Fourier Transform: part 1 SCC0251/5830 - Image Processing

Prof. Moacir Ponti

Instituto de Ciências Matemáticas e de Computação - USP

2021/1

Agenda

(1) Fundamental concepts

- Representation of functions using points and coefficients
- Fourier Series and the complex exponential
(2) Fourier Transform
- Motivation, algorithm, examples

Introduction

Mathematical transformations are used to obtain information not available (or not visible) directly in the original data.

Can be seen as a map between different domains. Although the values in different domains are different, they represent the same data.

Introduction: same information, different value

$$
\Leftrightarrow(-22.00257,-47.89855) \Leftrightarrow
$$

Introduction: same information, different value

Av.Trabalhador
Saocarlense, 400

$$
\Leftrightarrow(-22.00257,-47.89855) \Leftrightarrow
$$

Introduction: same information, different value

Av.Trabalhador

Saocarlense, 400

$$
\Leftrightarrow(-22.00257,-47.89855) \Leftrightarrow
$$

USP São Carlos main entrance

Introduction

Mathematically a signal/image can be seen as a function
There are important (and often non-obvious) information about the function that is not trivial to grasp in their original domains.

Introduction

- A $1-d$ signal is often represented in the time domain in its original form
- plots are often in terms of time-amplitude

Introduction

- An image $(2-d$ signal) is represented in the space domain
- display is in terms of space-amplitude (or space-intensity)

Agenda

(1) Fundamental concepts

- Representation of functions using points and coefficients
- Fourier Series and the complex exponential
(2) Fourier Transform
- Motivation, algorithm, examples

Representations of a function

Given $n=10$ unique points:

x	$\mathrm{f}(\mathrm{x})$
-1.0,	4.0
-0.79,	4.04
-0.58,	4.18
-0.37,	4.4
-0.16,	4.71
0.05,	5.1
0.26,	5.59
0.47,	6.16
0.68,	6.82
0.89,	7.57

Can I represent it using a different set of values?

Representations of a function

Let us define that

- it is a polynomial of degree 2

Representations of a function

Let us define that

- it is a polynomial of degree 2
- 3 values represent this function
- (since a polynomial of degree $n-1$ has n coefficients!)

Representations of a function

Let us define that

- it is a polynomial of degree 2
- 3 values represent this function
- (since a polynomial of degree $n-1$ has n coefficients!)
- But how to obtain/compute such representation?

Representations of a function

Build and solve a linear system with the following matrices:

$$
A=\left[\begin{array}{cccc}
x_{1}^{N} & x_{1}^{N-1} & \ldots & 1 \\
x_{2}^{N} & x_{2}^{N-1} & \ldots & 1 \\
\cdots & & & \\
x_{n}^{N} & x_{n}^{N-1} & \ldots & 1
\end{array}\right] \quad Y=\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\ldots \\
f\left(x_{n}\right)
\end{array}\right]
$$

With the coefficients given by:

$$
C=\left(A^{T} A\right)^{-1}\left(A^{T} Y\right)
$$

Representations of a function

In our example

$$
A=\left[\begin{array}{ccc}
1.0 & -1.0 & 1.0 \\
0.62 & -0.79 & 1.0 \\
0.34 & -0.58 & 1.0 \\
0.14 & -0.37 & 1.0 \\
0.03 & -0.16 & 1.0 \\
0.0 & 0.05 & 1.0 \\
0.07 & 0.26 & 1.0 \\
0.22 & 0.47 & 1.0 \\
0.46 & 0.68 & 1.0 \\
0.79 & 0.89 & 1.0
\end{array}\right] \quad Y=\left[\begin{array}{c}
4.0 \\
4.04 \\
4.18 \\
4.4 \\
4.71 \\
5.1 \\
5.59 \\
6.16 \\
6.82 \\
7.57
\end{array}\right]
$$

$$
C=\left[\begin{array}{l}
1.0 \\
2.0 \\
5.0
\end{array}\right]
$$

Representations of a function

$f(x)=5+2 x+x^{2}$

$f(x)=4.0,4.04,4.18,4.4,4.71$
$5.1,5.59,6.16,6.82,7.57$

Representations

Representation using coefficients

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}
$$

Representation using points

$$
f(x)=f\left(x_{1}\right), f\left(x_{2}\right), \cdots f\left(x_{n}\right)
$$

the Fourier Transform will take as
input points or sampled intervals of a function (i.e. in the way they are acquired),
output the coefficients that define the function (its fundamental components).

Synthesis and Analysis

Two aspects of Fourier Transform:

- Analysis: divide the signal (or function) by defining it via simpler parts.
- Synthesis: reconstruct the signal (or function) from its parts.

Synthesis and Analysis

Two aspects of Fourier Transform:

- Analysis: divide the signal (or function) by defining it via simpler parts.
- Synthesis: reconstruct the signal (or function) from its parts.

Both can be achieved via linear operations, i.e. series and integrals.

Agenda

(1) Fundamental concepts

- Representation of functions using points and coefficients
- Fourier Series and the complex exponential
(2) Fourier Transform
- Motivation, algorithm, examples

Fourier Series

- Jean-Baptiste Fourier, 1822, studying heat transfer, claimed that a function of a single variable could be expanded in terms of a series of sinusoids of multiples of the variable.
- After Lagrange and Dirichlet studies using this expansion, it was refered to as Fourier Series.

Fourier Series and Periodicity

Fourier Series are associated to the mathematical analysis of periodic patterns.

Fourier Series and Periodicity

Fourier Series are associated to the mathematical analysis of periodic patterns.

Periodicity

- Time: harmonic movement (e.g. of a string)
- Space: some physical measure distributed to a certain region in a symmetric way (periodicity from symmetry, repetition of a pattern).

Fourier Series and Periodicity

Fourier Series are associated to the mathematical analysis of periodic patterns.

Periodicity

- Time: harmonic movement (e.g. of a string)
- Space: some physical measure distributed to a certain region in a symmetric way (periodicity from symmetry, repetition of a pattern).
- e.g. heat distribution in a circular object: the temperature repeat itself in cycles.

Fourier Series and Periodicity

Fourier Series are associated to the mathematical analysis of periodic patterns.

Periodicity

- Time: harmonic movement (e.g. of a string)
- Space: some physical measure distributed to a certain region in a symmetric way (periodicity from symmetry, repetition of a pattern).
- e.g. heat distribution in a circular object: the temperature repeat itself in cycles.
- that is why Fourier Analysis is often associated with symmetry.

Fourier Series and Periodicity

Mathematical descriptors of periodicity

Fourier Series and Periodicity

Mathematical descriptors of periodicity

Ideas

- Time: frequency - number of pattern repetitions along the time (e.g. 1 second)
- Space: period (wavelength) - size of the repeating pattern

Fourier Series and Periodicity

Mathematical descriptors of periodicity

Ideas

- Time: frequency - number of pattern repetitions along the time (e.g. 1 second)
- Space: period (wavelength) - size of the repeating pattern
- In some cases time and space are involved at the same time - e.g. wave movement
- If we fix the position (in space), we can measure frequency (distribution of the pattern in time)
- By fixing an instant (in time) we can measure the size (distribution of the pattern in space).

Fourier Series and Periodicity

Relationship space (wavelength) and time (frequency)

- v is the velocity (rate) of the wave and F its frequency then:
- $\lambda=v \cdot \frac{1}{F}$, considering one complete wave in $\frac{1}{F}$
- or $F \cdot \lambda=v$

There is a reciprocal relationship between wavelength and frequency

Wavelength vs Frequency

Let a sequence yellow-blue define the wavelength, then:

Fourier Series

- There are mathematical functions for which

$$
\begin{align*}
f(t+T) & =f(t) \tag{1}\\
f(t+n T) & =f(t), n=0, \pm 1, \pm 2, \cdots \tag{2}
\end{align*}
$$

- some can be used to model periodic behaviour, in particular sinusoids

Fourier Series

- There are mathematical functions for which

$$
\begin{align*}
f(t+T) & =f(t) \tag{1}\\
f(t+n T) & =f(t), n=0, \pm 1, \pm 2, \cdots \tag{2}
\end{align*}
$$

- some can be used to model periodic behaviour, in particular sinusoids
- Why not others: square wave, other periodic signals?

Fourier Series

- There are mathematical functions for which

$$
\begin{align*}
f(t+T) & =f(t) \tag{1}\\
f(t+n T) & =f(t), n=0, \pm 1, \pm 2, \cdots \tag{2}
\end{align*}
$$

- some can be used to model periodic behaviour, in particular sinusoids
- Why not others: square wave, other periodic signals?

Fourier Series

- Sine and cosine are periodic with period 2π

Fourier Series

- Sine and cosine are periodic with period 2π
- associated with space periodicity, in particular the "simpler periodic object"

Fourier Series

- Sine and cosine are periodic with period 2π
- associated with space periodicity, in particular the "simpler periodic object"
- circle: $\cos t$ is coordinate x and \sin is coordinate y of a unitary circle.

$$
\begin{align*}
\cos (t+2 \pi n) & =\cos (t) \tag{4}\\
\sin (t+2 \pi n) & =\sin (t) \tag{5}
\end{align*}
$$

Fourier Series and Periodicity

Can we write an arbitrary function in terms of sinusoids?

Fourier Series and Periodicity

Can we write an arbitrary function in terms of sinusoids? Must this function we want to write be periodic?

Fourier Series and Periodicity

Important remarks:

- Functions with the simplest periodic behaviour: sines and cosines;

Fourier Series and Periodicity

Important remarks:

- Functions with the simplest periodic behaviour: sines and cosines;
- circle: $\cos t$ is coordinate x and $\sin t$ is coordinate y of a unitary circle.

Fourier Series

Given a periodic function $f(t)$ of a continuous variable t with period T :

$$
\begin{equation*}
f(t)=\sum_{n=0}^{\infty} a_{n} \cos 2 \pi n t+\sum_{n=1}^{\infty} b_{n} \sin 2 \pi n t=\sum_{n=-\infty}^{\infty} c_{n} e^{j \frac{2 \pi n}{T} t} \tag{6}
\end{equation*}
$$

[Complex Numbers and Euler's formula]

- A complex number C is defined by

$$
\begin{equation*}
c=R+j l, \tag{7}
\end{equation*}
$$

R and I are real numbers and j is the imaginary $j=\sqrt{-1}$

- Geometric interpretation: a complex Cartesian plane with real axis R, and imaginary axis l.

[Complex Numbers and Euler's formula]

- In polar coordinates, we have:

$$
\begin{equation*}
c=|c|(\cos \omega+j \sin \omega)=a \cos (\omega)+j b \sin (\omega) \tag{8}
\end{equation*}
$$

$|c|$ is the vector size extending from the origin of the complex plane to the point (R, I); and ω is the angle between the vector and the real axis.

[Complex Numbers and Euler's formula]

- Euler's formula relates the complex sum of sine and cosine using a complex exponential:

$$
\begin{equation*}
e^{j \omega}=\cos \omega+j \sin \omega, \tag{9}
\end{equation*}
$$

we can substitute so that

$$
\begin{equation*}
X=|c|(\cos \omega+j \sin \omega) \tag{10}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
c=|c| e^{j \omega} . \tag{11}
\end{equation*}
$$

[Complex Numbers and Euler's formula]

- Euler's formula relates the complex sum of sine and cosine using a complex exponential:

$$
\begin{equation*}
e^{j \omega}=\cos \omega+j \sin \omega, \tag{9}
\end{equation*}
$$

we can substitute so that

$$
\begin{equation*}
X=|c|(\cos \omega+j \sin \omega) \tag{10}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
c=|c| e^{j \omega} . \tag{11}
\end{equation*}
$$

- Example: $x=1+j 2$
- in polar coordinates: $\sqrt{5} e^{j \omega}$, with $\omega=64,4$

[Complex Exponential]

$\sin x$

Thanks to Jim Clay

Agenda

(1) Fundamental concepts

- Representation of functions using points and coefficients - Fourier Series and the complex exponential
(2) Fourier Transform
- Motivation, algorithm, examples

Fourier Transform - interpretation

- A signal can be represented by the independent sum of each number in each point in time: $f(t)=f\left(t_{1}\right)+f\left(t_{2}\right), \ldots$
- instead of summing points, we are going to sum functions cosine and sine with different coefficients.

Fourier Transform

The Fourier series allows writing a function by a discrete sum of complex exponentials with different frequencies.

Fourier Transform

The Fourier series allows writing a function by a discrete sum of complex exponentials with different frequencies.

Fourier Transform is the evaluation, for each frequency ω, of its coefficient c_{ω}

$$
F(\omega)=\sum_{t=-\infty}^{\infty} f(t) e^{-j \omega t}
$$

Fourier Transform

- the functions cover all the input axis:

$$
c_{\omega} e^{j \omega t}=a_{\omega} \cos (\omega t)+j b_{\omega} \sin (\omega t)
$$

When summing all possible sinusoids with different frequencies, we have a series of values:

Fourier Transform

- the functions cover all the input axis:

$$
c_{\omega} e^{j \omega t}=a_{\omega} \cos (\omega t)+j b_{\omega} \sin (\omega t)
$$

When summing all possible sinusoids with different frequencies, we have a series of values:

- ω_{1} and its coefficients a_{1}, b_{1}

Fourier Transform

- the functions cover all the input axis:

$$
c_{\omega} e^{j \omega t}=a_{\omega} \cos (\omega t)+j b_{\omega} \sin (\omega t)
$$

When summing all possible sinusoids with different frequencies, we have a series of values:

- ω_{1} and its coefficients a_{1}, b_{1}
- ω_{2} and its coefficients a_{2}, b_{2}
- ω_{3} and its coefficients a_{3}, b_{3}
- ...

Fourier Transform

- Fourier Transform takes (a given signal) from time/space domain to the frequency domain (per seconds / per measure).
- signals (time): $f(t)$ to $F(\omega)$
- images (space): $f(x, y)$ to $F(u, v)$

Fourier Transform

When plotting the function in the Fourier domain, we use, for each frequency a complex exponential with:

Fourier Transform

When plotting the function in the Fourier domain, we use, for each frequency a complex exponential with:

- the relative amplitude of the cosine (real part) and of the sine (imaginary part) as a function of ω,
- the representation of the signal in the frequency domain:
- $a_{n}(\omega)=\operatorname{Re}(F(\omega))$
- $b_{n}(\omega)=\operatorname{Im}(F(\omega))$

Discrete Fourier Transform

$$
F(\omega)=\sum_{t=0}^{N-1} f(t) e^{-j \omega t}
$$

- evaluating $F(\omega)$ for different frequencies, we obtain the amplitudes of cosines (real part) and sines (imaginary part) so that we can reconstruct $f(t)$ if needed.

Motivation

- The universe has a lot of periodic phenomena
- Humans often observe time and space phenomena
the energy propagation of the electromagnetic spectrum is described in waves, including the light that generate images.

Motivation

- The universe has a lot of periodic phenomena
- Humans often observe time and space phenomena
the energy propagation of the electromagnetic spectrum is described in waves, including the light that generate images.
- Also, differential equations are key to many applications in science and engineering. Taking signals to the frequency domain makes it easier to solve many problems.

Information in Frequency

- There is relevant (and often non-obvious) information about the signal in its frequency content.
- It indicates how the amplitude of the signal changes along time or space
- e.g. is it dominated by abrupt or smooth changes?


```
N = 500 # sample points
Fs = 1.0/1000.0 # frequency of sampling
x = np.linspace(0.0, N*Fs, N) # sampling v
# signal with frequency Fr
Fr = 10
y = np.sin(Fr*2*np.pi*x)
```


Fourier Transform: translated

$$
F(\omega)=\sum_{t=0}^{n-1} f(t) e^{-j \omega t} d t
$$

1: for $i=0$ to $n-1$ do
2: multiply: $f(t) \times e^{-j \omega_{i} t}$,

5: end for

Fourier Transform: translated

$$
F(\omega)=\sum_{t=0}^{n-1} f(t) e^{-j \omega t} d t
$$

1: for $i=0$ to $n-1$ do
2: multiply: $f(t) \times e^{-j \omega_{i} t}$, or $f(t) \times\left[\cos \left(\omega_{i} t\right)+j \sin \left(\omega_{i} t\right)\right]$.

5: end for

Fourier Transform: translated

$$
F(\omega)=\sum_{t=0}^{n-1} f(t) e^{-j \omega t} d t=\sum_{t=0}^{n-1} f(t) \cos (\omega t) d t+\sum_{t=0}^{n-1} f(t) j \sin (\omega t) d t
$$

1: for $i=0$ to $n-1$ do
2: multiply: $f(t) \times e^{-j \omega_{i} t}$, or $f(t) \times\left[\cos \left(\omega_{i} t\right)+j \sin \left(\omega_{i} t\right)\right]$.

5: end for

Fourier Transform: translated

$$
F(\omega)=\sum_{t=0}^{n-1} f(t) e^{-j \omega t} d t=\sum_{t=0}^{n-1} f(t) \cos (\omega t) d t+\sum_{t=0}^{n-1} f(t) j \sin (\omega t) d t
$$

1: for $i=0$ to $n-1$ do
2: multiply: $f(t) \times e^{-j \omega_{i} t}$, or $f(t) \times\left[\cos \left(\omega_{i} t\right)+j \sin \left(\omega_{i} t\right)\right]$.
3: \quad sum (integrate) for all t getting coefficients a (real) / b (imag)
5: end for

Fourier Transform: translated

$$
F(\omega)=\sum_{t=0}^{n-1} f(t) e^{-j \omega t} d t=\sum_{t=0}^{n-1} f(t) \cos (\omega t) d t+\sum_{t=0}^{n-1} f(t) j \sin (\omega t) d t
$$

1: for $i=0$ to $n-1$ do
2: multiply: $f(t) \times e^{-j \omega_{i} t}$, or $f(t) \times\left[\cos \left(\omega_{i} t\right)+j \sin \left(\omega_{i} t\right)\right]$.
3: \quad sum (integrate) for all t getting coefficients a (real) / b (imag)
4: $\quad F\left(\omega_{i}\right)=a_{\omega_{i}}+j b_{\omega_{i}}$
5: end for

Frequency analysis

Signal obtained by summing a sine with amplitude 0.6 and frequency 3 Hz and a cosine with amplitude 0.8 frequency 8 Hz :

$$
f=0.6 * \sin ((2 * \mathrm{pi}) * 3 * \mathrm{t})+0.8 * \cos ((2 * \mathrm{pi}) * 8 * \mathrm{t})
$$

How the sum behaves in each frequency

function overlayed with the real part (cosine) in frequency 3 Hz

function overlayed with the imaginary part (sine) in frequency 3 Hz

How the sum behaves in each frequency
Function of the product between the input function and the cosine and sine terms:

How the sum behaves in each frequency

After multiply using 3 Hz cosine the sum is near zero, since this component is not part of the signal (see positive and negatives cancel each other)

How the sum behaves in each frequency

On the other hand, for a 3 Hz sine, most values are positive because this wave is part of the signal.

Frequency analysis


```
\# reescaled/normalised spectrum yw \(=(2.0 / N * n p . a b s(y f(: N 2)))\)
```


Applications

- ECG (electrocardiogram diagnosis)

Thanks to Murray Bourne http://www.intmath.com/blog/mathematics/math-of-ecgs-fourier-series-4281

Frequency analysis in stationary signals

- Fourier analysis suits better stationary signals, e.g. with frequencies 3 and 10 at any point

Frequency analysis in non-stationary signals

- Signals in which a part ($\sim 75 \%$) has frequency 5 Hz and the remaining has frequency 13 Hz , makes it hard to analyse.
- Frequency analysis allow us to see what are the frequencies present in the signal, but not in which position they occur.

