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Agenda

© Introduction

© Noise

@ Sources and models of noise
@ Noise generation

@ Noise reduction

o Bilateral filtering

© Blur

@ Degradation functions
@ Inverse and pseudo-inverse filtering
@ Least squares filtering
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Obtaining better images

Problem — to improve the visual quality of the images

@ Enhancement x Restoration
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Obtaining better images

Problem — to improve the visual quality of the images

e Enhancement x Restoration
e Enhancement: subjective method based on operations that supposedly
improve image quality
e Restoration: objective method based on prior knowledge about the
image degradation model
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Degradation: blur
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Introduction
Degradation: motion blur
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Introduction

Degradation: noise
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Introduction

Degradation: blur and noise
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Introduction

Problem

g(x) = N{f(x) = h(x)}

@ g — observed (degraded) image
e f — ideal or original image

@ * — convolution

@ h — degrading function

e N() — noise generation process
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Introduction

Problem

When the nature of the noise is “additive”

g(x) = f(x) * h(x) + n(x)

@ g — observed (degraded) image
o f — ideal or original image
@ * — convolution

@ h — degrading function

@ n — additive noise function
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Introduction

Problem

This equation tries to capture the idea of an imaging system

© the image is capture via a system: microscope, telescope, camera lens

— f(x) * h(x).
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Problem

This equation tries to capture the idea of an imaging system

© the image is capture via a system: microscope, telescope, camera lens

— f(x) * h(x).

@ the electronic acquisition of the sensor generates additive noise —
[£(x) * h(x)] + n(x).

Restoration algorithms aim to achieve a restored image f(x) that is
as similar as possible to the original/ideal image f(x).
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Problem

This equation tries to capture the idea of an imaging system

© the image is capture via a system: microscope, telescope, camera lens

— f(x) * h(x).

@ the electronic acquisition of the sensor generates additive noise —
[£(x) * h(x)] + n(x).

Restoration algorithms aim to achieve a restored image f(x) that is
as similar as possible to the original/ideal image f(x).

@ In order to to that, we use knowledge about the point spread function
and noise.
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Sources of noise

Generally, the source defines the noise characteristic. Most images has
noise that is accumulated through several acquisition steps

@ Photo counting
@ Thermal
@ Quantisation

e Transmission/display

Moacir Ponti (ICMC-USP) Image Restoration 2020 12 /65



Sources of noise — photon counting

@ Photon counting: light detection via a sensor is a statistical process,
well modeled by a Poisson distribution.

@ The precision of the measured signal is proportional to the mean of
the signal (the amount of photons).
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Sources of noise — photon counting

@ Photon counting: light detection via a sensor is a statistical process,
well modeled by a Poisson distribution.

@ The precision of the measured signal is proportional to the mean of
the signal (the amount of photons).

@ The amount of noise can be approximated by the squared root of the
number of photons.
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Sources of noise — photon counting

@ That is why two cameras with the same pixel quantities but different
sensor sizes can result in different images.

@ Below two images from the same maker, number of pixels, ISO
parameter, aperture and shutter speed, but different sensors.
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Sources of noise — photon counting

ark'll, 8.2 micron pixel pitch

Canon $70, 2.3 micron pixel pitch

thanks to Roger Clark

http://www.clarkvision.com/articles/telephoto_reach/
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Sources of noise — thermal

@ When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):

e Smaller pixels allow to capture better fine details,
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Sources of noise — thermal

@ When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):
e Smaller pixels allow to capture better fine details,
e Each pixel will have a lower amount of photons.
o Therefore, a sharper image, but still
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Sources of noise — thermal

@ When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):
e Smaller pixels allow to capture better fine details,
e Each pixel will have a lower amount of photons.
o Therefore, a sharper image, but still noisier.
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Sources of noise — thermal

@ When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):

e Smaller pixels allow to capture better fine details,
e Each pixel will have a lower amount of photons.
o Therefore, a sharper image, but still noisier.

@ Smaller pixels allow to observe more details, paying the cost of a lower
signal-to-noise ratio per pixel.
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m Sources and m0d6|s °f nOise

Sources of noise — photon counting

The Moon with a 300 mm fi2.8 IS L lens, SO 100, f/5.6, 1/200 second
camera jpegs

Canon 1D mark Il Canon 5D mark Il Canon 1D mark IV Canon 7D
8.4-micron pixel pitch 6.4-micron pixel pitch 5.7 micron pixel pitch 4. ron
pixel pitch

thanks to Roger Clark http://www.clarkvision.com/articles/telephoto_reach/.
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Sources of noise — photon counting

@ Sparse images, with low exposure time, has noise characterised by
Poisson distribution. Examples are:

e Astronomic images
e Microscopy images
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Sources of noise — photon counting

@ Sparse images, with low exposure time, has noise characterised by
Poisson distribution. Examples are:

e Astronomic images
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e Noise is signal dependent (correlated).
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Sources of noise — photon counting

@ Sparse images, with low exposure time, has noise characterised by
Poisson distribution. Examples are:

e Astronomic images
e Microscopy images

e Noise is signal dependent (correlated).

e Its image formation is given by g(x) = P {f(x) = h(x)}
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Sources of noise — photon counting

@ Sparse images, with low exposure time, has noise characterised by
Poisson distribution. Examples are:

e Astronomic images
e Microscopy images

e Noise is signal dependent (correlated).
e Its image formation is given by g(x) = P {f(x) = h(x)}

@ When imaging with good illumination conditions and adequate
exposure, counting noise is often low and can be neglected.

e This is because the Poisson distribution approaches the Normal
distribution, i.e. P(A\) ~ N (A, )A), as A — oc.
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Sources of noise — photon counting
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Sources of noise — photon counting
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Sources of noise — thermal

e Thermal: electrons are generated when the photons are detected.
Those will vary given the temperature of the sensor.

@ Usually we assume this noise to be Gaussian (Normal) and additive,
also called White noise.

e This noise is independent of the signal.
o Image formation is given by: g(x) = f(x) * h(x) + n(x)
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Sources of noise — thermal

@ A possible way to diminish thermal noise is via a Dark Frame capture,
an image obtained without light acquisition.
@ This image contains a map of the thermal noise. Although it varies
with the temperature, it is usually stable after a period.
e Dark Frame can then be subtracted from acquired images
o Below: Dark Frames of CCDs from a telescope (left), and a cellphone
camera (right), with normalised levels.
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Sources of noise — quantisation

@ Quantisation: noise caused by quantisation of pixels from continuous
to unsigned int/char.
e It often follows uniform distribution.
e When quantisation level is low, the noise can become signal dependent
and correlated to each region of the image (non-uniform).
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Sources of noise — quantisation

(a) 256 level quantisation, (b) 64 level quantisation, (c) quantisation noise
with 64 levels
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Sources of noise — transmission/display

@ Noise often caused by errors in some bits when storing or failure when
transmitted.

@ Resulting noise is referred to as “impulsive”, but also “salt and pepper”.

e Can be caused by other processes then transmission/display
o Affects a smaller number of pixels, but the ones affected are completely
destroyed.
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Sources of noise — transmission/display
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Sources of noise — transmission/display

@ The mathematical representation of the impulsive noise can seen as
two “impulses” (or Dirac functions) in 0 (black) e 255 (white)

e A random pixel has probability p of been affected by noise, usually p/2
for “salt” and p/2 for “pepper”.
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N L) e generation
Agenda

© Introduction

© Noise

@ Noise generation

© Blur
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Noise generation

@ It is possible to simulate noise in images using known distributions.

@ Real noise is difficult to simulate, but by knowing the basic image
formation system it is possible to obtain a good approximation.

@ Implementation consists in generating random numbers and using
probability density functions.
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Noise generation
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Noise generation

MM
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Noise generation
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Noise generation
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N L) \oise reduction
Agenda

© Introduction

© Noise

@ Noise reduction

© Blur
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Nl L Ll o' recluction
Mean filtering

@ Smooth out pixels using the contextual information (neighbours),

@ Mean operators allow to reduce the signal variance and, therefore,
noise.

@ Variations of mean filtering: arithmetic, geometric, harmonic,
weighted.
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Mean filtering

@ Arithmetic: increase the blur by creating a new value based on the
average of neighbour pixels S, where (x) = (x,y).

@ Neighbourhood is rectangular of size m x n

e when A5,y =1forall s, ¢, then all pixels have the same weigh

Z Ast gSt)

(s,t)ES«
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Nl L Ll o' recluction
Mean filtering

@ Geometric: can help preserving details when pixel differences are in
the order of multiples of a given base (2, 10, etc.), i.e. it is
logarithmic.

Fo)=| I Hee-g(s.t)

(s,t)eSx
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Nl L Ll o' recluction
Mean filtering

@ Harmonic: reduce the influence of outliers.

@ This filter is adequate when there is additive noise mixed with salt

noise (outlier)
- mn

F(x)

1

Z(s,t)esx g(s, t)
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N ol i reduction
Order statistic filters

@ Given a series of observations of some random variable, the order
statistics are obtained by sorting those observations in ascending order.
@ In context of images, the observations are pixels in a neighbourhood.

@ Result in non-linear filters such as
e Median

e Maximum, mininum
e Mean point
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N ol i reduction
Order statistic filters

@ Median: widely used in image pre-processing
@ Remove texture, preserve edges.
@ Very effective to remove impulsive noise.

@ The resulting pixel is the percentile 50 of a ordered sequence of
numbers

F(x) = median s {8(s, 1)}
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N ol i reduction
Order statistic filters

e Max: 100° percentile (maximum value)

@ Can be used to locate bright points in the image

F(x) = max(s yyes, 18(S, 1)}

@ Min: 0° percentile (minimum value)

@ Can be used to locate dark points in the image
f(X) == min(syt)esx {g(s, t)}
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N ol i reduction
Order statistic filters

@ Mean point: combines order statistics with mean

@ Usually produces an effect similar to median, but often thickens the
borders/edges.

1 .
f(x) = > [max(svt)GSX {g(s, )} + min( es, {8(s, 1)}
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Nl L Ll o' recluction
Adaptive filtering

@ Take into account local statistics.

@ The objective is to allow smoother results mostly in flat regions (with
less detail);

@ Any filter can be developed in an adaptive fashion. For example:

e Adaptive noise reduction using mean and local variance,
e Adaptive noise reduction using median and local inter-quartile range

(IQR).
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Adaptive noise reduction using mean and variance

Considering a local region S, the response of the adaptive filter needs:
@ g(x) : the value of noisy image at x
(2] a% : the variance of noise in the image (global)
© my : local mean of pixels in Sy

Q 0?2 : local variance of pixels in Sy
L
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R e reaction

Adaptive noise reduction using mean and variance

Considering a local region S, the response of the adaptive filter needs:
g(x) : the value of noisy image at x
o7 : the variance of noise in the image (global)

my : local mean of pixels in Sy

©00O0

o7 : local variance of pixels in S

Rmzam—jgam—md

@ We need to estimate (or know — strong assumption) the noise
variance

e It is possible to estimate 0727 measuring variance in a flat region of the
image.
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Adaptive noise reduction using mean and variance

2

F(x) = g(x) - ;’% [g(x) = m]

The filter behaves in each point as follows:
e if 07 =0, then the response is g(x),
o if o7 > O'%, then it approaches g(x),

o if o7 ~ O'%, then the response is the local mean at region S.
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Adaptive noise reduction using mean and variance

2

F(x) = g(x) - ;7% [g(x) = m]

The filter behaves in each point as follows:
e if 07 =0, then the response is g(x),
o if o7 > O'%, then it approaches g(x),

o if o7 ~ O'%, then the response is the local mean at region S.

We need that 0727 < of

o if we observe o7 > o7, then the ratio between the variances must be
defined as 1 to avoid spurious values.
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Adaptive noise reduction using mean and variance

2

F(x) = g(x) - ;7% [g(x) = m]

The filter behaves in each point as follows:
e if 07 =0, then the response is g(x),
o if o7 > O'%, then it approaches g(x),

o if o7 ~ O'%, then the response is the local mean at region S.

We need that 0727 < of

o if we observe o7 > o7, then the ratio between the variances must be
defined as 1 to avoid spurious values.

o this condition makes the filter non-linear.
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Ll 521! filering
Bilateral filtering

Noise reduction filter with edge preservation that uses the image content in
order to avoid averaging across edges. Centered at a pixel p, it is given by:

A: not new B: new!

I |
BFe(P) = = > G (Il al) [CHNIEEEE <

p

e term A defines the weight in space (difference in coordinates),

e term B controls the range weight (differences in intensities), avoiding
filtering over edges.

OBS: removing the normalisation and the term B, we have a Gaussian filter.
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Bilateral filtering

Bilateral filtering

Gaussian filtering Bilateral filtering

-0 5B
-0 -0
CHeEH

=] F = = DA
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Ll 521! filering
Bilateral filtering

BF(&(P)) = 7 3 Gy (Ip — all) Gy (g — &l &5
q

@ o, parameter for the size of neighbourhood, e.g. 2% of the image
diagonal
@ o, minimum amplitude to consider presence of an edge, e.g. mean of
the image gradient
OBS: because each neighbourhood has a different filter, cannot be
precomputed to use with FFT. Naive implementation is slow, but there are
approximations with good quality/speed ratio.
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Agenda

© Blur

@ Degradation functions
@ Inverse and pseudo-inverse filtering
@ Least squares filtering
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Problem

Assuming a noise-free scenario, the image formation model is given by:
g(x) = f(x) = h(x)

@ g — degraded/observed image
o f — ideal or original image
@ x — convolution

@ h — degradation function
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Problem

Function h(x) represents the impulse response of the imaging system

@ in an image it models how the system responds when the input is a
single point (or impulse)
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Problem

Function h(x) represents the impulse response of the imaging system
@ in an image it models how the system responds when the input is a
single point (or impulse)

@ often called point spread function (PSF)
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Degradation functions

@ h are non-negative due to the physics of image formation,
e if the image is real (yes, there are complex images), PSF is also real,

@ imperfections of the imaging system are modelled so that the energy
of the signal is preserved:

/ / h(x,y)dxdy =1

(N—1,M—1)

> hx) =1

x=(0,0)
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Degradation functions

No blur

_ . 1, IfX,y:(070)
h(x,y) = d(x,y) = { 0, other positions
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Degradation functions

No blur

B (1, ifx,y=(0,0)
h(x,y) = d(x,y) = { 0, other positions

Uniform blur

1 £ /32 2 2
h(va,R):{ Trgz’ If A +y SR’

otherwise
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Degradation functions

No blur
B (1, ifx,y=(0,0)
h(x,y) = d(x,y) = { 0, other positions
Uniform blur
by Ry = | 7R VISR
) 0, otherwise
Motion blur

, ify/x2+y2 < % and ; = —tan ¢,

otherwise

O ==

h(x,y;L,¢) = {

9

2020
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Degradation functions
Problem

{H(u\)!

¢
4
it

{H(u,v)l

FIGURE 2  PSF of motion blur in the Fourier domain, showing |H(u, v)|, for
(@ L=75and$p=0;(b) L =75and ¢ =w/4

[H(u,v)|

finge element

(a)

FIGURE 3

(a) Fringe elements of discrete out-of-focus blur that are calcu-
R =2.5.
Moacir Ponti (ICMC-USP)

lated by integration; (b) PSF in the Fourier domain, showing |H(u, v)|, for |

Image Restoration
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Discrete degrading functions

Uniform blur

h(X;R):{ % if \/X12+X22§R27

0 otherwise

where C is a constant so that the sum of the coefficients is 1.
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Discrete degrading functions

Uniform blur

h(x; R) = {

% ifw/xlz—i—xz2 < R?,

0 otherwise

where C is a constant so that the sum of the coefficients is 1.

Motion blur
% if x1 =0, x| < L%J
hixil) = ¢ F{(L-1) =25} ifx =0, bl = [531]
’ otherwise
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Inverse filtering

We want to invert h, so that:

Example: Gaussian degradation function 5 x 5:

0.003
0.014
0.025
0.014
0.003
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Inverse filtering

We want to invert h, so that:

Example: Gaussian degradation function 5 x 5:

0.003
0.014
0.025
0.014
0.003

0.014
0.058
0.095
0.058
0.014

0.025
0.095
0.150
0.095
0.025

Matrix is singular, there is no inverse!
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Inverse filtering

If we know the PSF of the imaging system, the image formation can also
be considered in frequency domain:
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Inverse and pseudo-inverse filtering

Now we divide the Fourier transform of the observed image by the PSF
Fourier transform H, also called OTF (Optical Transfer Function).
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Inverse and pseudo-inverse filtering

Now we divide the Fourier transform of the observed image by the PSF
Fourier transform H, also called OTF (Optical Transfer Function).

_ G(u)
(U) - H(U)

A

When we know the OTF and we have a well-behaved transform (such as
the Gaussian function), this operation is possible and approaches a perfect

restoration.
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Inverse and pseudo-inverse filtering

In a noisy image, we have:
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Inverse and pseudo-inverse filtering

In a noisy image, we have:

H(u)F(u) + N(u)

=" )

F(u) = F(u) +

In this scenario and in those in which H shows values near zero, the ratio
N(u) 4ominates the sum, and the resulting image is just noise.
H(u)
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Inverse and pseudo-inverse filtering

In some cases, it is possible to use the pseudo-inverse filtering, changing H
below the threshold ~:

w={ 1

The threshold is often between 0.0001 and 0.1. The filter W is then used
to achieve the inverse:

)= i
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Least squares filtering

The pseudo-inverse filter allows to deal with null or small values, but its
formulation does not include explicitly the noise model.

Least squares filters were developed in this context: the constrained least
squares filter (CLS) and the Wiener filter are important examples.

Considering image and noise as random variables, this method tries to find
an image estimate f so that the mean squared error is minimized:

&= E{(F- P}
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Least squares filtering: Wiener

Assuming:
@ noise is not correlated;
@ noise has zero mean (centered at each pixel);

© the intensities of the restored image can be written as a linear function
of the degraded image.

[ H WS )
= s + s, < C0
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Least squares filtering: Wiener

Assuming:
@ noise is not correlated;
@ noise has zero mean (centered at each pixel);

© the intensities of the restored image can be written as a linear function
of the degraded image.

. H*(u)Se(u)

W= s ) + s, <

o S¢(u) = |F(u)|?> — power spectrum of the ideal image

e S,(u) = |N(u)|*> — power spectrum of the noise

e H*(u) is the complex conjugate of H(u)
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Least squares filtering: Wiener

How can we know the power spectrum of the ideal/original image and of
the additive noise.

@ Using the noise variance as parameter, and the direct method of
periodogram:

o 5,(u) =02 for all (u)
o 8¢(u) = 1/N? [G(u) G* (u)] — 02
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Least squares filtering: Wiener

How can we know the power spectrum of the ideal/original image and of
the additive noise.

@ Using the noise variance as parameter, and the direct method of
periodogram:

o 5,(u) =02 for all (u)
o 8¢(u) = 1/N? [G(u) G* (u)] — 02

There are other methods to obtain S, and S¢, but it required additional
knowledge about image and noise.

Moacir Ponti (ICMC-USP) Image Restoration 2020 63 /65



Constrained Least squares filtering

From a similar formulation, considering a constraint in the least squares, a
method was proposed by regularizing the solution via a Laplacian operator:
H*(u)
[H(u)[? + 7| P(u)[?

Fu) = x G(u),

where P(u) is the Fourier transform of a Laplacian operator:

~ controls the influence of the regularization
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