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Introduction and Definitions

Image Enhancement

Modify pixel values for better visualisation;
Obtain images that are better perceived by the human visual system,
or to serve as input to other algorithms.

Moacir Ponti (ICMC–USP) Enhancement 2021/1 4 / 48



Introduction and Definitions

Pixel and Neighbourhood

A pixel p at coordinate (x , y) hav e four neighbours in horizontal and
vertical direction, with coordinates:

(x + 1, y), (x − 1, y), (x , y + 1), (x , y − 1)

This set of pixels is called 4-neighborhood of p, or N4(p).

The diagonal neighbours are

(x + 1, y + 1), (x + 1, y − 1), (x − 1, y + 1), (x − 1, y − 1)

This set is ND(p).

Pixels N4(p) with pixels ND(p) are called the 8-neighborhood of p, or
N8(p)
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Introduction and Definitions

Intensity transformation (grey level)

Altering the grey level intensity of individual pixels;
Let z be the intensity of an input pixel, and T the transformation:

s = T (z),

s is the pixel value after transformation.

Identity Negative/inversion Contrast modulation
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Introduction and Definitions

Space domain filtering

Operations using more than one pixel are often called filtering. In the
space domain we have:

g(x , y) = T [f (x , y))] ,

where f is the input image, and g the resulting image. T is an
operator defined over the neighborhood of (x , y).

This way, the transformation can consider either the pixel value (the
neighborhood will be 1× 1) or also over some arbitrary neighborhood.
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Point (pixelwise) operations
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Point (pixelwise) operations

Grey level transformation

In order to codify this transformation, we design the function T and
apply it pixel-by-pixel

Example:

Inversion (negative)

T (z) = 255− z
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Point (pixelwise) operations

Contrast modulation

Contrast modulation (or adjustment) is an enhance method to
strech/shrink the range of intensities.

This linear transformation modifies the range of the input image [a, b]
into a new range [c , d ]:

T (z) = (z − a)
(

d − c
b − a

)
+ c
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Point (pixelwise) operations

Logarithmic function

Shrinks the dynamic range (ratio between the maximum and mininum
intensities).

T (z) = c log(1+ |z |)

c is usually defined using the maximum greylevel in the image:

c =
255

log(1+ R)

we add 1 to avoid log(0)
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Point (pixelwise) operations

Gamma adjustment

Non-linear operation to enhance pixels of higher intensity.
γ is the parameter, and it is often used to model the response of
display devices (monitors, projectors, etc.)

T (z) = czγ

c weighs the result
γ is often defined between 0.04 and 1.25.
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Point (pixelwise) operations

Thresholding

Can be seen as a segmentation method, but also as a point operation
to obtain a mask from an input image.

T (z) =
{

1, if z > L
0, otherwise

L is chosen so that it separates only the regions of interest.

Moacir Ponti (ICMC–USP) Enhancement 2021/1 13 / 48



Point (pixelwise) operations

Thresholding

Can be seen as a segmentation method, but also as a point operation
to obtain a mask from an input image.

T (z) =
{

1, if z > L
0, otherwise

L is chosen so that it separates only the regions of interest.

Moacir Ponti (ICMC–USP) Enhancement 2021/1 13 / 48



Point (pixelwise) operations

Thresholding

Can be seen as a segmentation method, but also as a point operation
to obtain a mask from an input image.

T (z) =
{

1, if z > L
0, otherwise

L is chosen so that it separates only the regions of interest.

Moacir Ponti (ICMC–USP) Enhancement 2021/1 13 / 48



Slicing grey levels

Slicing the grey levels

Different ranges of intensities may be more relevant in specific
contexts. For example:

Satellite images: detecting water masses
X-rays: enhancing faulty regions in circuits
Angiograms: enhancing only vessels and circulatory organs

The transformation can enhance a range of intensities or selecting bits.
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Slicing grey levels

Slicing the grey levels

Enhancing interval of intensities
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Slicing grey levels

Slicing the grey levels

Bitwise slicing
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Image Histogram
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Image Histogram

Histogram

Information of frequency of each intensity in the image
Can be seen as

1 a function h(k), where k ∈ [0, L− 1], and L is the number of possible
intensities (or colors) in the image

2 a vector of size L.

Often visualised using a bar plot
Example:
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Image Histogram

Histogram, Cumulative Histogram and Normalisation

Normalised histogram: each bin of the histogram is divided by the
total of pixels, so that the sum is unitary;
Cumulative histogram, hc(k), for each bin k , shows the frequency
of all intensities equal or lower than k (shows how much of the total
was achieved up to some intensity),
Normalised cumulative histogram: each bin of hc(k) show the
percentage of intensities present in the image up to k .
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Image Histogram

Histogram

Allow to grasp how the intensities are distributed (globally) over the
image
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Image Histogram Histogram equalisation
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Image Histogram Histogram equalisation

Histogram equalisation

Produces a non-linear mapping between the input and output pixels
Uses a transfer function using the image histogram as basis

Ds = f (Dz)

Dz is the intensity distribution of the source image
Ds = f (Dz) is the intensity distribution of the output image
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Image Histogram Histogram equalisation

Histogram Equalisation

The transfer function is monotonic
We want an output that approaches the uniform distribution

Note multiple input values can be mapped into a single value in the
output image, which do not allow inversion.
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Image Histogram Histogram equalisation

Histogram Equalisation

A simple way to obtain the transfer function is to use the cumulative
histogram,
Using hc(z) we normalise the input pixel z according to the image
resolution and quantisation values.

s = T (z) =
(L− 1)

MN
hc(z),

M × N is the image resolution
hc(z) is the cumulative histogram value relative to the value z
L is the number of intensities after image quantisation (e.g. 256 for 8
bits)
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Image Histogram Histogram equalisation

Histogram Equalisation
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Filtering
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Filtering Convolution

Space domain filtering

g(x , y) = T [f (x , y)] ,
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Filtering Convolution

Convolution

Operation over a neighborhood of f (x , y) generating a single value
for every pixel pixel g(x , y)
The effect of this operation depends on a filter w() designed with
some purpose

g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x − s, y − t),

this is evaluated for every x , y
it can be seen as sliding w() over all image f
the filter has size m × n, with: m = 2a + 1 e n = 2b + 1.
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Filtering Convolution

Convolution

The convolution can be represented by the ∗ operator:

w(x , y) ∗ f (x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x − s, y − t),
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Filtering Convolution

Convolution vs. cross-correlation

The cross-correlation represents the sum of the point-wise products of
the filter and image, centred at x , y

w(x , y) ? f (x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t),

Note that cross-correlation and convolution are equivalent if the filter
is symmetric.
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Filtering Convolution

Vector representation

A vector representation can be useful, writing the filtering as:

= wT z

=
mn∑
k=1

wkzk

R = w1z1 + w2z2 + · · ·+ wmnzmn,

R is the response of the filter w centred in a given pixel and its
neighbours z
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Filtering Smoothing filters
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Filtering Smoothing filters

Mean

Mean:
w(x , y) =

1
mn

,

Property: minimise the squared error in the neighborhood by
approximating every value from the mean.
All pixels in the neighborhood offer the same contribution to the mean.
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Filtering Smoothing filters

Gaussian filter

G1D(x , σ) =
1√
2πσ

e−
x2

2σ2

G2D(x , y , σ) =
1

2πσ2
e−

x2+y2

2σ2

GND(~x , σ) =
1

(
√
2πσ)N

e−
|~x|N

2σ2

σ is the standard deviation of a Gaussian distribution of zero mean.
Also called Gaussian kernel, centred at the origin and considering
equal variances/standard deviations for all dimensions.
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Filtering Smoothing filters

Gaussian filter

2D Gaussian filter (sampled version of the distribution):

G (x , σ) = w(x , y) =
1

2πσ2
e−

x2+y2

2σ2 ,

σ controls the diffusion or dispersion of the values

Relationship with com heat transfer: each pixel value is a heat point,
the variance/std codifies the diffusion time.

larger values of variance/diffusion will approach the mean.
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Filtering Sharpening
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Filtering Sharpening

Sharpening and image derivative

The sharpening operation tries to enhance transitions of intensities.

The derivatives are useful in this case since it codifies the transitions.
For a given function f (x) the partial derivative can be written as:

∂f
∂x

= f (x + 1)− f (x)

The second order derivative:

∂2f
∂x2

= f (x + 1) + f (x − 1)− 2f (x)
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Filtering Sharpening

Sharpening and image derivative
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Filtering Sharpening

Laplacian

In 2d, the simplest isotropic operator is the Laplacian:

∇2f =
∂2f
∂x2

+
∂2f
∂y2

Which can be obtained via approximations with:

∇2f = f (x + 1, y) + f (x − 1, y) + f (x , y + 1) + f (x , y − 1)− 4f (x , y)

For a filter 3× 3:  0 1 0
1 −4 1
0 1 0


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Filtering Sharpening

Sharpening using the Laplacian filter

We add the result of a Laplacian filter in the original image

g(x , y) = f (x , y) + c |∇2f (x , y)|

Some c ≤ 1 will compensate the additive term,
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Filtering Sharpening

Unsharp mask

1 Blur the original image
2 Subtract the blurred version from the original,
3 Add the matrix obtained in step (2) to the original image.
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Filtering Sharpening

Unsharp mask
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Filtering Order statistics
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Filtering Order statistics

Median

Median:
w(x , y) = median(zk |k = 1, ..., nm),

zk for k = 1, ..., nm are neighbours of the pixel (x , y).

it minimises the L− 1 norm, or the sum:∑
i

|a − ai |

this error is more robust, and tend to avoid smoothing borders
since it is a order statistic, it does not produces new values.
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Filtering Order statistics

Other filters

Maximum:
w(x , y) = max(zk |k = 1, ..., nm),

Minimum:
w(x , y) = min(zk |k = 1, ..., nm),
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Filtering Non-local filtering
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Filtering Non-local filtering

Non Local Means

Assuming we have many pixels p with the same value p0, but with
some additive noise n:

p = p0 + n

If n is a random variable, then each pixel is composed of a different
realisation of n

p1 = p0 + n1
p2 = p0 + n2
· · ·

Non Local Means searches for regions over all image (not only locally)
with similar values, and computes the mean using all regions
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Filtering Non-local filtering

Non Local Means

The different approaches try to:
1 find similar regions
2 filter those values

B. Goossens, H.Q. Luong, A. Pizurica, W. Philips, "An improved non-local means algorithm for image denoising,"

2008 International Workshop on Local and Non-Local Approximation in Image Processing (LNLA2008)
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