Física II (4302112) Turma T2 - noturno

Energia livre de Helmholtz e de Gibbs

Profa. Luciana V. Rizzo

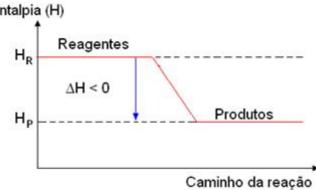
Entalpia (H)

(relembrando)

Entalpia (H)

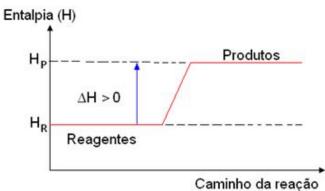
- Entalpia no contexto da termoquímica: energia que deve ser liberada ou absorvida para que ocorra uma reação química ou transformação física H = U + PV
- Entalpia é uma função de estado: sua variação depende apenas dos estados inicial e final, sendo independente do processo $\Delta H = H_2 H_1$
- O que significa uma variação da entalpia?

$$dH = dU + PdV + VdP$$
 1^a Lei: $dU = dQ - PdV$
 $dH = dQ - PdV + PdV + VdP$


$$dH = dQ + VdP$$

Se o processo for isobárico (o que comum em experimentos à pressão ambiente):

$$dH = dQ$$
 (P cte) A variação de H é igual ao calor fornecido/ liberado pelo sistema a pressão constante


Entalpia

- Processo exotérmico ($\Delta H < 0$): ocorre liberação de calor para a vizinhança. Exemplos: Entalpia (H)
 - Combustão
 - □ Condensação, solidificação $Q < 0 \rightarrow \Delta H < 0 \ (P \ cte)$ $Q < 0 \rightarrow \Delta U < 0 \ (V \ cte)$

- Processo endotérmico ($\Delta H > 0$): o sistema absorve calor da vizinhança. Exemplos:
 - Vaporização, fusão
 - Eletrólise da água

$$Q > 0 \rightarrow \Delta H > 0 \ (P \ cte)$$

 $Q > 0 \rightarrow \Delta U > 0 \ (V \ cte)$

Exemplo: entalpias de formação e de combustão (1 bar, 298 K)

C. L. Maria	Entalpia de formação (ΔΗ ⁰		
Substância	kcal/mol	kj/mol	
Ca (s)	Zero	Zero	
CaO (s)	-151,9	-634,9	
Ca(OH) ₂ (s)	-235,8	-985,6	
C (grafite)	Zero	Zero	
C (diamante)	+0,5	+2,1	
CO (g)	-26,4	-110,3	
CO ₂ (g)	-94,1	-393,3	
CH₄ (g)	-17,9	-74,8	
CH ₃ OH (<i>l</i>)	-57,0	-238,2	
CS ₂ (L)	+21,0	+87,8	

Substância	Fórmula	Entalpla de combustão		
		kcal/mol	kJ/mol	
Metano	CH ₄ (g)	-212,8	-889,5	
Etano	C ₂ H ₆ (g)	-372,8	-1.558,3	
Acetileno	C ₂ H ₂ (g)	-310,6	-1.298,3	
Benzeno	C ₆ H ₆ (<i>l</i>)	-781,0	-3.264,6	
Etanol	C ₂ H ₅ OH (<i>l</i>)	-326,7	-1.365,6	
Ácido acético	CH ₃ COOH (<i>l</i>)	-209,4	-875,3	
Glicose	C ₆ H ₁₂ O ₆ (g)	-673,0	-2.813,1	
Sacarose	C ₁₂ H ₂₂ O ₁₁ (s)	-1.348,9	-5.638,4	

Outros potenciais termodinâmicos

F: Energia de Helmholtz

G: Energia de Gibbs

Vamos considerar um sistema em equilíbrio térmico com a vizinhança (ou seja, em contato com um reservatório térmico que garante a estabilidade da temperatura). Se houver mudança no estado do sistema com trocas de calor, temos, pela 2ª Lei da Termodinâmica:

$$dS \ge \frac{dQ}{T} \rightarrow TdS \ge dQ$$

Vamos considerar dois caminhos possíveis:

- Troca de calor a T e V constantes
- Troca de calor e T e P constantes

• Troca de calor a T e V constantes

$$dU = dQ - PdV \rightarrow dU = dQ$$

$$TdS \ge dQ \rightarrow TdS \ge dU \rightarrow dU - TdS \le 0$$

$$dF = dU - TdS$$

$$F = U - TS$$
 Energia de Helmholtz

Troca de calor a T e P constantes

$$dH = dQ + VdP \rightarrow dH = dQ$$

$$TdS \ge dQ \rightarrow TdS \ge dH \rightarrow dH - TdS \le 0$$

$$dG = dH - TdS$$

$$G = H - TS$$
 Energia de Gibbs

Critérios para transformações espontâneas

Os sistemas se transformam espontaneamente no sentido de diminuir F e G:

$$dF_{T,V} \leq 0$$

$$\left| dG_{T,P} \le 0 \right|$$

G é muito utilizado para avaliar a espontaneidade de reações químicas que ocorrem em contato com o reservatório de pressão e temperatura da atmosfera, que mantém T e P constantes.

Se $\Delta G < 0$ quando a reação avança, então há tendência à conversão dos reagentes em produtos.

Se $\Delta G > 0$ quando a reação avança, então a reação inversa é espontânea.

Energia de Helmholtz - interpretação

F equivale ao trabalho máximo que poderia ser realizado a partir da energia de um sistema se ele fosse destruído.

$$dU = dQ - dW \rightarrow dQ = dU + dW$$

$$= dF$$

$$TdS \ge dQ \rightarrow TdS \ge dU + dW \rightarrow -dW \ge dU - TdS$$

Se os processos forem reversíveis, o trabalho é máximo, e a desigualdade se transforma em uma igualdade:

$$dF = -dW_{max}$$

$$F = U - TS$$
:

F é a energia interna do sistema (U) menos uma contribuição que é armazenada como energia de movimento térmico (TS). Essa energia térmica não pode ser utilizada para obter movimento organizado na vizinhança (trabalho), de modo que apenas a quantidade U-TS é que pode ser utilizada para realizar trabalho caso o sistema seja destruído.

Energia de Gibbs - interpretação

G equivale ao trabalho máximo <u>diferente do trabalho de expansão</u> que poderia ser realizado a partir da energia de um sistema se ele fosse destruído. dU = dQ - dW

$$H = U + PV \rightarrow dH = dU + d(PV)$$
 Trabalho total: $W_{expans\~ao} + W_{outro}$ $dH = dQ - dW + d(PV)$

$$dG_{T,P} = dH - TdS \rightarrow dG_{T,P} = dQ - dW + d(PV) - TdS$$

$$= 0 \text{ (P cte)}$$

$$dG_{T,P} = dQ - dW_{expansão} - dW_{outro} + PdV + VdP - TdS$$

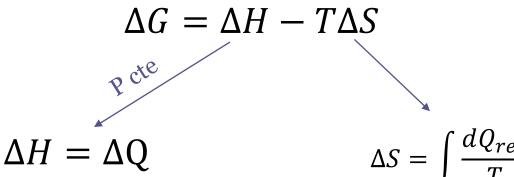
$$= TdS \text{ se o processo for reversível}$$

$$dG_{T,P} = TdS - dW_{outro} - TdS$$

$$dG = -dW_{max_{outro}}$$

Exemplos de trabalho diferente do trabalho de expansão: trabalho da força elétrica, trabalho mecânico da elevação de uma coluna de líquido

Exemplo: variação da energia de Gibbs na formação de substâncias


Table 19.3 • Standard Molar Free Energies of Formation of Some Substances at 298 K

Element/Compound	$\Delta G_f^{\circ}(\mathrm{kJ}\cdot\mathrm{mol^{-1}})$	Element/Compound	$\Delta G_f^{\circ}(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$
H ₂ (g)	0	CO ₂ (g)	-394.4
0 ₂ (g)	0	CH ₄ (g)	-50.87
$N_2(g)$	0	$H_2O(g)$	-228.6
C(graphite)	0	$H_2O(\ell)$	-237.2
C(diamond)	2.900	$NH_3(g)$	-16.4
CO(g)	-137.2	Fe ₂ 0 ₃ (s)	-742.2

Atkins, física-química. LTC, 2008. v. 1.

Obs: para elementos em seu estado padrão, $\Delta G=0$.

Como se mede ΔG ?

Para medir ΔH, basta medir a quantidade de calor trocada no processo (calorimetria)

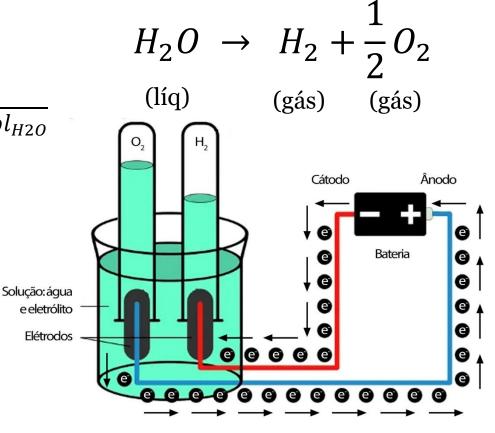
$$\Delta S = \int \frac{dQ_{rev}}{T} = \int \frac{C_P dT}{T}$$

Para medir ΔS, variar a temperatura em passos pequenos e medir a troca de calor em cada passo (calorimetria)

Exemplo: eletrólise da água

Dados (1 bar, 298K):
$$\Delta H = 286 \frac{kJ}{mol_{H2O}}$$
$$\Delta S_{H2O} = 70 \frac{J}{K.mol_{H2O}} ; \Delta S_{H2} = 131 \frac{J}{K.mol_{H2}} ; \Delta S_{O2} = 205 \frac{J}{K.mol_{O2}}$$

$$\Delta S = \Delta S_{produtos} - \Delta S_{reagentes}$$


$$\Delta S = \left(131 + \frac{1}{2}205\right) - 70 = 163,5 \frac{J}{K. \, mol_{H2O}}$$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G = 286.10^3 - 298.163,5$$

$$\Delta G = 237 \; \frac{kJ}{mol_{H2O}}$$

Equivale ao trabalho da força elétrica (trabalho que não é de expansão)

