				
	- houseplant (12)	Sanda Carlos		12 2 20				32	100 M	
1	garden plant (1)				1				155 C	
	+ vascular plant, tracheophyte (43		0.000			1000	s s	having-brush	Section Section	
							-	~		

Convolutional Neural Networks

Architectures and number of layers

Moacir Ponti (ICMC-USP)

Convolutional Neural Networks

Image classification method that beats humans

CNNs were not invented in 2012...

Convolutional Neural Networks

A linear classifier

Linear classifier for image classification

- Input: image (with $N \times M \times 3$ numbers) vectorized into column x
- Classes: cat, turtle, owl
- Output: class scores

$$\begin{array}{c} \textbf{001} \quad \textbf{073} \\ \textbf{227} \quad \textbf{082} \end{array} = \textbf{x} = [1, 73, 227, 82] \end{array}$$

 $f(\mathsf{x}, W) = s \quad o \;$ 3 numbers with class scores

$$\begin{array}{c} Wx + b \\ \begin{bmatrix} 0.1 & -0.25 & 0.1 & 2.5 \\ 0 & 0.5 & 0.2 & -0.6 \\ 2 & 0.8 & 1.8 & -0.1 \end{array} \right] \times \begin{bmatrix} 1 \\ 73 \\ 227 \\ 82 \end{bmatrix} + \begin{bmatrix} -2.0 \\ 1.7 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -337.3 \\ -38.6 \\ 460.30 \end{bmatrix}$$

Linear classifier for image classification

cat	-337.3	380.3	8.6
owl	460.3	160.3	26.3
turtle	38.6	17.6	21.8

We need:

- a loss function that quantifies undesired scenarios in the training set
- an **optimization algorithm** to find *W* so that the loss function is minimized!

Moacir Ponti (ICMC–USP)

Linear classifier for image classification

- We want to optimize some function to produce the best classifier
- This function is often called loss function,
- Let (X, Y) be the training set: X are the features, Y are the class labels, and f(.) a classifier that maps any value in X into a class:

$$\ell\left(f(W, x_i, y_i) = \left(\begin{array}{cc} \text{predicted} & \text{true} \\ \text{label} & \text{label} \\ | & | \\ f(W, x_i) - \begin{array}{c} y_i \\ y_i \end{array}\right)^2$$
(1)

A linear classifier we would like

Minimizing the loss function

Use the slope of the loss function over the space of parameters! For each dimension *j*:

$$\frac{df(x)}{dx} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$
$$\frac{d\ell (f(w_j, x_i))}{dw_j} = \lim_{\delta \to 0} \frac{f(w_j + \delta, x_i) - f(w_j, x_i)}{\delta}$$

We have multiple dimensions, therefore a gradient (vector of derivatives).

We may use:

- Numerical gradient: approximate
- Analytic gradient: exact

Gradient descent — search for the valley of the function, moving in the direction of the negative gradient.

Moacir Ponti (ICMC-USP)

Convolutional Neural Networks

2017

23/1

Changes in a parameter affects the loss (ideal example)

 $\ell(f(W)) = 2.31298$ $\ell(f(W')) = 2.31201$ $(f(w_i + \delta) - f(w_i))/\delta$

 $\ell(f(W)) = 2.31298$ $\ell(f(W')) = 2.31201$ $(f(w_i + \delta) - f(w_i))/\delta$

 $\ell(f(W)) = 2.31298$ $\ell(f(W')) = 2.31298$ $(f(w_i + \delta) - f(w_i))/\delta$

 $\ell(f(W)) = 2.31298$ $\ell(f(W1)) = 2.31459$ $(f(w_i + \delta) - f(w_i))/\delta$

 $\ell(f(W)) = 2.31298$ $\ell(f(W')) = 2.08720$ $(f(w_i + \delta) - f(w_i))/\delta$

Regularization

$$\ell(W) = \frac{1}{N} \sum_{i=1}^{N} \ell_i(x_i, y + i, W) + \frac{1}{\lambda R(W)}$$
$$\nabla_W \ell(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W \ell_i(x_i, y + i, W) + \lambda \nabla_W R(W)$$

Regularization will help the model to keep it simple. Possible methods

• L2 :
$$R(W) = \sum_{i} \sum_{j} W_{i,j}^2$$

- $L1 : R(W) = \sum_{i} \sum_{j} |W_{i,j}|$
- others (dropout, batch normalization)

Stochastic Gradient Descent (SGD)

It is hard to compute the gradient, when N is large.

SGD:

Approximate the sum using a **minibatch** (random sample) of instances: something between 32 and 512.

Because it uses only a fraction of the data:

- fast
- often gives bad estimates on each iteration, needing more iterations

Stochastic Gradient Descent (SGD)

Naïve approach (α is the learning rate):

```
repeat until convergence (or a fixed number of iterations) {
   sample a minibatch of examples
   for each w(i) {
      tmp(i) = w(i) - alpha (d / d theta(i)) l(theta)
   }
   for each w(i) {
      w(i) = tmp(i)
   }
}
```

Neuron

- input: 1+ values
- output: 1 value
- each connection associated with a weight w (connection strength)
- often there is a bias value b (intercept)
- to learn is to adapt the parameters: weights w and b
- function f(.) is called activation function (transforms output)

Neuron

- input: 1+ values
- output 1 value
- each connection associated with a weight w (connection strength)
- often there is a bias value b
- to learn is to adapt the parameters: weights w and b

Some activation functions

Moacir Ponti (ICMC-USP)

Convolutional Neural Networks

Backpropagation

- Algorithm that recursively apply chain rule to compute weight adaptation for all parameters.
- Forward: compute result of the operation in some input over all neurons, up to the loss function
- Backward: apply chain rule to compute the gradient of the loss function, propagating through all layers of the network, in a graph structure

Simple NN with two layers

The linear classifier was defined as f(W, x) = Wx

A two-layer neural network could be seen as: $f(W_2 \max(0, W_1 x))$

- input: image $32 \times 32 \times 3$
- hidden layer: 256 neurons
- output: vector with 3 scores

Simple Neural Network

Simple NN with two layers

Architecture LeNet

New terminology:

- Convolutions / convolutional layer
- Subsampling / pooling
- Feature maps
- Full connection

Convolutional layer

Filter (neuron) w with $P \times Q \times D$, e.g. $5 \times 5 \times 3$ (keeps depth)

• Each neuron/filter performs a convolution with the input image

Centred at a specific pixel, we have, mathematically

$$w^T x + b$$

Convolutional layer: input x filter x stride

The convolutional layer must take into account

- input size
- filter size
- convolution stride

An input with size $N_I \times N_I$, filter size $P \times P$ and stride *s* will produce an output with size:

$$N_O = \frac{(N_I - P)}{s} + 1$$

Examples:

- (7-3)/1 + 1 = 5
- (7-3)/2 + 1 = 3
- (7-3)/3 + 1 = 2.3333

Convolutional layer

• Feature maps are stacked images generated after convolution with filters followed by an activation function (e.g. ReLU)

Convolutional Neural Networks

Convolutional layer: zero padding

In practice, zero padding is used to avoid losing borders. Example:

- input size: 10×10
- filter size: 5×5
- convolution stride: 1
- zero padding: 1
- output: 10×10

General rule: zero padding size to preserve image size: (P - 1)/2Example: $32 \times 32 \times 3$ input with P = 5, s = 1 and zero padding z = 2Output size: $(N_I + (2 \cdot z) - P)/s + 1 = (32 + (2 \cdot 2) - 5)/1 + 1 = 32$

Convolutional layer: number of parameters

Parameters in a convolutional layer is $[(P \times P \times d) + 1] \times K$:

- filter weights: $P \times P \times d$, d is given by input depth
- number of filters/neurons: *K* (each processes input in a different way)
- +1 is the bias term

Example, with an image input $32 \times 32 \times 3$:

- Conv Layer 1: *P* = 5, *K* = 8
- Conv Layer 2: *P* = 5, *k* = 16
- Conv Layer 3: *P* = 1, *k* = 32
- # parameters Conv layer 1: $[(5 \times 5 \times 3) + 1] \times 8 = 608$
- # parameters Conv layer 2: $[(5 \times 5 \times 8) + 1] \times 16 = 3216$
- # parameters Conv layer 3: $[(1 \times 1 \times 16) + 1] \times 32 = 544$

Convolutional layer: pooling

Operates over each feature map, to make the data smaller Example: max pooling with downsampling factor 2 and stride 2.

Convolutional layer: convolution + activation + pooling

- Convolution: as seen before
- Activation: ReLU
- Pooling: maxpooling

Fully connected layer + Output layer

Fully connected (FC) layer:

- FC layers work as in a regular Multilayer Perceptron
- A given neuron operates over all values of previous layer

Output layer:

• each neuron represents a class of the problem

Visualization

AlexNet (Krizhevsky, 2012)

- 60 million parameters.
- input 224 × 224
- conv1: K = 96 filters with $11 \times 11 \times 3$, stride 4,
- conv2: K = 256 filters with $5 \times 5 \times 48$,
- conv3: K = 384 filters with $3 \times 3 \times 256$,
- conv4: K = 384 filters with $3 \times 3 \times 192$,
- conv5: K = 256 filters with $3 \times 3 \times 192$,
- fc1, fc2: K = 4096.

VGG 19 (Simonyan, 2014)

- +layers, -filter size = less parameters
- input 224 × 224,
- filters: all 3×3 ,
- conv 1-2: *K* = 64 + maxpool
- conv 3-4: K = 128 + maxpool
- conv 5-6-7-8: K = 256 + maxpool
- conv 9-10-11-12: K = 512 + maxpool
- conv 13-14-15-16: K = 512 + maxpool
- fc1, fc2: K = 4096

GoogLeNet (Szegedy, 2014)

- 22 layers
- Starts with two convolutional layers
- Inception layer ("filter bank"):
 - filters 1 \times 1, 3 \times 3, 5 \times 5 + max pooling 3 \times 3;
 - $\bullet\,$ reduce dimensionality using 1×1 filters.
 - 3 classifiers in different parts
- Blue = convolution,
- Red = pooling,
- Yellow = Softmax loss fully connected layers
- Green = normalization or concatenation

GoogLeNet: inception module

- 1×1 convolution reduces the depth of previous layers by half
- this is needed to reduce complexity (e.g. from 256 to 128 d)
- concatenates 3 filters plus an extra max pooling filter (because).

Inception modules (V2 and V3)

multiple 3×3 convs.

flattened conv.

decrease size

VGG19 vs "VGG34" vs ResNet34

Residual Network — ResNet (He et al, 2015)

Reduces number of filters, increases number of layers (34-1000). **Residual** architecture: add identity before activation of next layer.

Comparison

Thanks to Qingping Shan www.qingpingshan.com

Xception

Xception

Tricks

Batch

- Mini-batch: in order to make it easier to process, on SGD use several images at the same time,
- Mini-batch size: 128 or 256, if not enough memory, 64 or 32,
- Batch normalization: when using ReLU, normalize the batch.

Convergence and training set

- Learning rate: in SGD apply a decaying learning rate, a fixed momentum,
- Clean data: cleaniness of the data is very important,
- Data augmentation: generate new images by perturbation of existing ones,
- Loss, validation and training error: plot values for each epoch.

Convolutional Neural Networks

Guidelines for new data

Classification (finetuning)

• Data similar to ImageNet: fix all Conv Layers, train FC layers

• Data not similar to ImageNet: fix lower Conv Layers, train others

Guidelines for new data

Feature extraction for image classification and retrieval

- Perform forward, get activation values of higher Conv and/or FC layers
- Apply some dimensionality reduction: e.g. PCA, Product Quantization, etc.
- Use external classifier: e.g. SVM, k-NN, etc.

References

- LeCun, Y. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. Demos : http://yann.lecun.com/exdb/lenet
- Szegedy, C. et al. Going Deeper with Convolutions. CVPR 2015 http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf.
- He, K et al Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512.03385
- Donglai et al. Understanding Intra-Class Knowledge Inside CNN, 2015, Tech Report. http://vision03.csail.mit.edu/cnn_art/index.html
- Mahendran and Vedaldi. Understanding Deep Image Representations by Inverting Them, 2014.
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions https://arxiv.org/abs/1610.02357.