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Introduction

Obtaining better images

Problem — to improve the visual quality of the images

Enhancement × Restoration

Enhancement: subjective method based on operations that supposedly
improve image quality
Restoration: objective method based on prior knowledge about the
image degradation model
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Introduction

Degradation: blur
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Introduction

Degradation: motion blur
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Introduction

Degradation: noise

Moacir Ponti (ICMC–USP) Image Restoration 2020 7 / 65



Introduction

Degradation: blur and noise
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Introduction

Problem

g(x) = N {f (x) ∗ h(x)}

g — observed (degraded) image
f — ideal or original image
∗ — convolution
h — degrading function
N () — noise generation process
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Introduction

Problem

When the nature of the noise is “additive”

g(x) = f (x) ∗ h(x) + n(x)

g — observed (degraded) image
f — ideal or original image
∗ — convolution
h — degrading function
n — additive noise function
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Introduction

Problem

This equation tries to capture the idea of an imaging system
1 the image is capture via a system: microscope, telescope, camera lens

— f (x) ∗ h(x).

2 the electronic acquisition of the sensor generates additive noise —
[f (x) ∗ h(x)] + n(x).

Restoration algorithms aim to achieve a restored image f̂ (x) that is
as similar as possible to the original/ideal image f (x).

In order to to that, we use knowledge about the point spread function
and noise.

Moacir Ponti (ICMC–USP) Image Restoration 2020 11 / 65



Introduction

Problem

This equation tries to capture the idea of an imaging system
1 the image is capture via a system: microscope, telescope, camera lens

— f (x) ∗ h(x).
2 the electronic acquisition of the sensor generates additive noise —

[f (x) ∗ h(x)] + n(x).

Restoration algorithms aim to achieve a restored image f̂ (x) that is
as similar as possible to the original/ideal image f (x).

In order to to that, we use knowledge about the point spread function
and noise.

Moacir Ponti (ICMC–USP) Image Restoration 2020 11 / 65



Introduction

Problem

This equation tries to capture the idea of an imaging system
1 the image is capture via a system: microscope, telescope, camera lens

— f (x) ∗ h(x).
2 the electronic acquisition of the sensor generates additive noise —

[f (x) ∗ h(x)] + n(x).

Restoration algorithms aim to achieve a restored image f̂ (x) that is
as similar as possible to the original/ideal image f (x).

In order to to that, we use knowledge about the point spread function
and noise.

Moacir Ponti (ICMC–USP) Image Restoration 2020 11 / 65



Noise Sources and models of noise

Sources of noise

Generally, the source defines the noise characteristic. Most images has
noise that is accumulated through several acquisition steps

Photo counting
Thermal
Quantisation
Transmission/display
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Noise Sources and models of noise

Sources of noise — photon counting

Photon counting: light detection via a sensor is a statistical process,
well modeled by a Poisson distribution.
The precision of the measured signal is proportional to the mean of
the signal (the amount of photons).

The amount of noise can be approximated by the squared root of the
number of photons.

Photons Noise NR
9 3 1/3

100 10 1/10
900 30 1/30

10000 100 1/100
90000 300 1/300
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Noise Sources and models of noise

Sources of noise — photon counting

That is why two cameras with the same pixel quantities but different
sensor sizes can result in different images.
Below two images from the same maker, number of pixels, ISO
parameter, aperture and shutter speed, but different sensors.
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Noise Sources and models of noise

Sources of noise — photon counting

thanks to Roger Clark

http://www.clarkvision.com/articles/telephoto_reach/
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Noise Sources and models of noise

Sources of noise — thermal

When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):

Smaller pixels allow to capture better fine details,

Each pixel will have a lower amount of photons.
Therefore, a sharper image, but still

noisier.

Smaller pixels allow to observe more details, paying the cost of a lower
signal-to-noise ratio per pixel.

Moacir Ponti (ICMC–USP) Image Restoration 2020 16 / 65



Noise Sources and models of noise

Sources of noise — thermal

When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):

Smaller pixels allow to capture better fine details,
Each pixel will have a lower amount of photons.
Therefore, a sharper image, but still

noisier.

Smaller pixels allow to observe more details, paying the cost of a lower
signal-to-noise ratio per pixel.

Moacir Ponti (ICMC–USP) Image Restoration 2020 16 / 65



Noise Sources and models of noise

Sources of noise — thermal

When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):

Smaller pixels allow to capture better fine details,
Each pixel will have a lower amount of photons.
Therefore, a sharper image, but still noisier.

Smaller pixels allow to observe more details, paying the cost of a lower
signal-to-noise ratio per pixel.

Moacir Ponti (ICMC–USP) Image Restoration 2020 16 / 65



Noise Sources and models of noise

Sources of noise — thermal

When imaging under extreme focal distances (e.g. small objects
imaged at close distance / large objects imaged from far away):

Smaller pixels allow to capture better fine details,
Each pixel will have a lower amount of photons.
Therefore, a sharper image, but still noisier.

Smaller pixels allow to observe more details, paying the cost of a lower
signal-to-noise ratio per pixel.

Moacir Ponti (ICMC–USP) Image Restoration 2020 16 / 65



Noise Sources and models of noise

Sources of noise — photon counting

thanks to Roger Clark http://www.clarkvision.com/articles/telephoto_reach/.
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Noise Sources and models of noise

Sources of noise — photon counting

Sparse images, with low exposure time, has noise characterised by
Poisson distribution. Examples are:

Astronomic images
Microscopy images

Noise is signal dependent (correlated).
Its image formation is given by g(x) = P {f (x) ∗ h(x)}
When imaging with good illumination conditions and adequate
exposure, counting noise is often low and can be neglected.

This is because the Poisson distribution approaches the Normal
distribution, i.e. P(λ) ∼ N (λ, λ), as λ→∞.
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Noise Sources and models of noise

Sources of noise — photon counting
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Noise Sources and models of noise

Sources of noise — photon counting
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Noise Sources and models of noise

Sources of noise — thermal

Thermal: electrons are generated when the photons are detected.
Those will vary given the temperature of the sensor.
Usually we assume this noise to be Gaussian (Normal) and additive,
also called White noise.

This noise is independent of the signal.
Image formation is given by: g(x) = f (x) ∗ h(x) + n(x)
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Noise Sources and models of noise

Sources of noise — thermal

A possible way to diminish thermal noise is via a Dark Frame capture,
an image obtained without light acquisition.
This image contains a map of the thermal noise. Although it varies
with the temperature, it is usually stable after a period.

Dark Frame can then be subtracted from acquired images
Below: Dark Frames of CCDs from a telescope (left), and a cellphone
camera (right), with normalised levels.
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Noise Sources and models of noise

Sources of noise — quantisation

Quantisation: noise caused by quantisation of pixels from continuous
to unsigned int/char.

It often follows uniform distribution.
When quantisation level is low, the noise can become signal dependent
and correlated to each region of the image (non-uniform).
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Noise Sources and models of noise

Sources of noise — quantisation

(a) (b) (c)

(a) 256 level quantisation, (b) 64 level quantisation, (c) quantisation noise
with 64 levels
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Noise Sources and models of noise

Sources of noise — transmission/display

Noise often caused by errors in some bits when storing or failure when
transmitted.
Resulting noise is referred to as “impulsive”, but also “salt and pepper”.

Can be caused by other processes then transmission/display
Affects a smaller number of pixels, but the ones affected are completely
destroyed.
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Noise Sources and models of noise

Sources of noise — transmission/display
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Noise Sources and models of noise

Sources of noise — transmission/display

The mathematical representation of the impulsive noise can seen as
two “impulses” (or Dirac functions) in 0 (black) e 255 (white)

A random pixel has probability p of been affected by noise, usually p/2
for “salt” and p/2 for “pepper”.
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Noise Noise generation
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Noise Noise generation

Noise generation

It is possible to simulate noise in images using known distributions.
Real noise is difficult to simulate, but by knowing the basic image
formation system it is possible to obtain a good approximation.
Implementation consists in generating random numbers and using
probability density functions.
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Noise Noise generation

Noise generation
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Noise Noise generation

Noise generation
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Noise Noise reduction
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Noise Noise reduction

Mean filtering

Smooth out pixels using the contextual information (neighbours),
Mean operators allow to reduce the signal variance and, therefore,
noise.
Variations of mean filtering: arithmetic, geometric, harmonic,
weighted.
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Noise Noise reduction

Mean filtering

Arithmetic: increase the blur by creating a new value based on the
average of neighbour pixels S(x), where (x) = (x , y).
Neighbourhood is rectangular of size m × n
when λ(s,t) = 1 for all s, t, then all pixels have the same weigh

f̂ (x) =
1

nm

∑
(s,t)∈Sx

λs,t · g(s, t)
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Noise Noise reduction

Mean filtering

Geometric: can help preserving details when pixel differences are in
the order of multiples of a given base (2, 10, etc.), i.e. it is
logarithmic.

f̂ (x) =

 ∏
(s,t)∈Sx

λs,t · g(s, t)

 1
nm
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Noise Noise reduction

Mean filtering

Harmonic: reduce the influence of outliers.
This filter is adequate when there is additive noise mixed with salt
noise (outlier)

f̂ (x) =
mn∑

(s,t)∈Sx

1
g(s, t)
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Noise Noise reduction

Order statistic filters

Given a series of observations of some random variable, the order
statistics are obtained by sorting those observations in ascending order.
In context of images, the observations are pixels in a neighbourhood.
Result in non-linear filters such as

Median
Maximum, mininum
Mean point
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Noise Noise reduction

Order statistic filters

Median: widely used in image pre-processing
Remove texture, preserve edges.
Very effective to remove impulsive noise.
The resulting pixel is the percentile 50 of a ordered sequence of
numbers

f̂ (x) = median(s,t)∈Sx
{g(s, t)}
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Noise Noise reduction

Order statistic filters

Max: 100o percentile (maximum value)
Can be used to locate bright points in the image

f̂ (x) = max(s,t)∈Sx
{g(s, t)}

Min: 0o percentile (minimum value)
Can be used to locate dark points in the image

f̂ (x) = min(s,t)∈Sx
{g(s, t)}
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Noise Noise reduction

Order statistic filters

Mean point: combines order statistics with mean
Usually produces an effect similar to median, but often thickens the
borders/edges.

f̂ (x) =
1
2

[
max(s,t)∈Sx

{g(s, t)}+min(s,t)∈Sx
{g(s, t)}

]
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Noise Noise reduction

Adaptive filtering

Take into account local statistics.
The objective is to allow smoother results mostly in flat regions (with
less detail);
Any filter can be developed in an adaptive fashion. For example:

Adaptive noise reduction using mean and local variance,
Adaptive noise reduction using median and local inter-quartile range
(IQR).
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Noise Noise reduction

Adaptive noise reduction using mean and variance

Considering a local region Sx, the response of the adaptive filter needs:
1 g(x) : the value of noisy image at x
2 σ2η : the variance of noise in the image (global)
3 mL : local mean of pixels in Sx

4 σ2L : local variance of pixels in Sx

f̂ (x) = g(x)−
σ2η
σ2L

[g(x)−mL]

We need to estimate (or know — strong assumption) the noise
variance

It is possible to estimate σ2
η measuring variance in a flat region of the

image.
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Noise Noise reduction

Adaptive noise reduction using mean and variance

f̂ (x) = g(x)−
σ2η
σ2L

[g(x)−mL]

The filter behaves in each point as follows:
if σ2L = 0, then the response is g(x),
if σ2L � σ2η, then it approaches g(x),
if σ2L ≈ σ2η, then the response is the local mean at region Sx.

We need that σ2η ≤ σ2L
if we observe σ2η > σ2L, then the ratio between the variances must be
defined as 1 to avoid spurious values.
this condition makes the filter non-linear.
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Noise Bilateral filtering

Bilateral filtering

Noise reduction filter with edge preservation that uses the image content in
order to avoid averaging across edges. Centered at a pixel p, it is given by:

BF (g(p)) =

normalisation

1
Fp

∑
q

A: not new

Gσs (||p− q||)

B: new!

Gσr (||gp − gq||) gq

term A defines the weight in space (difference in coordinates),
term B controls the range weight (differences in intensities), avoiding
filtering over edges.

OBS: removing the normalisation and the term B, we have a Gaussian filter.
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Noise Bilateral filtering

Bilateral filtering

Gaussian filtering Bilateral filtering
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Noise Bilateral filtering

Bilateral filtering

BF (g(p)) =
1
Fp

∑
q

G σs
(||p− q||)G σr

(||gp − gq||) gq

σs parameter for the size of neighbourhood, e.g. 2% of the image
diagonal
σr minimum amplitude to consider presence of an edge, e.g. mean of
the image gradient

OBS: because each neighbourhood has a different filter, cannot be
precomputed to use with FFT. Naive implementation is slow, but there are
approximations with good quality/speed ratio.
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Blur
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Blur

Problem

Assuming a noise-free scenario, the image formation model is given by:

g(x) = f (x) ∗ h(x)

g — degraded/observed image
f — ideal or original image
∗ — convolution
h — degradation function
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Blur

Problem

Function h(x) represents the impulse response of the imaging system
in an image it models how the system responds when the input is a
single point (or impulse)

often called point spread function (PSF)
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Blur Degradation functions

Degradation functions

h are non-negative due to the physics of image formation,
if the image is real (yes, there are complex images), PSF is also real,
imperfections of the imaging system are modelled so that the energy
of the signal is preserved:∫ ∞

−∞

∫ ∞
−∞

h(x , y)dxdy = 1

(N−1,M−1)∑
x=(0,0)

h(x) = 1
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Blur Degradation functions

Degradation functions

No blur

h(x , y) = δ(x , y) =
{

1, if x , y = (0, 0)
0, other positions

Uniform blur

h(x , y ;R) =

{ 1
πR2 , if

√
x2 + y2 ≤ R2,

0, otherwise

Motion blur

h(x , y ; L, φ) =

{
1
L , if

√
x2 + y2 ≤ L

2 and x
y = − tanφ,

0, otherwise
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Blur Degradation functions

Problem
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Blur Degradation functions

Discrete degrading functions

Uniform blur

h(x;R) =

{
1
C if

√
x21 + x22 ≤ R2,

0 otherwise

where C is a constant so that the sum of the coefficients is 1.

Motion blur

h(x; L) =


1
L if x1 = 0, |x2| ≤ bL−12 c

1
2L

{
(L− 1)− 2bL−12 c

}
if x1 = 0, |x2| = bL−12 c

0, otherwise
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Blur Inverse and pseudo-inverse filtering

Inverse filtering

We want to invert h, so that:

f̂ (x) = g(x) ∗ h−1(x)

Example: Gaussian degradation function 5× 5:

0.003 0.014 0.025 0.014 0.003
0.014 0.058 0.095 0.058 0.014
0.025 0.095 0.150 0.095 0.025
0.014 0.058 0.095 0.058 0.014
0.003 0.014 0.025 0.014 0.003

Matrix is singular, there is no inverse!
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We want to invert h, so that:

f̂ (x) = g(x) ∗ h−1(x)

Example: Gaussian degradation function 5× 5:

0.003 0.014 0.025 0.014 0.003
0.014 0.058 0.095 0.058 0.014
0.025 0.095 0.150 0.095 0.025
0.014 0.058 0.095 0.058 0.014
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Blur Inverse and pseudo-inverse filtering

Inverse filtering

If we know the PSF of the imaging system, the image formation can also
be considered in frequency domain:

G (u) = F (u)H(u)
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Blur Inverse and pseudo-inverse filtering

Inverse and pseudo-inverse filtering

Now we divide the Fourier transform of the observed image by the PSF
Fourier transform H, also called OTF (Optical Transfer Function).

F̂ (u) =
G (u)
H(u)

When we know the OTF and we have a well-behaved transform (such as
the Gaussian function), this operation is possible and approaches a perfect
restoration.
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Blur Inverse and pseudo-inverse filtering

Inverse and pseudo-inverse filtering

In a noisy image, we have:

F̂ (u) =
H(u)F (u) + N(u)

H(u)

F̂ (u) = F (u) +
N(u)
H(u)

In this scenario and in those in which H shows values near zero, the ratio
N(u)
H(u) dominates the sum, and the resulting image is just noise.
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Blur Inverse and pseudo-inverse filtering

Inverse and pseudo-inverse filtering

In some cases, it is possible to use the pseudo-inverse filtering, changing H
below the threshold γ:

W (u) =
{

H(u), H(u) > γ
γ, otherwise

The threshold is often between 0.0001 and 0.1. The filter W is then used
to achieve the inverse:

F̂ (u) =
G (u)
W (u)
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Blur Least squares filtering

Least squares filtering

The pseudo-inverse filter allows to deal with null or small values, but its
formulation does not include explicitly the noise model.

Least squares filters were developed in this context: the constrained least
squares filter (CLS) and the Wiener filter are important examples.

Considering image and noise as random variables, this method tries to find
an image estimate f̂ so that the mean squared error is minimized:

e2 = E
{
(f − f̂ )2

}
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Blur Least squares filtering

Least squares filtering: Wiener

Assuming:
1 noise is not correlated;
2 noise has zero mean (centered at each pixel);
3 the intensities of the restored image can be written as a linear function

of the degraded image.

F̂ (u) =
[

H∗(u)Sf (u)
|H(u)|2Sf (u) + Sη(u)

]
× G (u),

Sf (u) = |F (u)|2 — power spectrum of the ideal image
Sη(u) = |N(u)|2 — power spectrum of the noise
H∗(u) is the complex conjugate of H(u)
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Blur Least squares filtering

Least squares filtering: Wiener

How can we know the power spectrum of the ideal/original image and of
the additive noise.

Using the noise variance as parameter, and the direct method of
periodogram:

Ŝη(u) = σ2
η for all (u)

Ŝf (u) = 1/N2 [G (u)G∗(u)]− σ2
η

There are other methods to obtain Sη and Sf , but it required additional
knowledge about image and noise.
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Blur Least squares filtering

Constrained Least squares filtering

From a similar formulation, considering a constraint in the least squares, a
method was proposed by regularizing the solution via a Laplacian operator:

F̂ (u) =
[

H∗(u)
|H(u)|2 + γ|P(u)|2

]
× G (u),

where P(u) is the Fourier transform of a Laplacian operator:

p(x) =

 0 −1 0
−1 4 −1
0 −1 0


γ controls the influence of the regularization
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Blur Least squares filtering
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