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I The chapter starts with a basic introduction to tomogra-

34.1 Introduction

In this chapter, a short introduction to computed tomography (CT)
and X-ray physics is given. CT is an advanced imaging technique
that allows for non-invasive visualization of the interior of a scanned
object. In Figure 34.1, the typical steps involved in CT imaging are
described. In a first step (see Figure 34.1a) X-ray projection images
(also known as Rontgen photos or radiographs) are acquired at dif-
ferent angles from an object of interest. All steps involved in this
acquisition process are described in Section 34.2. The second step
in CT imaging is the reconstruction step, which is conceptually
visualized in Figure 34.1b and thoroughly explained in Section 34.3.
Finally, in Section 34.4, the concepts of the previous section are
extended to dynamic CT, where the object is no longer assumed to
be stationary throughout the acquisition process.

phy. A more detailed overview of tomography can be found
in Kak and Slaney (2001) and Buzug (2008) (see also Section
III, Chapter 32, for a general introduction to CT diagnostic
imaging).

34.2 Acquisition Process

In this section, a brief introduction to the CT acquisition process
is given. First, in Section 34.2.1, the necessary X-ray physics are
discussed. A description of the law of Beer—Lambert, which is
a simple model for the data acquisition step, is given in Section
34.2.2. Finally, in Section 34.2.3, different projection geometries
are discussed.
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FIGURE 34.1

A conceptual visualization of forward and back-projection in X-ray CT. (a) The first step: projection data is acquired at different angles from

an object under interest. (b) The second step: from the projection data, the unknown attenuation values of the object are to be calculated.

34.2.1 X-rays: Generation, Matter
Interaction, and Detection

X-rays are basically electromagnetic waves with an energy range
between 10 and 200 keV. They were first discovered by Wilhem
Rontgen in 1895, who named it X-radiation to signify the (at
that time) unknown type of radiation (Rontgen 1898) (see also
Section II, Chapter 17, for an historical article on the discovery
of X-rays). X-rays can be described with a wave model or a par-
ticle model. In this chapter, X-rays will be modeled as packets of
energy, referred to as photons or X-ray quanta.

34.2.1.1 X-ray Generation

In medical and pCT scanners, X-rays are typically gener-
ated within a vacuum tube (see also Section I, Chapter 2, for a
description of X-ray tubes). A standard vacuum tube consists of
a cathode and an anode, over which a high voltage is applied.
Thermionic emission sets electrons free from the cathode, accel-
erating them through the high voltage such that they hit the anode
surface at high speed. When the fast electrons enter the anode
surface, multiple interactions take place, resulting in a conver-
sion of the electron kinetic energy into X-ray radiation and heat.

The emitted X-rays have a spectrum that typically resembles the
spectrum illustrated in Figure 34.2 (Buzug 2008; Duisterwinkel
et al. 2015) (see also Section I, Chapter 10, for methods to calcu-
late X-ray spectra from X-ray tubes). The shape of the spectrum
can be explained by the physical mechanisms that are respon-
sible for the production of X-rays in the X-ray tube:

* Fast electrons can be diffracted and slowed down once
they enter the anode surface. Due to the charged particles
being decelerated (often multiple times), electromagnetic
waves (in our case: X-rays) are radiated in a continuous
range of energies. This phenomenon is known as brems-
strahlung and corresponds to the smooth part of the
spectrum in Figure 34.2. The amount of deceleration is
directly linked to the energy level of the emitted X-ray
photon. If an electron directly collides into the nucleus of
an anode atom, all the electron’s energy is converted to
X-ray radiation, a process that corresponds to the upper
energy limit in the emitted spectrum (see Figure 34.2).

» X-rays can also be generated from a direct interaction
of fast electrons with the inner shell electrons of the
anode’s surface. If an inner shell electron is kicked
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FIGURE 34.2 A typical representation of the X-ray spectrum in a bio-
medical CT scanner with an acceleration voltage of 120 keV.

out of the atom by a collision with a fast electron, an
outer shell electron will take its place, a process that
is accompanied by the emission of a photon. Since the
binding energy difference between the same two shells
is always constant, the emitted X-ray quanta resulting
from this process can only have energy at a few discrete
values. This creates sharp peaks in the emitted X-ray
spectrum, known as characteristic emission.

The area on the anode that is hit by the fast electrons and from
which the X-rays are emitted is called the focal spot. To obtain high
resolution radiographs, a small focal spot size is desirable. The
effect of the focal spot size is illustrated in Figure 34.3. In this fig-
ure, the penumbra is conceptually visualized, it is a blurry region at
the edge of the scanned object’s projection, which is due to partial
absorption/illumination of the X-rays originating from the source
with a larger spot size. Since only 1% of the kinetic energy of the
fast electrons is converted into X-rays, while the remaining 99%
goes into heat, the maximum heat capacity of the focal spot area is
the major limiting factor for the focal spot size. If the heat delivered
during a single exposure exceeds the focal spot heat capacity, the
anode surface will melt. For this reason, a common technique is
to continuously rotate the anode, thereby spreading the heat over
a larger surface. Other, more advanced, techniques exist as well,
such as the liquid metal jet anode, where a continuous flow of liquid
metal replaces the solid anode (Hemberg et al. 2003).

Small focal
spot

Large focal
spot

Penumbra

Detector

FIGURE 34.3 Illustration of the effect of a large focal spot size (left) in
comparison to a small focal spot size (right).
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In synchrotron facilities, X-rays are produced in a different
manner (Winick 1995). The path of the high energy electrons
that are contained within the storage ring is bent (corresponding
to a radial acceleration), resulting in the production of X-rays. A
major advantage in synchrotron facilities is that monochromatic
X-ray beams (i.e., X-rays of a single energy level) can be pro-
duced at a high photon flux. To generate a proper photon flux in
medical and lab-based CT systems, one has to work with poly-
chromatic X-ray beams, consisting of photons within a continu-
ous range of energies (see Figure 34.2).

In the remainder of this chapter, the intensity of an X-ray beam
is denoted by I(n), E), where m represents the distance traveled along
the X-ray path, and E the energy bin. Often, a monochromatic X-ray
beam is assumed, in which case the intensity is proportional to the
number of photons and its intensity is denoted simply by I(n)). The
X-ray beam intensity at the source position is denoted by 1(0) = I,,.

34.2.1.2 X-ray Matter Interaction

As X-rays pass through an object, various scattering and absorption
events result in a decreased intensity at the end of the object (Buzug
2008; Bushberg et al. 2011) (see also Section I, Chapter 1, for a gen-
eral introduction to X-ray interactions in matter). This decreased
intensity is described via the object’s attenuation coefficient, p,
which models all physical mechanisms that lead to attenuation of
the X-ray beam. The radiation intensity of a monochromatic beam
after passing a distance, A, through a thin slice of homogeneous
material with attenuation coefficient, p, is described as follows:

I + An) = 1) — pmI(mAn (34.1)

= 1(n) (1 — p(mAn) (34.2)

These equations have two intuitively different interpreta-
tions. In Equation 34.1, one can observe that the difference in
intensity after passing through the thin slice is proportional to
the attenuation coefficient and the distance traveled through the
slice. Another interpretation is given by Equation 34.2, where
(1 — p(m)Amn) can be seen as the probability of a single photon
passing through the thin slice, and I(m) (1 — u(m)An) as the
expected number of photons that pass through the slice.

34.2.1.3 X-ray Detection

A crucial part of a CT system is the detection of the transmit-
ted X-rays, thus the beam intensity, /, after it passed through
the object. Various types of X-ray detection technologies are
described in Buzug (2008). Conventional Xray detectors inte-
grate the total number of photons in each detector pixel over a
short period of time (the exposure time), without obtaining infor-
mation about the energy of individual photons. An alternative
is energy-resolved photon counting with dual energy detection
(Kelcz et al. 1979) or multiple energy thresholds (Schlomka et al.
2008), providing the additional capability of counting individual
photons, based on their detected energies.

Detectors can detect X-ray photons either directly or indi-
rectly. Indirect-conversion detectors consist of two main com-
ponents: (1) a light emitting material (scintillator) layer, which
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converts the X-ray radiation into visible light photons; and (2) a
photon detector that converts these light photons in an electric
charge, which is, hence, proportional to the intensity of X-ray
radiation. A typical example of such a detector is an amorphous
silicon-based panel detector with a cesium iodide (Csl) scintil-
lator deposed onto an array of photo-diodes. A second type of
indirect-conversion detectors use a photon detector that consists
of charge-coupled devices (CCDs). These CCD-based detectors
use fiber optics to guide the light from the scintillator to the CCD
camera.

Direct-conversion detectors have no intermediate stage in
which visible light photons are generated, but directly convert
X-ray photons into electric charge. Such detectors consist of a
semi-conductor layer such as silicon (Si) or gallium arsenide
(GaAS) to which an offset voltage is applied. X-ray photons
entering the semi-conductor layer generate electron-hole pairs.
The charges are accumulated and read using a thin-film tran-
sistor (TFT) array. Direct-conversion detectors are much more
efficient than indirect-conversion detectors.

34.2.2 The Law of Beer—-Lambert

The law of Beer—Lambert is an important law that is often
exploited in the theory of computed tomography. It relates the
attenuation of light (in our case X-rays) to the properties of the
material through which the light is propagating. The Beer—
Lambert law states that a monochromatic X-ray with radiation
intensity, /,, that propagates a distance, s, through a material with
position dependent attenuation coefficient, p(n), has a remaining
intensity given by

I(s) = Toe~fonondn (34.3)

The law is conceptually visualized in Figure 34.4.

The law of Beer—Lambert can be derived as follows. Let 1 be
the axis parallel to the direction of the X-ray beam (see Figure
34.4). Rearranging the terms in Equation 34.1 gives

Ity + An) —I() _

An —p(mI(n)

(344)

which results in

di

dn () = —p(mI(n)

(34.5)

after taking the limit for An — 0. Equation 34.5 is an ordinary
linear differential equation which can be solved by rearranging

1(s) = /oe— Ja () dn

0 7 n+An) s

FIGURE 34.4 Illustration of the Beer—Lambert law.
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the terms and multiplying the equation with the integrating
factor, /0" leading to

c%(n)ef'ﬂ' M I e =0 (34.6)
Applying the product rule backward, this simplifics to
i(l(n)efg ol — o (347)
dn
Integrating both sides of this equation, leads to
f din (,(n)efgww)dn _ f 0dn (34.8)
0 0
& ()it _p)eltrehi’ = o (34.9)
& I(s)e e — ) (34.10)
& I(s) = 1(0)e rnar (34.11)

This completes the derivation, since Equation 34.11 is equiva-
lent to Equation 34.3.

The law of Beer—Lambert is particularly of interest, because it
can be transformed to a linear relation between the measured data
and the attenuation coefficients of the object. That is, Equation
34.3 can be rewritten as

—1n[I§S)] = f p(mdn
0
0

If the incoming beam intensity, /,, is known, which is almost
always the case in practical applications, the left hand side of
Equation 34.12 is fully known. The process of dividing the mea-
sured intensity by the incoming beam intensity, I, is known
as flat-field correction. In the remainder of this chapter, it is
assumed that the available projection data is always in its prepro-
cessed form, —In(I(s)/1,).

(34.12)

34.2.3 Projection Geometries

A projection geometry refers to the setup and position of detec-
tor and source. Without intending to cover a full oversight of all
possible projection geometries, some common projection geom-
etries are described here.

In the 2D case, a parallel beam geometry and fan beam geom-
etry are the most common. In the parallel beam geometry, all rays
in a single projection are parallel to each other, as is visualized in
Figure 34.5a. In fan beam geometry, all rays start from a single
point source and reach the detector in equidistantly spaced detec-
tor points (see Figure 34.5b). In 3D, the parallel beam (see Figure
34.5¢) and cone beam (see Figure 34.5d) are the 3D analog of the
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FIGURE 34.5
cone beam.

2D parallel beam and fan beam geometry, respectively. If cone
beam projections are acquired in a circular trajectory, the term cir-
cular cone beam geometry is utilized. A helical cone beam geom-
etry refers to cone beam projections that are acquired in a helical
trajectory (a geometry that is quite common in medical CT).

34.3 Reconstruction Methods

X-ray radiography is the most widespread medical imaging
method, but it suffers from major drawbacks: (1) There is no depth
information in the radiographic images; (2) X-ray radiographs
often lack image contrast. That is, large changes in attenuation
coefficient may result in only small changes in image intensity.
The solution to these drawbacks is CT. In CT, the 3D attenuation
distribution of the object that was imaged is reconstructed from
a set of X-ray radiographs (projection data) that were acquired
from different angular viewpoints.

The goal of CT reconstruction is to find the distribution of
attenuation coefficients within the scanned object, based on the
measured projection data (see Figure 34.1b). In what follows,
different types of reconstruction methods are described. These
can be roughly sub-divided into three classes. Analytical recon-
struction methods (Section 34.3.1) model the object’s attenuation
coefficients as a function of its spatial coordinates and exploit
various analytical properties of the forward projection model in
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Illustration of different projection geometries for the 2D and 3D case. (a) 2D parallel beam, (b) 2D fan beam, (c) 3D parallel beam, (d) 3D

order to generate a reconstruction. In algebraic reconstruction
methods (Section 34.3.2), the object is modeled on a discrete
pixel/voxel grid, and the reconstruction problem is reduced to
a large system of linear equations. In a final class of methods,
statistical reconstruction methods (Section 34.3.3), various sta-
tistical properties of the acquisition process are exploited, and
typically some likelihood function, incorporating these statisti-
cal properties, is optimized.

In what follows, all methods are described for the 2D case,
such as a 2D object from which one-dimensional projections are
acquired. For algebraic and statistical methods, the extension to
the 3D case is straightforward, but will not be described here.

34.3.1 Analytical Reconstruction Methods

In the analytical approach, the object’s attenuation coefficients are
described as a function, f: R x R — R that maps the spatial coor-
dinate (x, y) to its corresponding local attenuation coefficient, ji. In
Sections 34.3.1.1 and 34.3.1.2, the Radon transform and the Fourier
slice theorem are introduced. The latter makes a remarkable con-
nection between the analytical projections and the two-dimensional
Fourier transform of f(x, y). These concepts lead to the Filtered
Back projection (FBP) reconstruction algorithm in Section 34.3.1.3.
Finally, some other analytical reconstruction methods are discussed
in Section 34.3.1.4 (see also Section III, Chapter 33, for a general
description of analytical reconstruction methods in CT).
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34.3.1.1 Radon Transform

The projection process in tomography consists of straight rays
traversing the object, f, at a certain angle and a certain distance
from the center of the detector to the ray (this is illustrated in the
left part of Figure 34.6). A particular line, L(r, 0), at a counter-
clockwise angle, 0, from the y-axis and at a signed distance, r,
from the origin is defined as follows:

L(r,0) = {(x,y) € Rﬂxcos@ +ysind =r}  (34.13)

Remember that the log- and flat-field-corrected projections
are theoretically given by a line integral of the attenuation coef-
ficients (see Equation 34.12). Therefore, a particular projection
value, p,(r), is defined as the line integral through f(x, y) over the
line L(r, 6):

f(x,y)ds

L(r,0)

p(r) = (34.14)

The Radon transform, R, is the transformation that maps the
object function, f(x, y), to the complete set of projection values,
thus:

FOoy)Apa(PI0 € [0 € R) (34.15)

Equation 34.15 implies that (Rf)(6, r) = py(r)

34.3.1.2 Fourier Slice Theorem

The Fourier slice theorem for two dimensions is conceptually
visualized in Figure 34.6. The theorem states that the one-
dimensional Fourier transform of a parallel beam projection of
f(x, y) at a certain angle is exactly the same as the slice through
the Fourier transform, F(u, v), which is perpendicular to the pro-
jection direction. The Fourier slice theorem is stated more pre-
cisely in the following theorem:

Fourier domain
F(uv)

Two-dimensional
Fourier transform

Spatial domain
f(xy)

FIGURE 34.6 Schematic overview of the analytical projection model and
the Fourier slice theorem. The one-dimensional Fourier transform of the
projection data at angle 0 yields a slice through the Fourier domain, which is
perpendicular to the projection direction.
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Theorem. Let £ RxR — R: (x,y) — f(x,y) be a two-
dimensional function and define its projection py(r): R — R:
r — py(r) as in Equation 34.14. Denote the two-dimensional
Fourier transform of f(x, y) as F(u, v) and the one-dimensional
Fourier transform of p,(r) as Py(g). Then the following equality
holds:

F(u,v) = F(q)

u=gcos(f)

(34.16)

v=gsin(0)

Proof: The proof of the Fourier slice theorem is straightfor-
ward for 6 = 0, which can be assumed without loss of generality.
Indeed, if the theorem applies for 6 = 0, then the theorem is also
valid for any 6 =0, since a rotation in the spatial domain corre-
sponds to exactly the same rotation in Fourier space. It is, hence,
sufficient to prove that F(g, 0) = Py(g).

The line integral, p,(r), corresponds to

po(r) = f

L(r.0)

s = [gepay 64
since L(r, 0) is the line x = . The Fourier transform of f(x, y) is
F(u,v) = fff(x’ y)e—2ﬂi(xu+yv)dxdy (3418)

—00 —00

Evaluated in u = g and v = 0, Equation 34.18 becomes

00

F(q0) = f f Fxy)e T adx dy

—00 —00

(34.19)

00

= [\ [ ronarie oas

—0o0| =X

(34.20)

00

= f po(x)e > dx

—00

(34.21)

= Fy(q) (34.22)

which concludes the proof.

Note that, if enough projections, p,(r), can be acquired, the
Fourier domain of the object can be fully sampled. A simple
inverse Fourier transform could, hence, suffice to reconstruct the
object function, f(x, y). In practice, however, projections are given
in a finite number of detector pixels, and can only be acquired
at a finite number of angles. Assuming a parallel beam projec-
tion geometry, the Fourier space of the object, f(x, y), is radially
sampled, as is illustrated in Figure 34.7. To use the fast Fourier
transform (FFT) algorithm (Heideman et al. 1984) to perform
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FIGURE 34.7 Parallel beam projections yield a radial filling of values in
the Fourier space.

the inverse Fourier transform in an actual implementation, the
radially sampled Fourier space must be resampled on a regular
grid. Therefore, interpolation is necessary. However, this intro-
duces large interpolation errors in the higher frequency part of
the spectrum, since samples are only sparsely available in this
region. These high spatial frequencies correspond to fine details
in the object function, and, since they are less accurately repre-
sented after the resampling, image quality is seriously degraded.
In the next section, an analytical method that compensates for
the fact that points in Fourier space are more densely sampled
near the origin, is introduced.

34.3.1.3 Filtered Back Projection (FBP)

The Filtered Back Projection (FBP) reconstruction method is
based on the following analytical formula:

T 00

f(_x,y) = f fRq(q)‘q|627riq(xcos(9+)'sin(7‘)dq 4o (3423)

0 |-

Before proving this formula, its different components are
explained. As can be observed from Equation 34.23, the FBP
formula gives rise to a simple two step approach for calculating
a reconstruction of the scanned object, based on the measured
projection data:

1. Filter the projection data, py(r), by multiplying its
Fourier transform, Py(g), with Igl and calculating the
inverse Fourier transform. This step corresponds to the
inner integral in Equation 34.23.

2. For a particular location in the image domain, (x, y),
sum up all the filtered projection data that corresponds
to the lines x cos 0 4 y sin 6 with 6 € [0, «]. This step
corresponds to the outer integral in Equation 34.23.
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This approach can be turned into a practical algorithm, keep-
ing the following in mind:

» Since projection data is acquired at a finite number of
detector pixels, and, thus, only available at discrete loca-
tions, the Fourier and inverse Fourier transform are per-
formed with the FFT algorithm. Also, the formula is only
evaluated at discrete locations in the spatial domain, typi-
cally on the pixel coordinates of a pixel grid. Therefore, in
a practical implementation, the entire formula in Equation
34.23 is discretized by changing the integrals to sums.

* Projection data needs to be acquired over the full angu-
lar range, [0, 7], corresponding to the outer integral in
Equation 34.23. Also, the scanned object must be fully
inside the field of view, so that p,(r) and, hence, also
Py(g) is available on its entire domain, thereby ensuring
that the inner integral in Equation 34.23 can be cal-
culated. If these assumptions are violated, the recon-
structed image will contain artifacts.

* In a practical implementation, the FBP formula in
Equation 34.23 is never evaluated individually at differ-
ent locations in the spatial domain. Typically, the FBP for-
mula is evaluated simultaneously at all pixel coordinates
by first filtering the projection data with the high-pass
filter Igl (in Fourier space) and subsequently summing all
back-projections of each projection onto the pixel grid.
A back-projection simply places the values of the projec-
tion, p, (r) (with r describing the signed distances to all
rays in a single projection defined by the fixed angle 0) at
all pixels that coincide with the line x cos 6 + y sin 6 = r.
This implies that the FBP algorithm as described here is
only suitable for a parallel beam geometry.

The application of the high-pass filter, Igl, compensates for the
high density sampling ratio in the low frequency domain and the
low density sampling ratio in the high frequency domain (see
Figure 34.7). In the context of FBP, the high-pass filter, Igl, is
usually referred to as the “ramp” filter, because of its shape in
the Fourier domain.

The FBP formula can be derived as follows. First, the rectan-
gular coordinate system (u, v) over which it is integrated in the
inverse Fourier transform formula, such as

Fxy) = f f F(u,v)e*™ ) dy dy (34.24)

—00 —00

is changed to a polar coordinate system (g, 6). This is achieved
by making the substitution u = ¢ cos 6 and v = ¢ sin 0, which
results in

cos) —gsinf

dudv = dqd0 = qdqd0 (34.25)

sinff  gcosf

The inverse Fourier transform in Equation 34.24 can now be
expressed in polar form as

21 o

flxy) = ffF(qcos@,qsin@)e”’”(“‘“9*"““")qdqd6 (34.26)
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The integral in Equation 34.26 can be split into two parts by
integrating 6 from O to 7 and from 7 to 27 and further rewritten
as follows:

f(x,y):ffF(qcos(),qsiné))ez”"q(“"s‘””‘“")qdqdf)
00

. ]j‘F(qcos(G + ), gsin(0 + )
0 0

eZm'q(xcos(5+7r)+ysin((9+ﬂ))q dq de

T oo . )
=J:) ; F(—gcos 0,—gsin 0)e2 i (~a)xcost -y sind)y gy

m 0 i
:f f F(gcos 0,gsin 9)(,2mq(xcosﬁ)ﬂ'smﬁ)(’q)dng
0 J-—x

:ffF(qcos&,qsin@)Iqlez""q(”"”*«”‘“"’dqde
0 —x

(34.27)

Substituting the Fourier slice theorem formula (see Equation
34.16) into Equation 34.27 leads to

f(x,y) — ffpg(q) | q ‘ p2miq(xcos O+ ysin H)dqde (3428)

0 —oo

which completes the derivation of the FBP formula in Equation
34.23.

34.3.1.4 Other Analytical Reconstruction Methods

Various variants on the FBP algorithm have been proposed in
the literature. Most variants focus on redesigning the ramp filter,
lgl, in Equation 34.23. One approach is to train a neural network
that learns an optimal filter for a certain class of objects (Pelt
and Batenburg. 2013). Another approach consists of approximat-
ing algebraic methods (see Section 34.3.2) by selecting a proper
FBP filter (Batenburg and Plantagie 2012). The FBP algorithm
described in Section 34.3.1.3 is suitable for a 2D parallel beam
geometry. For fan beam, another formula and approach must be
followed (Kak and Slaney 2001). For the 3D case, the Feldkamp
(FDK) algorithm is a common choice for reconstructing from cir-
cular cone beam projections (Feldkamp et al. 1984). For helical
cone beam CT, other algorithms are available (Kudo et al. 2004).

34.3.2 Algebraic Reconstruction Methods

In the algebraic approach, the object’s attenuation coefficients
are modeled by a discrete representation of the object function,
f(x, y), typically on a pixel grid. The discretization process is
presented in Section 34.3.2.1. A well-known algebraic recon-
struction method, the simultaneous iterative reconstruction tech-
nique (SIRT), is derived in Section 34.3.2.2, after which other
algebraic reconstruction methods such as algebraic reconstruc-
tion technique (ART) and simultaneous algebraic reconstruc-
tion technique (SART) are discussed. All mentioned algebraic
reconstruction methods can be easily implemented with the open
source ASTRA toolbox (van Aarle et al. 2015, 2016).
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34.3.2.1 Discretization

A typical approach is to represent the scanned object on a pixel
(or, in the 3D case, voxel) grid. This is conceptually visualized
in Figure 34.8, which is the discrete analog of the left part of
Figure 34.6. In the discretization on a pixel grid, it is assumed
that the object has a constant attenuation value within each pixel.
Assuming the pixel grid consists of N pixels, the object function,
fix, y), is approximated as f(x,y) ~ X_I, x,¢;, with ¢; the pixel
basis function for the jth pixel, the constant attenuation value
which is zero outside the pixel and one inside, and X; within the
Jjth pixel. The basis functions, qﬁj, do not necessarily need to be
pixel basis functions. Other choices are possible as well, such
as generalized Kaiser-Bessel functions (a.k.a. blobs) (Matej and
Lewitt 1992). Since the object is modeled by a finite number
of attenuation values, it can be represented as a column vector,
x = (x;) € RV

In practice, the measured projection data is also discrete:
it consists of a finite number of measured projection values,
each one corresponding to a specific detector pixel at a specific
angle. Let M denote the total number of measured projection
values for all angles, which are log-corrected and ordered in
a vector p = (p;) € R™. Denote 6, as the counter-clockwise
angle from the y-axis and r; as the signed distance from the
origin to the center of the detector pixel corresponding to p;.
Following Equation 34.14, each projection value, p;, can be
modeled as

Ar Ar
3 2
b= [nrra = [ [ seisa oo
Yar Ar L)
2 2

where Ar represents the detector pixel width. In algebraic recon-
struction methods, the forward projection model of Equation
34.29 is approximated by p; ~ 27:1 w;x;, where w;; represents

N
2w

FIGURE 34.8 Illustration of the discrete representation of the object and
the projection. In this image, the contribution, w;, of pixel j to the projection
value with index i is represented as the ray-intersection length of projection
line i with pixel j.
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FIGURE 34.9 Illustration of two different approaches to calculate the weights of the forward projection matrix W. (a) Strip-kernel, (b) line-kernel.

the contribution of pixel j to the projection value with index i.
This is also illustrated in Figure 34.8. The complete projection
data, p, can then be simulated by Wx, where W = (w;) € R*V
is a sparse matrix that collects all weights, w,. The weights can
be calculated in a variety of ways. The most precise calcula-
tion involves a strip-kernel, which is visualized in Figure 34.9a,
where the weight wy; is equal to the fractional area of the jth pixel
intercepted by the ith ray. A computationally faster approxi-
mation is given by the line-kernel, where the weight w;; equals
the ray-intersection length of the ith ray with the jth pixel (see
Figure 34.9b), or by a linear-kernel (Joseph 1982) (also known
as Joseph’s method), where the contribution of the ray to the
projection value is determined by linearly interpolating between

®
o

[ ST
S O o

Projection value

=)

50 100 150 200 250
N Detector pixel

TYRTRVIRVRY

the two nearest pixels of the intersection of the ray and the row
or column.

Directly solving the system of linear equations, Wx = p, for an
exact solution x is typically infeasible, since noise and discreti-
zation effects render the system of linear equations inconsistent.
Therefore, algebraic methods typically minimize the projection
distance lIWx — pll for some norm II-II.

The projection data acquired from a 2D object is usually rep-
resented as a sinogram. A sinogram collects the projections from
a 2D object in a matrix, where columns typically represent the
different detector pixels and the rows the different projection
angles. An example of a sinogram acquired from the Shepp—
Logan phantom (Shepp and Logan 1974) is given in Figure 34.10.

150 200 250

100
Detector pixel

50

o 9o o o o
©® © ¥ N

Projection
value

Detector pixel

FIGURE 34.10 An example of a sinogram acquired with a parallel beam geometry from the Shepp—Logan phantom. The projections acquired at 6 = 0,

0 = 7/4, and 6 = 7/2 are explicitly shown, and their connection with the sinogram is illustrated.
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34.3.2.2 Simultaneous Iterative Reconstruction
Technique (SIRT)

The simultaneous iterative reconstruction technique (SIRT) is
an algebraic reconstruction algorithm known to converge to a
solution of

x*t = argrnxin(HWJr - PHi) (34.30)

where R = (7;;) € R¥*" is the diagonal matrix with inverse row
sums of the projection matrix W (its diagonal elements are given
by r,; = 1/Sw;) and |[Wx — pHi = (Wx — p)' R(Wx — p) (Jiang
and Wang 2003; Buzug 2008; Gregor and Benson 2008). Starting
from an initial reconstruction, x©® =0, the SIRT algorithm
iteratively updates the reconstruction as follows:

x* D = x® 4 CWTR(p — Wx®) (34.31)

where C = (c;) € RM*" is defined as the diagonal matrix with
the inverse column sums of W (i.e., ¢; = 1/3,w,). Before dem-
onstrating the connection between Equations 34.30 and 34.31,
the iterative update in Equation 34.31 is analyzed more closely.
The update in Equation 34.31 is illustrated in Figure 34.11, and
consists of the following steps:

1. Starting from the current estimate, x®, a forward pro-
jection, Wx®, is simulated.

2. The projection difference p — Wx® is calculated. This
difference indicates where and how much the simulated
projection data, Wx®, is different from the measured
projection data, p. It quantifies the reconstruction qual-
ity of the current estimate, x®.

3. The projection difference, p — Wx®, is weighted with the
inverse row sum matrix, R. Intuitively, projection value
differences corresponding to rays with a long intersec-
tion length with the pixel grid of the reconstruction
domain get a small weight and projection value differ-
ences corresponding to rays that intersect only shortly
with the reconstruction domain get a large weight. A
large weight (and, hence, short ray-intersection length)

Forward project current reconstruction
x® with projection matrix W

x0=0 X0

T Detector pixel
+
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indicates that the projection difference in the particu-
lar detector pixel has a large influence in the update.
This makes sense, since that ray intersects with only a
few pixels in the reconstruction domain, and thus the
projection difference in the corresponding detector
pixel is a good indication for how to update the pixels
on that particular ray. If a ray intersects a lot of pixels,
the projection difference is less trustworthy, since the
projection value is based on the (weighted) sum of lots
of attenuation values along the ray.

4. The back-projected weighted projection difference,
WT R(p — Wx®) is calculated. That is, all projection
differences are “smeared back” over the reconstruction
domain by simply assigning the projection difference
value of each ray to all pixels along that ray, weighted
with the ray-pixel-intersection length.

5. The result is weighted with the inverse column sum
matrix, C. For a particular pixel, this corresponds to
dividing the pixel value of the update by the com-
bined length of all rays that intersected that pixel.
The resulting update reflects how the reconstruction
should be updated in order to reduce the projection
difference.

6. The update is added to the current reconstruction,
and the algorithm continues from the first step until
a certain stopping criterion is reached. The stopping
criterion can consist of stopping the algorithm after a
pre-defined number of iterations or after the projection
distance has reached a certain threshold value.

The connection between Equations 34.30 and 34.31 can be
made as follows. The normal equations for Equation 34.30 are
given by

WTRWx = W'Rp (34.32)

Pre-conditioning Equation 34.32 with C and rewriting the
equations gives

CW'RWx = CW'Rp (34.33)

Calculate weighted backward
projection with CW"

Detector pixel Rip - W)

CWTR(p — Wx®)

\

0 —

Detector pixel ‘

Calculate projection

difference and
weight with R

FIGURE 34.11

The SIRT update process illustrated with the Shepp—Logan phantom.
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sense that artifacts can be reduced, or high quality reconstruc-
tions can be reconstructed from only a few projections. Some
examples:

» If the object consists of only a few discrete grey lev-
els, the discrete algebraic reconstruction technique
(DART) has shown great potential for practical appli-
cations (Batenburg and Sijbers 2011; Dabravolski
et al. 2014). In fact, an entire domain, named “discrete
tomography”, deals with the reconstructions of such
objects (Herman and Kuba 2008).

* Often, a segmentation of the reconstruction is of inter-
est. Various algorithms combine the segmentation and
the reconstruction step into one algorithm, thereby
simultaneously improving both steps (van Aarle et al.
2011; Roelandts et al. 2012).

» Specific algorithms have been developed in medical
imaging for reducing metal artifacts, such as the nor-
malized metal artifact reduction (NMAR) (Meyer et al.
2010) and the frequency split metal artifact reduction
(FSMAR) (Meyer et al. 2012) algorithms.

* In region of interest (ROI) tomography, the goal is to
reconstruct only a small region inside the object. Often,
certain assumptions are made about the region of the
object surrounding the ROI, thereby greatly improv-
ing image quality (Hsung and Lun 2000; Anoop and
Rajgopal 2009; Sidky ect al. 2014).

* Another approach consists of changing the acquisition
protocol from a step-and-shoot approach (i.e., stop-
ping the gantry at each acquisition angle to acquire a
projection) to a continuous gantry rotation. This can
be modeled in the reconstruction algorithm, resulting
in algorithms which are particularly useful for ROI
tomography (Cant et al. 2015).

34.3.3 Statistical Reconstruction Methods

In this section, a short introduction to statistical reconstruction
methods is given. First, in Section 34.3.3.1, it is explained that the
number of detected X-ray quanta follow a Poisson distribution.
Next, in Section 34.3.3.2, the expectation maximization (EM)
algorithm is derived. Finally, a class of more stable statistical
algorithms is described in Section 34.3.3.3.

34.3.3.1 Poisson Distributed Noise

There are three components in X-ray imaging that can be mod-
eled via statistical processes (the reader is referred to Buzug
(2008) for more details):

* In a typical detector, X-ray photon detection is a statis-
tically independent process. Therefore, the detection of
multiple photons follows a Binomial distribution.

* The absorption of photons inside the object are also
guided by Binomial statistics.

* The number of photons that leave the source follows a
Poisson distribution.
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Because Binomial selection of a Poisson process yields
another Poisson process, the overall statistics can be modeled via
a Poisson distribution:

(34.46)

U
P(LIL) = e’ i=1..M

i

where I; denotes the number of measured X-ray quanta at the
ith detector pixel, and I; the expected number of detected X-ray
quanta®. From Equation 34.46, it follows that

M

N (17)1'. I
I)_H e

i=1

P

(34.47)

where I and I; are the column vectors collecting all the values I,

i

and I; for all i, respectively.

34.3.3.2 Expectation Maximization (EM)

The underlying idea of the expectation maximization (EM) algo-
rithm (Rockmore and Macovski 1977; Lange and Carson 1984;
Lange et al. 1987) is to maximize the likelihood of acquiring the
observed data while varying the expectation values of the atten-
uation coefficients of the scanned object. It can be derived as
follows. Substituting the law of Beer—Lambert (i.e., the discrete
version of Equation 34.3) into Equation 34.47 results in

N «\ i
M (Ioefl?’:l‘“f/"/)'

L(x*) == P(I|x") = H N

i=1

S wii (34.48)

6710[

where x* denotes the expected attenuation values for the scanned
object. The product in the likelihood function, L(x*), can be
rewritten as a sum by taking its logarithm to produce the log
likelihood function

M N
[(x"):=In(L x")) = Z[li In(l,) — I,.Zw,-jx; ~In(1)
i Jj=1

i=1
_ Ioe_zfil ”’v'x;]
(34.49)

Note that the maximization of Equations 34.49 or 34.48 yields
the same result, since the logarithm is a monotonically increas-
ing function. Therefore, maximizing P(Ilx*) (which is the goal of
the EM algorithm) is equivalent to solving the following optimi-
zation problem:

* This introduces a slight abuse of notation, since I, was already defined in
Section 34.2.1. I, still denotes the radiation intensity at the source (in this
case expressed in number of photons), whereas I; i = 1, ..., M) denotes the
number of measured photons in the ith detector pixel. Throughout this sec-
tion, it is assumed that I, is the same for all detector pixels. However, all
derivations can be easily adapted to account for a detector pixel dependent
I, value.
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x* = argmax (I(x*)) (34.50)

If the log likelihood function, /(x*), is concave, a global maxi-
mum is guaranteed. The concavity of /(x*) can be shown by
proving in the equivalent condition that the Hessian of /(x*) is
negative semi-definitive. The reader is referred to Lange and
Carson (1984) for proof of this statement. Since a global maxi-
mum exists, the Karush—Kuhn-Tucker (KKT) conditions must
be fulfilled. The inequality constraint in Equation 34.50 can
be written in a more standard form for the KKT conditions, as
g (x®):= —x; <0 for all k=1, ..., N. The KKT conditions
guarantee the existence of the KKT multipliers A\, € R (k= 1,

., N), such that

N
(1) VIG* — ZAkvgk(fc* )=0 (34.51)
k=1
2 gE&H<0 foral k=1,...,N (34.52)
3 N=>0 forall k=1,..,N (34.53)
4) \g@&H =0 forall k=1...,N (459

Conditions (1), (2), (3), and (4) are typically referred to as the
stationarity condition, the primal feasibility condition, the dual
feasibility condition, and the complementary slackness condi-
tion, respectively. The first condition (Equation 34.51) is equiva-
lent to

ol .
M =55

o (34.55)

Substituting Equation 34.55 in the third and fourth conditions
(Equations 34.53 and 34.54) yields

ol

3) ox, xX) =< (34.56)
4 x o & (34.57)
Ox;

By calculating the partial derivative of [ with respect to x;,
Equation 34.57 can be rewritten as

N ¥ M
881 (x*%) = x; Iozwike_zj:]w’m - Zliwik
-1 i=1

(34.58)

M N . M
o g;,()zwmefz,:,w — )}ZZIiwik — 0 (34.59)
i=1 i=1
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o & - Zw,ke S (34.60)
Z Izka i=1
i=1
In terms of the log-corrected projection data, p, = —In(I/1,),
Equation 34.60 can be rewritten as
Z,A-;l",ke i
¥og _ (34.61)

From Equation 34.61, a fixed point iteration scheme can be
derived. Starting from a non-zero reconstruction, x©@ = (x\*),
each individual pixel is updated as

(n)
M Wiix'
Z,:]W’ke / 1Y%
-
= X} o — k=1,...,N
2 wye

(34.62)

)C](('H—l)

The iterative algorithm in Equation 34.62 is the expectation
maximization (EM) algorithm. In summary, the EM algorithm
consists of the following steps:

1. Starting from the current estimate, x™, simulate the

P fori =1, ..., M.

2. Back-project the simulated projection data. For the
pixel with index k, this is achieved by processing all
rays, and for each ray adding the corresponding simu-
lated projection value multiplied with the intersection
length of that particular ray with pixel &, thus

M (
N o)
E kaef%‘:l wiixj"
L
i=1

projection data with e

(34.63)

3. Also, back-project the measured projection data, e~ 7
fori =1, ..., M. In the kth pixel, this corresponds to

M
E wye Pi.
i=l1

(34.64)

4. Compare the back-projected simulated projection data
to the back-projected measured projection data by cal-
culating the ratio

M (n)
-y
Wye I
—
=L (34.65)
wye
i=1

5. This ratio is multiplied in a pixel-by-pixel manner with
the current reconstruction, x™, to produce an improved
reconstruction, x”+ V. The algorithm returns to step 1
and terminates based on some stopping criterion.
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In practice, the EM algorithm of Equation 34.62 is rather
unstable. Often some regularization term is added to the objec-
tive function in Equation 34.50, in order to improve the algo-
rithm’s stability. This is discussed in the following section.

34.3.3.3 Maximum A Posteriori
(MAP) Reconstruction

In contrast to the EM algorithm, where the probability P(Ilx*)
is maximized, the posterior probability, P(x*ll), is maximized
with respect to x* in the maximum a posteriori (MAP) approach
(Lange and Fessler 1995). With Bayes’ theorem, the posterior
probability, P(x*lI), can be written as a function of the condi-
tional probability, P(Ilx*):

* * M *
pie iy = PUDPED _p (FTPUID
i=1

P(I) AP

The product in Equation 34.66 can be transformed into a sum
by taking the logarithm

In(P(x"|D)) = In(P(x")) + Z{IH(P(I,- x")) — In(P(1))}

(34.67)

Maximization of Equation 34.67 over x* is equivalent to mini-
mizing — In (P (x*II)), such as

M

i = arg Egi%[Z{—ln(P(le*))} — In(P(x"))

i=1

| (34.68)

where the irrelevant terms in the objective function were ignored.
With the result in Equation 34.49 and by ignoring all irrelevant
terms, the minimization problem in Equation 34.68 can be
rewritten as

=1

M N
A . % SN oyt s
X = arging; E [Ii wyx; + Iye i1 i /] — In(P(x"))
j=1
(34.69)

A MAP reconstruction method solves the optimization prob-
lem in Equation 34.69. The term —In(P(x*)) typically represents
the state of knowledge about the object x*. It is often referred to
as the regularization term, U (x*) = —In(P(x*)). With this nota-
tion, the MAP optimization problem becomes

M N

2 ; 3 "
= argmin E I; g w;x; + Iye sy | 4 Ui
x >0
T =t j=1

(34.70)

A connection with the optimization problem in Equation 34.45
can be made as follows. First, rewrite Equation 34.70 by intro-

; £ _ SN x,
ducing p; = >, wyx;:
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M

X = argr;}i;(}[Z(lipf + Ioe"’f) +U(x")

i=1

(34.71)

Next, calculate a second-order Taylor expansion of I,p; + I Oe"’?
around the log-corrected measured projection values, p; which
results in (see Buzug (2008) for a detailed calculation):

x = argmgg[z(p —Wx")'D(p —Wx") +U(x )] (34.72)

with D = diag(l}, I,, ..., I,;). The only difference with Equation
34.45 is the weighting by the diagonal matrix, D. Again, vari-
ous choices can be made for the regularization term, U(x*)
(Chambolle 2004; Tang et al. 2009; Lou et al. 2010; Zhang et al.
2010). The optimization problem in Equations 34.72 and 34.70
can be optimized with a variety of algorithms (Lange and Fessler
1995; Tang et al. 2009). In general, algorithms based on the MAP
principle are more stable than EM-like algorithms.

34.4 Dynamic Computed Tomography

In Sections 34.2 and 34.3, the classical tomography model was
described, which assumes the scanned object to remain unaltered
throughout the entire data acquisition process. This assumption
is no longer valid in dynamic computed tomography, where
projections are acquired from a time-varying object. Each pro-
jection, hence, corresponds to a different instance of the time-
varying object, as is illustrated in Figure 34.12.

The most well-known application of dynamic CT can probably
be found in medical CT (see also Section III, Chapter 41, for 4D
CT diagnostic imaging). The motion of the heart and/or lungs
cause tissue to deform during the imaging process, making the
tomography problem a dynamic one (Nehmeh and Erdi 2008).
In gated CT, projections are sorted into several phase bins, and
a reconstruction is generated separately for every separate phase
bin. The sorting is typically performed with an external breath-
ing or electrocardiogram (ECG) signal (Low et al. 2003; Vedam
et al. 2003; Nieman 2014a). In order to improve reconstruction
quality, the correlation of reconstructions at adjacent phases can
be exploited by temporal regularization (Jia et al. 2010; Gao et al.
2011). Approaches without gating typically incorporate motion
models into the reconstruction algorithm (Rit et al. 2009; Van
Eyndhoven et al. 2012; Van Nieuwenhove et al. 2017). Another
medical dynamic CT application is perfusion CT, where a con-
trast bolus is injected into the patient’s blood stream and the local
concentration changes in an organ of interest (brain, lung, liver,
etc.) are monitored (Miles and Griffiths 2003). The same type of
dynamic problems are naturally also encountered in small ani-
mal imaging (Schambach et al. 2010).

Dynamic CT problems are also frequently encountered in
material research. In pressure tests, an incrementally increasing
pressure is applied to a sample, while simultaneously monitor-
ing the changes inside the sample (Shi et al. 1999; Elliott et al.
2002; Landis et al. 2006). Rigid sample motion, causing the
projections to be misaligned, or affine deformation (scaling and
rotation) is a typical problem encountered in X-ray imaging.
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FIGURE 34.12 The effect of a time-varying object on the sinogram, illustrated with the Shepp—Logan phantom. In the left part of the figure, the sinogram
corresponding to a stationary object is visualized. In the right part of the figure, the effect of a deformation in the same object on the sinogram is illustrated.

Fortunately, solutions exist to estimate affine deformations,
without the need for a computational intensive iterative recon-
struction scheme (Nieuwenhove et al. 2017). Other examples of
dynamic CT include sample changes (while scanning) due to
radiation damage (Luther 2007; Stern et al. 2009), the monitor-
ing of root growth over time (Tracy et al. 2010), imaging the solar
corona (Butala et al. 2010), the investigation of micro-structural
changes during development of internal flesh browning of apples
(Herremans et al. 2013), etcetera.

When dealing with time-varying objects, an extra dependency
on time is introduced. Therefore, the object’s attenuation coeffi-
cient function is represented by f{(x, y, 7). The projection value model
of Equation 34.29, hence, also includes the time dependency, i.e.,

Ar

(34.73)

P = f flx,y.t)dsdr’

_ArL(.0)
2

where ¢, represents the point in time at which the ith projection
value was acquired.

In the algebraic setting, the dynamic object is typically repre-
sented as a time series of images, x, € R", where each r € {1,
..., R} is the index referring to a particular point in time (i.e.,
a time frame), and R is the total number of time frames. The
entire time series is represented by the vertical concatenation of
X, X5, ..., Xp, such as, ¥ == (x],x},....,x5)I € RR, To recon-
struct this time series of images, projection data is acquired for
each time frame by rotating source and detector multiple times
around the object, or, equivalently, by rotating the object itself in
between a fixed source and detector. Standard approaches then
typically reconstruct the object at each time frame individually,
solely based on the projection data corresponding to a single
180° or 360° rotation. For every r€ {1, ...,R}, let p, € R¥
be the measured projection data corresponding to the rth time
frame. Define W € RV a5 the forward projection matrix that
models all projection angles, and W, € R™*V as the sub-matrix

of W that models the forward projection for the rth time frame.
Furthermore, let the full vector of measured projection data,
p € R®™ be the vertical concatenation of p,, p,, ..., g, and W
the block diagonal matrix consisting of blocks W, W, ... W. In
summary, we have introduced the following notations:

W, 0 - 0 W,
W:= 0 W c RRMxRN W — W, c RRMxN
0 O Wy Wg
(34.74)
and
p X
pi=|Perm, #i=|Plerm (3475
Pr X

Analogously to the reconstruction problem for the static case,
the goal in dynamic tomography is to find a reconstruction x that
minimizes

Wi — [;H (34.76)
for some norm IIIl. If only a few projections are available per time
frame, finding x such that Equation 34.76 is minimal represents
an ill-posed problem. This is mainly due to the large null space
of the forward operator, W, and the noise in the measured pro-
jection data, p. Therefore, directly minimizing Equation 34.76
for x (e.g., by applying SIRT separately to the projection data,
p, for r=1, ..., R) will typically result in a solution x, which
is fully dominated by noise. This problem can be alleviated by
imposing constraints/models on the reconstruction, X, resulting
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in a smaller solution space. The connection between the dif-
ferent time frames, x, (with » =1, ..., R), is modeled, thereby
basically reducing the degrees of freedom for the reconstruction
algorithm in a model-compliant manner. The more accurately
modeled reconstruction problem results in solutions that are less
dominated by artifacts and more accurately represent the true
underlying solution.

As was suggested in the previous paragraph, modeling the
connection between the different time frames can be benefi-
cial. If the information from reconstructions at different time
frames is combined, it becomes important to avoid redundant
information as much as possible. This can be achieved by
changing the conventional acquisition angle selection schemes
to more advanced. In what follows, three different ways of
selecting the acquisition angles for the projection data cor-
responding to each time frame are introduced. Let M, denote
the number of projections acquired per time frame, and M, the
number of detector elements per projection (this implies that
the total number of projection values per time frame is given by
M = MM,). Next, denote the projection angle for the /th pro-
jection as w; (I = 1, ..., M,R). This notation allows us to define
the following three angle selection schemes, which are visual-
ized in Figure 34.13:

1. Conventional decomposition: For each 180° rotation,
the same (equiangular) projection angles are selected.
This approach is the most widely used and suffices if

1
- . L]
* ! -
! ,
1 4
* *
1
M1, : 2N
o 1
M w : ,
! — iwA
—————————— -0
M1 1 1
1
. ! L)
My+2 : My
Ad 1 L4
a)Mt+3 1 2M-1
. ! .
1
My+4 - I .
» | .
bl
()
Q.
w7
*
@, -
@, o
@,

Handbook of X-ray Imaging

the scanned object is reconstructed independently at
each time frame. The angles are selected as follows:

w=0—-Dwy [=1...MR (34.77)

where w, = m/M,. This angle selection scheme is
illustrated in Figure 34.13a.

2. Binary decomposition: Analogously to the conven-
tional decomposition, the acquisition angles in each
180° rotation are chosen equiangularly. However, a
small angular shift is applied to the starting angle after
each 180° rotation. The first M, equiangular projec-
tion angles are chosen as w;, = (I — Dw, € [0, — w, ]
for [=1, ..., M, The other projection directions are
defined as

WM, + 1 = k(T — wy) + k% F(—1w, G478

for/=1,...M, k=1,...|R/M,| and kM, + | < M,R.
The angles wy, w,, ..., w,M, are schematically displayed
in Figure 34.13b. The small incremental step, kz, in
Equation 34.78 ensures that there exist no two projec-
tion directions that are equal modulo 7. This is benefi-
cial for reconstruction algorithms that aim at combining
information from different time frames. On the one

M, -1

(b) !
- . L]
1
. | L
. ! '0)4
1
i —
-1 : ‘a)B
T
) Z 1
My R 1 o,
w 1
M1
____________ -
. 1 1
My+2 1
1
. 1 .
Me+3 : 2M;
*
1 .
), ) .
1
1
1
1

FIGURE 34.13 Illustration of three different approaches to select the acquisition angles in dynamic CT. (a) Conventional decomposition, (b) binary

decomposition, (c) golden ratio decomposition.
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hand, using the same projection angle (modulo 7 for
parallel beam and modulo 27 for fan beam) more than
once increases the signal-to-noise ratio (SNR). On the
other hand, this will introduce redundant angular infor-
mation, since the rays going through stationary regions
(that is, regions inside the object that do not change over
time) give the same projection values (up to noise). This
situation is avoided by choosing the projection angles
via Equation 34.78. Furthermore, Equation 34.78 guar-
antees that each subsequent M, projection directions
cover arange of approximately 180°, thus avoiding lim-
ited view artifacts.

3. Golden ratio decomposition: In the “golden ratio”
scanning scheme, source and detector are rotated over
a fixed angular step of Aw = 7(1 + \/g)/2 radians to
determine the next acquisition angle (Kohler 2004;
Kaestner et al. 2011). More precisely, the projection
angle, w, (I = 1, ..., RM,), is defined by

w, = |- 1)(1_|—25)7r mod

In the binary decomposition, the user must select the
number of projections per time frame before the experi-
ment starts. The golden ratio scanning scheme is more
flexible in the sense that it allows the user to select an
arbitrary number of projections per time frame after
the data acquisition, while still approximately covering
equiangular positions over the entire angular range for
each time frame (Kaestner et al. 2011). This allows the
user to balance the temporal and spatial resolution a
posteriori, which is a useful property in many applica-
tions. Furthermore, the golden ratio decomposition also
ensures that the same projection angle is never selected
twice.

34.5 Conclusion

X-ray CT allows one to visualize the interior of objects by
acquiring a set of radiographs (projections) and reconstructing
an image from this set of measured projections. Fast analytic
reconstruction methods exist based on filtered back projection.
However, they only generate high quality reconstructions if
many projections are available from all angles. If not, one can
resort to computationally more intensive (and, hence, slower),
iterative reconstruction methods that often lead to much bet-
ter image quality, certainly if appropriate prior knowledge is
exploited. The most common iterative reconstruction methods
have been reviewed and discussed in this chapter.
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